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Abstract. Motivated by applications in large storage systems, we ini-
tiate the study of incremental deterministic public-key encryption. De-
terministic public-key encryption, introduced by Bellare, Boldyreva, and
O’Neill (CRYPTO ’07), provides a realistic alternative to randomized
public-key encryption in various scenarios where the latter exhibits in-
herent drawbacks. A deterministic encryption algorithm, however, can-
not satisfy any meaningful notion of security for low-entropy plaintexts
distributions, and Bellare et al. demonstrated that a strong notion of
security can in fact be realized for relatively high-entropy plaintext dis-
tributions.

In order to achieve a meaningful level of security, a deterministic encryp-
tion algorithm should be typically used for encrypting rather long plain-
texts for ensuring a sufficient amount of entropy. This requirement may
be at odds with efficiency constraints, such as communication complex-
ity and computation complexity in the presence of small updates. Thus,
a highly desirable property of deterministic encryption algorithms is in-
crementality: small changes in the plaintext translate into small changes
in the corresponding ciphertext.

We present a framework for modeling the incrementality of deterministic
public-key encryption. Within our framework we propose two schemes,
which we prove to enjoy an optimal tradeoff between their security and
incrementality up to small polylogarithmic factors. Our first scheme
is a generic method which can be based on any deterministic public-
key encryption scheme, and in particular, can be instantiated with any
semantically-secure (randomized) public-key encryption scheme in the
random oracle model. Our second scheme is based on the Decisional
Diffie-Hellman assumption in the standard model.

The approach underpinning our schemes is inspired by the fundamen-
tal “sample-then-extract” technique due to Nisan and Zuckerman (JCSS
’96) and refined by Vadhan (J. Cryptology ’04), and by the closely related
notion of “locally-computable extractors” due to Vadhan. Most notably,
whereas Vadhan used such extractors to construct private-key encryp-
tion schemes in the bounded-storage model, we show that techniques
along these lines can also be used to construct incremental public-key
encryption schemes.



2 I. Mironov, O. Pandey, O. Reingold, G. Segev

1 Introduction

The fundamental notion of semantic security for public-key encryption schemes
was introduced by Goldwasser and Micali [19]. While semantic security provides
strong privacy guarantees, it inherently requires a randomized encryption algo-
rithm. Unfortunately, randomized encryption breaks several assumptions of large
storage systems that are crucial in efficient implementation of search (and, more
generally, of indexing) and de-duplication [9, 23]. Further, randomized encryp-
tion necessarily expands the length of the plaintext, which may be undesirable
in some applications, such as legacy code or in-place encryption.

Deterministic encryption. To deal with these and other drawbacks, Bellare,
Boldyreva, and O’Neill [2] initiated the study of deterministic public-key encryp-
tion schemes. These are public-key encryption schemes where the encryption
algorithm is deterministic. Bellare et al. formulate meaningful, and essentially
“best possible”, security requirements for such schemes which are inspired by
and very close to semantic security. Clearly, in this setting, no meaningful no-
tion of security can be achieved if the space of plaintexts is small. Therefore,
Bellare et al. [2] required security to hold only when the plaintexts are drawn
from a high min-entropy distribution.

Deterministic encryption already alleviates many of the above mentioned
problems when dealing with large data volumes. For example, since the encryp-
tion algorithm is deterministic, we can now do indexing and perform fast search
on encrypted data. Further, schemes that have length-preserving ciphertexts are
possible as well [2]. Also, unlike randomized encryption, there is no fundamen-
tal reason that precludes noticeable savings in storage by using de-duplication
techniques (which can be as large as 97% [27]); although one may not get the
same amount of savings as with usual plaintext.

We emphasize that security of deterministic encryption is contingent on a
very strong assumption about the underlying data distribution, namely that
the plaintext has high min-entropy from the adversary’s point of view. One
possibility for improving security margin is to encrypt longer plaintexts whenever
possible, for example, by not cutting files into smaller pieces or using larger
blocks for in-place encryption. If, however, changing the plaintext requires re-
computation of the ciphertext, doing that for any update may quickly negate all
efficiency gains from using deterministic encryption. For a remedy we turn to
incremental cryptography, explained below.

Incremental cryptography. Given that we are dealing with large plaintexts,
computing the ciphertext from scratch for the modified plaintext can be quite an
expensive operation. One such example is maintaining an (encrypted) daily back-
up of your hard-disk on an untrusted server. The disk may contain gigabytes of
data, most of which is likely to remain unchanged between two successive back-
ups. The problem is further intensified in various client-server settings where
all of previous plaintext might not be available when the modification request
is made. In such settings where plaintext is really large, downloading old data
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can be a serious problem. This issue is clearly not specific to (deterministic)
encryption, and is of very general interest.

To address this issue, Bellare, Goldreich and Goldwasser [5] introduced and
developed the notion of incremental cryptography, first in application to digital
signatures. The idea is that, once we have signed a document M , signing new
versions of M should be rather quick. For example, if we only flip a single bit
of M , we should be able to update the signature in time polynomial in log |M |
(instead of |M |) and the security parameter λ. Clearly, incrementality is an
attractive feature to have for any cryptographic primitive such as encryption,
signatures, hash functions, and so on [6, 20, 15, 7, 11].

