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Abstract. This paper proposes the first inner product encryption (IPE)
scheme that is adaptively secure and fully attribute-hiding (attribute-
hiding in the sense of the definition by Katz, Sahai and Waters), while
the existing IPE schemes are either fully attribute-hiding but selectively
secure or adaptively secure but weakly attribute-hiding. The proposed
IPE scheme is proven to be adaptively secure and fully attribute-hiding
under the decisional linear assumption in the standard model. The IPE
scheme is comparably as efficient as the existing attribute-hiding IPE
schemes. We also present a variant of the proposed IPE scheme with the
same security that achieves shorter public and secret keys. A hierarchical
IPE scheme can be constructed that is also adaptively secure and fully
attribute-hiding under the same assumption. In this paper, we extend
the dual system encryption technique by Waters into a more general
manner, in which new forms of ciphertext and secret keys are employed
and new types of information theoretical tricks are introduced along with
several forms of computational reduction.

1 Introduction

1.1 Background

Functional encryption (FE) is an advanced class of encryption and it covers
identity-based encryption (IBE)[3, 4, 7, 11], hidden-vector encryption (HVE) [8],
inner-product encryption (IPE) [15], predicate encryption (PE) and attribute-
based encryption (ABE) [2, 13, 23, 16, 22, 24, 19]. In FE, there is a relation R(v, x)
which determines what a secret key with parameter v can decrypt a ciphertext
encrypted under parameter x. The enhanced functionality and flexibility pro-
vided by FE systems are very appealing for many practical applications.

For some applications, the parameters for encryption are required to be hid-
den from ciphertexts. One of such applications is an advanced notion of PKE
with keyword search (PEKS) [6], which we call PKE with functional search
(PEFS) in this paper. In PEFS, a parameter x (not just a keyword) embedded
in a ciphertext is searched (checked) whether R(v, x) holds or not by using a
secret key with parameter v. Here, keyword search is a special case of functional



search R(v, x) when R(v, x) ⇔ [x = v]. Parameter x of a ciphertext is often
private information and should be hidden from ciphertexts in such applications.

To capture the security requirement, Katz, Sahai and Waters [15] introduced
attribute-hiding (based on the same notion for HVE by Boneh and Waters [8]),
a security notion for FE that is stronger than the basic security requirement,
payload-hiding. Roughly speaking, attribute-hiding requires that a ciphertext
conceal the associated parameter as well as the plaintext, while payload-hiding
only requires that a ciphertext conceal the plaintext. Attribute-hiding FE is
often called predicate encryption (PE).

The widest class of relations of a FE system in the literature is general non-
monotone (span program) relations, which can be expressed using AND, OR,
Threshold and NOT gates [19]. FE systems supporting such a wide class of
relations, however, have one limitation in that the parameter x of the ciphertext
should be revealed to users to decrypt. That is, such FE systems do not satisfy
the attribute-hiding security.

To the best of our knowledge, the widest class of relations supported by
attribute-hiding FE systems are inner-product predicates in [15, 16, 19], which
we call the KSW08, LOS+10 and OT10 schemes. Parameters of inner-product
predicates are expressed as vectors �x (for a ciphertext) and �v (for a secret key),
where R(�v, �x) holds iff �v ·�x = 0. (Here, �v ·�x denotes the standard inner-product.)
In this paper we call FE for inner-product predicates inner product encryption
(IPE).

Inner-product predicates represent a fairly wide class of relations including
equality tests as the simplest case (i.e., anonymous IBE and HVE are very special
classes of attribute-hiding IPE), disjunctions or conjunctions of equality tests,
and, more generally, CNF or DNF formulas. We note, however, that inner prod-
uct predicates are less expressive than general (even monotone span program)
relations of FE. To use inner product predicates for such general relations, for-
mulas must be written in CNF or DNF form, which can cause a super-polynomial
blowup in size for arbitrary formulas.

Among the existing attribute-hiding IPEs, the KSW08 IPE scheme [15] is
proven to be only selectively secure. Although the LOS+10 and OT10 IPE
schemes [16, 19] are proven to be adaptively secure, the achieved attribute-hiding
security is limited or weaker than that defined in [15]. Here, we call the attribute-
hiding security defined in [15] fully attribute-hiding and that achieved in [16, 19]
weakly attribute-hiding. In the fully attribute-hiding security definition [15], ad-
versary A is allowed to ask a key-query for �v such that �v · �x(0) = �v · �x(1) = 0
provided that m(0) = m(1) (�x(b) and m(b) (b = 0, 1) are for the challenge ci-
phertext in the security definition), while in the weakly attribute-hiding security
definition [16, 19], A is only allowed to ask a key-query for �v such that �v ·�x(b) �= 0
for all b ∈ {0, 1}.

Let us explain the difference between the fully and weakly attribute-hiding
definitions in a PEFS system. User Alice provides her secret key, sk�v, to proxy
server Bob, who checks whether �v · �x = 0 or not for an incoming ciphertext, ct�x,
encrypted with parameter �x. In the weakly attribute-hiding security, privacy of
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�x from ct�x is ensured only if �v ·�x �= 0, but cannot be ensured or some privacy on
�x may be revealed if �v ·�x = 0. Here note that there still exists (n−1)-dimensional
freedom (or room of privacy) of n-dimensional vector �x, even if �v and the fact
that �v ·�x = 0 is revealed. For example, let �v express formula on an email message
attributes, [[Subject = X] ∨ [Subject = Y ]] ∧ [[Receiver = Alice] ∨ [Receiver =
Alice’s secretary]], and �x express ciphertext attribute (Subject = X,Receiver =
Alice). In this case, �v·�x = 0, since the ciphertext attribute expressed by �x satisfies
the formula expressed by �v. Although Bob knows sk�v and �v, Bob has no idea
which attribute �x is embedded in ct�x except that the ciphertext attribute satisfies
the formula, i.e., �v·�x = 0, if the fully attribute-hiding security is achieved. On the
other hand, Bob may obtain some additional information on the attribute (e.g.,
Bob may know that the subject is X, not Y ), if only the weakly attribute-hiding
security is guaranteed.

