
Decoding Random Binary Linear Codes in 2n/20: How
1 + 1 = 0 Improves Information Set Decoding

Anja Becker1, Antoine Joux1,2, Alexander May3!, and Alexander Meurer3!!

1 Université de Versailles Saint-Quentin, Laboratoire PRISM
2 DGA

3 Ruhr-University Bochum, Horst Görtz Institute for IT-Security
anja.becker@prism.uvsq.fr,antoine.joux@m4x.org

{alex.may,alexander.meurer}@rub.de

Abstract. Decoding random linear codes is a well studied problem with many
applications in complexity theory and cryptography. The security of almost all
coding and LPN/LWE-based schemes relies on the assumption that it is hard
to decode random linear codes. Recently, there has been progress in improving
the running time of the best decoding algorithms for binary random codes. The
ball collision technique of Bernstein, Lange and Peters lowered the complexity
of Stern’s information set decoding algorithm to 20.0556n . Using representations
this bound was improved to 20.0537n by May, Meurer and Thomae. We show how
to further increase the number of representations and propose a new information
set decoding algorithm with running time 20.0494n .

1 Introduction

The NP-hard problem of decoding a random linear code is one of the most
promising problems for the design of cryptosystems that are secure even in
the presence of quantum computers. Almost all code-based cryptosystems, e.g.
McEliece, rely on the fact that random linear codes are hard to decode. In or-
der to embed a trapdoor in coding-based cryptography one usually starts with
a well-structured secret code C and linearly transforms it into a code C′ that is
supposed to be indistinguishable from a random code.

An attacker has two options. Either he tries to distinguish the scrambled
version C′ of C from a random code by revealing the underlying structure,
see [11, 28]. Or he directly tries to run a generic decoding algorithm on the
scrambled code C′.

Also closely related to random linear codes is the learning parity with noise
(LPN) problem that is frequently used in cryptography [1, 14, 17]. In LPN, one
directly starts with a random linear code C and the LPN search problem is a
decoding problem in C . It was shown in [27] that the popular LPN decision

! Supported by DFG project MA 2536/7-1 and by ICT-2007-216676 ECRYPT II,
!! Ruhr-University Research School, Germany Excellence Initiative [DFG GSC 98/1]

variant, a very useful tool for many cryptographic constructions, is equivalent
to the LPN search problem, and thus equivalent to decoding a random linear
code. The LWE problem of Regev [27] is a generalization of LPN to codes
over a larger field. Our decoding algorithm could be adjusted to work for these
larger fields (similar to what was done in [9, 26]). Since the decoding problem
lies at the the heart of coding-based and LPN/LWE-based cryptography it is
necessary to study its complexity in order to define proper security parameters
for cryptographic constructions.

Let us start by providing some useful notation. A binary linear code C is
a k-dimensional subspace of Fn

2 where n is called the length of the code and
R := k

n is called its rate. A random k-dimensional linear code C of length n

can be defined as the kernel of a random full-rank matrix H ∈R F(n−k)×n
2 , i.e.

C = {c ∈ Fn
2 | Hct = 0t}. The matrix H is called a parity check matrix of

C . For ease of presentation, we use the convention that all vectors are column
vectors which allows as to omit all transpositions of vectors.

The distance d of a linear code is defined by the minimal Hamming distance
between two codewords. Hence every vector x whose distance to the closest
codeword c ∈ C is at most the error correction capacity ω = "d−1

2 # can be
uniquely decoded to c.

For any point x = c+e ∈ Fn
2 that differs from a codeword c ∈ C by an error

vector e, we define its syndrome as s(x) := Hx = H(c + e) = He. Hence,
the syndrome only depends on the error vector e and not on the codeword c.
The syndrome decoding problem is to recover e from s(x). This is equivalent to
decoding in C , since the knowledge of e suffices to recover c from x.

Usually in cryptographic settings the Hamming weight of e is smaller than
the error correction capability, i.e. wt(e) ≤ ω = "d−1

2 #, which ensures unique
decoding. This setting is also known as half/bounded distance decoding. All
known half distance decoding algorithms achieve their worst case behavior for
the choice wt(e) = ω. As a consequence we assume wt(e) = ω throughout this
work. In complexity theory, one also studies the so-called full decoding where
one has to compute a closest codeword to a given arbitrary vector x ∈ Fn

2 . We
also give the complexity of our algorithm for full decoding, but in the following
we will focus on half-distance decoding.

The running time of decoding algorithms for linear codes is a function of
the three code parameters [n, k, d]. However, with overwhelming probability
random binary linear codes attain a rate R := k

n which is close to the Gilbert
Varshamov bound 1 − H(d

n) [10]. Therefore, we can express the running time
T (n,R) as a function in n,R only. One usually measures the complexity of
decoding algorithms asymptotically in the code length n. Since all generic de-
coding algorithms run in exponential time, a reasonable metric is the complexity

coefficient F (R) as defined in [9], i.e. F (R) = limn→∞
1
n log T (n,R) which

suppresses polynomial factors since lim 1
n log p(n) = 0 for any polynomial

p(n). Thus, we have T (n,R) = 2nF (R)+o(n) ≤ 2n&F (R)'ρ for large enough
n. We obtain the worst-case complexity by taking max0<R<1&F (R)'ρ. Here,
&x'ρ := &x · 10ρ' · 10−ρ denotes rounding up x ∈ R to a certain number of
ρ ∈ N decimal places.

