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Abstract. In this paper we present three digital signature schemes with
tight security reductions. Our first signature scheme is a particularly ef-
ficient version of the short exponent discrete log based scheme of Girault
et al. (J. of Cryptology 2006). Our scheme has a tight reduction to the
decisional Short Discrete Logarithm problem, while still maintaining the
non-tight reduction to the computational version of the problem upon
which the original scheme of Girault et al. is based. The second signa-
ture scheme we construct is a modification of the scheme of Lyubashevsky
(Asiacrypt 2009) that is based on the worst-case hardness of the shortest
vector problem in ideal lattices. And the third scheme is a very simple
signature scheme that is based directly on the hardness of the Subset
Sum problem. We also present a general transformation that converts,
what we term lossy identification schemes, into signature schemes with
tight security reductions. We believe that this greatly simplifies the task
of constructing and proving the security of such signature schemes.
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1 Introduction

Due to the widespread use of digital signature schemes in practical applications,
their construction and security analysis comprises an important area of mod-
ern cryptography. While there exist many digital signatures that are secure in
the standard model (e.g. [16,9,25,6,5]), they are usually less efficient than those
that are proved secure in the random oracle model, and so are not as suitable
for practical applications. Signature schemes secure in the random oracle model
generally fall into one of two categories. In the first category are schemes con-
structed using the Full Domain Hash (FDH) approach [4], and in the second are
schemes based on the Fiat-Shamir technique [12]. Our current work focuses on
the latter type.

Proving the security of schemes that are designed using the Fiat-Shamir
heuristic (e.g. [24,48,20]) generally involves an invocation of the forking lemma
[43]. Reductions with this feature entail getting one forgery from the adversary,
then rewinding him back to a particular point, and then re-running the adversary



from that point with the hope of getting another forgery. Using these two related
forgeries, the reduction can extract an answer to some underlying hard problem
such as discrete log or factorization. Due to the fact that two related forgeries
are required and one also needs to guess on which of the qh of his random oracle
query the adversary will forge on, a reduction using an adversary that succeeds
with probability ε in forging a signature will have probability ε2/qh of breaking
the hardness assumption. Asymptotically, this does not cause a problem, since
the reduction only incurs a polynomial loss in the success probability. The re-
duction does not, however, provide us with useful guidance for setting concrete
parameters because it is unclear whether the efficiency loss is just an artifact
of the proof or whether it represents an actual weakness of the scheme. It is
therefore preferable to construct protocols that have a tight proof of security by
avoiding the use of the forking lemma.

1.1 Related Work and Contributions

Constructing number-theoretic signature schemes with tight security reductions
has received some attention in the past. The first work in this direction is due to
Bellare and Rogaway [4], who proposed an RSA-based signature scheme known
as PSS whose security is tightly related to the security of the RSA function.
Later, in the context of signature schemes based on the Fiat-Shamir heuristic,
Micali and Reyzin [36] showed that it is sometimes possible to modify the Fiat-
Shamir transform in order to achieve tighter reductions. In more recent work,
Goh and Jarecki [21] and Katz and Wang [27,22] constructed digital signatures
with tight security reductions based on the Computational and Decisional Diffie-
Hellman problems. These latter two schemes are versions of the Schnorr signature
scheme, and thus inherit most of its characteristics. In particular, the scheme
based on the DDH problem has a very simple construction and a rather short
signature size. There are other signature schemes, though, that possess other
desirable features, but do not yet have a tight security reduction. A notable
example of such a scheme is the one of Girault, Poupard, and Stern [20] which is
extremely efficient when the signer is allowed to perform pre-processing before
receiving the signature. One of the contributions of this paper is a construction
of a scheme that possesses all the advantages of the scheme in [20] in addition
to having a tight security reduction.

As far as we are aware, there has not been any previous work that specifi-
cally considered tight reductions for lattice-based signatures. Similar to number-
theoretic constructions, lattice-based signatures secure in the random oracle
model are built using either the Full Domain Hash [18,50,39] or the Fiat-Shamir
[40,31,28,32,33] methodologies. While FDH-based lattice signatures have tight
reductions, the currently most efficient lattice-based schemes (in terms of both
the signature size and the running time) are those based on the Fiat-Shamir
framework [32,33]. And so it is an interesting problem whether it’s possible to
construct an efficient Fiat-Shamir based scheme that has tight reductions. The
construction of such a scheme is another contribution of this work, though it is
unfortunately a little less efficient than the ones in [32,33].



The third scheme that we construct in our work is based on the hardness of
the low-density subset sum problem. Due to a known reduction from subset sum
to lattice problems [30,13], all signature schemes based on lattices are already
based on subset sum. The aforementioned reduction, however, incurs a loss,
and so the lattice-based schemes are not based on as hard a version of subset
sum as we achieve in this paper by building a scheme directly on subset sum.
Additionally, our scheme is surprisingly simple (to describe and to prove) and
we believe that it could be of theoretical interest.