The KSW08 IPE scheme is fully attribute-hiding but selectively secure, and
the LOS+10 and OT10 IPE schemes are adaptively secure but weakly attribute-
hiding. Therefore, there is no IPE scheme that is adaptively secure and fully
attribute-hiding simultaneously. As for a more limited class of schemes, HVE
(as mentioned above, HVE is a very special class of attribute-hiding IPE), an
adaptively secure and fully attribute-hiding HVE scheme has been proposed [10].
For hierarchical IPE (HIPE), the LOS+10 and OT10 HIPE schemes [16, 19] are
adaptively secure but weakly attribute-hiding, i.e., there is no HIPE scheme that
is adaptively secure and fully attribute-hiding simultaneously.

It is a technically challenging task to achieve an adaptively secure and fully
attribute-hiding (H)IPE scheme. Even if we use the powerful dual system encryp-
tion technique by Waters, the main difficulty resides in how to change a (normal)
secret key queried with �v to a semi-functional secret key, without knowing �x(b)

(b = 0, 1) for the challenge ciphertext, i.e., without knowing whether �v · �x(b) = 0
or not, since an adversary may issue key queries with �v before issuing the chal-
lenge ciphertext query with �x(b) (b = 0, 1) and two possible cases, �v ·�x(b) = 0 (for
all b ∈ {0, 1}) and �v · �x(b) �= 0 (for all b ∈ {0, 1}), are allowed in fully attribute-
hiding IPE. Note that in weakly attribute-hiding IPE, it is always required that
�v · �x(b) �= 0. At a first glance, it looks hard to achieve it, since the form of semi-
functional secret key may be different (e.g., canceled or randomized) depending
on whether �v · �x(b) = 0 or not. Another technically challenging target in this
paper is to prove the security under the decisional linear (DLIN) assumption
(on prime order pairing groups) in the standard model.

1.2 Our Results

This paper proposes the first IPE scheme that is adaptively secure and fully
attribute-hiding simultaneously. The proposed IPE scheme is proven to be adap-
tively secure and fully attribute-hiding under the DLIN assumption in the stan-
dard model (Section 4). We also present a variant of the proposed IPE scheme
with the same security that achieves shorter master public keys and shorter se-
cret keys (Section 5). A hierarchical IPE (HIPE) scheme can be realized that
is also adaptively secure and fully attribute-hiding under the same assumption
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(see the full version of this paper [21] for the HIPE scheme). Table 2 in Section 6
compares the proposed IPE schemes with several existing attribute-hiding IPE
schemes.

1.3 Key Techniques

To overcome the above-mentioned difficulty, we extend the dual system encryp-
tion technique into a more general manner, in which various forms of ciphertext
and secret keys are introduced (‘normal’, ‘temporal 0’, ‘temporal 1’, ‘temporal 2’
and ‘unbiased’ forms for a ciphertext, and ‘normal’, ‘temporal 1’ and ‘temporal
2’ forms for a secret key), and new types (Types 1, 2, 3) of information theo-
retical tricks are employed with several forms of computational reduction (the
security of Problems 1, 2 and 3 to DLIN). See Table 1 and Figure 1 in Section
4.2 for the outline.

In our approach, all forms (‘normal’, ‘temporal 1’ and ‘temporal 2’) of a
secret key do not depend on whether �v · �x(b) = 0 or not. Although the aim of
a ‘semi-functional’ secret key in the original dual system encryption method is
to randomize the semi-functional part, the aim of these forms of a secret-key in
our approach is just to encode �v in a (hidden) subspace for a secret-key.

Another key point in our approach is that we transform a challenge ciphertext
to an ‘unbiased’ ciphertext whose advantage is 0 in the final game, and �x(b) is
randomized to a random vector in a two-dimensional subspace, span〈�x(0), �x(1)〉.
In contrast, �x(b) is randomized to a random vector in the n-dimensional whole
space, F

n
q , in [16, 19] for weakly attribute-hiding IPE based on the original dual

system encryption technique.
Therefore, in our approach, only �v is encoded in a (hidden) subspace of the

temporal forms of a secret-key, and a random vector in span〈�x(0), �x(1)〉 is encoded
in the corresponding (hidden) subspace for the temporal and unbiased forms of
a ciphertext.

To realize this approach, our construction is based on the dual pairing vector
spaces (DPVS) (Section 2) [16, 19]. A nice property of DPVS is that we can set
a hidden linear subspace by concealing the basis of a subspace from the public
key. Typically, a pair of dual (or orthonormal) bases, B and B

∗, are randomly
generated using random linear transformation, and a part of B (say B̂) is used
as a public key and the corresponding part of B

∗ (say B̂
∗) is used as a secret key

or trapdoor. Therefore, the basis, B − B̂, is information theoretically concealed
against an adversary, i.e., even an infinite power adversary has no idea on which
basis is selected as B − B̂ when B̂ is published. It provides a framework for
information theoretical tricks in the public-key setting.

In the proposed (basic) IPE scheme, span〈B〉 and span〈B∗〉, are (4n + 2)-
dimensional (where the dimension of inner-product vectors is n), and, as for
public parameter B̂, span〈B̂〉 is (2n + 2)-dimensional, i.e., the basis for the re-
maining 2n-dimensional space is information theoretically concealed (ambigu-
ous). We use the 2n-dimensional hidden subspace to realize the various forms of
ciphertext and secret keys and make elaborate game transformations over these
forms towards the final goal, the ‘unbiased’ ciphertext.
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The game transformations are alternating over computational and concep-
tual (information theoretical), and the combinations of three types of information
theoretical tricks and three computational tricks (Problems 1, 2 and 3) play a
central role in our approach, as shown in Figure 1. Type 1 is a (conceptual)
linear transformation inside a (hidden) subspace for a ciphertext, Type 2 is a
(conceptual) linear transformation inside a (hidden) subspace for a ciphertext
with preserving the corresponding secret key value, and Type 3 is a (concep-
tual) linear transformation across (hidden and partially public) subspaces. The
security of Problems 1, 2 and 3 is reduced to the DLIN assumption.

