
Public Key Compression and Modulus Switching
for Fully Homomorphic Encryption over the

Integers

Jean-Sébastien Coron1, David Naccache2, and Mehdi Tibouchi3

1 Université du Luxembourg
jean-sebastien.coron@uni.lu

2 École normale supérieure
david.naccache@ens.fr

3 NTT Information Sharing Platform Laboratories
tibouchi.mehdi@lab.ntt.co.jp

Abstract. We describe a compression technique that reduces the public
key size of van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) fully
homomorphic scheme over the integers from Õ(λ7) to Õ(λ5). Our variant
remains semantically secure, but in the random oracle model. We obtain
an implementation of the full scheme with a 10.1 MB public key instead
of 802 MB using similar parameters as in [7]. Additionally we show how
to extend the quadratic encryption technique of [7] to higher degrees, to
obtain a shorter public-key for the basic scheme.
This paper also describes a new modulus switching technique for the
DGHV scheme that enables to use the new FHE framework without
bootstrapping from Brakerski, Gentry and Vaikuntanathan with the
DGHV scheme. Finally we describe an improved attack against the
Approximate GCD Problem on which the DGHV scheme is based, with
complexity Õ(2ρ) instead of Õ(23ρ/2).

1 Introduction

Fully Homomorphic Encryption. An encryption scheme is said to be fully
homomorphic when it is possible to perform implicit plaintext additions and
multiplications while manipulating only ciphertexts.

The first construction of a fully homomorphic scheme was described by Gentry
in [9]. Gentry first obtained a “somewhat homomorphic” scheme, supporting only
a limited number of ciphertext multiplications due to the fact that ciphertext
contain a certain amount of “noise” which increases with every multiplication,
and that decryption fails when noise size passes a certain bound. As a result, in
the somewhat homomorphic scheme, the functions that can be homomorphically
evaluated on ciphertexts are polynomials of small, bounded degree. The second
step in Gentry’s framework consists in “squashing” the decryption procedure so
that it can be expressed as a low degree polynomial in the bits of the ciphertext
and the secret key. Then, Gentry’s key idea, called “bootstrapping”, is to evaluate
this decryption polynomial not on the ciphertext bits and the secret-key bits

(which would yield the plaintext), but homomorphically on the encryption of
those bits, which gives another ciphertext of the same plaintext. If the degree of
the decryption polynomial is small enough, the noise in the new ciphertext can
become smaller than it was the original ciphertext, so that this new ciphertext
can be used again in a subsequent homomorphic operation (either addition
or multiplication). Using this “ciphertext refresh” procedure the number of
permissible homomorphic operations becomes unlimited and one obtains a fully
homomorphic encryption scheme. To date, three different fully homomorphic
schemes are known:

1. Gentry’s original scheme [9], based on ideal lattices. Gentry and Halevi
described in [10] the first implementation of Gentry’s scheme, using many
clever optimizations, including some suggested in a previous work by Smart
and Vercauteren [14]. For their most secure setting (claiming 72 bit security)
the authors report a public key size of 2.3 GB and a ciphertext refresh
procedure taking 30 minutes on a high-end workstation.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) scheme over the
integers [8]. This scheme is conceptually simpler than Gentry’s scheme,
because it operates on integers instead of ideal lattices. Recently it was
shown [7] how to reduce the public key size by storing only a small subset
of the original public key and generating the full public key on the fly by
combining the elements in the small subset multiplicatively. Using some of
the optimizations from [10], the authors of [7] report similar performances: a
802 MB public key and a ciphertext refresh in 14 minutes.

3. Brakerski and Vaikuntanathan’s scheme based on the Learning with Errors
(LWE) and Ring Learning with Errors (RLWE) problems [2, 3]. The authors
introduce a new dimension reduction technique and a new modulus switching
technique to shorten the ciphertext and reduce the decryption complexity. A
partial implementation is described in [11], without the fully homomorphic
capability.

