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Abstract. The Schnorr signature scheme has been known to be prov-
ably secure in the Random Oracle Model under the Discrete Logarithm
(DL) assumption since the work of Pointcheval and Stern (EUROCRYPT
’96), at the price of a very loose reduction though: if there is a forger mak-
ing at most qh random oracle queries, and forging signatures with prob-
ability εF , then the Forking Lemma tells that one can compute discrete
logarithms with constant probability by rewinding the forger O(qh/εF )
times. In other words, the security reduction loses a factor O(qh) in its
time-to-success ratio. This is rather unsatisfactory since qh may be quite
large. Yet Paillier and Vergnaud (ASIACRYPT 2005) later showed that
under the One More Discrete Logarithm (OMDL) assumption, any alge-
braic reduction must lose a factor at least q1/2

h in its time-to-success ratio.
This was later improved by Garg et al. (CRYPTO 2008) to a factor q2/3

h .
Up to now, the gap between q2/3

h and qh remained open. In this paper,
we show that the security proof using the Forking Lemma is essentially
the best possible. Namely, under the OMDL assumption, any algebraic
reduction must lose a factor f(εF )qh in its time-to-success ratio, where
f ≤ 1 is a function that remains close to 1 as long as εF is noticeably
smaller than 1. Using a formulation in terms of expected-time and queries
algorithms, we obtain an optimal loss factor Ω(qh), independently of εF .
These results apply to other signature schemes based on one-way group
homomorphisms, such as the Guillou-Quisquater signature scheme.

Keywords: Schnorr signatures, discrete logarithm, Forking Lemma, Random
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1 Introduction

Schnorr signatures. The Schnorr signature scheme [25,26], derived from the
Schnorr identification scheme (an honest-verifier zero-knowledge proof of knowl-
edge of a discrete logarithm) through the Fiat-Shamir transform [12], is one
of the earliest discrete log-based signature schemes proposed in the literature.
Its simplicity and efficiency (short signature length and the possibility of pre-
computing exponentiations for very quick on-line signature generation) has at-
tracted considerable attention. Its security has been analyzed in the Random



Oracle Model (ROM) [2] under the Discrete Logarithm (DL) assumption by
Pointcheval and Stern [23,24]. The main idea of the proof is to have the forger
output two distinct forgeries corresponding to the same random oracle query,
but for two distinct answers of the random oracle. The so-called Forking Lemma
shows that by rewinding the forger O(qh/εF ) times, where qh is the maximal
number of random oracle queries of the forger and εF its success probability, then
one finds two such forgeries with constant probability, which enables to compute
the discrete logarithm of the public key. Said otherwise, the reduction loses a
factor O(qh) in its time-to-success ratio. This results in a very loose security
assurance since qh may be quite large (e.g. 260), which implies to increase the
problem parameters length in order to achieve an appropriate provable security
level.

Previous negative results. Whether the loss of this factor qh is unavoidable
remained obscure until Paillier and Vergnaud [22] showed that under the One
More Discrete Logarithm (OMDL) assumption1, any algebraic2 reduction from
the DL problem to forging Schnorr signatures in the ROM must lose a fac-
tor Ω(q1/2

h ) in its time-to-success ratio. Starting from a reduction from the DL
problem to forging Schnorr signatures in the ROM, [22] builds a meta-reduction
that solves the OMDL problem without using any forger (it simulates the forger
using the discrete log oracle it can access to solve the OMDL problem). This
result was later improved by Garg et al. [14] to a factor Ω(q2/3

h ), using the same
meta-reduction (only the analysis of its success probability was improved). Inter-
estingly, [14] also showed that under a simple assumption on the forger (namely
that the distribution of the random oracle query index ` corresponding to the
forged signature is uniformly random in [1..qh]), the factor lost in the time-to-
success ratio of the reduction of [24] can be reduced from O(qh) to O(q2/3

h ). Since
the meta-reduction used in [22,14] simulates a forger that obeys this assump-
tion, one cannot hope to improve the analysis of this particular meta-reduction
to show that a factor Ω(qh) must be lost by any algebraic reduction.

Contributions of this work. Up to now, the gap between the security reduc-
tion of [24] loosing a factor O(qh) and the lower bound Ω(q2/3

h ) of [14] remained
open. Basically two possible directions were conceivable in order to narrow it:
either improve the security reduction of [24] for a general forger, or find a bet-
ter meta-reduction enabling to overcome the q2/3

h bound. We essentially close
this gap in the second direction by showing that under the OMDL assumption,
any algebraic reduction from the DL problem to forging Schnorr signatures in
the ROM must lose a factor f(εF )qh in its time-to-success ratio, where f is a
function that remains close to 1 as long as the success probability εF of the
forger is noticeably smaller than 1. Our meta-reduction is different from the one

1 The OMDL problem consists in solving n+ 1 discrete logarithms by making at most
n calls to a discrete log oracle (cf. Section 2).

2 An algebraic reduction is limited to perform group operations when it manipulates
group elements (cf. Section 4).



used in [22,14] (this is unavoidable by the previous considerations). In partic-
ular, the random oracle query index ` corresponding to the forged signature is
not uniformly distributed in [1..qh] (it has a truncated geometric distribution),
nor is it independent for two distinct executions of the forger (as we argue later,
a uniformly distributed forgery index ` is in fact quite unnatural). Though the
description of our new meta-reduction is slightly more complicated, its analysis
is arguably simpler (the analysis of [14] uses advanced results on the statistics
of random permutations). Curiously, our bound vanishes when εF is negligibly
close to 1. We argue however that this shortcoming is due to the formulation in
terms of strictly bounded adversaries. By considering definitions using expected-
time (and queries) algorithms, we are able to show that any algebraic reduction
must lose a factor Ω(qh), independently of εF , in its expected-time-to-success
ratio.