It is clear from our discussion that when dealing with deterministic encryp-
tion over large databases, where we are forced to encrypt rather long plaintexts
for ensuring their min-entropy, what we really need is an incremental encryption
scheme. That is, the scheme should allow quickly updating the ciphertexts to
reflect small changes. In light of the observation that deterministic encryption
is most desirable when dealing with large data volumes, perhaps it is not exag-
gerating to suggest that incrementality should be an important design goal for
deterministic encryption rather than merely a “nice to have” feature.

1.1 Our Contributions

In this work we formalize the notion of incremental deterministic public-key
encryption. We view incrementality and security as two orthogonal objectives,
which together have a great potential in improving the deployment of determin-
istic encryption schemes with provable security properties in real-world applica-
tions.

Modeling incremental updates. Intuitively, a deterministic public-key en-
cryption scheme is incremental if any small modification of a plaintext m result-
ing in a plaintext m′ can be efficiently carried over for updating the encryption
c = Encpk(m) of m to the encryption c′ = Encpk(m

′) of m′. For capturing the
efficiency of such an update operation we consider two natural complexity mea-
sures: (1) input locality (i.e., the number of ciphertexts bits that are affected
when flipping a single plaintext bit), and (2) query complexity (i.e., the number
of public-key, plaintext, and ciphertext bits that have to be read in order to
update the ciphertext).

We note that modeling updates for deterministic public-key encryption is
slightly different than for other primitives. For example, suppose that we allow
“replacements” as considered by [5]. These are queries of the form (j, b) that
replace the j-th bit of a given plaintext m by b ∈ {0, 1}. Then, if there exists
a public algorithm Update for updating the ciphertext, then one can recover
the entire plaintext from the ciphertext3. Therefore, we focus on the bit flipping

3 The encryption algorithm is deterministic, and hence the ciphertext for every mes-
sage is unique. The operation Update(j, 0) changes the ciphertext if and only if the
jth bit of m is 1.
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operation instead. This operation is specified by an index j, and sets the current
value of m[j] to ¬m[j].

For capturing the above measures of efficiency we model the update operation
as a probabilistic polynomial-time algorithm Update that receives as input the
index i∗ of a plaintext bit to be flipped, and has oracle access to the individual
bits of the public key pk, the plaintextm to be modified, and to its encryption c =
Encpk(m). That is, the algorithm Update can submit queries of the form (pk, i),
(m, i) or (c, i), which are answered with the ith bit of pk, m, or c, respectively.
We refer the reader to Section 3 for the formal description of our model, which
considers also update in a “private” fashion in which the update algorithm can
access the secret key but not the plaintext.

Locality lower bound. An important insight is that deterministic encryption
cannot have very small incrementality. Deterministic encryption schemes require
high min-entropy messages to provide any meaningful guarantee, and we show
that any scheme with low incrementality can be secure only for messages with
much higher entropy. Specifically, we show that for every deterministic public-
key encryption scheme that satisfies the minimal notion of PRIV1-IND security
for plaintext distributions of min-entropy k, plaintext length n, and ciphertext
length t, the incrementality ∆ of the scheme must satisfy: ∆ ≥ n−3

k log t .

Ignoring the lower-order log t factor, our proof shows in particular that the
input locality of the encryption algorithm must be roughly n/k. This should
be compared with the case of randomized encryption, where flipping a single
plaintext bit may require to flip only a single ciphertext bit. Indeed, consider
encrypting a plaintext m as the pair (Encpk(r), r ⊕ m) for a randomly chosen
mask r. Flipping a single bit of m requires flipping only a single bit of the
ciphertext.

Constructions with optimal incrementality. We construct two determinis-
tic public-key encryption schemes with optimal incrementality (up to lower-order
polylogarithmic factors). Our first construction is a general transformation from
any deterministic encryption scheme to an incremental one. Following the termi-
nology developed in [2, 4, 8], the resulting scheme from this approach is PRIV1-
IND secure if the underlying scheme is PRIV-IND secure. As a result, using the
construction of Bellare et al. [2] in the random oracle model, we can instanti-
ate our approach in the random oracle model based on any semantically-secure
(randomized) public-key encryption scheme, and obtain a deterministic scheme
with optimal incrementality.

Our second, more direct construction, avoids the random oracle model. It
is based on the Decisional Diffie-Hellman assumption in the standard model,
and enjoys optimal incrementality. The scheme relies on the notion of smooth
trapdoor functions that we introduce (and was implicitly used by Boldyreva et
al. [8]), and realize it in an incremental manner based on the Decisional Diffie-
Hellman assumption. Both of our constructions guarantee PRIV1-IND security
when encrypting n-bit plaintexts with min-entropy k ≥ nϵ, where ϵ > 0 is any
pre-specified constant.
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1.2 Related Work

The problem of composing public-key encryption and de-duplication was ad-
dressed by Doucer et al. [14] via the concept of convergent encryption, in which
files are encrypted using their own hash values as keys. Security of the scheme is
argued in the random-oracle model and under implicit assumption of the plain-
text’s high min-entropy. The formal goal of leveraging entropy of the source to
achieve information-theoretic security with a short symmetric key was articu-
lated by Russell and Wang [24], followed by Dodis and Smith [13].