See Section 4.2 for the details of our techniques, in which the game transfor-
mations as well as the form changes of ciphertext and secret keys are summarized
in Table 1 and Figure 1.

1.4 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly
selected from A according to its distribution. When A is a set, y U← A denotes
that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. When a is a fixed value, A(x) → a (e.g., A(x) → 1) denotes
the event that machine (algorithm) A outputs a on input x. A function f : N→ R

is negligible in λ, if for every constant c > 0, there exists an integer n such that
f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq, and Fq\{0} by F
×
q . A vector symbol

denotes a vector representation over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For

two vectors �v = (v1, . . . , vn) and �x = (x1, . . . , xn), �v ·�x denotes the inner-product∑n
i=1 xivi. The vector �0 is abused as the zero vector in F

n
q for any n. XT denotes

the transpose of matrix X. I� denotes the �×� identity matrix. A bold face letter
denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace generated by
b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN ) and B

∗ := (b∗
1, . . . , b

∗
N ),

(x1, . . . , xN )B :=
∑N
i=1 xibi and (v1, . . . , vN )B∗ :=

∑N
i=1 vib

∗
i . GL(n,Fq) denotes

the general linear group of degree n over Fq.

2 Dual Pairing Vector Spaces (DPVS) and the Decisional
Linear (DLIN) Assumption

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [17, 18]. constructed by using symmetric bilinear pairing groups given in
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Definition 1. For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), see

the full version of this paper. The following symmetric version is obtained by
identifying V = V

∗ and A = A
∗ in the asymmetric version.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . ,aN ) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V×V→ GT . The pairing is defined by e(x,y) :=
∏N
i=1 e(Gi,Hi) ∈ GT

where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is nondegen-
erate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0
otherwise, and e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak)

= 0 if k �= j, which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
0, . . . , 0, Gj ,

N−i︷ ︸︸ ︷
0, . . . , 0)

where x := (G1, . . . , GN ). We call φi,j “canonical maps”. DPVS generation al-
gorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and outputs a description of
param′

V
:= (q,V,GT ,A, e) with security parameter λ and N -dimensional V. It

can be constructed by using Gbpg.

We describe random dual orthonormal basis generator Gob below, which is
used as a subroutine in the proposed (H)IPE scheme.

Gob(1λ, N) : param′
V := (q,V,GT ,A, e)

R← Gdpvs(1λ, N), ψ U← F
×
q , gT := e(G,G)ψ,

X := (χi,j)
U← GL(N,Fq), (ϑi,j) := ψ · (XT)−1, paramV := (param′

V, gT ),

bi :=
∑N
j=1 χi,jaj ,B := (b1, . . . , bN ), b∗

i :=
∑N
j=1 ϑi,jaj ,B

∗ := (b∗
1, . . . , b

∗
N ),

return (paramV,B,B
∗).

Definition 3 (DLIN: Decisional Linear Assumption [5]). The DLIN prob-
lem is to guess β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)

R← GDLIN
β (1λ),

where GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), κ, δ, ξ, σ
U← Fq, Y0 :=

(δ+σ)G,Y1
U← G, return (paramG, G, ξG, κG, δξG, σκG, Yβ), for β U← {0, 1}. For

a probabilistic machine E, we define the advantage of E for the DLIN problem as:
AdvDLIN

E (λ) :=
∣∣∣Pr

[
E(1λ, �)→1

∣∣∣� R←GDLIN
0 (1λ)

]
−Pr

[
E(1λ, �)→1

∣∣∣� R←GDLIN
1 (1λ)

]∣∣∣ .
The DLIN assumption is: For any probabilistic polynomial-time adversary E, the
advantage AdvDLIN

E (λ) is negligible in λ.

3 Definition of Inner Product Encryption (IPE)

This section defines predicate encryption (PE) for the class of inner-product
predicates, i.e., inner product encryption (IPE) and its security.
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An attribute of inner-product predicates is expressed as a vector �x ∈ F
n
q \{�0}

and a predicate f�v is associated with a vector �v, where f�v(�x) = 1 iff �v · �x = 0.
Let Σ := F

n
q \ {�0}, i.e., the set of the attributes, and F := {f�v|�v ∈ F

n
q \ {�0}}

i.e., the set of the predicates.

Definition 4. An inner product encryption scheme (for predicates F and at-
tributes Σ) consists of probabilistic polynomial-time algorithms Setup,KeyGen,
Enc and Dec. They are given as follows:

– Setup takes as input security parameter 1λ outputs (master) public key pk
and (master) secret key sk.

– KeyGen takes as input the master public key pk, secret key sk, and predicate
vector �v. It outputs a corresponding secret key sk�v.

– Enc takes as input the master public key pk, plaintext m in some associated
plaintext space, msg, and attribute vector �x. It returns ciphertext ct�x.

– Dec takes as input the master public key pk, secret key sk�v and ciphertext
ct�x. It outputs either plaintext m or the distinguished symbol ⊥.

An IPE scheme should have the following correctness property: for all (pk, sk)
R← Setup(1λ, n), all f�v ∈ F and �x ∈ Σ, all sk�v

R← KeyGen(pk, sk, �v), all messages
m, all ciphertext ct�x

R← Enc(pk,m, �x), it holds that m = Dec(pk, sk�v, ct�x) if
f�v(�x) = 1. Otherwise, it holds with negligible probability.

We then define the security notion of IPE, that was called “adaptively secure
and fully attribute-hiding” in Abstract and Section 1. Since we will deal with only
this security notion hereafter, we shortly call it “adaptively attribute-hiding.”

Definition 5. The model for defining the adaptively attribute-hiding security of
IPE against adversary A (under chosen plaintext attacks) is given as follows:

1. Setup is run to generate keys pk and sk, and pk is given to A.
2. A may adaptively make a polynomial number of key queries for predicate vec-

tors, �v. In response, A is given the corresponding key sk�v
R← KeyGen(pk, sk, �v).