Recently Brakerski, Gentry and Vaikuntanathan introduced a remarkable
new FHE framework, in which the noise ceiling increases only linearly with the
multiplicative level instead of exponentially [4]; this implies that bootstrapping is
no longer necessary to achieve fully homomorphic encryption. This new framework
has the potential to significantly improve the practical FHE performance. The
new framework is based on Brakerski and Vaikuntanathan’s scheme [2, 3], and
more specifically on their new modulus switching technique, which efficiently
transforms a ciphertext encrypted under a certain modulus p into a ciphertext
under a different modulus p′ but with reduced noise.

Public Key Compression. The first of our contributions is a technique to
reduce the public key size of DGHV-like schemes [8] by several orders of magnitude.
In the DGHV scheme the public key is a set of integers of the form:

xi = qi · p+ ri

where p is the secret-key of η bits, qi is a large random integer of γ − η bits, and
ri is a small random integer of ρ bits. The scheme’s semantic security is based on
the Approximate GCD Problem: given a polynomial number of xi’s, recover the
secret p. To avoid lattice attacks, the bit-size γ of the xi’s must be very large: [7]
takes γ ' 2 · 107 for η = 2652 and ρ = 39, and the full public key claims a 802
MB storage.

Our technique proceeds as follows. First generate the secret-key p. Then, use
a pseudo-random number generator f with public random seed se to generate a
set of γ-bit integers χi (i.e. the χi’s are of the same bit-size as the xi’s). Finally,
compute small corrections δi to the χi’s such that xi = χi − δi is small modulo
p, and store only the small corrections δi in the public key, instead of the full
xi’s. Knowing the PRNG seed se and the δi’s is sufficient to recover the xi’s.

Therefore instead of storing a set of large γ-bit integers we only have to store a
set of much smaller η-bit integers, where η is the bit size of p. The new technique
is fully compatible with the DGHV variant described in [7]; with the previous
set of parameters from [7] one obtains a public key size of 4.6 MB for the full
implementation, instead of the 802 MB required in [7]! The technique can be seen
as generating the γ − η most significant bits of the xi’s with a pseudo-random
number generator, and then using the secret key p to fix the η remaining bits so
that xi mod p is small. While different, this is somewhat reminiscent of Lenstra’s
technique [12] for generating an RSA modulus with a predetermined portion.

Under our variant, the encryption scheme can still be proved semantically
secure under the Approximate GCD assumption, albeit in the random oracle
model. This holds for both the original DGHV scheme form [8] and the variant
described in [7] in which the public key elements are first combined multiplicatively
to generate the full public key. Unlike [7, 8], we need the random oracle model in
order to apply the leftover hash lemma in our variant, because the seed of the
PRNG is known to the attacker (as part of the public key).

We report the result of an implementation of the new variant with the fully
homomorphic capability. As in [7] we use the variant with noise-free x0 = q0 · p.
We also update the parameters from [7] to take into the account the improved
attack from Chen and Nguyen against the Approximate GCD problem [5]. We
obtain a level of efficiency very similar to [7] but with a 10.1 MB public key
instead of a 802 MB one. The source code of this implementation is publicly
available [17].

Extension to Higher Degrees. Various techniques have been proposed in [7]
to reduce the public key size and increase the efficiency of the DGHV scheme,
the most important of which is to use a quadratic form instead of a linear form
for masking the message when computing a ciphertext. The authors show that
the scheme remains semantically secure; the key ingredient is to prove that a
certain family of quadratic hash functions is close enough to being pairwise
independent, so that the leftover hash lemma can still be applied. The main
benefit is a significant reduction in public key size, from τ = Õ(λ3) elements
xi down to 2β = Õ(λ1.5) elements xi,b. In this paper we prove that the natural

extension of this quadratic encryption technique to to cubic forms, and more
generally forms of arbitrary fixed degree d, remains secure, making it possible to
further reduce the public key size.

Modulus Switching and Leveled DGHV Scheme. As a third contribution,
we show how to adapt Brakerski, Gentry and Vaikuntanathan’s (BGV) new
FHE framework [4] to the DGHV scheme over the integers. Under the BGV
framework the noise ceiling increases only linearly with multiplicative depth,
instead of exponentially. This enables to get a FHE scheme without the costly
bootstrapping procedure.