The notion of public-key deterministic encryption was introduced by Bellare,
Boldyreva, and O’Neill [2], and then further studied by Bellare, Fischlin, O’Neill,
and Ristenpart [4], Boldyreva, Fehr, and O’Neill [8], Brakerski and Segev [10],
Wee [26], and Fuller, O’Neill and Reyzin [18]. Bellare et al. [2] proved their con-
structions in the random oracle model; subsequent papers demonstrated schemes
secure in the standard model based on trapdoor permutations [4] and lossy trap-
door functions [8]. Brakerski and Segev [10] and Wee [26] address the question
of security of public-key deterministic encryption in the presence of auxiliary
input. Fuller et al. [18] presented a construction based on any trapdoor function
that admits a large number of simultaneous hardcore bits, and a construction
that is secure for a bounded number of possibly related plaintexts.

Constructions of deterministic public-key encryption found an intriguing ap-
plication in “hedged” public-key encryptions [3]. These schemes remain secure
even if the randomness used during the encryption process is not perfect (con-
trolled by or leaked to the adversary) as long as the joint distribution of plaintext-
randomness has sufficient min-entropy.

The concept of incremental cryptography started with the work of Bellare,
Goldreich, and Goldwasser [5], who considered the case of hashing and sign-
ing. They also provided discrete-logarithm based constructions for incremental
collision-resistant hash and signatures, that support block replacement opera-
tion. Constructions supporting block insertion and deletion were first developed
in [6], with further refinements and new issues concerning incrementality such
as tamper-proof updates, privacy of updates, and incrementality in symmet-
ric encryption. In subsequent work, Fischlin presented an incremental signature
schemes supporting insertion/deletion of blocks, and tamper-proof updates [15],
and proved a Ω(

√
n) lower bound on the signature size of schemes that sup-

port substitution and replacement operations (the bound can be improved to
Ω(n) in certain special cases) [16]. Bellare and Micciancio [7] revisited the case
of hashing, and provided new constructions for the same based on discrete log-
arithms and lattices. Buonanno, Katz, and Yung [11] considered the issue of
incrementality in symmetric unforgeable encryption and suggested three modes
of operations for AES achieving this notion.

The goal of incremental cryptography, i.e., input locality, can be contrasted
with the dual question of placing cryptography in the NC0 complexity class, i.e.,
identifying cryptographic primitives with constant output locality. This problem
has essentially been resolved for public-key encryption in the positive by Ap-
plebaum, Ishai, and Kushilevitz [1], who construct schemes based on standard
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number-theoretic assumptions and lattice problems where each bit of the en-
cryption operation depends on at most four bits of the input. Applebaum et
al. also argue impossibility of semantically-secure public-key encryption scheme
with constant input locality [1, Section C.1].

1.3 Overview of Our Approach

In this section we present a high-level overview of our two constructions. First, we
describe the well-known “sample-then-extract” approach [21, 25] that serves as
our inspiration for constructing incremental schemes. Then, we describe the main
ideas underlying our schemes, each of which is based on a different realization
of the “sample-then-extract” approach.

“Sample-then-extract”. A fundamental fact in the theory of pseudorandom-
ness is that a random sample of bits from a string of high min-entropy essentially
preserves the min-entropy rate. This was initially proved by Nisan and Zucker-
man [21] and then refined by Vadhan [25] that captured the optimal parameters.
Intuitively, the “sample-then-extract” lemma states that if X ∈ {0, 1}n has min-
entropy rate δ, and XS ∈ {0, 1}t is the projection of X onto a random set S ⊆ [n]
of t positions, then XS is statistically-close to a source with min-entropy rate
δ′ = Ω(δ).

This lemma serves as a fundamental tool in the design of randomness ex-
tractors. Moreover, in the cryptographic setting, it was used by Vadhan [25] to
construct locally-computable extractors, which allow to compute their output by
examining a small number of input bits. Such extractors were used by Vadhan
to design private-key encryption schemes in the bounded-storage model. In this
work we demonstrate for the first time that the “sample-then-extract” approach
can be leveraged to design not only private-key encryption schemes, but also
public-key encryption schemes.

A generic construction via random partitioning. In the setting of random-
ized encryption, a promising approach for ensuring incrementality is to divide
each plaintext m into consecutive and rather small blocks m = m1|| · · · ||mℓ, and
to separately encrypt each block mi. Thus, changing a single bit of m affects
only a single block of the ciphertext. Moreover, the notion of semantic security
is sufficiently powerful to even allow each block mi to be as small as a single
bit. In the setting of deterministic encryption, however, security can hold only
when each encrypted block has a sufficient amount of min-entropy. At this point
we note that even if a plaintext m = m1|| · · · ||mℓ has high min-entropy, it may
clearly be the case that some of its small blocks have very low min-entropy (or
even fixed). Thus, this approach seems to fail for deterministic encryption.

As an alternative, however, we propose the following approach: instead of
dividing the plaintext m into fixed blocks, we project it onto a uniformly chosen
partition S1, . . . , Sℓ of the plaintext positions to sets of equal sizes, and then
separately encrypt each of the projections mS1 , . . . ,mSℓ

using an underlying
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(possibly non-incremental) deterministic encryption scheme4. By the fact that
we use a partition of the plaintext positions we ensure on the one hand that the
plaintext m can be fully recovered, and on the other that each plaintext posi-
tion appears in only one set (and thus the scheme is incremental). In terms of
security, since we use a uniformly chosen partition, the distribution of each indi-
vidual set Si is uniform, and therefore by carefully choosing the size of the sets
the “sample-and-extract” lemma guarantees that with overwhelming probability
each projection mSi

preserves the min-entropy rate of m. Therefore, the scheme
is secure as long as the underlying scheme guarantees PRIV-IND security (see
Section 2.2 for the notions of security for deterministic encryption).