Related work. In syndrome decoding one has to compute e from s(x), which
means that one has to find a weight-ω linear combination of the columns of H
that sums to the syndrome s(x) over Fn−k

2 . Thus, a brute-force algorithm would
require to compute

(n
ω

)
column sums. Inspired by the work of Prange [25], it

was already mentioned in the original work of McEliece [22] and later more
carefully studied by Lee and Brickell [19] that the following approach, called
information set decoding, yields better complexity.

Information set decoding basically proceeds in two steps, an initial trans-
formation step and a search step. Both steps are iterated in a loop until the al-
gorithm succeeds. The initial transformation step starts by randomly permuting
the columns of H. In particular, this permutes the ω columns of H that sum to
s(x), and thus permutes the coordinates of e. Then we apply Gaussian elimina-
tion on the rows of H in order to obtain a systematic form (Q | In−k), where
Q ∈ F(n−k)×k

2 and In−k is the (n − k)-dimensional identity matrix. The Gaus-
sian elimination operations are also applied to s(x) which results in s̃(x).

Let us fix an integer p < ω. In the search step, we compute for every linear
combination of p columns fromQ its Hamming distance to s̃(x). If the distance
is exactly ω − p then can we add to our p columns those ω − p unit vectors
from In−k that exactly yield s̃(x). Undoing the Gauss elimination recovers the
desired error vector e. Obviously, information set decoding can only succeed if
the initial column permutation results in a permuted e that has exactly p ones in
its first k coordinates and ω− p ones in its last n− k coordinates. Optimization
of p leads to a running time of 20.05752n.

Leon[20] and Stern[30] observed in 1989 that one can improve on the run-
ning time when replacing in the search step the brute-force search for weight-p
linear combinations by a Meet-in-the-middle approach. Let us fix an integer
<n − k and let us project (Q | In−k) to its first # rows. We split the projec-
tion ofQ into two matricesQ1,Q2 each having k

2 columns. Then we create two
lists L1,L2 that contain all weight-p2 linear combinations of columns from Q1

andQ2, respectively. Moreover, we add the projection of s̃(x) to every element
in L2 and sort the resulting list.

Then we search for matching elements from L1 and L2. These elements
define weight-p sums of vectors fromQ that exactly match s̃(x) in its first # co-

ordinates. As before, if the remaining coordinates differ from s̃(x) by a weight-
(ω− p) vector, then we can correct these positions by suitable unit vectors from
In−k. The running time of this algorithm is 20.05564n.

The ball collision technique of Bernstein, Lange and Peters [5] lowers this
complexity to 20.05559n by allowing a non-exact matching of the elements of
L1 and L2. The same asymptotic complexity can be achieved by transform-
ing H into (Q | 0

In−k−#
) with Q ∈ F(n−k)×(k+$)

2 , as proposed by Finiasz and
Sendrier [12]. The lists L1,L2 then each contain all weight-p2 sums out of

k+$
2

columns. The asymptotic analysis of this variant can be found in [23].
Notice that finding a weight-p sum of columns of Q that exactly matches

s̃(x) in # coordinates is a vectorial version of the subset sum problem in F$
2.

This vectorial version was called the column match problem by May, Meurer
and Thomae (MMT) [23], who adapted the subset sum representation technique
from Howgrave-Graham and Joux [15] to the column match problem.

LetQ ∈ F(n−k)×(k+$)
2 be as before, where q1, . . . ,qk+$ denote the columns

of Q. A Meet-in-the-Middle approach matches the first # coordinates via the
identity ∑

i∈I1

qi =
∑

i∈I2

qi + s̃(x) , (1)

where I1 ⊂
[
1, k+$

2

]
, I2 ⊂

[
k+$
2 + 1, k + #

]
and |I1| = |I2| = p

2 .
Using the representation technique, one chooses I1 and I2 no longer from

half-sized intervals but they both are chosen from the whole interval [1, k + #]
such that I1 ∩ I2 = ∅. Thus, every solution I admits

(p
p/2

)
representations

I = I1 ∪ I2. Notice that increasing the range of I1, I2 also increases the size
of the lists L1 and L2 from

((k+$)/2
p/2

)
to

(k+$
p/2

)
. But constructing only a

(p
p/2

)−1-
fraction of each list suffices to let a single representation of the solution sur-
vive on expectation. This approach leads to an algorithm which runs in time
20.05364n.

Our contribution. We propose to choose |I1| = |I2| = p
2 + ε for some ε > 0

such that |I1 ∩ I2| = ε. So we allow for ε columns qi that appear on both sides
of identity (1). Thus every solution I is written as the symmetric difference
I = I1∆I2 := I1 ∪ I2 \ (I1 ∩ I2), where we cancel out all ε elements in the
intersection of I1 and I2.

Let us compare our approach with the realization of the search step in the
algorithms of Stern [30] and MMT [23]. In Stern’s algorithm both index sets
I1, I2 are chosen in a disjoint fashion. Thus every solution I only has a unique
representation as the union of I1 and I2. MMT choose fully intersecting sets
I1, I2, but they only consider a union of disjoint sets I1, I2. Basically, this allows

that every of the p elements in I = I1 ∪ I2 can appear either as an element of I1
or as an element of I2, so it can appear on both sides of identity (1).