More precisely the new BGV framework is described in [4] with Brakerski and
Vaikuntanathan’s scheme [2], and the key technical tool is the modulus-switching
technique of [2] that transforms a ciphertext c modulo p into a ciphertext c′

modulo p′ simply by scaling by p′/p and rounding appropriately. This allows
to reduce the ciphertext noise by a factor close to p′/p without knowing the
secret-key and without bootstrapping. However the modulus switching technique
cannot directly apply to DGHV since in DGHV the moduli p and p′ are secret.
In this paper we explain how this modulus-switching technique can be adapted
to DGHV, so as to apply the new BGV framework. We show that the resulting
FHE scheme remains semantically secure, albeit under a stronger assumption.
We also describe an implementation, showing that the new BGV framework can
be applied in practice.

Improved Attack against the Approximate-GCD problem. Finally we
consider the security of the Approximate GCD Problem without noise-free
x0 = q0 · p. In our leveled DGHV variant under the BGV framework the size of
the secret p can become much smaller than in the original Gentry framework
(η ' 180 bits for the lowest p in the ladder, instead of η = 2652 bits in [7]). This
implies that the noise-free variant x0 = q0 · p cannot be used, since otherwise
the prime factor p could easily be extracted using the Elliptic Curve Method
for integer factorization [13]. Therefore one must consider the security of the
Approximate GCD Problem without noise-free x0. The recent attack by Chen
and Nguyen [5] against the Approximate GCD Problem with noise-free x0
has complexity Õ(2ρ/2), instead of the Õ(2ρ) naive attack; as noted by the
authors, this immediately yields an Õ(23ρ/2) attack against the Approximate
GCD Problem without noise-free x0, instead of Õ(22ρ) for the naive attack. In
this paper we exhibit an improved attack with complexity Õ(2ρ). We also describe
an implementation showing that this new attack is indeed an improvement in
practice.

2 The DGHV Scheme over the Integers.

We first recall the somewhat homomorphic encryption scheme described by van
Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) in [8]. For a real number x,

we denote by dxe, bxc and dxc the rounding of x up, down, or to the nearest
integer. For integers z, p we denote the reduction of z modulo p by [z]p with
−p/2 < [z]p ≤ p/2, and by 〈z〉p with 0 ≤ 〈z〉p < p. Given the security parameter
λ, the following parameters are used:

• γ is the bit-length of the xi’s,
• η is the bit-length of the secret key p,
• ρ is the bit-length of the noise ri,
• τ is the number of xi’s in the public key,
• ρ′ is a secondary noise parameter used for encryption.

For a specific η-bit odd integer p, we use the following distribution over γ-bit
integers:

Dγ,ρ(p) =
{
Choose q ← Z∩ [0, 2γ/p), r ← Z∩ (−2ρ, 2ρ) : Output x = q ·p+r

}
DGHV.KeyGen(1λ). Generate a random prime integer p of size η bits. For 0 ≤
i ≤ τ sample xi ← Dγ,ρ(p). Relabel the xi’s so that x0 is the largest. Restart
unless x0 is odd and [x0]p is even. Let pk = (x0, x1, . . . xτ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a
random integer r in (−2ρ

′
, 2ρ
′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

(1)

DGHV.Evaluate(pk, C, c1, . . . , ct): given the circuit C with t input bits, and t
ciphertexts ci, apply the addition and multiplication gates of C to the ciphertexts,
performing all the additions and multiplications over the integers, and return
the resulting integer.

DGHV.Decrypt(sk, c). Output m← [c]p mod 2.

This completes the description of the scheme. As shown in [8] this scheme is
somewhat homomorphic, i.e. a limited number of homomorphic operations can be
performed on ciphertexts. More precisely given two ciphertexts c = q · p+ 2r+m
and c′ = q′ · p+ 2r′ +m′ where r and r′ are ρ′-bit integers, the ciphertext c+ c′

is an encryption of m+m′ mod 2 with (ρ′ + 1)-bit noise and the ciphertext c · c′
is an encryption of m · m′ with noise ' 2ρ′. Since the ciphertext noise must
remain smaller than p for correct decryption, the scheme allows roughly η/ρ′

multiplications on ciphertexts. As shown in [8] the scheme is semantically secure
under the Approximate GCD assumption.