Proving schemes secure using the Fiat-Shamir heuristic is usually done by
first building a 3-move identification scheme secure against passive adversaries,
and then applying the Fiat-Shamir transformation, which was proven in [1] to
yield provably secure signatures. The advantage of building schemes using this
modular approach is that one does not have to deal with any (usually messy)
issues pertaining to random oracles when building the identification scheme – all
mention of random oracles is delegated to the black-box transformation. For sig-
nature schemes with tight security reductions, however, this construction method
does not work. The reason is that the transformation of [1] inherently loses a
factor of qh in the success probability of the impersonator to the ID scheme
in relation to the forger of the signature scheme, which results in a non-tight
security reduction.

In this paper, we give a black-box transformation analogous to that of [1]
that converts what we call, lossy identification schemes into signature schemes
with tight security reductions. Roughly speaking, a lossy identification scheme is
a three move commit-challenge-response identification scheme that satisfies the
following four simple properties:

1. Completeness: the verification algorithm must accept a valid interaction with
non-negligible probability.

2. Simulatability: there is a simulator, who does not have access to the secret
key, who is able to produce valid interaction transcripts that are statistically
indistinguishable from real ones.

3. Key indistinguishability: there is an algorithm that produces lossy keys that
are computationally indistinguishable from the real keys.

4. Lossiness: when the keys are lossy, it is statistically impossible to provide a
valid response to a random challenge after making a commitment.

Properties 1 and 2 are generally true of all identification schemes, whereas
properties 3 and 4 are particular to the lossy case and are crucially required for
obtaining a tight black-box transformation. Our transformation converts a lossy
identification scheme into a signature scheme and proves that a successful forger
can be converted into a successful impersonator to the identification scheme.
Since the only non-statistical property in the definition above is property 3, it
means that the successful impersonator breaks this property, which is where
we will plant the instance of the hard problem that we are trying to solve.
We demonstrate the usefulness and generality of this approach by building our
signature schemes in this way.



1.2 Overview of Our Signature Schemes

Construction based on the (decisional) Short Discrete Logarithm Prob-
lem. The (computational) c-Discrete Logarithm with Short Exponent (c-DLSE)
problem in a cyclic groupG with generator g is the well-studied problem of recov-
ering the discrete logarithm x of a given group element gx when x is a c-bit long
integer, c being typically much smaller than the bit-size of G. Pollard’s lambda
algorithm [44] solves this problem in time O(2c/2), but when G is a subgroup
of prime order in Z∗

p and c is at least twice the security parameter (c = 160 for
the 80-bit security level, say), the c-DLSE problem is believed to be as hard as
the full-length discrete logarithm problem [51,41]. A number of cryptographic
schemes are based on the hardness of the c-DLSE problem, including pseudo-
random bit generators [41,14,15], key agreement protocols [17] and signature
schemes including Girault-Poupard-Stern (GPS) signatures [45,20].

Like other discrete log-based schemes [48,27,7], GPS is an online/offline
scheme in the sense of Even, Goldreich and Micali [10,11]: when preprocessing
can be done prior to receiving the message to be signed, signature generation
becomes very efficient. The main advantage of GPS signatures, however, is that
this online signature generation step doesn’t even require a modular reduction,
which according to the work of [47], can save as much as 60% of the signing time,
which makes the scheme extremely well-suited for situations where processing
time is at a premium.

Our scheme, described in Section 4, is very similar to the scheme of [20], but
with some tweaks making it possible to choose smaller parameters. Moreover,
while the security proof for GPS is a very loose reduction to the computational
c-DLSE problem, our security proof provides a tight reduction, which is however
to the decisional short discrete log problem (c-DSDL). Informally, the c-DSDL
problem asks to distinguish between a pair (g, gx) where x is c-bit long and a pair
(g, h) where h is uniformly random. No better algorithm is known for solving this
problem than actually computing the discrete logarithm and checking whether
it is small—in fact, a search-to-decision reduction was established by Koshiba
and Kurosawa [29].

Given the pair (g, gx), we set it as the public key, which by our assumption
is computationally indistinguishable from (g, gx) where x is random (i.e. not
small). We then build an identification scheme that satisfies our simulatability
requirement, and furthermore show that it is information-theoretically impossi-
ble to respond to a random challenge if x is not small. Using our transformation
to signatures, this implies that if a forger can produce a valid forgery, then he
can respond to a random challenge, which would mean that x is small.

In the end, we obtain a tightly-secure scheme which is quite efficient in terms
of size (signatures are around 320-bits long at the 80-bit security level) and speed,
especially when used with coupons (in which case signature generation only
requires a single multiplication between integers of 80 and 160 bits respectively).

Construction Based on the Shortest Vector Problem in Ideal Lattices.
In Section 5, we give a construction of a signature scheme based on the hardness



of the approximate worst-case shortest vector problem in ideal lattices. Our
scheme is a modification of the scheme in [32] that eliminates the need to use
the forking lemma. The scheme in [32] was shown to be secure based on the
hardness of the Ring-SIS problem, which was previously shown to be as hard
as worst-case ideal lattice problems [34,42]. In this work, we construct a similar
scheme, but instead have it based on the hardness of the Ring-LWE problem,
which was recently shown to also be as hard as the worst-case shortest vector
problem under quantum reductions [35].