In contrast, we choose fully intersecting sets I1, I2 and additionally allow
for a union of intersecting sets. Thus, we additionally allow that even those
k + #− p elements that are outside of I = I1 ∪ I2 may appear in I1, I2 as long
as they appear in both sets, and thus cancel out. This drastically increases the
number of representations, since for random code instances the number of zeros
in an error vector e is much larger than the number of ones. Whereas MMT only
allow to split each 1-entry of e into two parts, either 1 = 0+ 1 or 1 = 1+ 0, we
also allow to split each 0-entry of e into two parts, either 0 = 0+0 or 0 = 1+1.
Hence our benefit comes from using the equation 1 + 1 = 0 in F2. Notice that
our approach therefore increases the number of representation per solution I to(p
p/2

)
·
(k+$−p

ε

)
.

Our main algorithmic task that we describe in this work is the construction
of two lists L1,L2 such that a single representation of each solution survives.
This is realized by a three-level divide-and-conquer algorithm that is similar to
Wagner’s generalized birthday algorithm [31].

Our enhanced representation technique allows us to significantly lower the
asymptotic running time to 20.04934n. The following figure shows the curve of
the complexity coefficient for the two most recent algorithms [5, 23] compared
to our new algorithm.

0.2 0.4 0.6 0.8 1.0 R!k!n
0.01

0.02

0.03

0.04

0.05

F"R#

Fig. 1: Comparison of F (R) for code rates 0 < R < 1 for bounded distance decoding. Our
algorithm is represented by the thick curve, MMT is the thin curve and Ball-collision is the
dashed curve.

2 Generalized Information Set Decoding

We now give a detailed description of a generalized information set decod-
ing (ISD) framework as described by Finiasz and Sendrier [12] in 2009. Re-

call that the input to an ISD algorithm is a tuple (H, s) where H ∈ F(n−k)×n
2

is a parity check matrix of a random linear [n, k, d]-code and s = He is the
syndrome of the unknown error vector e of weight ω := wt(e) = "d−1

2 #.
ISD is a randomized Las Vegas type algorithm that iterates two steps until

the solution e is found. The first step is an initial linear transformation of the
parity check matrixH, followed by a search phase as the second step.

In the initial transformation, we permute the columns of H by multiply-
ing with a random permutation matrix P ∈ Fn×n

2 . Then we perform Gaus-
sian elimination on the rows of HP by multiplying with an invertible matrix
T ∈ F(n−k)×(n−k)

2 . This yields a parity check matrix H̃ = THP in quasi-
systematic form containing a 0-submatrix in the right upper corner as illustrated
in Fig. 2. Here we denote by QI the projection of Q to the rows defined by the
index set I ⊂ {1, . . . , n − k}. Analogously, we denote by QI the projection
of Q to its columns. In particular we define [#] := {1, . . . , #} and [#, n − k] =
{#, . . . , n − k}. We denote the initial transformation Init(H) := THP.

H̃ =

0

z }| {
k + !

z }| {
n − k − !

z
}|

{

!

z
}|

{

n − k − !

| {z }
p

| {z }
ω − p

Q[#]

In−k−#Q[#+1,n−k]

Fig. 2: Parity check matrix H̃ in quasi-systematic form.

We set s̃ := Ts and look for an ISD-solution ẽ of (H̃, s̃), i.e. we look for an
ẽ satisfying H̃ẽ = s̃ and wt(ẽ) = ω. This yields a solution e = Pẽ for the
original problem. Notice that applying the permutation matrix to ẽ leaves the
weight unchanged, i.e. wt(e) = ω, and THe = H̃ẽ = s̃ = Ts impliesHe = s
as desired. In the search phase, we try to find all error vectors ẽ that have a
specific weight distribution, i.e. we search for vectors that can be decomposed
into ẽ = (ẽ1, ẽ2) ∈ Fk+$

2 × Fn−k−$
2 where wt(ẽ1) = p and wt(ẽ2) = ω − p.

Since P shuffles e’s coordinates into random positions, ẽ has the above weight
distribution with probability

P =

(k+l
p

)(n−k−l
ω−p

)
(n
ω

) . (2)

The inverse probability P−1 is the expected number of repetitions until ẽ has
the desired distribution. Then it suffices to find the truncated vector ẽ1 ∈ Fk+$

2
that represents the position of the first p ones. To recover the full error vector
ẽ = (ẽ1, ẽ2), the missing coordinates ẽ2 are obtained as the last n − k − #
coordinates of Qẽ1 + s̃. Hence, the goal in the ISD search phase is to compute
the truncated error vector ẽ1 efficiently. For the computation of ẽ1 we focus on
the submatrix Q[$] ∈ F$×(k+$)

2 . Since we fixed the 0-submatrix in the right-
hand part of H̃, we ensure that Qẽ1 exactly matches the syndrome s̃ on its
first # coordinates. Finding an ẽ1 with such a property was called the submatrix
matching problem in [23].

Definition 1 (Submatrix Matching Problem). Given a random matrix Q ∈R

F$×(k+$)
2 and a target vector s ∈ F$

2, the submatrix matching problem (SMP)
consists in finding a set I of size p such that the corresponding columns of Q
sum up to s, i.e. to find I ⊆ [1, k + #], |I| = p such that

σ(QI) :=
∑

i∈I

qi = s, where qi is the i-th column of Q.