By instantiating this approach with the constructions of Bellare et al. [2]
in the random oracle model, we obtain as a corollary a deterministic public-key
encryption scheme with optimal incrementality based either on any semantically-
secure (randomized) public-key encryption scheme, or on RSA-OAEP which
yields a length-preserving incremental scheme.

A construction based on smooth trapdoor functions. Although our first
construction is a rather generic one, constructions of PRIV-IND-secure schemes
are known only in the random oracle model. In the standard model, Boldyreva
et al. [8] introduced the slightly weaker notion of PRIV1-IND security, which
considers plaintexts that have high min-entropy even when conditioned on other
plaintexts, and showed that it can be realized by composing any lossy trapdoor
function with a pairwise independent permutation. This approach, however, does
not seem useful for constructing incremental schemes, since pairwise indepen-
dence is inherently non-incremental. A simple observation, however, shows that
the approach of Boldyreva et al. [8] requires in fact trapdoor functions with
weaker properties, that we refer to as smooth trapdoor functions (this is implicit
in [8]).

Informally, a collection of smooth trapdoor functions consists of two families
of functions. Functions in one family are injective and can be efficiently inverted
using a trapdoor. Functions in the other family are “smooth” in the sense that
their output distribution on any source of input with high min-entropy is statis-
tically close to their output distribution on a uniformly sampled input. The only
security requirement is that a description of a randomly chosen function from
the family of injective functions is computationally indistinguishable from a de-
scription of a randomly chosen function from the family of smooth functions. We
show that any collection of smooth trapdoor functions is a PRIV1-IND-secure
deterministic encryption scheme (again, this is implicit in [8]).

Next, we construct a collection of incremental smooth trapdoor functions
based on the Decisional Diffie-Hellman (DDH) assumption, by significantly re-
fining the DDH-based lossy trapdoor functions of Freeman et al. [17] (which in
turned generalized those of Peikert and Waters [22]). Our collection is parame-
terized by a group G of prime order p that is generated by an element g ∈ G. A

4 A minor technical detail is that we would also like to ensure that we always encrypt
distinct values, and therefore we concatenate the block number i to each projection
mSi .
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public key is of the form gA, where A ∈ Zn×n is sampled from one distribution
for injective keys, and from a different distribution for smooth keys5. Evaluating
a function on an input x ∈ {0, 1}n is done by computing gAx ∈ Gn and inversion
for injective keys is done using the secret key A−1.

The key point in our scheme is the distribution of the matrix A for injective
and smooth keys. For smooth keys the matrix A is generated to satisfy two
properties. The first is that each of its first ℓ rows has t randomly chosen entries
with values that are chosen uniformly from Zp, and all other n−t entries are zeros
(where ℓ and t are carefully chosen depending on the min-entropy rate). Looking
ahead, when computing the inner product of such a sparse row with a source
of min-entropy larger than log p, the “sample-then-extract” lemma guarantees
that the output is statistically close to uniform. In a sense, this is a realization
of a locally-computable extractor that is embedded in our functions. The second
property, is that each of its last n − ℓ rows are linear combinations of the first
ℓ rows, and therefore the image of its corresponding linear map is determined
by the first ℓ rows. This way, we can argue that smooth keys hide essentially all
information on the underlying input distribution.

For injective keys, we sample a matrix A from the distribution of smooth keys,
and then re-sample all its non-zero entries with independently and uniformly
distributed elements of Zp. A subtle complication arises since such a matrix is
not necessarily invertible, as required for injective keys, but this is easily resolved
(without hurting the smooth keys – see Section 5 for more details). Observing
that for injective keys each column of A contains roughly t non-zero entries, this
yields a PRIV1-IND-secure scheme with optimal incrementality.

Paper organization. In Section 2 we introduce the notation and tools that
are used in this paper. In Section 3 we present a framework for modeling the
incrementality of deterministic public-key encryption schemes. In Section 4 we
present our generic construction, and in Section 5 we present our DDH-based
construction. Due to space limitations we refer the reader to the full version for
the proof of the lower bound.

2 Preliminaries

2.1 Probability Distributions

For a distribution X we denote by x ← X the process of sampling a value x
according to X . Similarly, for a set Ω we denote by ω ← Ω the process of
sampling a value ω from the uniform distribution over Ω. If X is a distribution
and f is a function defined over its support, then f(X ) denotes the outcome of
the experiment where f(x) is evaluated on x sampled from X . For any n ∈ N
we denote by Un the uniform distribution over the set {0, 1}n.

The min-entropy of a distribution X that is defined over a set Ω is de-
fined as H∞(X ) = minω∈Ω log (1/Pr[X = ω]). A k-source is distribution X with

5 For any matrix A = {aij}i∈[n],j∈[n] ∈ Zn×n
p we denote by gA ∈ Gn×n the matrix

{gaij}i∈[n],j∈[n].
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H∞(X ) ≥ k, and the min-entropy rate of a k-source over the set {0, 1}n is k/n.
The statistical distance between two distributions X and Y over a set Ω is defined
as SD(X ,Y) = maxS⊆Ω |Pr[X ∈ S]− Pr[Y ∈ S]|. A distribution X is ϵ-close to
a k-source if there exists a k-source Y such that SD(X ,Y) ≤ ϵ. The following
standard lemma (see, for example, [12]) essentially states that revealing r bits
of information on a random variable may reduce its min-entropy by roughly r.