Definition 1 (Approximate GCD). The (ρ, η, γ)-Approximate GCD Problem
is: For a random η-bit odd integer p, given polynomially many samples from
Dγ,ρ(p), output p.

3 The New DGHV Public Key Compression Technique

We describe our technique using the variant with noise free x0 = q0 · p, as
suggested in [8] and implemented in [7]. We only describe the basic scheme; we
refer to the full version of this paper [6] for a complete description of the fully
homomorphic scheme.

3.1 Description

KeyGen(1λ). Generate a random prime integer p of size η bits. Pick a random
odd integer q0 ∈ [0, 2γ/p) and let x0 = q0 · p. Initialize a pseudo-random number
generator f with a random seed se. Use f(se) to generate a set of integers
χi ∈ [0, 2γ) for 1 ≤ i ≤ τ . For all 1 ≤ i ≤ τ compute:

δi = 〈χi〉p + ξi · p− ri

where ri ← Z ∩ (−2ρ, 2ρ) and ξi ← Z ∩ [0, 2λ+η/p). For all 1 ≤ i ≤ τ compute:

xi = χi − δi (2)

Let pk = (se, x0, δ1, . . . , δτ) and sk = p.

Encrypt(pk,m ∈ {0, 1}): use f(se) to recover the integers χi and let xi = χi − δi
for all 1 ≤ i ≤ τ . Choose a random integer vector b = (bi)1≤i≤τ ∈ [0, 2α)τ and a

random integer r in (−2ρ
′
, 2ρ
′
). Output the ciphertext:

c = m+ 2r + 2

τ∑
i=1

bi · xi mod x0

Evaluate(pk,C, c1, . . . , ct) and Decrypt(sk, c): same as in the original DGHV
scheme, except that ciphertexts are reduced modulo x0.

This completes the description of our variant. We have the following constraints
on the scheme parameters:

• ρ = ω(log λ) to avoid brute force attack on the noise,

• η ≥ ρ ·Θ(λ log2 λ) in order to support homomorphic operations for evaluating
the “squashed decryption circuit” (see [8]),

• γ = ω(η2 · log λ) in order to thwart lattice-based attacks against the Approx-
imate GCD problem (see [7, 8]),

• α · τ ≥ γ + ω(log λ) in order to apply the left-over hash lemma (see [7, 8]).

• η ≥ ρ+ α+ 2 + log2 τ for correct decryption of a ciphertext,

• ρ′ = α+ ρ+ ω(log λ) for the secondary noise parameter.

To satisfy the above constraints one can take ρ = λ, η = Õ(λ2), γ = Õ(λ5),
α = Õ(λ2), τ = Õ(λ3) and ρ′ = Õ(λ2). The main difference with the original
DGHV scheme is that instead of storing the large xi’s in the public key we only
store the much smaller δi’s. The new public key for the somewhat homomorphic
scheme has size γ + τ · (η + λ) = Õ(λ5) instead of (τ + 1) · γ = Õ(λ8).

Remark 1. We can also compress x0 by letting x0 = χ0 − δ0 and storing only
δ0 = 〈χ0〉p + ξ0 · p in the public-key.

Remark 2. In the description above we add a random multiple of p to 〈χi〉p in
the δi’s. This is done to obtain a proof of semantic security in the random oracle
model (see below). However the scheme seems heuristically secure without adding
the random multiple.

Remark 3. For encryption the integers xi need not be stored in memory as they
can be generated on the fly when computing the subset sum.

3.2 Semantic Security

Theorem 1. The previous encryption scheme is semantically secure under the
Approximate GCD assumption with noise-free x0 = q0 · p, in the random oracle
model.

The proof is almost the same as in [8]. Given a random oracle H : {0, 1}∗ →
Z ∩ [0, 2γ), we assume that the pseudo-random number generation of the χi’s
is defined as χi = H(se ‖i) for all 1 ≤ i ≤ τ and we show that the integers xi’s
generated in (2) have a distribution statistically close to their distribution in the
original DGHV scheme. We refer to the full version of the paper [6] for the proof.