Note that the SMP itself can be seen as just another syndrome decoding instance
with parity check matrix Q, syndrome s ∈ F$

2 and parameters [k + #, #, p].
Our improvement stems from a new algorithm COLUMNMATCH allowing

to solve the SMP more efficiently by using more representations of a solution I .
In Alg. 1 we describe the resulting ISD algorithm. Here we denote for a vector
x ∈ Fn

2 and an index set I ⊂ [n] by xI ∈ F|I|
2 the restriction of x to the

coordinates of I .

Algorithm 1 GENERALIZEDISD

Input: Parity check matrixH ∈ F(n−k)×n
2 , syndrome s = He with wt(e) = ω.

Output: Error e ∈ Fn
2

Parameters: p, !

Repeat
Compute H̃ ← Init(H) and s̃ ← Ts where H̃ = THP,P random permutation.
Compute L =COLUMNMATCH(Q[#], s̃[#], p).
For all solutions ẽ1 ∈ L do

If wt(Qẽ1 + s̃) = ω − p then
Compute ee ← (ẽ1, ẽ2) ∈ Fn

2 where ẽ2 ← (Qẽ1 + s̃)[#+1,n−k]

Output e = eeP.

Let T := T (n,R; p, #) denote the running time of COLUMNMATCH. Then the
running time of GENERALIZEDISD is P−1 · T .

3 The Merge-Join Building Block

In order to realize our improved SMP algorithm, we first introduce an essential
building block that realizes the following task. Given a matrixQ ∈ F$×(k+$)

2 and
two lists L1 and L2 containing binary vectors x1, . . . ,x|L1| and y1, . . . ,y|L2| of
length k + #, we aim to join those elements xi and yj into a new list L = L1 '(
L2 whose sum has weight p, i.e. wt(xi +yj) = p. Furthermore, we require that
the corresponding column-sum of Q already matches a given target t ∈ Fr

2 on
its right-most r ≤ # coordinates, i.e. (Q(xi + yj))[r] = t.

L1

010100i0 →
110100

i1 → 100100

L2

011100 ← j0

← j1
110100

r

#$

L

! ! 000
! ! 000

! ! 000
! ! 000

Fig. 3: Illustration of the MERGE-JOIN algorithm to obtain L = L1 #$ L2.

Searching for matching vectors (Qyj)[r] + t and (Qxi)[r] accomplishes this
task. We call all matching vectors with weight different from p inconsistent so-
lutions. Notice that we might also obtain the same vector sum from two different
pairs of vectors from L1,L2. In this case we obtain a matched vector that we
already have, which we call a duplicate. During our matching process we filter
out all inconsistent solutions and duplicates.

The matching process is illustrated in Fig. 3. The complete algorithm is
given as Alg. 2 and is based on a classical algorithm from Knuth [18] which
realizes the collision search as follows. Sort the first list lexicographically ac-
cording to the r-bit labels L1(xi) := (Qxi)[r] and the second list according to
the labels L2(yj) := (Qyj)[r] + t. We add t to the labels of the second list to
guarantee (Q(xi + yj))[r] = t.
To detect all collisions, one now initializes two counters i and j starting at
the beginning of the lists L1 and L2 and pointing at elements xi and yj . As
long as those elements do not yield a collision, either i or j is increased de-
pending on the relative order of the labels L1(xi) and L2(yj). Once a collision
L1(xi) = L2(yj) occurs, four auxiliary counters i0, i1 and j0, j1 are initialized
with i and j, respectively. Then i1 and j1 can further be incremented as long as
the list elements retain the same labels, while i0 and j0 mark the first collision
(i, j) between labels L1(xi) and L2(yj). Obviously, this procedure defines two

Algorithm 2 MERGE-JOIN
Input: L1,L2, r, p and t ∈ Fr

2

Output: L = L1 #$ L2

Lexicographically sort L1 and L2 according to the labels L1(xi) := (Qxi)[r] and
L2(yj) := (Qyj)[r] + t.
Set collision counter C ← 0. Let i ← 0 and j ← (|L2|− 1)
While i < |L1| and j < |L2| do

If L1(xi) <lex L2(yj) then i + +
If L1(xi) >lex L2(yj) then j + +
If L1(xi) = L2(yj) then

Let i0, i1 ← i and j0, j1 ← j
While i1 < |L1| and L1(xi1) = L1(xi0) do i1 + +
While j1 < |L2| and L2(yj1) = L2(yj0) do j1 + +
For i ← i0 to i1 − 1 do

For j ← j0 to j1 − 1 do
C = C + 1
Insert collision xi + yj into list L (unless filtered out)

Let i ← i1 , j ← j1
Output L, C.

sets C1 = {xi0 , . . . ,xi1} and C2 = {yj0 , . . . ,yj1} such that all possible com-
binations yield a collision, i.e. the set C1 × C2 can be added to the output list
L.

This procedure is then continued with i ← i1 and j ← j1 until one of the
counters i, j arrives at the end of a list. As mentioned before, we remove on the
fly inconsistent solutions with incorrect weight wt(xi + yj) /= p and duplicate
elements xi + yj = xk + y$.

Note that we introduced a collision counter C which allows us to take into
account the time that is spent for removing inconsistent solutions and duplicates.
The total running time of MERGE-JOIN is given by

T = Õ (max {|L1|, |L2|, C}) .

Assuming uniformly distributed labels L1(xj) and L2(yj) it holds that E [C] =
|L1| · |L2| · 2−r.