Lemma 2.1. Let Z be a distribution over at most 2r values, then for any dis-
tribution X and for any ϵ > 0 it holds that

Prz←Z [H∞(X|Z = z) ≥ H∞(X )− r − log(1/ϵ)] ≥ 1− ϵ .

We say that two families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are statistically close, denoted by X ≈ Y, if there exists a negligible function
ν(λ) such that SD(X ,Y) ≤ ν(λ) for all sufficiently large λ ∈ N. Two families
of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistin-

guishable, denoted by X
c
≈ Y, if for any probabilistic polynomial-time algorithm

A there exists a negligible function ν(λ) such that∣∣Prx←Xλ

[
A(1λ, x) = 1

]
− Pry←Yλ

[
A(1λ, y) = 1

]∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N.
The “sample-then-extract” lemma. The following lemma due to Vadhan
[25] plays a major role in our constructions. This is a refinement of the funda-
mental “sample-then-extract” lemma that was originally proved by Nisan and
Zuckerman [21], stating that a random of sample of bits from a string essentially
preserves its min-entropy rate. Vadhan’s refinement shows that the min-entropy
rate is in fact preserved up to an arbitrarily small additive loss, whereas the
original lemma loses a logarithmic factor. Intuitively, the lemma states that if
X ∈ {0, 1}n is a δn-source, and XS ∈ {0, 1}t is the projection of X onto a random
set S ⊆ [n] of t positions, then, with high probability, XS is statistically-close to
a δ′t-source, where δ′ = Ω(δ). Whereas Nisan and Zuckerman [21] and Vadhan
[25] were concerned with the amount of randomness that is required for sampling
the t positions, in our case we can allow ourselves to sample the set S uniformly
at random, and this leads to the following simplified form of the lemma:

Lemma 2.2 ([25] – simplified). Let X be a δn-source over {0, 1}n, let t ∈ [n],
and let S denote the uniform distribution over sets S ⊆ [n] of size t. Then, there
exists a distribution W over {0, 1}t, jointly distributed with S, such that the
following hold:

1. (S,XS) is 2−Ω(δt/ log(1/δ))-close to (S,W).
2. For any set S ⊆ [n] of size t it holds that W|S=S is a δ′t-source for δ′ = δ/4.

2.2 Deterministic Public-Key Encryption

A deterministic public-key encryption scheme is almost identical to a (random-
ized) public-key encryption scheme, where the only difference is that the en-
cryption algorithm is deterministic. More specifically, a deterministic public-key
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encryption scheme is a triple of polynomial-time algorithms Π = (KG,Enc,Dec).
The key-generation algorithm KG is a randomized algorithm which takes as in-
put the security parameter 1λ, where λ ∈ N, and outputs a pair (pk, sk) of a
public key pk and a secret key sk. The encryption algorithm Enc takes as in-
put the security parameter 1λ, a public key pk, and a plaintext m ∈ {0, 1}n(λ),
and outputs a ciphertext c ∈ {0, 1}t(λ). The (possibly deterministic) decryption
algorithm Dec takes as input the security parameter 1λ, a secret key sk, and a
ciphertext c ∈ {0, 1}t(λ), and outputs either a plaintext m ∈ {0, 1}n(λ) or the
special symbol ⊥. For succinctness, we will always assume 1λ as an implicit input
to all algorithms and refrain from explicitly specifying it.

In terms of security, in this paper we follow the standard approach for for-
malizing the security of deterministic public-key encryption schemes introduced
by Bellare, Boldyreva and O’Neill [2] and further studied by Bellare, Fischlin,
O’Neill and Ristenpart [4] and by Boldyreva, Fehr and O’Neill [8]. Specifically,
we consider the PRIV-IND notion of security asking that any efficient algo-
rithm has only a negligible advantage in distinguishing between encryptions of
different sequences of plaintexts as long as each plaintext is sampled from high-
entropy sources. We also consider the PRIV1-IND notion of security that focuses
on a single plaintext, and asks that any efficient algorithm has only a negligi-
ble advantage in distinguishing between encryptions of different plaintexts that
are sampled from high-entropy sources. This notion of security was shown by
Boldyreva, Fehr and O’Neill [8] to guarantee security for block-sources of mes-
sages (that is, for sequences of messages where each message has high-entropy
even when conditioned on the previous messages).

For defining these notions of security we rely on the following notation. We
denote by m = (m1, . . . ,mℓ) a sequence of plaintexts, and by c = Encpk(m) the
sequence of their encryptions (Encpk(m1), . . . ,Encpk(mℓ)) under a public key pk.