The secret key in our scheme consists of two vectors s1, s2 with small coeffi-
cients in the ring R = Zq[x]/(x

n + 1), and the public key consists of a random
element a ∈ R and t = as1 + s2. The Ring-LWE reduction states that dis-
tinguishing (a, t) from a uniformly random pair in R×R is as hard as solving
worst-case lattice problems. In our identification scheme, the commitment is the
polynomial ay1 + y2 where y1,y2 are elements in R chosen with a particular
distribution. The challenge is an element c ∈ R with small coefficients, and the
response is (z1, z2) where z1 = y1 + s1c and z2 = y2 + s2c. As in [32], the pro-
cedure sometimes aborts in order to make sure that the distribution of (z1, z2)
is independent of the secret keys. The verification procedure checks that z1, z2
have “small” coefficients, and that az1 + z2 − ct = ay1 + y2.

The crux of the security proof lies in showing that whenever (a, t) is truly
random, it is information-theoretically impossible to produce a valid response
to a random challenge. Proving this part in our security reduction requires an-
alyzing the ideal structure of the ring R using techniques similar to the ones in
[37]. This analysis is somewhat loose, however, so that the resulting signature
scheme is not as efficient as the one in [32]. We believe that improving the analy-
sis (possibly using some recent techniques in [49]) and obtaining a more efficient
signature scheme is an interesting research direction.

Construction Based on Subset Sum. In Section 6, we present a very simple
scheme based on the hardness of the subset sum problem. The secret key consists
of an n×k 0/1 matrix X, and the public key consists of a random vector a ∈ Zn

M ,
as well as a k-dimensional vector of subset sums t = aTX mod M that use a
as weights. The main idea for constructing the lossy identification scheme is
to achieve the property that if the vector t is uniformly random, rather than
being a vector of valid subset sums, then it should be impossible (except with
a small probability) to produce a valid response to a random challenge. And so
an adversary who is able to break the resulting signature scheme can be used to
distinguish vectors t that are valid subset sums of the elements in a from those
that are just uniformly random. We defer further details to Section 6.

2 Preliminaries

2.1 The Decisional Short Discrete Logarithm Problem

Let G be a finite, cyclic group of prime order q whose group operation is noted
multiplicatively, and g a fixed generator of G. Let further c be a size parameter.



The c-decisional discrete logarithm (c-DSDL) problem may be informally de-
scribed as the problem of distinguishing between tuples of the form (g, h) for a
uniformly random h ∈ G and tuples of the form (g, gx) with x uniformly random
in {0, . . . , 2c − 1}. More precisely:

Definition 1. A distinguishing algorithm D is said to (t, ε)-solve the c-DSDL
problem in group G if D runs in time at most t and satisfies:

∣∣Pr[x $← Zq : D(g, gx) = 1]− Pr[x
$← {0, . . . , 2c − 1} : D(g, gx) = 1]

∣∣ ≥ ε

We say that G is a (t, ε)-c-DSDL group if no algorithm (t, ε)-solves the c-DSDL
problem in G.

This problem is related to the well-known (computational) c-discrete loga-
rithm with short exponent (c-DLSE) problem. In fact, for the groups where that
problem is usually considered, namely prime order subgroups of Z∗

p where p is a
safe prime, a search-to-decision reduction is known for all c [29]: if the c-DLSE
problem is hard, then so is the c-DSDL problem. The reduction is not tight, how-
ever, so while the signature scheme presented in the next section admits a tight
reduction to the decisional problem, there is a polynomial loss in the reduction
to the search problem.

2.2 The Ring-LWE Problem and Lattices

For any positive integer n and any positive real σ, the distribution DZn,σ assigns

the probability proportional to e−π‖y‖2/σ2

to every y ∈ Zn and 0 everywhere else.
For any odd prime p, the ringR = Zp[x]/(x

n+1) is represented by polynomials of
degree at most n− 1 with coefficients in the range

[
− p−1

2 , p−1
2

]
. As an additive

group, R is isomorphic to Z
n
p , and we use the notation y

$← DR,σ to mean
that a vector y is chosen from the distribution DZn,σ and then mapped to a
polynomial in R in the natural way (i.e. position i of the vector corresponds to
the coefficient of the xi term of the polynomial). The (decisional) Ring Learning
With Errors Problem (Ring-LWE) over the ring R with standard deviation σ
is to distinguish between the following two oracles: O0 outputs random elements

in R×R, while the oracle O1 has a secret s ∈ R where s
$← DR,σ, and on every

query it chooses a uniformly random element a
$← R, e $← DR,σ, and outputs

(a, as + e). The Ring-LWE problem is a natural generalization of the LWE

problem [46] to rings and it was recently shown in [35] that if p = poly(n) is
a prime congruent to 1 mod 2n, then solving the Ring-LWE problem over the
ring R with standard deviation3 σ is as hard as finding an approximate shortest
vector in all ideal lattices in the ring Z[x]/(xn + 1). Intuitively, the smaller the
ratio between p and σ is, the smaller the vector the reduction is able to find,
and thus it is preferable to keep this ratio low.

3 In the actual reduction of [35], the standard deviation is itself chosen from a some-
what complicated probability distribution, but if the number of times theRing-LWE

oracle is queried is bounded (in this paper it only needs to provide one output), then
the standard deviation can be fixed.