4 Our New Algorithm for Solving the Submatrix Matching
Problem

As explained in Section 2, improving the submatrix matching problem (SMP)
automatically improves information set decoding (ISD).

Our new SMP algorithm is inspired by using extended representations sim-
ilar to Becker, Coron and Joux [2] for the subset sum problem.

In the MMT algorithm [23] a weight-p error vector e ∈ Fk+$
2 is written as

the sum e1 + e2. However, MMT only allow that every 1-entry splits to either
a 1-entry in x1 and a 0-entry in x2, or vice versa. If wt(e1) = wt(e2) = p

2 this
allows for

(p
p/2

)
different representations as a sum of two vectors.

Our key observation is that we can also split the 0-entries of e into either
(0, 0) or (1, 1). Hence if we choose wt(e1) = wt(e2) = p

2 + ε then we gain
a factor of

(k+$−p
ε

)
, namely the number of positions where we split as (1, 1).

Notice that in all coding-based scenarios wt(e) is relatively small compared
to k and n. Thus e contains many more zeros than ones, from which our new
representation heavily profits.

To solve the SMP, we proceed as follows. Let I ⊂ [k + #] be the index set
of cardinality p with σ(QI) = s that we want to find.

We represent I by two index sets I1 and I2 of cardinality p
2 + ε contained in

the whole interval [k + l] and require I1 and I2 to intersect in a fixed number of
ε coordinates as illustrated in Fig. 4.

|I | = p

e

|I1| = p/2 + ε

e1

|I2| = p/2 + ε

e2

Fig. 4: Decomposition of an index set I into two overlapping index sets.

The resulting index set I is then represented as the symmetric difference I1∆I2 :=
(I1 ∪ I2) \ (I1 ∩ I2) which yields an index set I of cardinality p as long as I1
and I2 intersect in exactly ε positions.

It turns out that the optimal running time can be obtained by applying the
representation technique twice, i.e. we introduce further representations of the
index sets I1 and I2 on a second computation layer.

4.1 Our COLUMNMATCH Algorithm

Our algorithm can be described as a computation tree of depth three, see Fig. 5
for an illustration. We enumerate the layers from bottom to top, i.e. the third
layer identifies the initial computation of disjoint base lists B1 and B2 and the
zero layer identifies the final output list L.

Recall that we aim to find an index set I of size p with
∑

i∈I qi = s. We
introduce parameters ε1 and ε2 representing the number of additional 1’s we

. . .

Disjoint base lists Bi,1 and Bi,2 for i = 1, . . . , 4Layer 3

Layer 2

Layer 1

Layer 0

weight
p2
2

weight
p2 = p1

2 + ε2

weight
p1 = p

2 + ε1

weight
p

#$ #$

#$

r2 r2

r1L

L(1)
1 L(1)

2

L(2)
1 L(2)

2 L(2)
3 L(2)

4

Fig. 5: Illustration of the COLUMNMATCH algorithm.

allow on the first and second layer, respectively. In the following description,
we equip every object with an upper index that indicates its computation layer,
e.g. a list L(2)

j is contained in the second layer.

On the first layer, we search for index sets I(1)
1 and I(1)

2 in [k + #] of size
p1 := p

2 + ε1 which intersect in exactly ε1 coordinates such that I = I(1)
1 ∆I(1)

2 .
In other words, we create lists of binary vectors e(1)1 and e(1)

2 of weight p1 and
search for tuples (e(1)

1 , e(1)
2) such that wt(e(1)

1 +e(1)
2) = p andQ(e(1)

1 +e(1)
2) =

s.
Note that the number of tuples (e(1)

1 , e(1)
2) that represent a single solution vector

e is

R1(p, #; ε1) :=
(

p
p
2

)(
k + l − p

ε1

)
. (3)

To optimize the running time, we impose a constraint on r1 ≈ log2 R1 coordi-
nates of the corresponding vectors Qe(1)i such that we can still expect to find
one representation of the desired solution e.

More precisely, the algorithm proceeds as follows. We first fix a random
vector t(1)

1 ∈R Fr1
2 , set t

(1)
2 := s[r1] + t(1)

2 and compute two lists

L(1)
i = {ei

(1) ∈ Fk+$
2 | wt(ei) = p1 and (Qe(1)

i)[r1] = t(1)
i } for i = 1, 2.

Observe that any two elements e(1)
i ∈ L(1)

i , i = 1, 2, already fulfill by con-
struction the equation (Q(e(1)

1 + e(1)
2))[r1] = s[r1], i.e. they already match the

syndrome s on r1 coordinates. In order to solve the SMP, we are interested in
a solution e = e(1)

1 + e(1)
2 that matches the syndrome s on all # positions and

has weight exactly p. Once L(1)
1 and L(1)

2 have been created, this can be accom-
plished by calling the MERGE-JOIN algorithm from Sect. 3 on input L(1)

1 ,L(1)
2

with target s, weight p and parameter #.
It remains to show how to construct L(1)

1 ,L(1)
2 .

We represent e(1)
i as a sum of two overlapping vectors e(2)

2i−1, e
(2)
2i both of

weight p2 := p1
2 + ε2, i.e. we require the two vectors to intersect in exactly ε2

coordinates. Altogether, the solution e is now decomposed as

e = e(1)
1 + e(1)

2 = e(2)
1 + e(2)

2 + e(2)
3 + e(2)

4 .