Interpretation of our results. Interpreting our results is quite delicate (as is
often the case for results in the ROM). The conservative point of view would
be to consider that breaking Schnorr signatures in the ROM is strictly easier
than solving the DL problem (which our results do not prove), and to increase
security parameters adequately. Yet taking into account that no one has been
able to find a better forgery attack than by solving the DL problem, another
possible interpretation is that they point out the limitations of black-box reduc-
tion techniques. For example, consider the (t, qh, ε)-forger F obtained as follows:
starting from any algorithm that (t, ε)-solves the DL problem, F first recovers
the secret key, and then forges a signature corresponding to one of its qh > 1
random oracle queries (e.g. uniformly chosen at random). This adversary is ar-
guably artificial since it could forge a signature for any message with a single
random oracle query. Yet any black-box reduction will lose a huge factor when
using such a forger, whereas a non-black-box one, accessing the DL-subroutine
of the forger, would yield back an algorithm solving the DL problem with the
same time-to-success ratio as the forger.

Related work. Techniques similar to the ones of [22,14] and this paper were
used to separate one-more computational problems independently by Brown [7]
(who termed such results irreductions) and Bresson et al. [6].

Coron [10] gave a result close in spirit to ours for the RSA with Full Domain
Hash (FDH) signature scheme [3]: he showed that the security of RSA-FDH
in the ROM cannot be proved tightly equivalent to the hardness of inverting
RSA. This was generalized by Dodis and Reyzin [11] to FDH used with any
trapdoor one-way permutation induced by a family of claw-free permutations.
There are however two main differences between these results and ours. First,
the result of [10,11] is specific to chosen-message attacks (FDH is tightly secure
for no-message attacks), whereas in our case the result holds even for no-message
attacks. Second, the factor necessarily lost by any reduction for FDH is Ω(qs),
where qs is the maximal number of signature queries asked by the forger. A
security proof matching thisΩ(qs) bound had been previously given by Coron [9].

The security of the Schnorr signature scheme in the standard model remains
elusive (beyond the obvious fact that key-recovery is as hard as the DL problem



under no-message attacks).3 Paillier and Vergnaud [22] showed that under the
OMDL assumption, it is immune to key-recovery under chosen-message attacks
(whatever the hash function used), but that it cannot be proved universally un-
forgeable under no-message attacks with respect to an algebraic reduction (again
under the OMDL assumption). Neven et al. [21] gave necessary conditions on
the hash function for the Schnorr signature scheme to be existentially unforge-
able under chosen-message attacks, and also showed that these conditions are
sufficient in the generic group model. To the best of our knowledge, these are
the only results up to now. All practical4 discrete log-based signature schemes
provably secure in the standard model rely on bilinear groups [4,28].

Faced with the apparent impossibility to obtain tight security reductions in
the ROM for discrete log-based schemes, two main research options emerged.
The first was to rely on weaker assumptions, with proposals such as the EDL
scheme [15] and subsequent improvements [8] relying on the Computational
Diffie-Hellman assumption, and the proposal by Katz and Wang [18] relying
on the Decisional Diffie-Hellman assumption (see also [16]). The second option
was to find alternatives to the Fiat-Shamir transform with tighter security reduc-
tions, as explored by Micali and Reyzin [20] (but their technique is inapplicable
to discrete log-based schemes) and Fischlin [13] (but the resulting scheme is
relatively inefficient).

Open problems. We leave the problem of eliminating the dependency in εF for
strictly bounded adversaries as an intriguing (though minor) open question. This
paper more or less settles the case of algebraic reductions; a natural question is
what can be said for arbitrary reductions. More generally, an interesting research
subject is to build an efficient signature scheme with a tight reduction in the
ROM under the DL assumption (and not under weaker related ones), or to prove
a general impossibility result. Another important challenge is to say anything
meaningful about the security of Schnorr signatures in the standard model, or
to propose a practical scheme based on DL-like assumptions provably secure in
the standard model and not relying on bilinear groups.

Organization. In Section 2, we give the necessary background on Schnorr signa-
tures and the DL and OMDL problems. In Section 3, we recall the security proof
of [24] for Schnorr signatures through the Forking Lemma. In Section 4, we de-
scribe our new meta-reduction and show in Section 5 that it implies a necessary
loss of a factor f(εF )qh for any algebraic reduction. In the full version of the pa-
per [27], we put our results in a more general framework based on one-way group
homomorphisms, and extend them to other related signature schemes (such as
Modified ElGamal). We also treat the expected-time and queries scenario in the
full version.