2.3 The Subset Sum Problem

In the search version of the random subset sum problem, SS(n,M), one is given
n elements ai generated uniformly at random in ZM (in this paper, we will
only deal with low-density instances of the problem, where M > 2n) and an
element t =

∑
aisi mod M , where the si are randomly chosen from {0, 1}, and

is asked to find the si (with high probability, there is only one possible set
of si). The decision version of the problem, which was shown to be as hard
as the search version [26,38], is to distinguish an instance (a1, . . . , an, t) where
t = a1x1+. . .+ansn mod M from the instance (a1, . . . , an, t) where t is uniformly
random in ZM . The low-density SS(n,M) problem is hardest when M ≈ 2n, in
which case the best algorithm runs in time 2Ω(n) (see for example [3]), but the
best known algorithms for the problem when M = nO(n), still require time
2Ω(n). As M increases, however, the problem becomes easier, until it is solvable
in polynomial-time when M = 2Ω(n2) [30,13].

2.4 Signature Schemes

Definition 2. A signature scheme Sig is composed of three algorithms (GenKey,
Sign,Verify) such that:

– The key generation algorithm GenKey takes as input the security parameter
in unary notation and outputs a pair (pk, sk) containing the public verifica-
tion key and the secret signing key.

– The signing algorithm Sign takes as input a message m and the signing key
sk and outputs a signature σ. This algorithm can be probabilistic so that
many signatures can be computed for the same message.

– The verification algorithm Verify takes as input a message m, a signature σ
and the public key pk and outputs 1 if the signature is correct and 0 otherwise.

The standard security notion for signature scheme is strong existential un-
forgeability against adaptive chosen-message attacks [23] which informally means
that, after obtaining signatures on polynomially many arbitrary messages of his
choice, an adversary cannot produce a new valid signature, even for a message
m for which he already knows a correct signature.

Definition 3. Let Sig = (GenKey, Sign,Verify) be a signature scheme and let
H be a random oracle. We say that Sig is (t, qh, qs, ε)-strongly existentially un-
forgeable against adaptive chosen-message attacks, if there is no algorithm D
that runs in time at most t, while making at most qh hash queries and at most
qs signing queries, such that

Pr[(pk, sk)← GenKey(1k);(m,σ)← DSign(sk,·),H(·)(pk) :

(m,σ) /∈ S ∧ Verify(m,σ, pk) = 1] ≥ ε,

where S is the set of message-signature pairs returned by the signing oracle.



3 Lossy Identification Schemes

In order to unify the security proofs of our signature schemes without sacrific-
ing the tightness of the reduction, we introduce in this section a new class of
identification schemes, called lossy identification schemes. In these schemes, the
public key associated with the prover can take one of two indistinguishable forms,
called normal and lossy. When the public key is normal, the scheme behaves as
a standard identification scheme with similar security guarantees against im-
personation attacks. However, in the lossy case, the public key may not have a
corresponding secret key and no prover (even computationally unbounded ones)
should be able to make the verifier accept with non-negligible probability.

As with other identification schemes used to build signature schemes via
the Fiat-Shamir transform, the identification schemes that we consider in this
paper consist of a canonical three-move protocol, as defined in [1]. In these
protocols, the verifier’s move consists in choosing a random string from the
challenge space and sending it to the prover. Moreover, its final decision is a
deterministic function of the conversation transcript and the public key. Since
our results can be seen as a generalization of the results of Abdalla et al. [1] to
the lossy setting, we use their definitions as the basis for ours below.

Definition 4. A lossy identification scheme ID is defined by a tuple (KeyGen,
LosKeyGen,Prove, c,Verify) such that:

– KeyGen is the normal key generation algorithm which takes as input the
security parameter in unary notation and outputs a pair (pk , sk) containing
the publicly available verification key and the prover’s secret key.

– LosKeyGen is the lossy key generation algorithm which takes as input the
security parameter in unary notation and outputs a lossy verification key
pk .

– Prove is the prover algorithm which takes as input the current conversation
transcript and outputs the next message to be sent to the verifier.

– c(k) is a function of the security parameter which determines the length of
the challenge sent by the verifier.

– Verify is a deterministic algorithm which takes the conversation transcript
as input and outputs 1 to indicate acceptance or 0 otherwise.

Following [1], we associate to ID, k, and (pk , sk) a randomized transcript gen-
eration oracle TrIDpk ,sk ,k which takes no inputs and returns a random transcript
of an “honest” execution. However, to adapt it to specific setting of our schemes,
we modify to the original definition to take into account the possibility that the
prover may fail and output ⊥ as response during the execution of the identifica-
tion protocol. Moreover, when this happens, instead of outputting (cmt , ch,⊥),
our transcript generation oracle will simply return a triplet (⊥,⊥,⊥) to simulate
the scenario in which the verifier simply forgets failed identification attempts.
Interestingly, as we show later in this section, this weaker requirement is suffi-
cient for building secure signature schemes as failed impersonation attempts will



be kept hidden from the adversary since the tasks of generating the commit-
ment and challenge are performed by the signer. More precisely, the transcript
generation oracle TrIDpk ,sk ,k is defined as follows:

TrIDpk ,sk ,k():

1: cmt
$← Prove(sk)

2: ch
$← {0, 1}c(k)

3: rsp
$← Prove(sk , cmt , ch)

4: if rsp = ⊥ then (cmt , ch)← (⊥,⊥)
5: return (cmt , ch, rsp)

Definition 5. An identification scheme is said to be lossy if it has the following
properties:

1. Completeness of normal keys. We say that ID is ρ-complete, where ρ
is a non-negligible function of k, if for every security parameter k and all

honestly generated keys (pk , sk)
$← KeyGen(1k), Verify(pk , cmt , ch, rsp) = 1

holds with probability ρ when (cmt , ch, rsp)
$← TrIDpk ,sk ,k().