3. A outputs challenge attribute vector (�x(0), �x(1)) and challenge plaintexts (m(0),
m(1)), subject to the following restrictions:
– �v · �x(0) �= 0 and �v · �x(1) �= 0 for all the key queried predicate vectors, �v.
– Two challenge plaintexts are equal, i.e., m(0) = m(1), and any key query
�v satisfies f�v(�x(0)) = f�v(�x(1)), i.e., one of the following conditions.
• �v · �x(0) = 0 and �v · �x(1) = 0,
• �v · �x(0) �= 0 and �v · �x(1) �= 0,

4. A random bit b is chosen. A is given ct�x(b)
R← Enc(pk,m(b), �x(b)).

5. The adversary may continue to issue key queries for additional predicate vec-
tors, �v, subject to the restriction given in step 3. A is given the corresponding
key sk�v

R← KeyGen(pk, sk, �v).
6. A outputs a bit b′, and wins if b′ = b.
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The advantage of A in the above game is defined as AdvIPE,AH
A (λ) := Pr[A wins ]−

1/2 for any security parameter λ. An IPE scheme is adaptively attribute-hiding
(AH) against chosen plaintext attacks if all probabilistic polynomial-time adver-
saries A have at most negligible advantage in the above game.

For each run of the game, the variable s is defined as s := 0 if m(0) �= m(1)

for challenge plaintexts m(0) and m(1), and s := 1 otherwise.

4 Proposed (Basic) IPE Scheme

4.1 Construction

In the description of the scheme, we assume that the first coordinate, x1, of input
vector, �x := (x1, . . . , xn), is nonzero. Random dual basis generator Gob(1λ, N) is
defined at the end of Section 2. We refer to Section 1.4 for notations on DPVS.

Setup(1λ, n) :

(paramV,B := (b0, . . . , b4n+1),B∗ := (b∗
0, . . . , b

∗
4n+1))

R← Gob(1λ, 4n+ 2),

B̂ := (b0, . . . , bn, b4n+1), B̂
∗ := (b∗

0, . . . , b
∗
n, b

∗
3n+1, . . . , b

∗
4n),

return pk := (1λ, paramV, B̂), sk := B̂
∗.

KeyGen(pk, sk, �v ∈ F
n
q \ {�0}) : σ

U← Fq, �η
U← F

n
q ,

1︷︸︸︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
k∗ := ( 1, σ�v, 02n, �η, 0 )B∗ ,

return sk�v := k∗.

Enc(pk, m, �x ∈ F
n
q \ {�0}) : ω, ϕ, ζ

U← Fq,

1︷︸︸︷ n︷ ︸︸ ︷ 2n︷ ︸︸ ︷ n︷ ︸︸ ︷ 1︷︸︸︷
c1 := ( ζ, ω�x, 02n, 0n, ϕ )B, c2 := gζTm,

return ct�x := (c1, c2).
Dec(pk, sk�v := k∗, ct�x := (c1, c2)) : m′ := c2/e(c1,k

∗), return m′.

[Correctness] If �v · �x = 0, then e(c1,k
∗) = gζ+ωσ�v·�xT = gζT .

4.2 Security

Main Theorem (Theorem 1) and Main Lemma (Lemma 1)

Theorem 1. The proposed IPE scheme is adaptively attribute-hiding against
chosen plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E0-1, E0-2, E1-1, E1-2-1
and E1-2-2, whose running times are essentially the same as that of A, such that
for any security parameter λ,

AdvIPE,AH
A (λ) ≤ AdvDLIN

E0-1
(λ) + AdvDLIN

E1-1
(λ)

+
∑ν
h=1

(
AdvDLIN

E0-2-h
(λ) + AdvDLIN

E1-2-h-1
(λ) + AdvDLIN

E1-2-h-2
(λ)

)
+ ε,
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where E0-2-h(·) := E0-2(h, ·), E1-2-h-1(·) := E1-2-1(h, ·), E1-2-h-2(·) := E1-2-2(h, ·), ν
is the maximum number of A’s key queries and ε := (18ν + 17)/q.

Proof. First, we execute a preliminary game transformation from Game 0 (orig-
inal security game in Definition 5) to Game 0’, which is the same as Game 0
except that flip a coin t

U← {0, 1} before setup, and the game is aborted in step
3 if t �= s. We define that A wins with probability 1/2 when the game is aborted
(and the advantage in Game 0’ is Pr[A wins ]− 1/2 as well). Since t is indepen-
dent from s, the game is aborted with probability 1/2. Hence, the advantage in
Game 0’ is a half of that in Game 0, i.e., AdvIPE,AH,0′

A (λ) = 1/2 · AdvIPE,AH
A (λ).

Moreover, Pr[A wins] = 1/2 · (Pr[A wins | t = 0] + Pr[A wins | t = 1]) in Game
0’ since t is uniformly and independently generated.

As for the conditional probability with t = 0, it holds that, for any adversary
A, there exist probabilistic machines E1 and E2, whose running times are essen-
tially the same as that of A, such that for any security parameter λ, in Game
0’,

Pr[A wins | t = 0]− 1/2 ≤ AdvDLIN
E1

(λ) +
∑ν
h=1 AdvDLIN

E2-h
(λ) + ε,

where E2-h(·) := E2(h, ·) and ν is the maximum number of A’s key queries and
ε := (6ν + 5)/q. This is obtained in the same manner as the weakly attribute-
hiding security of the OT10 IPE in the full version of [19]: Since the difference
between our IPE and the OT10 IPE is only the dimension of the hidden sub-
spaces, i.e., the former has 2n and the latter has n, the weakly attribute-hiding
security of the OT10 IPE implies the security with t = 0 of our IPE.