3 We note that the Fiat-Shamir transform is known to be intrinsically problematic in
the standard model [17].

4 General constructions of signature schemes from any one-way function are known,
but are quite impractical.



2 Preliminaries

[i..j] will denote the set of integers k such that i ≤ k ≤ j. When X is a non-
empty finite set, we write x←$ X to mean that a value is sampled uniformly at
random from X and assigned to x. We denote Berµ the Bernoulli distribution of
parameter µ ∈ [0, 1] (i.e. δ ← Berµ is such that Pr[δ = 1] = µ and Pr[δ = 0] =
1 − µ), and for µ ∈ [0, 1] and a non-zero positive integer q, we denote Binµ,q
the binomial distribution of parameters µ and q (i.e. X ← Binµ,q is such that
Pr[X = k] =

(
q
k

)
µk(1−µ)q−k). The security parameter will be denoted κ. We will

write f = poly(·) to denote a polynomially bounded function and f = negl(·)
to denote a negligible function. We assume the existence of an adequate group
generation algorithm, which on input 1κ returns a cyclic group G of prime order
q ∈ [2κ−1, 2κ[ and a generator g of G. We will assume that all algorithms are
given (G, q, g) as input and will sometimes not mention it explicitly.

The Schnorr signature scheme is obtained by applying the Fiat-Shamir trans-
form [12] to the Schnorr identification scheme [25,26].

Definition 1 (Schnorr signature scheme). Let G be a cyclic group of prime
order q and g be a generator of G. Let H : {0, 1}∗×G→ Zq be a hash function.
The Schnorr signature scheme is defined as follows:

– Key generation: Let x ←$ Zq \ {0}, and y = gx. The private key is x and
the public key is y.

– Signature: To sign a message m ∈ {0, 1}∗, draw a ←$ Zq, compute r = ga,
c = H(m, r), and s = a+ cx mod q. The signature is (s, c).

– Verification: Given a message m ∈ {0, 1}∗, and a claimed signature (s, c),
compute r = gsy−c and check that c = H(m, r).

From a practical point of view, the Schnorr signature scheme is more usually
defined with a hash function mapping its inputs to {0, 1}k (interpreted as integers
in [0..(2k − 1)]) rather than Zq. There is no difficulty in extending our results to
this case (q must simply be replaced by 2k in Theorem 2). When we talk of the
Schnorr signature scheme in the Random Oracle Model (ROM), we mean the
scheme obtained when H is replaced by a random oracle.

In this work we focus on security against universal forgery under no-message
attacks (UF-NM-security) in the ROM. This a weak security notion, but this
makes our negative result of Section 4 stronger than considering a more con-
straining notion such as security against existential forgery under chosen-message
attacks.

Definition 2 (UF-NM forger). A forger F is said to (tF , qh, εF )-UF-NM-
break Schnorr signatures in the ROM if on input any message m ∈ {0, 1}∗ and a
public key y ←$ G, F runs in time at most tF , makes at most qh queries to the
random oracle, and returns a valid forgery (s, c) for m with probability at least
εF (where the probability is taken over the random choice of y, the random tape
of F , and the answers of the random oracle).
Moreover, we will say that the forgery (s, c) corresponds to the random oracle



query index ` ∈ [1..qh] if the `-th query/answer of F to the random oracle was
H(m, gsy−c) = c.

In all the following, we will assume wlog the following: when F returns a forgery
(s, c), and made the query (m, gsy−c) to the random oracle, the corresponding
answer was c (in other words, the forger never returns a forgery that it knows
to be invalid: we assume it returns ⊥ in this case). For clarity, when the forger
returns a forgery corresponding to the random oracle query index `, we will
assume it outputs the triplet (`, s, c). Note that the forger may return a random
forgery that does not correspond to any of its random oracle queries, in which
case it is valid with probability 1/q. We will denote (∅, s, c) the output of the
forger in that case. In all the following, when we say that the forger returns a
forgery (`, s, c), we mean ` 6= ∅ unless otherwise stated.

As we will see in Section 3, the security of Schnorr signatures in the ROM
can be proved under the assumption that the Discrete Logarithm (DL) problem,
that we formalize below, is hard.

Definition 3 (DL problem). Let G be a cyclic group of order q and g be a
generator of G. An algorithm A is said to (t, ε)-solve the DL problem if on input
(G, q, g) and r ←$ G, it runs in time at most t and returns the discrete logarithm
of r in base g with probability at least ε (where the probability is taken over the
random choice of r and the random tape of A).

The One-More Discrete Logarithm (OMDL) problem, introduced under the
name Known-Target DL problem in [1], is defined as follows. Note that Koblitz
and Menezes [19] argue that the ODML problem might be easier than the DL
problem for some groups.

Definition 4 (OMDL problem). Let G be a cyclic group of order q and g be
a generator of G. Let Θ be an oracle taking no input and returning a random
element of G (named the challenge oracle). Let DLogg(·) be the oracle returning
the discrete logarithm in base g of its input. An algorithm A is said to (t, n, ε)-
solve the OMDL problem if on input (G, q, g), it runs in time at most t, makes
m ≤ n+ 1 queries r1, . . . , rm ← Θ, and returns the discrete logarithm of all ri’s
in base g while making strictly less than m queries to DLogg(·), with probability
at least ε (where the probability is taken over the random challenges of Θ and
the random tape of A).

3 Security Proof with The Forking Lemma

In this section, we recall the analysis of the security of the Schnorr signature
scheme using the Forking Lemma [23,24]. We focus on UF-NM-security, but
there is no difficulty in extending the result to existential forgery and to chosen-
message attacks using the honest-verifier zero-knowledge property of the Schnorr
identification scheme [24].