Definition 2.3 (k-source ℓ-message adversary). Let A = (A1, A2) be a
probabilistic polynomial-time algorithm, and let k = k(λ) and ℓ = ℓ(λ) be func-

tions of the security parameter λ ∈ N. For any λ ∈ N denote by (M(0)
λ ,M(1)

λ ,
ST AT Eλ) the distribution corresponding to the output of A1(1

λ). Then, A is a
k-source ℓ-message adversary if the following properties hold:

1. M(b)
λ =

(
M(b)

1,λ, . . . ,M
(b)
ℓ,λ

)
is a distribution over sequences of ℓ plaintexts

for each b ∈ {0, 1}.
2. For any λ ∈ N, i, j ∈ [ℓ], and

((
m

(0)
1 , . . . ,m

(0)
ℓ

)
,
(
m

(1)
1 , . . . ,m

(1)
ℓ

)
, state

)
that is produced by A1(1

λ) it holds that m
(0)
i = m

(0)
j if and only if m

(1)
i =

m
(1)
j .

3. For any λ ∈ N, b ∈ {0, 1}, i ∈ [ℓ], and state ∈ {0, 1}∗ it holds that

M(b)
i,λ|ST AT Eλ=state is a k(λ)-source.

Definition 2.4 (PRIV-IND). A deterministic public-key encryption scheme
Π = (KG,Enc,Dec) is PRIV-IND-secure for k(λ)-source ℓ(λ)-message adver-
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saries if for any probabilistic polynomial-time k(λ)-source ℓ(λ)-message adver-
sary A = (A1, A2) there exists a negligible function ν(λ) such that

AdvPRIV−INDΠ,A,λ
def
=

∣∣∣Pr [ExptPRIV−INDΠ,A,λ (0) = 1
]
− Pr

[
ExptPRIV−INDΠ,A,λ (1) = 1

]∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptPRIV−INDΠ,A,λ (b) is defined as follows:

1. (pk, sk)← KG(1λ).
2. (m0,m1, state)← A1(1

λ).
3. c← Encpk(mb).
4. Output A2(1

λ, pk, c, state).

Definition 2.5 (PRIV1-IND). A deterministic public-key encryption scheme
Π = (KG,Enc,Dec) is PRIV1-IND-secure for k(λ)-source adversaries if for any
probabilistic polynomial-time k(λ)-source 1-message adversary A = (A1, A2)
there exists a negligible function ν(λ) such that

AdvPRIV1−INDΠ,A,λ
def
=

∣∣∣Pr [ExptPRIV1−INDΠ,A,λ (0) = 1
]
− Pr

[
ExptPRIV1−INDΠ,A,λ (1) = 1

]∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptPRIV1−INDΠ,A,λ (b) is defined as follows:

1. (pk, sk)← KG(1λ).
2. (m0,m1, state)← A1(1

λ).
3. c← Encpk(mb).
4. Output A2(1

λ, pk, c, state).

3 Modeling Incremental Deterministic Public-Key
Encryption

In this section we present a framework for modeling the incrementality of deter-
ministic public-key encryption schemes. Intuitively, a deterministic public-key
encryption scheme is incremental if any small modification of a plaintext m re-
sulting in a plaintext m′ can be efficiently carried over for updating the encryp-
tion c = Encpk(m) of m to the encryption c′ = Encpk(m

′) of m′. For capturing
the efficiency of such an update operation we consider two natural complexity
measures6:

– Input locality: The number of ciphertexts bits that are affected when flipping
a single plaintext bit.

– Query complexity: The number of public-key, plaintext, and ciphertext bits
that have to be read in order to update the ciphertext when flipping a single
plaintext bit.

6 For simplicity we focus on the case where both plaintexts and ciphertexts are rep-
resented as bit strings. We note, however, that our approach easily generalizes to
arbitrary message and ciphertext spaces.
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For capturing the above measures of efficiency we model the update operation
as a probabilistic polynomial-time algorithm Update that receives as input the
index i∗ of a plaintext bit to be flipped, and has oracle access to the individual
bits of the public key pk, the plaintextm to be modified, and to its encryption c =
Encpk(m). That is, the algorithm Update can submit queries of the form (pk, i),
(m, i) or (c, i), which are answered with the ith bit of pk, m, or c, respectively.

More formally, let Π = (KG,Enc,Dec) be a deterministic public-key encryp-
tion scheme with message space {0, 1}n and ciphertext space {0, 1}t (where n =
n(λ) and t = t(λ) are functions of the security parameter λ ∈ N), and let Update
be its corresponding update algorithm. We denote by S ← Updatepk,m,c(1λ, i∗)
the process in which the update algorithm with input i∗ ∈ [n] and oracle access
to the individual bits of the public key pk, the plaintext m to be modified, and
to its encryption c = Encpk(m), outputs a set S ⊆ [t] of positions indicating
which bits of the ciphertext c have to be flipped.

Definition 3.1 (Incremental deterministic PKE). Let Π = (KG,Enc,Dec)
be a deterministic public-key encryption scheme with message space {0, 1}n and
ciphertext space {0, 1}t, where n = n(λ) and t = t(λ) are functions of the se-
curity parameter λ ∈ N. The scheme Π is ∆(λ)-incremental is there exists a
probabilistic polynomial-time algorithm Update satisfying the following require-
ments:

1. Correctness: There exists a negligible function ν(λ) such that for all suffi-
ciently large λ ∈ N, for any plaintext m ∈ {0, 1}n and for any index i∗ ∈ [n]
it holds that

Pr

c′ = Encpk(m
′)

∣∣∣∣∣∣∣∣∣∣
c = Encpk(m), S ← Updatepk,m,c(1λ, i∗)

m′[i∗] = ¬m[i∗]
m′[i] = m[i] for all i ∈ [n] \ {i∗}

c′[j] = ¬c[j] for all j ∈ S
c′[j] = c[j] for all j ∈ [t] \ S

 ≥ 1− ν(λ),

where the probability is taken over the internal coin tosses of KG and Update.
2. Efficiency: For all sufficiently large λ ∈ N the algorithm Update(·)(1λ, ·) is-

sues at most ∆(λ) oracle queries and outputs sets of size at most ∆(λ).