As for the conditional probability with t = 1, i.e., Pr[A wins | t = 1], Lemma
1 (Eq. (1)) holds. Therefore,

AdvIPE,AH
A (λ) = 2 · AdvIPE,AH,0′

A (λ) = Pr[A wins | t = 0] + Pr[A wins | t = 1]− 1
= (Pr[A wins | t = 0]− 1/2) + (Pr[A wins | t = 1]− 1/2)
≤ AdvDLIN

E0-1
(λ) +

∑ν
h=1 AdvDLIN

E0-2-h
(λ) + AdvDLIN

E1-1
(λ)

+
∑ν
h=1

(
AdvDLIN

E1-2-h-1
(λ) + AdvDLIN

E1-2-h-2
(λ)

)
+ ε, where ε := (18ν + 17)/q. ��

Lemma 1 (Main Lemma). For any adversary A, there exist probabilistic ma-
chines E1, E2-1 and E2-2, whose running times are essentially the same as that of
A, such that for any security parameter λ, in Game 0’ (described in the proof of
Theorem 1),

Pr[A wins | t = 1]− 1/2

≤ AdvDLIN
E1

(λ) +
∑ν
h=1

(
AdvDLIN

E2-h-1
(λ) + AdvDLIN

E2-h-2
(λ)

)
+ ε, (1)

where E2-h-1(·) := E2-1(h, ·), E2-h-2(·) := E2-2(h, ·), ν is the maximum number of
A’s key queries and ε := (12ν + 12)/q.
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Proof Outline of Lemma 1 At the top level strategy of the security proof, an
extended form of the dual system encryption by Waters [25] is employed, where
ciphertexts and secret keys have three forms, normal, temporal 1 and temporal
2. The real system uses only normal ciphertexts and normal secret keys, and
temporal 1 and 2 ciphertexts and keys are used only in a sequence of security
games for the security proof. (Additionally, ciphertexts have temporal 0 and
unbiased forms. See below.)

To prove this lemma, we only consider the t = 1 case. We employ Game 0’
(described in the proof of Theorem 1) through Game 3. In Game 1, the challenge
ciphertext is changed to temporal 0 form. When at most ν secret key queries are
issued by an adversary, there are 4ν game changes from Game 1 (Game 2-0-4),
Game 2-1-1, Game 2-1-2, Game 2-1-3, Game 2-1-4 through Game 2-ν-1, Game
2-ν-2, Game 2-ν-3, Game 2-ν-4.

In Game 2-h-1, the challenge ciphertext is changed to temporal 1 form, and
the first h − 1 keys are temporal 2 form, while the remaining keys are normal.
In Game 2-h-2, the h-th key is changed to temporal 1 form while the remaining
keys and the challenge ciphertext is the same as in Game 2-h-1. In Game 2-h-3,
the challenge ciphertext is changed to temporal 2 form while all the queried
keys are the same as in Game 2-h-2. In Game 2-h-4, the h-th key is changed to
temporal 2 form while the remaining keys and the challenge ciphertext is the
same as in Game 2-h-3. At the end of the Game 2 sequence, in Game 2-ν-4, all
the queried keys are temporal 2 forms (and the challenge ciphertext is temporal
2 form), which allows the next conceptual change to Game 3. In Game 3, the
challenge ciphertext is changed to unbiased form (while all the queried keys are
temporal 2 form). In the final game, advantage of the adversary is zero.

We summarize these changes in Table 1, where shaded parts indicate the
challenge ciphertext or queried key(s) which were changed in a game from the
previous game

As usual, we prove that the advantage gaps between neighboring games are
negligible.

For ct�x := (c1, c2), we focus on c1, and ignore the other part of ct�x, i.e., c2,
(and call c1 ciphertext) in this proof outline. In addition, we ignore a negligible
factor in the (informal) descriptions of this proof outline. For example, we say
“A is bounded by B” when A ≤ B + ε(λ) where ε(λ) is negligible in security
parameter λ.

A normal secret key, k∗ norm (with vector �v), is the correct form of the secret
key of the proposed IPE scheme, and is expressed by Eq. (2). Similarly, a normal
ciphertext (with vector �x), c norm

1 , is expressed by Eq. (3). A temporal 0 ciphertext
is expressed by Eq. (4). A temporal 1 ciphertext, c temp1

1 , is expressed by Eq. (5)
and a temporal 1 secret key, k∗ temp1, is expressed by Eq. (6). A temporal 2
ciphertext, c temp2

1 , is expressed by Eq. (7) and a temporal 2 secret key, k∗ temp2,
is expressed by Eq. (8). An unbiased ciphertext, c unbias

1 , is expressed by Eq. (9).
To prove that the advantage gap between Games 0’ and 1 is bounded by the

advantage of Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the
challenger of Game 0’ (or 1) (against an adversary A) by using an instance with

10



Table 1. Outline of Game Descriptions

Game Challenge Queried keys

ciphertext 1 · · · h − 1 h h + 1 · · · ν

0’ normal normal

1 temporal 0 normal

2-1-1 temporal 1 normal

2-1-2 temporal 1 temporal 1 normal

2-1-3 temporal 2 temporal 1 normal

2-1-4 temporal 2 temporal 2 normal

...

2-h-1 temporal 1 temporal 2 normal

2-h-2 temporal 1 temporal 2 temporal 1 normal

2-h-3 temporal 2 temporal 2 temporal 1 normal

2-h-4 temporal 2 temporal 2 temporal 2 normal

...

2-ν-4 temporal 2 temporal 2 temporal 2

3 unbiased temporal 2

β
U← {0, 1} of Problem 1. We then show that the distribution of the secret keys

and challenge ciphertext replied by the simulator is equivalent to those of Game
0’ when β = 0 and those of Game 1 when β = 1. That is, the advantage of
Problem 1 is equivalent to the advantage gap between Games 0’ and 1 (Lemma
6). The advantage of Problem 1 is proven to be equivalent to that of the DLIN
assumption (Lemma 2).

We then show that Game 2-(h− 1)-4 can be conceptually changed to Game
2-h-1 (Lemma 7), by using the fact that parts of bases, (bn+1, . . . , b2n) and
(b∗
n+1, . . . , b

∗
2n), are unknown to the adversary. In particular, when h = 1,

it means that Game 1 can be conceptually changed to Game 2-1-1. When
h ≥ 2, we notice that temporal 2 key and temporal 1 challenge ciphertext,
(k∗ temp2, ctemp1

1 ), are equivalent to temporal 2 key and temporal 2 challenge ci-
phertext, (k∗ temp2, ctemp2

1 ), except that �x(b) is used in ctemp1
1 instead of ω′

0�x
(0) +

ω′
1�x

(1) (with ω′
0, ω

′
1

U← Fq) for some coefficient vector in ctemp2
1 . This change of

coefficient vectors can be done conceptually since zero vector 0n is used for the
corresponding part in k∗ temp2.