The main idea is to obtain from the forger two valid forgeries (`, s, c) and
(`, s′, c′) corresponding to the same random oracle query (m, r), but for distinct



answers of the random oracle c 6= c′. Indeed this implies r = gsy−c = gs
′
y−c

′ ,
which yields the discrete logarithm of the public key DLogg(y) = (s− s′)/(c− c′)
mod q. For this, the reduction runs the forger with input some message m,
public key y (the target element of the reduction), and some uniformly chosen
random tape ω, answering the random oracle queries of the forger uniformly at
random, until it returns a forgery corresponding to some random oracle query
index ` ∈ [1..qh]. Then, it replays the forger, using the same input (m, y), the
same random tape ω and the same answers to random oracle queries up to the
(` − 1)-th one as for the successful execution. Consequently, the `-th random
oracle query of the forger is the same as in the successful execution. Starting
from the `-th random oracle query, the reduction draws the answers uniformly
at random again (using the terminology of Section 4, we will say that such an
execution forks from the successful one at point `). It repeats this until the forger
returns another forgery corresponding to the same random oracle query index
` ∈ [1..qh]. The Forking Lemma gives a lower bound on the probability that this
strategy succeeds.

The security result for Schnorr signatures can be concretely stated as the
following theorem, from which it can easily be seen that the security reduction
loses a factor O(qh) in its time-to-success ratio tR/εR compared with the one of
the forger tF /εF .

Theorem 1 ([24]). Assume there is a forger which (tF , qh, εF )-UF-NM-breaks
Schnorr signatures in the ROM for some group parameters (G, q, g). Assume
moreover that εF ≥ max(2/(q + 1), 16qh/q). Then there is a reduction R which
(tR, εR)-solves the DL problem (for the same group parameters), where tR '
(16qh + 2)tF /εF and εR > 0.099.

Proof. We give a slightly adapted proof in the full version of the paper [27]. ut

4 Description of the New Meta-Reduction

In the next section we will prove the following result, that we state informally
for now.

Theorem (Informal). Under the OMDL assumption, any algebraic reduction
from the DL problem to UF-NM-breaking Schnorr signatures in the ROM must
lose a factor f(εF )qh in its time-to-success ratio, where qh is the maximal number
of random oracle queries of the forger, εF its success probability, and f(εF ) =
εF / ln

(
(1− εF )−1).

In order to prove this result, we will start from an algebraic reduction R (the
meaning of algebraic will be explained shortly) that turns a UF-NM-forger for
Schnorr signatures in the ROM into a solver for the DL problem, and describe
a meta-reduction M that uses the reduction R to solve the OMDL problem
without using any forger (the meta-reduction will actually simulate the forger
to the reduction thanks to its discrete log oracle). In order to formalize this, we
need a precise definition of a reduction.



Definition 5. A reduction R is said to (tR, n, εR, qh, εF )-reduce the DL problem
to UF-NM-breaking Schnorr signatures in the ROM if upon input r0 ←$ G
and after running at most n times any forger which (tF , qh, εF )-UF-NM-breaks
Schnorr signatures, R outputs DLogg(r0) with probability greater than εR, within
an additional running time tR (meaning that the total running time of R is at
most tR + ntF ).

The probability εR is taken as in Definition 3 over the random choice of r0
and the random tape of R (the random tape of F is assumed under control
of R). The reduction described in the proof of Theorem 1 is a (O(1), (16qh +
2)/εF , 0.099, qh, εF )-reduction.

Similarly to previous work [22,14], we will only consider algebraic reductions
(originally introduced in [5]). An algorithm R is algebraic with respect to some
group G if the only operations it can perform on group elements are group
operations (see [22] for details). We characterize such reductions by the existence
of a procedure Extract which, given the group elements (g1, . . . , gk) input to
R, other inputs σ to R, R’s code, and any group element y produced by R
during its computation in at most t steps, outputs α1, . . . , αk ∈ Zq such that
y = gα1

1 . . . gαkk . We require that Extract runs in time poly(t, |R|, blog2 qc),
where |R| is the code size of R. As will appear clearly later, the need to restrict
the reduction to be algebraic arises from the fact that R can run the forger on
arbitrary public keys, and the meta-reduction will need to extract the discrete
logarithm of these public keys (assuming R returns the discrete logarithm of
its input r0). This can also be interpreted as saying that R runs F on public
keys that are derived from its input r0 through group operations, which does
not seem an overly restrictive assumption. Note in particular that the reduction
of [24] using the Forking Lemma is algebraic: it repeatedly runs the forger on
the same public key y = r0 (or, in the variant described in the full version of
the paper [27], on public keys y = (r0)α for α’s randomly chosen during the first
phase of the reduction).

We now describe the new meta-reduction M. It has access to an OMDL
challenge oracle Θ returning random elements from G, and to an oracle DLogg(·)
returning the discrete logarithm in base g of its input. It also has access5 to
a (tR, n, εR, qh, εF )-algebraic reduction R, which expects access to a forger F ,
and offers a random oracle interface that we denote R.H. We assume tR, n, qh =
poly(κ) and εR, εF = 1/poly(κ). Recall that the goal of M is to return the
discrete logarithm of all challenge elements it queries to Θ, by making strictly
less queries to DLogg(·). In all the following we assume 0 < εF < 1, we fix
α ∈]0, (1−εF )1/qh [ and we define the quantities µ0 and µ ∈]0, 1[ (whose meaning
will appear clearer in view of Lemmata 2 and 3) as:

µ0 = 1− (1− εF )1/qh and µ = µ0

1− α = 1
1− α

(
1− (1− εF )1/qh

)
.