2. Simulatability of transcripts. Let (pk , sk) be the output of KeyGen(1k) for
a security parameter k. Then, we say that ID is ε-simulatable if there exists a

PPT algorithm T̃r
ID

pk ,k with no access to the secret key sk which can generate
transcripts {(cmt , ch, rsp)} whose distribution is statistically indistinguish-
able from the transcripts output by TrIDpk ,sk ,k, where ε is an upper-bound for
the statistical distance. When ε = 0, then ID is said to simulatable.

3. Indistinguishability of keys. Consider the experiments Expind-keys-real
ID,D (k)

and Expind-keys-lossy
ID,D (k) in which we generate pk via KeyGen(1k), respectively

LosKeyGen(1k), and provide it as input to the distinguishing algorithm D .
We say that D can (t, ε)-solve the key-indistinguishability problem if D runs
in time t and

∣∣Pr[Expind-keys-real
ID,D (k) = 1 ]− Pr[Expind-keys-lossy

ID,D (k) = 1 ]
∣∣ ≥ ε.

Furthermore, we say that ID is (t, ε)-key-indistinguishable if no algorithm
(t, ε)-solves the key-indistinguishability problem.

4. Lossiness. Let I be an impersonator, st be its state, and k be a security
parameter. Let Explos-imp-pa

ID,I (k) be the following experiment played between
I and a hypothetical challenger:

Explos-imp-pa
ID,I (k):

1: pk
$← LosKeyGen(1k)

2: (st , cmt)
$← I

T̃r
ID

pk,k(pk) ; ch
$← {0, 1}c(k) ; rsp $← I (st , ch)

3: return Verify(pk , cmt , ch, rsp)



Sign(sk ,m):

1: ctr ← 0
2: while ctr ≤ ℓ and rsp = ⊥ do

3: ctr ← ctr + 1
4: cmt ← Prove(sk)
5: ch ← H(cmt ,m)
6: rsp ← Prove(sk , cmt , ch)
7: end while

8: if rsp = ⊥ then cmt ← ⊥
9: σ ← (cmt , rsp)
10: return σ

Verify(pk ,m, σ):

1: parse σ as (cmt , rsp)
2: ch ← H(cmt ,m)
3: d ← Verify(pk , cmt , ch , rsp)
4: return d

Fig. 1. Description of our signature scheme Sig[ID, ℓ] = (GenKey,Sign,Verify), where ID
= (KeyGen, LosKeyGen,Prove, c,Verify) is a lossy identification scheme, H is a random
oracle, and ℓ is a bound on the number of signing attempts.

We say I ε-solves the impersonation problem with respect to lossy keys if

Pr[Explos-imp-pa
ID,I (k) = 1 ] ≥ ε.

Furthermore, we say that ID is ε-lossy if no (computationally unrestricted)
algorithm ε-solves the impersonation problem with respect to lossy keys.

As in [1], we need to use the concept of min-entropy [8] to measure the
maximum likelihood that a commitment generated by the prover collides with a
fixed value. The precise definition of min-entropy can be found in Definition 3.2
in [1].

Transform. The signature schemes that we consider in this paper are built
from lossy identification schemes via the Fiat-Shamir transform [12], in which
the challenge becomes the hash of the message together with the commitment.
However, since we do not assume perfect completeness of normal keys for the
underlying lossy identification scheme, the signing algorithm will differ slightly
from those considered in [1] in order to decrease the probability of abort during
signing. More precisely, let ID = (KeyGen, LosKeyGen,Prove, c,Verify) be a lossy
identification scheme and letH be a random oracle. Let ℓ be a parameter defining
the maximum number of signing attempts. We can construct a signature scheme
Sig[ID, ℓ] = (GenKey, Sign,Verify), where GenKey simply calls KeyGen from the
ID scheme, and Sign,Verify are depicted in Figure 1.

We remark that the signature length of the scheme in Figure 1 can sometimes
be optimized by setting σ = (ch , rsp). However, this is only possible when the
commitment value cmt is uniquely defined by (ch, rsp), which is the case for all
the schemes considered in this paper.

Theorem 1. Let ID = (KeyGen, LosKeyGen,Prove, c,Verify) be a lossy identifi-
cation scheme whose commitment space has min-entropy β(k), let H be a random



oracle, and let Sig[ID] = (GenKey, Sign,Verify) be the signature scheme obtained
via the transform in Figure 1. If ID is εs-simulatable, ρ-complete, (t′, εk)-key-
indistinguishable, and εℓ-lossy, then Sig[ID] is (t, qh, qs, ε)-strongly existentially
unforgeable against adaptive chosen-message attacks in the random oracle model
for:

ε = εk + qsεs + (qh + 1)εℓ + ℓ(qs + qh + 1)qs/2
β

t ≈ t′ −O(qs · tSign)
where tSign denotes the average signing time. Furthermore, the probability that
Sig[ID] outputs a valid signature is 1− (1 − ρ)ℓ.