The advantage gap between Games 2-h-1 and 2-h-2 is shown to be bounded
by the advantage of Problem 2, i.e., advantage of the DLIN assumption (Lemmas
8 and 3).

11
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DLIN
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Fig. 1. Structure of Reductions

We then show that Game 2-h-2 can be conceptually changed to Game 2-h-
3 (Lemma 9), again by using the fact that parts of bases, (bn+1, . . . , b2n) and
(b∗
n+1, . . . , b

∗
2n), are unknown to the adversary. In this conceptual change, we

use the fact that all key queries �v satisfy �v · �x(0) = �v · �x(1) = 0 or �v · �x(0) �= 0
and �v · �x(1) �= 0. Here, we notice that temporal 1 key and temporal 1 challenge
ciphertext, (k∗ temp1, ctemp1

1 ), are equivalent to temporal 1 key and temporal 2
challenge ciphertext, (k∗ temp1, ctemp2

1 ), except that random linear combination
ω′

0�x
(0) + ω′

1�x
(1) (with ω′

0, ω
′
1

U← Fq) is used in ctemp2
1 instead of �x(b) for some

coefficient vector in ctemp1
1 . This conceptual change is proved by using Lemma 5.

The advantage gap between Games 2-h-3 and 2-h-4 is similarly shown to be
bounded by the advantage of Problem 3, i.e., advantage of the DLIN assumption
(Lemmas 10 and 4).

We then show that Game 2-ν-4 can be conceptually changed to Game 3
(Lemma 11) by using the fact that parts of bases, (bn+1, . . . , b3n) and (b∗

1, . . . , b
∗
2n),

are unknown to the adversary.
Figure 1 shows the structure of the security reduction, where the security of

the scheme is hierarchically reduced to the intractability of the DLIN problem.
The reduction steps indicated by dotted arrows can be shown in the same manner
as that in (the full version of) [19].

Proof of Lemma 1 To prove Lemma 1, we consider the following 4ν+3 games
when t = 1. In Game 0’, a part framed by a box indicates coefficients to be
changed in a subsequent game. In the other games, a part framed by a box
indicates coefficients which were changed in a game from the previous game.

Game 0’ : Same as Game 0 except that flip a coin t
U← {0, 1} before setup,

and the game is aborted in step 3 if t �= s. In order to prove Lemma 1, we

12



consider the case with t = 1. The reply to a key query for �v is:

k∗ := ( 1, σ�v, 0n , 0n , �η, 0 )B∗ , (2)

where σ U← Fq and �η U← F
n
q . The challenge ciphertext for challenge plaintext

m := m(0) = m(1) and vectors (�x(0), �x(1)) is:

c1 := ( ζ, ω�x(b) , 0n , 0n , 0n, ϕ )B, c2 := gζTm, (3)

where b U← {0, 1} and ζ, ω, ϕ
U← Fq. Here, we note that c2 is independent

from bit b.
Game 1 : Game 1 is the same as Game 0’ except that c1 of the challenge

ciphertext for (challenge plaintext m := m(0) = m(1) and) vectors (�x(0), �x(1))
is:

c1 := ( ζ, ω�x(b), zx
(b)
1 , 0n−1 , 0n, 0n, ϕ )B, (4)

where x
(b)
1 �= 0 is the first coordinate of �x(b), z U← Fq and all the other

variables are generated as in Game 0’.
Game 2-h-1 (h = 1, . . . , ν) : Game 2-0-4 is Game 1. Game 2-h-1 is the same

as Game 2-(h−1)-4 except that c1 of the challenge ciphertext for (challenge
plaintext m := m(0) = m(1) and) vectors (�x(0), �x(1)) is:

c1 := ( ζ, ω�x(b), ω′�x(b) , ω′′
0�x

(0) + ω′′
1�x

(1) , 0n, ϕ )B, (5)

where ω′, ω′′
0 , ω

′′
1

U← Fq and all the other variables are generated as in Game
2-(h− 1)-4.

Game 2-h-2 (h = 1, . . . , ν) : Game 2-h-2 is the same as Game 2-h-1 except
that the reply to the h-th key query for �v is:

k∗ := ( 1, σ�v, σ′�v , 0n, �η, 0 )B∗ , (6)

where σ′ U← Fq and all the other variables are generated as in Game 2-h-1.
Game 2-h-3 (h = 1, . . . , ν) : Game 2-h-3 is the same as Game 2-h-2 except

that c1 of the challenge ciphertext for (challenge plaintextsm := m(0) = m(1)

and) vectors (�x(0), �x(1)) is:

c1 := ( ζ, ω�x(b), ω′
0�x

(0) + ω′
1�x

(1) , ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )B, (7)

where ω′
0, ω

′
1

U← Fq and all the other variables are generated as in Game
2-h-2.

Game 2-h-4 (h = 1, . . . , ν) : Game 2-h-4 is the same as Game 2-h-3 except
that the reply to the h-th key query for �v is:

k∗ := ( 1, σ�v, 0n , σ′′�v , �η, 0 )B∗ , (8)

where σ′′ U← Fq and all the other variables are generated as in Game 2-h-3.
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Game 3 : Game 3 is the same as Game 2-ν-4 except that c1 of the challenge ci-
phertext for (challenge plaintexts m := m(0) = m(1) and) vectors (�x(0), �x(1))
is:

c1 :=( ζ, ω0�x
(0) + ω1�x

(1) , ω′
0�x

(0) + ω′
1�x

(1), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, ϕ )B, (9)

where ω0, ω1
U← Fq and all the other variables are generated as in Game

2-ν-4. Here, we note that c1 is independent from bit b U← {0, 1}.
Let Adv

(0′)
A (λ),Adv

(1)
A (λ),Adv

(2-h-1)
A (λ), . . . ,Adv

(2-h-4)
A (λ) and Adv

(3)
A (λ) be the

advantage of A in Game 0′, 1, 2-h-1, . . . , 2-h-4 and 3 when t = 1, respectively.
Adv