5 By access we essentially mean black-box access, butM also needs the code of R to
run procedure Extract.



M first queries the OMDL challenge oracle Θ, receiving a random element
r0 ∈ G, and runs R on input r0 and some uniformly chosen random tape.
Then it simulates (at most) n sequential executions of the forger that we denote
Fi(mi, yi, ωi), 1 ≤ i ≤ n, where mi is the input message, yi the input public key,
and ωi the random tape of the forger received from the reduction.6 Depending
on how R chooses (mi, yi, ωi) and the answers to queries of M to R.H, these
successive executions may be identical up to some point, that we will call a
forking point.
Definition 6 (Forking point). Consider two distinct simulated executions of
the forger Fi(mi, yi, ωi) and Fj(mj , yj , ωj), 1 ≤ j < i ≤ n. We say that execution
Fi forks from execution Fj at point ti/j = 0 if (mi, yi, ωi) 6= (mj , yj , ωj), or at
point ti/j ∈ [1..qh] if all the following holds:
– (mi, yi, ωi) = (mj , yj , ωj);
– for k ∈ [1..(ti/j − 1)], the k-th query and answer to R.H are the same in

both executions;
– the ti/j-th query to R.H is the same in both executions, but the answers are

distinct.
We also define the point where execution Fi forks from all previous executions
as ti = max{ti/j , 1 ≤ j < i}.
We assume wlog that all simulated executions are distinct, i.e. they fork at some
point.

The simulation of the forger works as follows. The meta-reduction will dy-
namically construct two (initially empty) disjoint sets Γgood, Γbad ⊂ G. Γgood
will be the set of elements z ∈ G whose discrete logarithm is known from M
because it has made the corresponding query to its discrete log oracle (we as-
sume the discrete logarithm of elements in Γgood are adequately stored byM),
while Γbad will be the set of elements z ∈ G such that M will never make the
corresponding query to its discrete log oracle. The main idea of the simulation of
the forger on input (m, y, ω) is thatM will return a forgery corresponding to the
first query R.H(m, r) such that the answer c satisfies ryc ∈ Γgood. Whether an
element z ∈ G will be in Γgood or Γbad will be determined by drawing a random
coin δz ← Berµ during the simulation. If δz = 1 (resp. δz = 0), z will be added
to Γgood (resp. Γbad).

We now describe in details the i-th execution of the forger Fi(mi, yi, ωi) (see
also Figure 1). Before the simulation begins,M queries a challenge ri from Θ and
initializes a flag forge = false. Let ti denote the point where execution Fi forks
from all previous executions. Assume first that ti = 0, meaning that (mi, yi, ωi)
is distinct from the input to all previous executions. ThenM proceeds as follows.
For k = 1, . . . , qh, and while forge = false, it makes queries (mi, r

βik
i ) to R.H

using arbitrary7 randomization exponents βik ∈ Zq\{0}. Denoting cik the answer
received from R.H,M computes zik = rβiki yciki . Three distinct cases may occur:
6 We stress that Fi, i = 1, . . . , n, denote distinct executions of the same forger F .
7 The only constraint is that the βik’s be distinct in order to avoid making twice the
same query.



i) If zik ∈ Γbad, thenM simply continues with the next query to R.H.
ii) If zik ∈ Γgood, then by definition M already requested DLogg(zik) to its

discrete log oracle. In that case, it sets `i = k, si = DLogg(zik), ci = cik,
and sets the flag forge to true.

iii) If zik /∈ Γgood∪Γbad, thenM draws a random coin δzik ← Berµ. If δzik = 0,
zik is added to Γbad and M continues with the next query to R.H. If
δzik = 1, thenM queries DLogg(zik) and adds zik to Γgood. It then proceeds
exactly as in case ii), and moreover stores the value of βik as βi.

Once the flag forge has been set to true,M completes the sequence of queries
to R.H arbitrarily.8 When the qh queries to R.H have been issued, if forge =
false, thenM returns ⊥ to R, meaning that execution Fi fails to forge. Else,
forge = true and M returns (`i, si, ci) as set at step ii) as forgery for mi to
R. Moreover, if M did not query its discrete log oracle during the simulation
(either because no forgery was returned or because zik was already in Γgood),
thenM directly queries DLogg(ri) (a more economic strategy could be used, but
this simplifies notations).

The simulation for the case ti ≥ 1 is quite similar to the case ti = 0, with
one important difference though. By definition of the forking point, the ti first
queries toR.H are determined by previous executions, andM must simulate the
forger accordingly. In particular, it cannot embed the current challenge ri before
the (ti + 1)-th query. If there is some query R.H(mi, r) of index k ∈ [1..(ti − 1)]
such that the answer c satisfies z = ryci ∈ Γgood, then M sets the flag forge
to true and will return a forgery corresponding to the first such query (without
having to query its discrete log oracle since z is already in Γgood). Note that this
same forgery was necessarily already returned in at least one previous execution.
At the end of the simulation,M directly queries DLogg(ri).