Proof overview. In order to prove the security of the signature scheme based
on the security properties of the underlying lossy identification scheme, the
main idea is to use honest transcripts generated by the identification scheme
to answer signature queries made the adversary by appropriately programming
the random oracle. More precisely, let (cmt , ch, rsp) be a valid transcript (i.e.,
Verify(pk , cmt , ch, rsp) = 1). To answer a query m to the signing oracle, we need
to program the random oracle to set H(cmt ,m) = ch so that (cmt , rsp) is a
valid signature for m. Unfortunately, this programming may conflict with previ-
ous values outputted by the hash oracle. To address this problem, the first step
of the proof is to show that such collisions happen with with probability at most
ℓ(qs + qh + 1)qs/2

β.
Next, we make a sequence of small changes to the security experiment to be

able to bound the success probability of the forger. The first significant modifi-
cation is to change the simulation of the signing oracle so that it no longer uses
the secret key. This is done by replacing the transcript generation oracle TrIDpk ,sk,k

with its simulated version T̃r
ID

pk ,k. Since we make at most qs calls to T̃r
ID

pk ,k, the
difference in the success probability of the forger changes by at most qsεs due
to the simulatability of ID.

The second important modification is to replace the key generation algorithm
with its lossy version. Since the secret key is no longer needed in the simulation of
the signing oracle, the difference in the success probability of the forger changes
by at most εk due to the key-indistinguishability of ID.

Finally, we can bound the success probability of the forger in this final experi-
ment by relating this probability with that of solving the impersonation problem
with respect to lossy keys. Since we need to guess the hash query which will be
used in the forgery to be able to break the underlying impersonation problem,
we lose a factor qh + 1 in the reduction, resulting in the term (qh + 1)εℓ in the
theorem. For more details, please refer to the full version of this paper [2].

4 A Signature Scheme Based on the DSDL Problem

In this section we describe our short discrete log based signature scheme. While
it looks similar to the prime-order version of the Girault-Poupard-Stern identi-
fication scheme [19,45,20], the proof strategy is in fact closer to the one used by



Katz and Wang for their DDH-based signature scheme [27,22]. We first present
a lossy identification scheme and then use the generic transformation from the
previous section to obtain the signature scheme.

The public parameters of the identification scheme are a cyclic group G of
prime order q (typically chosen as the subgroup of order q in Z∗

p where p is prime),
a generator g of G, and size parameters c, k, k′. The secret key is a small (relative
to q) integer x and the public key consists of a single group element h = gx mod p.
The prover’s first move is to generate a small (but larger than x) random integer
y and send u = gy as a commitment to the verifier. Next, the (honest) verifier
picks a value e uniformly in {0, . . . , 2k − 1} and sends it to the prover. After
receiving e from the verifier, the prover computes z = ex + y (without any
modular reduction), and checks whether z is in the range {2k+c, . . . , 2k+k′+c−1}.
If z is in the “correct” range, then the prover sends z to the verifier, who can
check the verifying equation u = gz/he to authenticate the prover. If z is outside
the correct range, the prover sends ⊥ to indicate failure—as in [31,32], this check
is important to ensure that the distribution of the value z is independent of the
secret key x. In the full version of this paper [2], we prove:

Theorem 2. If G is a (t, ε)-c-DSDL group, then the identification scheme de-
scribed above is perfectly simulatable, ρ-complete, (t, ε)-key-indistinguishable, and
εℓ-lossy, for ρ = 1− 2−k′

and εℓ ≤ 22k+k′+c+2/q + 1/2k.

In order to obtain our signature scheme based on the DSDL problem, we ap-
ply the transform provided in the previous section to the identification scheme
described above. The full description of the resulting scheme is provided in Fig-
ure 2. In addition to those of the underlying identification scheme, the public
parameters of the signature scheme also include the maximum number of signing
attempts ℓ and a random oracle H : {0, 1}∗ → {0, . . . , 2k − 1}. The key pair is
as before. To sign a message m, we generate a small (but larger than x) random
integer y and compute e← H(gy mod p,m). Finally, we set z = ex+y and check
whether z is in the correct range. If it’s not, we restart the signature process. In
case of ℓ failures, the signing algorithm simply outputs (⊥,⊥) to indicate failure.
Otherwise, the signature will consist of the pair σ = (z, e). Since the probability
that z is not in the correct range is smaller than 1/2k

′

, the signing algorithm
will fail with probability at most (1− 1/2k

′

)ℓ. Moreover, the average number of
iterations is 1/(1− 1/2k

′

). As a direct consequence of Theorems 1 and 2, we get:

Theorem 3. If G is a (t′, ε′)-c-DSDL group, then this signature scheme is
(t, qh, qs, ε)-strongly existentially unforgeable against adaptive chosen-message
attacks in the random oracle model for:

ε = ε′ + (qh + 1) · 2
2k+k′+c+2

q
+ ℓ(qs + qh + 1) · qs

2k

t ≈ t′ −O(qs · t1)
(where t1 is the cost of an exponentiation in G), and it outputs a valid signature
with probability 1− 2k

′ℓ.



KeyGen(): Pick x
$← {0, . . . , 2c−1} as the private key, and X ← gx mod p as the public

key.