Clearly, there are

R2(p, #; ε1, ε2) =
(

p1

p1/2

)
·
(

k + #− p1

ε2

)

many representations for e(1)
j where p1 = p

2 + ε1. Similarly to the first layer,
this allows us to fix r2 ≈ log R2 coordinates of the partial sums Qe(2)

i to some
target values t(2)i . More precisely, we draw two target vectors t(2)1 , t(2)

3 ∈ Fr2
2 ,

set t(2)
2j = (t(1)

j)[r2] + t(2)
2j−1 for j = 1, 2, and compute four lists

L(2)
i = {e(2)

i ∈ Fk+l
2 | wt(e(2)

i) = p2 and (Qe(2)
i)[r2] = t(2)

i } for i = 1, . . . , 4.

Notice that by construction all combinations of two elements from eitherL(2)
1 ,L(2)

2

or L(2)
3 ,L(2)

4 match their respective target vector t(1)j on r2 coordinates.

Creating the lists L(2)
1 , . . . , L(2)

4 . We exemplary explain how to create L(2)
1 .

The remaining lists can be constructed analogously. We apply a classical Meet-
in-the-middle collision search, i.e. we decompose e(2)1 as e(2)

1 = y + z by two
non-overlapping vectors y and z of length k + #. To be more precise, we first

choose a random partition of [k + #] into two equal sized sets P1 and P2, i.e.
[k + #] = P1 ∪ P2 with |P1| = |P2| = k+$

2 , and force y to have its p2
2 1-entries

in P1 and z to have its p2
2 1-entries in P2. That is we construct two base lists

B1 := {y ∈ Fk+$
2 | wt(y) =

p2

2
and yi = 0∀i ∈ P2}

and
B2 := {z ∈ Fk+$

2 | wt(z) =
p2

2
and zi = 0∀i ∈ P1}.

We invoke MERGE-JOIN to compute L(2)
1 = MERGE-JOIN(B1,B2, r2, p2, t

(2)
1).

Let S3 = |B1| = |B2| denote the size of the base lists and let C3 be the total
number of matched vectors that occur in MERGEJOIN (since the splitting is dis-
joint, neither duplicates nor inconsistencies can arise). Then MERGEJOIN needs
time

T3(p, #; ε1, ε2) = O (max {S3, C3}) .

Clearly, we have

S3 := S3(p, #; ε1, ε2) =
(

(k + #)/2
p2/2

)
.

Assuming uniformly distributed partial sums we obtain

E [C3] =
S2

3

2r2
.

We would like to stress that decomposing e(2)1 into x and y from disjoint sets P1

and P2 introduces a probability of loosing the vector e
(2)
1 and hence the solution

e = e(2)
1 + e(2)

2 + e(2)
3 + e(2)

4 . For a randomly chosen partition P1, P2, the
probability that e(2)

1 equally distributes its 1-entries over P1 and P2 is given by

Psplit =

((k+$)/2
p2/2

)2

(k+$
p2

)

which is asymptotically inverse-polynomial in n. Choosing independent par-
titions Pi,1, Pi,2 and appropriate base lists Bi,1,Bi,2 for all four lists L(2)

i , we
can guarantee independent splitting conditions for all the e(2)i yielding a total
splitting probability of PSplit = (Psplit)4 which is still inverse-polynomial in n.

After having created the lists L(2)
i , i = 1, . . . , 4 on the second layer, two

more applications of the MERGEJOIN algorithm suffice to compute the lists
L(1)

j on the first layer. Eventually, a last application of MERGEJOIN yields L,
whose entries are solutions to the SMP. See Alg. 3 for a complete pseudocode
description.

Algorithm 3 COLUMNMATCH

Input:Q ∈ F#×k+#
2 , s ∈ F#

2, p ≤ k + !
Output: List L of vectors in e ∈ Fk+#

2 with wt(e) = p andQe = s
Parameters: Choose optimal ε1, ε2 and set p1 = p/2 + ε1 and p2 = p1/2 + ε2.

Choose random partitions Pi,1, Pi,2 of [k + !] and create the base lists Bi,1 and Bi,2.
Choose t(1)1 ∈R Fr1

2 and set t(1)2 = s[r1] + t(1)
1 .

Choose t(2)1 , t(2)
3 ∈R Fr2

2 . Set t
(2)
2 = (t(1)

1)[r2] + t(2)
1 and t(2)4 = (t(1)

2)[r2] + t(2)
3 .

Compute L(2)
i = MERGE-JOIN(Bi,1,Bi,2, r2, p2, t

(2)
i) for i = 1, . . . , 4.

Compute L(1)
i = MERGE-JOIN(L(2)

2i−1,L
(2)
2i , r1, p1, t

(1)
i) for i = 1, 2.

Compute L = MERGE-JOIN(L(1)
1 ,L(1)

2 , !, p, s).
Output L.

It remains to estimate the complexity of COLUMNMATCH as a function of the
parameters (p, #; ε1, ε2), where (ε1, ε2) are optimization parameters. Notice that
the values ri and pi are fully determined by (p, #; ε1, ε2). The base lists B1 and
B2 are of size S3(p, #; ε1, ε2) as defined above.

The three consecutive calls to the MERGE-JOIN routine create lists L(2)
j of

size S2(p, #; ε1, ε2), lists L(1)
i of size S1(p, #; ε1, ε2) and the final list L (which

has not to be stored). More precisely, we obtain

Si(p, #; ε1, ε2) = E
[
|L(i)

j |
]

=
(

k + #

pi

)
· 2−ri for i = 1, 2.