Assume now that the flag forge is still set to false when arrived at the
ti-th query. By definition of the forking point, this query was first issued during
a previous execution j < i, so that M cannot choose it freshly. The answer of
R.H, however, differs from the one received in all previous executions from which
Fi forks exactly at point ti. Denote (mi, r̂) this ti-th query to R.H (r̂ = r

βjti
j ,

where rj was the challenge used during the j-th execution), ĉ the corresponding
new answer, and ẑ = r̂yĉi . If ẑ ∈ Γbad, then M can resume the simulation as
described for ti = 0, starting from the (ti + 1)-th query to R.H. If ẑ ∈ Γgood,
thenM can forge a signature for this query without calling its discrete log oracle
(and hence will be able to query directly DLogg(ri) at the end of the simulation).
If ẑ /∈ Γgood ∪ Γbad, then M draws a fresh coin δẑ ← Berµ. If δẑ = 0, then
M can also resume the simulation as described for ti = 0, starting from the
(ti + 1)-th query to R.H. The problematic case arises if δẑ = 1, since M must
return a forgery for the ti-th query but does not know the discrete logarithm of
ẑ yet. Hence,M queries ŝ = DLogg(ẑ), completes the sequence of queries to R.H
arbitrarily for k = ti + 1 to qh, and outputs (`i = ti, ŝ, ĉ) as forgery for message

8 Alternatively, we could let M stop its queries here since queries after the forgery
point are irrelevant.



mi. After the simulation of Fi, M makes the additional query DLogg(ri). For
the sake of the discussion in Section 5, we will say that event Bad happens if this
last case occurs during one of the n simulations. As we will see shortly, event
Bad makes M fail since in total M makes two calls to DLogg(·) related to the
same challenge rj .9

Once the n calls to the forger have been simulated, the reduction R returns
either ⊥ (in which caseM returns ⊥ as well), or the discrete logarithm a0 of r0.
In the latter case, M uses the procedure Extract to retrieve10 xi = DLogg(yi)
for i = 1 to n. For each challenge ri received from Θ, eitherM queried directly
ai = DLogg(ri), or during the simulation of Fi,M returned (`i, si, ci) as forgery,
with si = DLogg(r

βi
i y

ci
i ). HenceM can compute the discrete logarithm of ri as

ai = (si − cixi)/βi mod q. Finally,M returns a0 and (ai)i=1..n. This concludes
the description of the meta-reduction.
Differences with the previous meta-reduction. In [22,14], the distribution
of the indexes `i returned by the meta-reduction was uniform in [1..qh] and
independent for each execution. On the contrary, for our meta-reduction, it is
not difficult to see that for an execution such that all zik = rβiki yciki are fresh, `i
is distributed according to a truncated geometric distribution:

Pr[`i = k] = µ(1− µ)k−1 for k ∈ [1..qh] and Pr[`i = ⊥] = 1−
qh∑
k=1

µ(1− µ)1−k .

Moreover, when an execution forks from previous ones at ti > 0, the distribution
of `i is obviously not independent from the previous forgery indexes `j . In fact,
returning a forgery for independently and uniformly chosen `i’s leads to counter-
intuitive behaviors. Consider two distinct executions of a forger F . Assume that
some execution F1 returns a forgery corresponding to some random oracle query
index `1. Then, if another execution F2 forks from the first one at t2/1 > `1, it
seems more natural for F2 to return the same forgery as F1 rather than a new
one since the forger “knows” the corresponding signature. Such events cannot
happen with our meta-reduction because it simulates a forger that has a natural
interpretation: when run on input (m, y), it returns a forgery for the first query
H(m, r) such that the answer c satisfies ryc ∈ Γgood, where Γgood is a set of size
∼ µq such that the forger can compute the discrete logarithm of elements of
Γgood efficiently.

5 Proof of the Main Theorem

We will now prove a sequence of lemmata from which our main result will easily
follow. The following lemma will be useful. It results from a simple function
analysis and is stated without proof.
9 We could simply letM abort in that case, but for simplicity of the analysis we prefer
to let it make an additional call to DLogg(·).

10 More precisely, for each i ∈ [1..n], Extract returns γi and γ′
i such that yi = gγir

γ′i
0 =

gγi+a0γ
′
i .



1 2 3 4 5 6 7 8 9

r1 r1 r1 r1 r1 r1 r1 r1 r1
`1 =⊥

r2 r2 r2 ∗ ∗ ∗ ∗ ∗ ∗
`2 = 3

∗ ∗ ∗ ∗ ∗
`3 = 3

r4 r4 r4 r4 r4 r4
`4 =⊥

r5 r5 ∗ ∗ ∗ ∗
`5 = 5

r6 r6 r6 r6
`6 = 9

r7 r7 ∗ ∗
`7 = 7

∗ ∗
`8 = 7

Fig. 1. A possible execution tree of the simulated forger for qh = 9 and n = 8. Ex-
ecution paths go from the root to the leaves. The root symbolizes the beginning of
each simulation of the forger. Vertices originating from the root symbolizes the input
(m, y, ω) received from R: execution paths sharing the same vertex correspond to the
same input. Then, each internal node symbolizes a query to the random oracle R.H,
and the vertex originating from this node symbolizes the corresponding answer. Again,
execution paths sharing a node, resp. a vertex, share the same query, resp. answer.
The label above each query node represents the challenge ri from Θ used by M to
construct the query (we do not indicate the randomization exponent βik). Stars indi-
cate that the query is arbitrary since it comes after the forgery point for the execution.
Finally, leaves symbolize the output of the forger (a forgery or ⊥). Here, we simply
label leaves with the index `i of the random oracle query corresponding to the forgery
(with the convention that `i = ⊥ in case the simulated forger returns ⊥) and we circle
the corresponding random oracle query in the execution path. The first execution is
run on some input (m1, y1, ω1) and returns no forgery. All subsequent executions are
run on the same input (m2, y2, ω2) 6= (m1, y1, ω1). The second execution returns some
forgery for `2 = 3. The third execution forks from the second one at t3 = 4 > `2 so that
it returns the same forgery as the second execution. The fourth and fifth executions
both fork from previous ones at t4 = t5 = 3. The fourth one returns no forgery while
the fifth one returns a forgery for l5 = 5. The sixth and seventh executions both fork
from previous ones at t6 = t7 = 5, both returning a forgery for resp. l6 = 9 and l7 = 7.
Finally, execution 8 forks from previous ones at t8 = 7, and returns a forgery for l8 = 7:
since two forgeries related to the same challenge r7 are returned, event Bad happens
(assumingM has to make two queries to its discrete log oracle to forge the signatures).