(0′)
A (λ) is equivalent to the left-hand side of Eq. (1). We will show six lemmas

(Lemmas 6–11) that evaluate the gaps between pairs of neighboring games. From
these lemmas and Lemmas 2–4, we obtain Adv

(0′)
A (λ) ≤

∣∣∣Adv
(0′)
A (λ)− Adv

(1)
A (λ)

∣∣∣+∑ν
h=1

∑4
ι=1

∣∣∣Adv
(2-h-(ι−1))
A (λ) −Adv

(2-h-ι)
A (λ)

∣∣∣ +
∣∣∣Adv

(2-ν-4)
A (λ)− Adv

(3)
A (λ)

∣∣∣ +

Adv
(3)
A (λ) ≤ AdvP1

B1
(λ) +

∑ν
h=1

(
AdvP2

B2-h-1
(λ) + AdvP3

B2-h-2
(λ)

)
+ (2ν + 1)/q ≤

AdvDLIN
E1

(λ) +
∑ν
h=1

(
AdvDLIN

E2-h-1
(λ) + AdvDLIN

E2-h-2
(λ)

)
+ (12ν + 12)/q. ��

The definitions of Problems 1–3 and the advantages (AdvP1
B (λ), AdvP2

B (λ),
AdvP3

B (λ)), and the proofs of Lemmas 2–12 are given in the full version [21].

Lemma 2 (resp. 3, 4). For any adversary B, there is a probabilistic machine
E, whose running time is essentially the same as that of B, such that for any secu-
rity parameter λ, AdvP1

B (λ) ≤ AdvDLIN
E (λ) + 6/q, (resp.AdvP2

B (λ) ≤ AdvDLIN
E (λ) +

5/q, AdvP3
B (λ) ≤ AdvDLIN

E (λ) + 5/q).

Lemma 5 is the same as Lemma 3 in [19].

Lemma 6. For any adversary A, there exists a probabilistic machine B1, whose
running time is essentially the same as that of A, such that for any security
parameter λ, |Adv

(0′)
A (λ)− Adv

(1)
A (λ)| ≤ AdvP1

B1
(λ).

Lemma 7. For any adversary A, |Adv
(2-(h−1)-4)
A (λ)− Adv

(2-h-1)
A (λ)| ≤ 2/q.

Lemma 8. For any adversary A, there exists a probabilistic machine B2-1, whose
running time is essentially the same as that of A, such that for any security
parameter λ, |Adv

(2-h-1)
A (λ) − Adv

(2-h-2)
A (λ)| ≤ AdvP2

B2-h-1
(λ), where B2-h-1(·) :=

B2-1(h, ·).
Lemma 9. For any adversary A, Adv

(2-h-2)
A (λ) = Adv

(2-h-3)
A (λ).

Lemma 10. For any adversary A, there exists a probabilistic machine B2-2,
whose running time is essentially the same as that of A, such that for any secu-
rity parameter λ, |Adv

(2-h-3)
A (λ)−Adv

(2-h-4)
A (λ)| ≤ AdvP3

B2-h-2
(λ), where B2-h-2(·) :=

B2-2(h, ·).
Lemma 11. For any adversary A, |Adv

(2-ν-4)
A (λ)− Adv

(3)
A (λ)| ≤ 1/q.

Lemma 12. For any adversary A, Adv
(3)
A (λ) = 0.
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5 A Variant for Achieving Shorter Public and Secret Keys

A variant of the proposed (basic) IPE scheme with the same security, that
achieves a shorter (O(n)-size) master public key and shorter (O(1)-size) secret
keys (excluding the description of �v), can be constructed by combining with the
techniques in [20], where n is the dimension of vectors of the IPE scheme. This
variant also enjoys more efficient decryption. Here, we show this variant. See the
key idea, performance and the security proof of this scheme in the full versions
of this paper [21] and [20]. Let N := 5n+ 1 and

H(n,Fq) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
μ μ′

1

. . .
...

μ μ′
n−1

μ′
n

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
μ, μ′

l ∈ Fq for l = 1, . . . , n,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (10)

L+(5, n,Fq) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X :=

⎛
⎜⎜⎜⎝
χ0,0 χ0,1�en · · · χ0,5�en
�χT

1,0 X1,1 · · · X1,5

...
...

...
�χT

5,0 X5,1 · · · X5,5

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

Xi,j ∈ H(n,Fq),
�χi,0 := (χi,0,l)l=1,...,n ∈ F

n
q ,

χ0,0, χ0,j ∈ Fq

for i, j = 1, . . . , 5

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⋂
GL(N,Fq). (11)

We note that L+(5, n,Fq) is a subgroup ofGL(N,Fq). Random dual orthonormal
basis generator GZIPE,SK

ob below is used as a subroutine in the proposed IPE.

GZIPE,SK
ob (1λ, 5, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N := 5n+ 1,

ψ
U← F

×
q , gT := e(G,G)ψ, paramV := (q,V,GT ,A, e) := Gdpvs(1λ, N, paramG),

paramn := (paramV, gT ), X U← L+(5, n,Fq), (ϑi,j)i,j=0,...,5n := ψ · (XT)−1,

hereafter, {χ0,0, χ0,j , χi,0,l, μi,j , μ
′
i,j,l}i,j=1,...5;l=1,...,n denotes non-zero

entries of X, where {μi,j , μ′
i,j,l} are non-zero entries of submatrices Xi,j of

X as given in Eqs. (11) and (10),

bi := (ϑi,0, . . . , ϑi,5n)A =
∑5n
j=0 ϑi,jaj for i = 0, . . . , 5n, B := (b0, . . . , b5n),

B∗
0,0 := χ0,0G,B

∗
0,j := χ0,jG,B

∗
i,0,l := χi,0,lG,B

∗
i,j := μi,jG,B

′∗
i,j,l := μ′

i,j,lG

for i, j = 1, . . . , 5; l = 1, . . . , n,
return (paramn,B, {B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′∗
i,j,l}i,j=1,...,5;l=1,...,n).