Access to the plaintext. When providing the update algorithm with oracle
access to the bits of the plaintext m ∈ {0, 1}n we can assume without loss of
generality that the only update operations are to flip the ith bit of m for i ∈ [n].
That is, one can also consider the operation of setting the ith bit of m to 0 or 1,
but this can be handled by first querying the ith bit of m and then flipping it if it
is different than the required value. We note, however, that for supporting only
flipping operations it is not clear that access to the plaintext must be provided.

An important observation is that when access to the plaintext is not pro-
vided (i.e., when the update algorithm can query only the public key and the
ciphertext), it is impossible to support the operation of setting a bit to 0 and 1
while providing PRIV1-IND security. That is, any such update algorithm can be
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used to attack the PRIV1-IND security of the scheme by distinguishing between
encryptions of high-entropy messages (and this holds for any level of incremen-
tality)7.

Privately-incremental schemes. In various scenarios it may be natural to
provide the update algorithm with access not to the plaintext m but rather
to the secret key sk (and thus indirect access to the plaintext which may be
less efficient in terms of query complexity). Consider for example, a scenario
in which a client stores an encrypted version F̄ of a file F on a remote and
untrusted server. In this the client does not have direct access to the file F , but
only indirect access by using its secret key to recover parts of the file. In such
a scenario it is required to capture the efficiency of the client by considering its
query complexity to the secret key (and ciphertext) and not to the plaintext.
This leads to a natural variant of Definition 3.1 in which the update algorithm
is given oracle access to the public key pk, the secret key sk, and the ciphertext
c (but no direct access to the plaintext).

4 A Generic Construction via Random Partitioning

In this section we present a generic construction of an incremental PRIV1-IND-
secure deterministic public-key encryption scheme from any PRIV-IND-secure
deterministic public-key encryption scheme. As discussed in Section 1.3 our ap-
proach is a “randomized” alternative to the commonly-used approach of dividing
the plaintext into small blocks and encrypting each block. Instead of dividing
an n-bit plaintext m into fixed blocks, we project it onto a uniformly chosen
partition S1, . . . , Sn/t of the plaintext positions {1, . . . , n} to sets of size t each,
and then separately encrypt each of the projections mS1 , . . . ,mSn/t

using the
underlying encryption scheme. Thus, when flipping a single bit of m we only
need to update the encryption of the projection mSi for which the correspond-
ing position belongs to the set Si. Therefore, the resulting scheme enjoys the
same incrementality that the underlying scheme has for small blocks. A more
formal description follows.

The scheme. Let Π ′ = (KG′,Enc′,Dec′) be a deterministic public-key en-
cryption scheme for n′-bit plaintexts that is IND-PRIV-secure for k′-source ℓ′-
message adversaries, where n′ = n′(λ), k′ = k′(λ) and ℓ′ = ℓ′(λ) are functions of
the security parameter λ ∈ N. We construct a deterministic public-key encryp-
tion scheme Π = (KG,Enc,Dec) for n-bit plaintexts that is PRIV1-IND-secure

7 Consider the adversary A = (A1, A2) that is defined as follows. The algorithm A1

outputs (m0,m1, state) where m0 ← Uk||0n−k and m1 ← Un are sampled indepen-
dently at random, and state = ⊥. That is, m0 is a distributed uniformly conditioned
on ending with 0n−k, and m1 is distributed uniformly. The algorithm A2 on input
c = Encpk(mb) invokes the update algorithm to set the leftmost k bits of the plaintext
corresponding to c to 0, and then compares the resulting ciphertext to Encpk(0

n).
Note that if b = 0 then the two ciphertexts are always equal, and if b = 1 then they
are equal only with probability 2−(n−k).
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for k-source adversaries, where n = n(λ) and k = k(λ) are functions of the
security parameter λ ∈ N as follows:

– The algorithm KG on input the security parameter 1λ samples (pk′, sk′) ←
KG′(1λ) together with a uniformly chosen partition S1, . . . , Sn/t of [n], where
each set in the partition is of size t = Θ(nk · k

′). It then outputs pk =
(pk′, S1, . . . , Sn/t) and sk = sk′.8

– The algorithm Encpk(·) on input a plaintext m ∈ {0, 1}n outputs the cipher-
text (Enc′pk′(1||mS1), . . . ,Enc

′
pk′(n/t||mSn/t

)).
– The algorithm Decsk(·) on input a ciphertext (c1, . . . , cn/t) computes mSi =

Dec′sk′(ci) for every i ∈ [n/t], and outputs the plaintext m defined by the
projections mS1 , . . . ,mSn/t

.

We establish the security and incrementality of this scheme by proving the fol-
lowing theorem (due to space limitations the proof appears in the full version):

Theorem 4.1. Assuming that Π ′ encrypts n′-bit plaintexts, for n′ = t+log(n/t),
and is IND-PRIV-secure for k′-source ℓ′-message adversaries, for some k′ =
ω(log2 n) and for ℓ′ = n/t, the scheme Π is PRIV1-IND-secure for k-sources.