Lemma 1. Let εF ∈]0, 1[, and µ0 = 1− (1− εF )1/qh . Then for any qh ≥ 1, one
has:

εF ≤ qhµ0 ≤ ln
(
(1− εF )−1) .

5.1 Successful Simulation of the Forger

The first thing to do is to lower bound the probability that R succeeds in re-
turning DLogg(r0). For this, we will show that with sufficiently high probability,
M simulates a “good” forger, i.e. a forger that would succeed with probability
greater than εF when interacting with a real random oracle (rather than R.H).

Definition 7 (Good forger). We say that a forger F making qh random or-
acle queries is µ0-good if for any input (m, y, ω), the distribution over uniform
sequences of random oracle answers (c1, . . . , cqh) of the forgery index ` follows a
truncated geometric law of parameter µ̃ ≥ µ0, i.e. Pr[` = k] = µ̃(1 − µ̃)k−1 for
k ∈ [1..qh].

Lemma 2. Let µ0 = 1− (1−εF )1/qh . Then a µ0-good forger making qh random
oracle queries (tF , qh, εF )-UF-NM-breaks Schnorr signatures in the ROM (for
some tF ).

Proof. Fix any message m. Then for any (y, ω), the probability over the answers
(c1, . . . , cqh) of the random oracle that F returns a valid forgery is

qh∑
k=1

µ̃(1− µ̃)k−1 = 1− (1− µ̃)qh ≥ 1− (1− µ0)qh = εF .

This remains true for the probability over (y, ω) and the answers of the random
oracle. ut

The success probability of the forger simulated byM when interacting with
a real random oracle depends on the random tape of M through the draws of
the coins δz. We will now show that with overwhelming probability,M simulates
a µ0-good forger. Note that the oracle answers c of R.H may be determined by
the random tape of R, which is set uniformly at random byM. Hence elements
z = ryc may range over all G, and M must be able to draw δz independently
for any z ∈ G. In order to avoid using an exponential amount of randomness,
M should derive the coins δz from a secure pseudorandom number generator.
In all the following, we will assume that the coins δz are truly random. By a
standard hybrid argument, this assumption cannot affect the success probability
of M by more than a negligible quantity (since otherwise M would constitute
a distinguisher for the pseudorandom number generator).

Lemma 3. Set α = q−1/4. Then there is a negligible function ν such that for
any challenges (r1, . . . , rn) received from Θ and any randomization exponents
βik, M simulates a µ0-good forger with probability greater that (1 − ν) over its
random tape.



Proof. Assume that all coins δz for z ∈ G are drawn before the simulation starts
rather than by lazy sampling (this does not change the success probability of
the simulated forger). By definition, Γgood = {z ∈ G : δz = 1}. Clearly, the size
of Γgood is distributed according to the binomial distribution Binµ,q. A Chernoff
bound hence gives:

ν
def= Pr

δz
[|Γgood| ≤ (1− α)µq] ≤ e−µqα

2/2 .

Fix an arbitrary input (m, y, ω). For any r ∈ G, the probability over c←$ Zq
that ryc ∈ Γgood is equal to µ̃ = |Γgood|/q. Recall that the simulated forger
returns a forgery corresponding to the first random oracle query H(m, r) such
that the answer c satisfies ryc ∈ Γgood. Hence, independently of the sequence
of queries of the simulated forger, the distribution over uniform sequences of
random oracle answers (c1, . . . , cqh) of the forgery index ` follows a truncated
geometric law of parameter µ̃. When |Γgood| > (1 − α)µq = µ0q, then µ̃ > µ0.
This holds for any input (m, y, ω) and any sequence of queries of the simulated
forger, so that for any challenges (r1, . . . , rn) received from Θ and any random-
ization exponents βik, with probability greater than (1 − ν) over the draws of
the coins δz,M simulates a µ0-good forger. Moreover, we have:

e−µqα
2/2 = e

− qhµ0qα2

2qh(1−α) ≤ e−
qhµ0qα2

2qh ≤ e−
εF
√
q

2qh ,

where for the last inequality we used Lemma 1 and α = q−1/4. Since by assump-
tion qh = poly(κ) and εF = 1/poly(κ), we see that ν is negligible, hence the
result. ut

5.2 Success of the Meta-Reduction

The next step is to analyze the probability thatM succeeds given that R does.
It is straightforward to verify that the computation of the discrete logarithm of
all challenges (r1, . . . , rn) received from Θ byM is correct. Consequently, given
that R returns the discrete logarithm of r0,M may only fail because it did not
make strictly less queries to DLogg(·) than to Θ. However, it is not hard to see
from the description of M that if event Bad does not happen, then M makes
exactly one query to its discrete log oracle per simulation of the forger, and
hence returns the discrete logarithm of n+ 1 challenges while making n queries
to DLogg(·). Hence, given that R returns a0 = DLogg(r0), and that event Bad
does not happen, thenM is successful.

The last step towards proving our main theorem is to bound the probability
of event Bad.