Remark 1 Let b∗
0 := ( B∗

0,0, 0n−1, B∗
0,1, . . . , 0

n−1, B∗
0,5 ),

⎛
⎜⎜⎝

b∗
(i−1)n+1

...

b∗
in

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎝

B∗
i,0,1 B∗

i,1 B′∗
i,1,1

...
. . .

...

B∗
i,0,n−1 B∗

i,1 B
′∗
i,1,n−1

B∗
i,0,n B′∗

i,1,n

· · ·

B∗
i,5 B′∗

i,5,1

. . .
...

B∗
i,5 B

′∗
i,5,n−1

B′∗
i,5,n

⎞
⎟⎟⎟⎟⎟⎠
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for i = 1, . . . , 5, and B
∗ := (b∗

0, . . . , b
∗
5n), where a blank element in the matrix

denotes 0 ∈ G. B
∗ is the dual orthonormal basis of B, i.e., e(bi, b∗

i ) = gT and
e(bi, b∗

j ) = 1 for 0 ≤ i �= j ≤ 5n.

Here, we assume that input vector, �v := (v1, . . . , vn), has an index l (1 ≤ l ≤
n− 1) with vl �= 0, and that input vector, �x := (x1, . . . , xn), satisfies xn �= 0.

Setup(1λ, n) :

(paramn,B, {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i,j=1,...,5;l=1,...,n)

R← GZIPE,SK
ob (1λ, 5, n),

B̂ := (b0, . . . , bn, b4n+1, . . . , b5n),

return pk :=(1λ, paramn, B̂), sk :={B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,4;j=1,..,5;l=1,..,n.

KeyGen(pk, sk, �v) : σ, η
U← Fq, K∗

0 := B∗
0,0 +

∑n
l=1 vl(σB

∗
1,0,l + ηB∗

4,0,l),

K∗
1,j := σB∗

1,j + ηB∗
4,j , K

∗
2,j := B∗

0,j +
∑n
l=1 vl(σB

′ ∗
1,j,l + ηB′ ∗

4,j,l) for j = 1, .., 5,
return sk�v := (�v,K∗

0 , {K∗
1,j ,K

∗
2,j}j=1,...,5).

Enc(pk, m, �x) : ω, ζ
U← Fq, �ϕ

U← F
n
q , c1 := ( ζ,

n︷︸︸︷
ω�x ,

2n︷ ︸︸ ︷
02n ,

n︷︸︸︷
0n ,

n︷︸︸︷
�ϕ )B,

c2 := gζTm, return ct�x := (c1, c2).
Dec(pk, sk�v := (�v,K∗

0 , {K∗
1,j ,K

∗
2,j}j=1,...,5), ct�x := (c1, c2)) :

Parse c1 as a (5n+ 1)-tuple (C0, . . . , C5n) ∈ G
5n+1,

Dj :=
∑n−1
l=1 vlC(j−1)n+l for j = 1, . . . , 5,

F := e(C0,K
∗
0 ) ·∏5

j=1

(
e(Dj ,K

∗
1,j) · e(Cjn,K∗

2,j)
)
, return m′ := c2/F.

Remark 2 A part of output of Setup(1λ, n),
{B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,4;j=1,...,5;l=1,...,n, can be identified with B̂

∗ :=
(b∗

0, . . . , b
∗
n, b

∗
3n+1, . . . , b

∗
4n), while B

∗ := (b∗
0, . . . , b

∗
5n) is identified with {B∗

0,0, B
∗
0,j ,

B∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,...,5;j=1,...,5;l=1,...,n in Remark 1. Decryption Dec can be al-

ternatively described as:

Dec′(pk, sk�v := (�v,K∗
0 , {K∗

1,j ,K
∗
2,j}j=1,...,5), ct�x := (c1, c2)) :

k∗ := (

n︷ ︸︸ ︷
K∗

0 , v1K
∗
1,1, .., vn−1K

∗
1,1,K

∗
2,1, . . . ,

n︷ ︸︸ ︷
v1K

∗
1,5, .., vn−1K

∗
1,5,K

∗
2,5 ),

that is, k∗ = (1,

n︷ ︸︸ ︷
σ�v,

2n︷ ︸︸ ︷
02n,

n︷︸︸︷
η�v

n︷︸︸︷
0n )B∗ , F := e(c1,k

∗),
return m′ := c2/F.

Theorem 2. The proposed IPE scheme is adaptively attribute-hiding against
chosen plaintext attacks under the DLIN assumption.

6 Comparison

Table 2 compares the proposed IPE schemes in Sections 4 and 5 with existing
attribute-hiding IPE schemes in [15, 18, 16, 19].
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Table 2. Comparison with IPE schemes in [15, 18, 16, 19], where |G| and |GT | represent
size of an element of G and that of GT , respectively. AH, PK, SK, CT, GSD, DSP and
eDDH stand for attribute-hiding, master public key, secret key, ciphertext, general
subgroup decision [1], decisional subspace problem [18], and extended decisional Diffie-
Hellman [16], respectively.

KSW08 [15] OT09 [18] LOS+10 [16] OT10 [19]
Proposed
(basic)

Proposed
(variant)

Security
selective &
fully-AH

selective &
weakly-AH

adaptive &
weakly-AH

adaptive &
weakly-AH

adaptive &
fully-AH

adaptive &
fully-AH

Order
of G

composite prime prime prime prime prime

Assump.
2 variants
of GSD

2 variants
of DSP

n-eDDH DLIN DLIN DLIN

PK size O(n)|G| O(n2)|G| O(n2)|G| O(n2)|G| O(n2)|G| O(n)|G|
SK size (2n + 1)|G| (n + 3)|G| (2n + 3)|G| (3n + 2)|G| (4n + 2)|G| 11|G|
CT size

(2n + 1)|G|
+ |GT |

(n + 3)|G|
+ |GT |

(2n + 3)|G|
+ |GT |

(3n + 2)|G|
+ |GT |

(4n + 2)|G|
+ |GT |

(5n + 1)|G|
+ |GT |
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