Here we assume uniformly distributed partial sumsQe(j)i .
Let Ci for i = 1, 2, 3 denote the number of all matching vectors (includ-

ing possible inconsistencies or duplicates) that occur in the three MERGE-JOIN
steps. If we set r3 = 0 and r0 = #, then

E [Ci] = S2
i · 2ri−ri−1.

Following the analysis of MERGE-JOIN in Sect. 3, the time complexities Ti of
the three MERGE-JOIN steps is given by

Ti(p, #; ε1, ε2) = max {Si, Ci} .

The overall time and space complexity is thus given by

T (p, #; ε1, ε2) = max {T3, T2, T1} (4)

and
S(p, #; ε1, ε2) = max {S3, S2, S1} .

For optimizing T (p, #; ε1, ε2) one has to compute the Ci. Heuristically, we can
assume that the Ci achieve their expected values up to a constant factor. Since
our heuristic analysis also relies on the fact that projected partial sums of the
form (Qe)[r] yield uniformly distributed vectors in Fr

2, a proper theoretical anal-
ysis needs to take care of a certain class of malformed input parity check matri-
ces H. We show how to obtain a provable variant of our algorithm that works
for all but a negligible amount of input matrices H in the full version of the
paper [3]. The provable variant simply aborts computation if the Ci differ too
much from their expectation.

5 Comparison of Asymptotic Complexity

We now show that we improve information set decoding by an exponential fac-
tor in comparison to the latest results [5, 23]. To compute the complexity coef-
ficient F (R) for our algorithm for a fixed code rate R, we need to optimize the
parameters p, #, ε1 and ε2 such that the expression

T (p, #; ε1, ε2) · P(p, #)−1 (5)

is minimized under the natural constraints

0 <# < min{n − k, n − k − ω − p}
0 <p < min{ω, k + #}
0 <ε1 < k + #− p

0 <ε2 < k + #− p1

0 <R2(p, #; ε1, ε2) < R1(p, #; ε1, ε2) < # .

The time per iteration T is given by Eq. (4) and the number of iterations P−1

equals
((k+$

p

)(n−k−$
ω−p

)
/
(n
ω

))−1
as given in Eq. (2).

For random linear codes, we can relate R = k/n and D = d/n via the
Gilbert-Varshamov bound. Thus asymptotically we obtain D = H−1(1−R) +
o(1), where H is the binary entropy function. For bounded distance decoding,
we set W := ω/n = D/2. We numerically determined the optimal parameters
for several equidistant rates R and interpolated F (R). To calculate F (R) we
make use of the well known approximation

(αn
βn

)
= 2αH(β/α)n+o(n). The results

are shown in Fig. 1.
For full decoding, in the worst-case we need to decode a highest weight coset

leader of the code C , its weight ω corresponds to the covering radius ofC which
is defined as the smallest radius r such that C can be covered by discrete balls
of radius r. The Goblick bound [13] ensures that r ≥ nH−1(1− R) + o(n) for

all linear codes. Independently, Blinovskii [7] and Levitin [21] further proved
that this bound is tight for almost all linear codes, i.e. r = nH−1(1−R)+o(n).
This justifies our choice W = H−1(1 − R) for the full decoding scenario.

0.2 0.4 0.6 0.8 1.0 R!k!n
0.02

0.04

0.06

0.08

0.10

F"R#

Fig. 6: F (R) for full decoding. Our algorithm is represented by the thick curve, MMT is the thin
curve and Ball-collision is the dashed curve.

We conclude by taking a closer look at the worst-case complexities of decoding
algorithms for random linear codes and a typical McEliece setting with relative
distance D = 0.04 and rate R = 0.7577. Notice that three out of the four
parameter sets for security levels between 80 and 256 bit from [4] closely match
these code parameters.

half-dist. full dec. McEliece
time space time space time space

Lee-Brickell 0.05752 - 0.1208 - 0.0857 -
Stern 0.05564 0.0135 0.1167 0.0318 0.0809 0.0327
Ball-collision 0.05559 0.0148 0.1164 0.0374 0.0807 0.0348
MMT 0.05364 0.0216 0.1116 0.0541 0.0760 0.0482
Our algorithm 0.04934 0.0286 0.1019 0.0769 0.0672 0.0586

Table 1: Comparison of worst-case complexity coefficients, e.g. the time columns represent the
maximal complexity coefficient F (R) for 0 < R < 1.

All algorithms were optimized for speed, not for memory. For a comparison of
full decoding with fixed memory, we can easily restrict Ball-collision, MMT and
our new algorithm to the space complexity coefficient 0.0317 of Stern’s algo-
rithm which holds for k ≈ 0.446784. In this case, we obtain time complexities
Fball(R) = 0.1163, FMMT(R) = 0.1129 and Four(R) = 0.1110, which shows
that our improvement is not a pure time memory tradeoff.

For a better verifiability of our optimization and the resulting complexi-
ties, we make all data including the Mathematica code publicly available at
http://cits.rub.de/personen/meurer.html. If needed, this code
may also be used to compute optimal parameters for arbitrary code parameters.

Acknowledgment. We would like to thank Dan Bernstein for several excellent
comments, in particular he proposed to use random partitions for generating the
base lists in the COLUMNMATCH algorithm.