5 A Construction Based on the Decisional Diffie-Hellman
Assumption

In this section we construct a deterministic public-key encryption scheme that
enjoys essentially optimal incrementality, and guarantees PRIV1-IND security
based on the Decisional Diffie-Hellman (DDH) assumption. We begin by intro-
ducing rather standard notation and then describe the scheme.

Notation. Let G be a group of prime order p that is generated by g ∈ G. For
any matrix A = {aij}i∈[n],j∈[n] ∈ Zn×n

p we denote by gA ∈ Gn×n the matrix

{gaij}i∈[n],j∈[n]. In addition, for a column vector m = (m1, . . . ,mn)
T ∈ Zn

p and
a matrix A = {aij}i∈[n],j∈[n] ∈ Zn×n

p we define

A⊙ gm
def
= gA ⊙m

def
= gAm = (g

∑
i a1,imi , . . . , g

∑
i an,imi)T ∈ Gn .

The scheme. Let GroupGen be a probabilistic polynomial-time algorithm that
takes as input the security parameter 1λ, and outputs a triplet (G, p, g) where
G is a group of prime order p that is generated by g ∈ G, and p is a λ-bit prime
number. The scheme is parameterized by the security parameter λ, the message
length n = n(λ), and the min-entropy k = k(λ) for which the scheme is secure.
Both n and k are polynomials in the security parameter. The scheme Π = (KG,
Enc,Dec) is defined as follows:

8 Without loss of generality we can assume that t divides n, as otherwise we can pad
plaintexts with at most t zeros, and for our choice of parameters this would only
have a minor effect on the min-entropy rate.
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– Key generation. The algorithm KG on input the security parameter 1λ

samples (G, p, g) ← GroupGen(1λ), and a matrix A ← An,k,p, where An,k,p

is a distribution over Zn×n
p which is defined below. It then outputs pk =

(G, p, g, gA) and sk = A−1.
– Encryption. The algorithm Encpk(·) on input a plaintext m ∈ {0, 1}n out-

puts the ciphertext gA ⊙m = gAm ∈ Gn.
– Decryption. The algorithm Decsk(·) on input a ciphertext gc = (gc1 , . . . , gcn)

∈ Gn first computes w = A−1⊙gc = gA
−1c ∈ Gn, and lets w = (gm1 , . . . , gmn).

If m = (m1, . . . ,mn) ∈ {0, 1}n (note that this test can be computed effi-
ciently) then it outputs m, and otherwise it outputs ⊥.

The distribution An,k,p. For completing the description of our scheme it
remains to specify the distribution An,k,p that is defined over Zn×n

p . Looking
ahead this distribution will be used to define the distribution of injective keys
in our collection of smooth trapdoor functions. In fact, we find it convenient to
first specify the distribution Ãn,k,p that will be used to define the distribution
of smooth keys. These two distributions rely on the following distributions as
building block:

– Rn,k,p: sparse random ℓ × n matrices. The distributionRn,k,p is defined
as a random sample from Zℓ×n

p matrices that have exactly t = Θ(nk · log
3 n)

non-zero entries in each row, where ℓ = Θ(k/ log p).
– Dn,k,p: diagonally-striped ℓ × n matrices. The distribution Dn,k,p is

defined as a random sample from Zℓ×n
p matrices whose elements dij are non-

zero if and only if i ≡ j (mod ℓ) (for simplicity we assume that n is divisible
by ℓ).

The distribution Ãn,k,p over Zn×n
p is defined as matrices Ã obtained by in-

dependently sampling R ← Rn,k,p, D1 ← Dn,k,p, and D2 ← Dn,k,p, and letting

Ã
def
= DT

2 × (R + D1). Then, the distribution An,k,p is defined as matrices A

obtained by sampling a matrix Ã← Ãn,k,p and then re-sampling all its non-zero
entries from Zp independently and uniformly at random. In other words, the

resulting matrix A preserves zeroes of the matrix Ã, while randomizing all other
elements (and thus linear dependencies between rows) of the original matrix. See

Figure 1 for an illustration of the distributions Rn,k,p, Dn,k,p and Ãn,k,p.
Intuitively, the matrix D1 is only meant to ensure that such the resulting ma-

trix A is invertible. Indeed, the matrix D1 guarantees that with an overwhelming
probability all the elements on the main diagonal of A are non-zeros. Now, ignor-
ing the matrix D1, the matrix Ã is generated to satisfy two properties. The first
is that each of its first ℓ rows has t randomly chosen entries with values that are
chosen uniformly from Zp, and all other n− t entries are zeros. Looking ahead,
when computing the inner product of such a row with a source of min-entropy
larger than log p, the “sample-then-extract” lemma (see Lemma 2.2) guarantees
that the output is statistically close to uniform. The second property, is that each
of its last n − ℓ rows are linear combinations of the first ℓ rows, and therefore
the image of its corresponding linear map is determined by the first ℓ rows.
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Fig. 1. The distributions Rn,k,p, Dn,k,p and Ãn,k,p.

The following theorem establishes the security of the scheme (due to space
limitations the proof appears in the full version):

Theorem 5.1. Under the Decisional Diffie-Hellman assumption the scheme Π
is PRIV1-IND-secure for k-sources.

Acknowledgements. We thank Salil Vadhan for useful discussions regarding
Lemma 2.2.
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