Sign(m,x):

1: ctr ← 0
2: y

$← {0, . . . , 2k+k′+c − 1}
3: e← H(gy mod p,m)
4: z ← ex+ y
5: if z /∈ {2k+c, . . . , 2k+k′+c − 1} and ctr < ℓ then

6: ctr ← ctr + 1
7: goto Step 2

8: if z /∈ {2k+c, . . . , 2k+k′+c − 1} then (z, e)← (⊥,⊥)
9: return σ = (z, e)

Verify(m,X, σ = (z, e)): accept if and only if z ∈ {2k+c, . . . , 2k+k′+c − 1} and e =
H(gz ·X−e mod p).

Fig. 2. DSDL-Based Signature Scheme.

Remarks

1. The scheme in Figure 2 uses (z, e) instead of (z, gy) as the signature since
(z, e) can be used to recover gy, but the length of e is shorter than that of
gy.

2. This is an online/offline signature scheme: it can be used with coupons by
pre-computing (y, gy mod p) independently of the message. In the rare case
when z is not in the right interval (which can be checked without even
computing a multiplication), it suffices to use another coupon.

3. The reduction is not completely tight: there is a small loss of ℓ · qs. As in
[22], this loss can be avoided by ensuring that the masking parameter y is
always the same for a given message, either by making the scheme stateful
(keeping track of the randomness on signed messages) or by generating y
as a deterministic, pseudorandom function of the signed message and the
private key(but the resulting scheme is no longer online/offline).

Suggested Parameters. We propose the following parameters for an instanti-
ation of our scheme with an 80-bit security level. The group G is a subgroup of
order q in Z∗

p, where p is a 1024-bit prime and q a prime factor of p− 1 of length
≥ 490 bits. Moreover, we set (c, k, k′) = (160, 80, 8). The size of the public key
gx mod p is then 1024 bits and the size of the signature (z, e) is k+k′+c+k = 328
bits.

A full signature requires a single exponentiation of 248 bits in Z∗
p with fixed

base, which is about as efficient as comparable schemes (faster than the two
160-bit exponentiations in the Katz-Wang DDH scheme, for example). In our
scheme, there is a 1/2k

′

= 1/256 chance that the signing algorithm will have to
be repeated, but this has little effect on the expected running time.



Parameter Definition

n integer that is a power of 2

σ standard deviation of the secret key coefficients

p “small” prime equal to 1 mod 2n

R ring Zp[x]/〈xn + 1〉
C {g ∈ R : ‖g‖∞ ≤ log n}
M {g ∈ R : ‖g‖∞ ≤ n3/2σ log3 n}
G {g ∈ R : ‖g‖∞ ≤ (n− 1)

√
nσ log3 n}

Fig. 3. Parameter Definitions

When used with coupons, the scheme is possibly the fastest option available,
with an online cost of one single integer multiplication between a 80-bit number
and a 160-bit number, and no modular reduction.

5 A Signature Scheme Based on Lattices

In this section, we present a signature scheme whose security is based on the
hardness of the Ring-LWE problem. Towards this goal, we first describe a lossy
identification scheme based on the Ring-LWE problem and then use our generic
transformation in Section 3 to obtain the signature scheme.

Our identification scheme depends on some public parameters defined in Fig-
ure 3. The secret key consists of two polynomials s1, s2 with “small” coefficients
chosen from the distribution DR,σ, and the public key consists of a randomly-
chosen element a ∈ R and of the value t = as1 + s2. Under the Ring-LWE

assumption in the ring R, the public key is thus indistinguishable from a uni-
formly random element of R2.

In our protocol, the prover’s first move is to create two “small” polynomials
y1,y2 (larger than s1, s2 by a factor ≈ n) from the set M, and then send the
value u = ay1+y2 to the verifier. Upon receipt of u, the (honest) verifier chooses
a value c uniformly at random in the set C and sends it to the prover. After
receiving c from the verifier, the prover sets z1 ← s1c + y1 and z2 ← s2c + y2

and checks whether the zi’s are both in G. If they are, the prover then sends the
response (z1, z2) to the verifier. If one (or both) of the zi are outside of G (which
happens with probability approximately 1− 1/e2), then the prover simply sends
(⊥,⊥). Finally, the verifier simply checks whether the zi’s are in G and that
az1 + z2 = tc+ u.

At this point, we would like to point out that using the recent techniques in
[33], it is possible to lower the bitsize of the response (z1, z2) by choosing the
polynomials y1,y2 from a normal distribution and then doing a somewhat more
involved rejection sampling when deciding whether to send (z1, z2) or (⊥,⊥) to
the verifier.

In the full version of this paper [2], we prove:

Theorem 4. If p≫ σ2/α ·n3/α+η for some η > 0, and the Ring-LWE problem
over R with standard deviation σ is (ε, t)-hard, then the identification scheme



KeyGen(): Pick s1, s2
$← DR,σ and set (s1, s2) as the private key. Select a

$←R and let
the public key be (a, t), where t ← as1 + s2. Let H be a random oracle mapping to
the range C.