Lemma 4. Event Bad happens with probability less than

nµ ≤
n ln

(
(1− εF )−1)

(1− α)qh
.



Proof. Consider the i-th simulation of the forger by M. Let ti be the point
where this execution forks from all previous executions. By construction ofM,
Bad can only happen if ti ≥ 1, and the output of the fresh coin δẑ (we refer to
notations of Section 4) drawn to decide whether a signature must be forged for
the ti-th query is 1, which happens with probability µ. An union bound on the
n simulated executions and Lemma 1 give the result. ut

5.3 Main Theorem and Discussion

We are now ready to state and prove the main theorem of this paper.

Theorem 2. Assume there is an algebraic reduction R that (tR, n, εR, qh, εF )-
reduces the DL problem to UF-NM-breaking Schnorr signatures in the ROM,
with εF < 1. Set α = q−1/4. Then there is a negligible function ν such that the
meta-reductionM (tM , n, εM )-solves the OMDL problem, where:

εM ≥ εR

(
1− ν −

n ln
(
(1− εF )−1)

(1− α)qh

)
tM ≤ poly(tR, |R|, n, qh, blog2(q)c) .

Proof. Denote Sim the event that M simulates a µ0-good forger. By Lemma 2
and by definition of a (tR, n, εR, qh, εF )-reduction, when Sim happens, R re-
turns DLogg(r0) with probability greater than εR (over r0 and its own ran-
dom tape). Provided that R returns the discrete logarithm of r0 and that
Bad does not happen, the meta-reduction is successful. Hence, one has εM ≥
εR(1−Pr[Sim]−Pr[Bad]). Combining Lemmata 3 and 4 yields the lower bound
on εM . Taking into account the fact thatM uses a secure pseudorandom num-
ber generator rather than truly random coins cannot modify εM by more than a
negligible amount (otherwiseM would constitute a distinguisher), that we can
incorporate in ν. The running time ofM is upper bounded by the sum of the time
needed to simulate the n executions of the forger which is poly(n, qh, blog2 qc),
the additional running time tR of R, and the time to run Extract which is
poly(tR, |R|, blog2 qc), hence the result. ut

Remark 1. As already noted by [22] for their meta-reduction, the above proof
can be straightforwardly extended to reductions of the OMDL problem to forging
Schnorr signatures in the ROM. Hence the security of Schnorr signatures cannot
be proved tightly equivalent to the OMDL problem either (under the OMDL
assumption).

Interpretation. Recall that the total running time of the reduction is at most
tR + ntF . Denote ρF = tF /εF and ρR = (tR + ntF )/εR ≥ ntF /εR the time-
to-success ratio of resp. the forger and the reduction. Then some computation
gives:

n ln
(
(1− εF )−1)

(1− α)qh
≤ εRρR

(1− α)f(εF )qhρF
≤ ρR

(1− α)f(εF )qhρF
,



where f(εF ) = εF / ln
(
(1− εF )−1). Hence one has:

εM ≥ εR
(

1− ν − ρR
(1− α)f(εF )qhρF

)
.

Since tR, |R|, n, qh, blog2(q)c = poly(κ), tM = poly(κ), so that under the
OMDL assumption, one must have εM negligible. Then the inequality above
yields (using εR = 1/poly(κ) and ν, α = negl(κ)):

ρR ≥ f(εF )qhρF − negl(κ) .

Hence one must have that ρR is negligibly close to f(εF )qhρF : the reduction
essentially loses a factor f(εF )qh in its time-to-success ratio.

The function f(εF ) is depicted below. For small εF , one has f(εF ) ' 1−εF /2
(which is a good approximation up to εF ' 0.5). For εF close to 1, writing
εF = 1 − u, one has f(εF ) ' −1/ ln(u). In particular, for εF = 1 − 1/poly(κ),
f(εF ) ' C/ ln(κ) for some constant C, which shows that f approaches 0 very
slowly. For f(εF ) ≤ q

−1/3
h , our bound becomes worse than the one by Garg et

al. [14]. However, for large qh (which is the case of interest), this implies that εF
is very close to 1 (e.g. for qh = 260, a rough estimation shows that our bound is
not worse than q2/3

h before εF > 1− e−219).

εF

f(εF )

0 .5 1

.5

1

It is interesting to consider what happens when εF = 1 since our bound
vanishes in that case, while both the security reduction of [24] and the neces-
sary loss Ω(q2/3

h ) of [14] hold. In that case one has by definition µ = 1, which
means that the meta-reduction simulates an adversary which always returns a
forgery corresponding to its first random oracle query (in which case there is a
reduction which succeeds by running the forger only twice). However, this singu-
larity seems to be an artifact due to definitions in terms of strictly bounded-time
and queries algorithms and we can escape it by considering expected-time and
queries algorithms. This is developed in the full version of the paper [27]. The



main idea is that when simulating a forger making an expected number of ran-
dom oracle queries qh, one can choose the distribution of the forgery index ` to
be a geometric distribution of parameter µ ' 1/qh. This is not possible when
the number of oracle queries must be strictly less than qh, in which case we had
to appeal to a truncated geometric distribution. It remains nevertheless that in
the special case of a forger making strictly less than qh random oracle queries
and forging with probability εF = 1, we do not know of any better simulation
strategy than choosing the forgery index uniformly at random in [1..qh] as was
done in the meta-reduction of [22,14], in which case one gets a loss factor Ω(q2/3

h )
at best.
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