References

1. M. Alekhnovich. More on Average Case vs Approximation Complexity. In 44th Symposium
on Foundations of Computer Science (FOCS), pages 298–307, 2003

2. A. Becker, J.-S. Coron, and A. Joux. Improved generic algorithms for hard knapsacks. InEU-
ROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 364–385. Springer,
2011.

3. A. Becker, A. Joux, A. May and A. Meurer. Decoding Random Binary Linear Codes in
2n/20: How 1 + 1 = 0 Improves Information Set Decoding. Full Version, available at
http://eprint.iacr.org.

4. D.J. Bernstein, T. Lange and C. Peters. Attacking and Defending the McEliece Cryp-
tosystem. In Post-Quantum Cryptography, Second International Workshop, PQCrypto 2008,
pages 31-46. Springer, 2008.

5. D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: ball-collision de-
coding. In CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 743–760.
Springer, 2011.

6. R. J. M. Elwyn R. Berlekamp and H. C. van Tilborg. On the inherent intractability of certain
coding problems. In IEEE Transactions on Information Theory, volume 24, pages 384–386,
1978.

7. V.M. Blinovskii. Lower asymptotic bound on the number of linear code words in a sphere
of given radius in Fn

q . In Probl. Peredach. Inform., vol 23, pages 50-53, 1987.
8. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words in a linear
code: Application to mceliece’s cryptosystem and to narrow-sense bch codes of length 511.
IEEE Transactions on Information Theory, 44(1):367–378, 1998.

9. J.T. Coffey and R.M. Goodman. The complexity of information set decoding. In IEEE
Transactions on Information Theory, volume 36, pages 1031-1037, 1990.

10. J.T. Coffey and R.M. Goodman. Any code of which we cannot think is good. In IEEE
Transactions on Information Theory, volume 36, 1990.

11. J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. ADistinguisher for High Rate McEliece
Cryptosystems. In YACC 2010, full version available as eprint Report 2010/331, 2010.

12. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosystems.
In M. Matsui, editor, Asiacrypt 2009, volume 5912 of Lecture Notes in Computer Science,
pages 88–105. Springer, 2009.

13. T.J. Goblick, Jr. Coding for a discrete information source with a distortion measure. Ph.D.
dissertation, Dept. of Elect. Eng., M.I.T., Cambridge, MA, 1962.

14. N.J. Hopper and M. Blum. Secure Human Identification Protocols. In Lecture Notes in Com-
puter Science, volume 2248, Proceedings of Advances in Cryptology - ASIACRYPT 2001,
pages 52-66. Springer 2001.

15. N. Howgrave-Graham and A. Joux. New generic algorithms for hard knapsacks. In EU-
ROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 235–256. Springer,
2010.

16. J. P. Jordan. A variant of a public key cryptosystem based on goppa codes. SIGACT News,
15:61–66, January 1983.

17. E. Kiltz, K. Pietrzak, D. Cash, A. Jain and D. Venturi. Efficient Authentication from Hard
Learning Problems. In Advances in Cryptology - EUROCRYPT 2011, pages 7-26. Springer,
2001.

18. D. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching. Addison-
Wesley Professional, 2 edition, 1998.

19. P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key cryp-
tosystem. In Advances in Cryptology - EUROCRYPT 1988, pages 275–280, 1988.

20. J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-
correcting codes. IEEE Transactions on Information Theory, 34(5):1354 – 1359, 1988.

21. L.B. Levitin. Covering radius of almost all linear codes satisfies the Goblick bound. In IEEE
Internat. Symp. on Information Theory, Kobe, Japan, 1988.

22. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. In Jet Propul-
sion Laboratory DSN Progress Report 42–44, pages 114–116, 1978.

23. A. May, A. Meurer and E. Thomae. Decoding Random Linear Codes in Õ(20.054n). In
Advances in Cryptology - ASIACRYPT 2011, pages 107-124, Springer 2011.

24. P. Q. Nguyen, I. E. Shparlinski, and J. Stern. Distribution of modular sums and the security
of the server aided exponentiation. In Progress in Computer Science and Applied Logic,
volume 20 of Final proceedings of Cryptography and Computational Number Theory work-
shop, Singapore (1999), pages 331–224, 2001.

25. E. Prange. The Use of Information Sets in Decoding Cyclic Codes. IRE Transaction on
Information Theory, volume 8, issue 5, pages 5-9, 1962.

26. C. Peters. Information-Set Decoding for Linear Codes over Fq. In Post-Quantum Cryptog-
raphy, Third International Workshop, PQCrypto 2010, pages 81-94. Springer, 2010.

27. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages
84-93, 2005.

28. N. Sendrier. Finding the permutation between equivalent linear codes: The support splitting
algorithm In IEEE Transactions on Information Theory, volume 46, pages 1193–1203, 2000.

29. N. Sendrier. On the security of the McEliece public-key cryptosystem. In M. Blaum, P. Far-
rell, and H. van Tilborg, editors, Information, Coding and Mathematics, pages 141–163.
Kluwer, 2002. Proceedings of Workshop honoring Prof. Bob McEliece on his 60th birthday.

30. J. Stern. A method for finding codewords of small weight. In Proceedings of the 3rd In-
ternational Colloquium on Coding Theory and Applications, pages 106–113, London, UK,
1989. Springer-Verlag.

31. D. Wagner. A generalized birthday problem. In CRYPTO’2002, pages 288–303, 2002.