Sign(m,a, s1, s2):

1: ctr ← 0
2: y1,y2

$←M
3: c← H(ay1 + y2,m)
4: z1 ← s1c+ y1, z2 ← s2c+ y2

5: if z1 or z2 /∈ G and ctr < ℓ then

6: ctr ← ctr + 1
7: goto Step 2

8: if z1 or z2 /∈ G then (z1, z1, c)← (⊥,⊥,⊥)
9: return (z1, z2, c)

Verify(m,z1, z2, c, a, t): accept if and only if z1, z2 ∈ G and c = H(az1 + z2 − tc, m).

Fig. 4. Lattice-Based Signature Scheme

described above is εs-simulatable, ρ-complete, (t, ε)-key-indistinguishable and εℓ-
lossy, for ρ ≥ 1/e2 − 2/(en) and εs, εℓ ≤ negl(n).

In order to obtain our signature scheme based on lattices, we apply our
generic transform to the identification scheme described above. The full descrip-
tion of the resulting scheme is provided in Figure 4.

6 A Signature Scheme Based on Subset Sum

In this section, we construct a lossy identification scheme based on the hardness
of the random SS(n,M) problem for M > (2kn+1)n · 32k, where k is a security

parameter. The secret key is a random matrix X
$← {0, 1}n×k, and the public

key consists of a vector a
$← Zn

M , and a vector t = aTX mod M . In the first

step of the protocol, the prover selects a vector y
$← {−kn, . . . , kn}n and sends

an integer commitment u = 〈a,y〉 mod M to the verifier. The verifier selects a

random challenge vector c
$← {0, 1}k, and sends it to the prover, who checks

that c is indeed a valid challenge vector. The prover then computes a possible
response z = Xc+y (note that there is no modular reduction here), and sends it
to the verifier if it is in the range {−kn+k, . . . , kn−k}n. If z is not in this range,
then the prover sends ⊥. Upon receiving a z, the verifier accepts the interaction
if z ∈ {−kn+ k, . . . , kn− k}n and 〈a, z〉 − 〈t, c〉 mod M = u.

It is easy to see that in the case that the prover does not send ⊥, he will be
accepted by the verifier since

〈a, z〉 − 〈t, c〉 mod M = aTXc+ 〈a,y〉 − aTXc mod M = u.



Then, we observe that the probability that for any element z̄ ∈ {−kn +
k, . . . , kn− k}n, the probability that the response will be z = z̄ is

Pr[z = z̄] = Pr[y = z̄−Xc] = 1/ |{−kn, . . . , kn}n| ,

since all the coefficients of the vectorXc have absolute value at most k. Therefore
every element z in the set {−kn + k, . . . , kn − k}n has an equal probability of
being outputted and the probability that z 6= ⊥ is

ρ = |{−kn+ k, . . . , kn− k}n| / |{−kn, . . . , kn}n| ≈ (1 − 1/n)n ≈ 1/e.

And thus the simulatability property of the scheme is satisfied since one can
create a valid transcript by generating (⊥,⊥,⊥) with probability 1 − ρ, and
otherwise pick a random z ∈ {−kn+ k, . . . , kn− k}n, a random c ∈ {0, 1}k, and
output (〈a, z〉 − 〈t, c〉 mod M, c, z).

The lossy public keys are just two uniformly random vectors a and t, and so
the indistinguishability of these keys from the real keys is directly based on the
hardness of the SS(n,M) problem using a standard hybrid argument.

To show lossiness, we observe that if t is uniformly random in Zk
M , then it

can be shown that with high probability, for any choice of u ∈ ZM , there is at
most one value c such that u can be written as 〈a, z〉 − 〈t, c〉 mod M . Indeed, if
there exist two pairs (z, c), (z′, c′), such that

〈a, z〉 − 〈t, c〉 = 〈a, z′〉 − 〈t, c′〉 mod M,

then we have

〈a, z − z′〉 − 〈t, c − c′〉 mod M = 0. (1)

The set of valid pairs (z−z′, c−c′) consists of (2kn+1)n ·3k elements. If (a, t) is
chosen completely at random, then for each of those valid pairs, the probability
that Equation (1) is satisfied is 1/M (this assumes that either a or t has at
least one element that is invertible modulo M , which is the case with extremely
high probability), and so the probability over the randomness of a and t that
Equation (1) is satisfied for any of the valid pairs is at most (2kn+ 1)n · 3k/M ,
which by our choice of M , is at most 3−k.

To convert this lossy identification scheme to a signature scheme, one would
simply perform the transformation described in Figure 1, as we did for the other
schemes in this paper. And as for the lattice-based scheme in Section 5, we
point out that the technique in [33] can be used to reduce the coefficients of the
signature by about a factor of

√
n to make them fall in the range {−O(k

√
n), . . . ,

O(k
√
n)}n by sampling the vector y from a normal distribution and performing

a somewhat more involved rejection sampling procedure when deciding whether
or not to send the response z. This would also allow us to reduce the modulus
M to approximately M = O(k

√
n)n · 32k, which makes the SS(n,M) problem

more difficult. Another possible optimization could include making k larger, but
making the vector c sparser (while still making sure that it comes from a large
enough set), which would result in a shorter vector Xc.
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50. D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key encryption
based on ideal lattices. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of
LNCS, pages 617–635. Springer, Dec. 2009.

51. P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman key agreement with short
exponents. In U. M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS,
pages 332–343. Springer, May 1996.

http://eprint.iacr.org/2011/501

	Tightly-Secure Signatures  From Lossy Identification Schemes