4 Extension of DGHV Encryption to Higher Degrees

Various techniques have recently been proposed in [7] to reduce the public key
size and increase the efficiency of the DGHV scheme, the most important of
which is to use a quadratic form instead of a linear form for masking the message
when computing a ciphertext. More precisely, one computes:

c∗ = m+ 2r + 2
∑

1≤i,j≤β

bij · xi,0 · xj,1 mod x0

which is quadratic in the public key elements xi,b instead of linear as in equation
(1); here the variant with noise-free x0 = q0 · p is used. The main benefit is a
significant decrease in the public key size, from τ = Õ(λ3) elements xi down to
2β = Õ(λ1.5) elements xi,b. Namely the constraint to apply the left-over hash

lemma becomes α · β2 ≥ γ + ω(log λ), so by taking α = Õ(λ2) one can take
β = Õ(λ1.5). Combined with our compression technique the public-key size of
the somewhat homomorphic scheme becomes (2β + 1) · (η + λ) = Õ(λ3.5).

To prove that the scheme remains secure under this modified encryption
procedure, the key point in [7] was to prove that the following family of functions

h : {0, . . . , 2α−1}β2 → Zq0 :

h(b) =
∑

1≤i1,i2≤β

bi1i2q
(1)
i1
q
(2)
i2

mod q0
(
q
(j)
i ∈ Zq0

)

is close enough to being a pairwise independent (i.e. universal) hash function
family (under suitable parameter choices), which in turn makes it possible to
apply a variant of the leftover hash lemma.

In this section we show that it is possible to obtain further efficiency gains
by using cubic forms instead, or more generally forms of higher degree d, if we
can prove an analogue of the previous result for the family Hd of hash functions

h : {0, . . . , 2α−1}βd → Zq of the form:

h(b) =
∑

1≤i1,...,id≤β

bi1,...,idq
(1)
i1
· · · q(d)id

mod q
(
q
(j)
i ∈ Zq

)
Such a result also leads to the construction of extractors with relatively short
seeds, which is an interesting fact in its own right.

We show that this hash function family is indeed close to being pairwise
independent for suitable parameters. As in [7], we can prove this in the simpler
case when q = q0 is prime; the result then follows for all q0 without small prime
factors. The main result is as follows (we refer to [7] for the definition of ε-pairwise
independence). We provide the proof in the full version of this paper [6].

Theorem 2. For an odd prime q, the hash function family Hd is ε-pairwise
independent, with:

ε =
(d− 1)(d− 2)

√
q

+
5d13/3

q
+

(d− 1) · (2β)d

2αβd−1(β−2−2/α))

Using the variant of the leftover hash lemma from [7], this proves the semantic
security of the scheme for any encryption degree d ≥ 2, with the condition
α · βd ≥ γ + ω(log λ). The constraint for correct decryption becomes η ≥ ρ ·
d + α + 2 + d · log2 β, and ρ′ = ρ · d + α + ω(log λ) for the secondary noise
parameter. The public-key size for the somewhat homomorphic scheme becomes
(d · β + 1) · (η + λ). In particular by taking β = 3 and d = O(log λ), we get a
public-key size in Õ(λ2) for the somewhat homomorphic scheme.

5 Adaptation of the BGV Framework to the DGHV
Scheme

5.1 The BGV Framework for Leveled FHE

In this section we first recall the new framework from Brakerski, Gentry and
Vaikuntanathan (BGV) [4] for leveled fully homomorphic encryption. Under the
BGV framework the noise ceiling increases only linearly with the multiplicative
depth, instead of increasing exponentially. This implies that bootstrapping is no
longer necessary to achieve fully homomorphic encryption. The new framework
is based on the Brakerski and Vaikuntanathan RLWE scheme [2, 3]. The key
technical tool is the modulus-switching technique from [2] that transforms a
ciphertext c modulo p into a ciphertext c′ modulo p′ simply by scaling by p′/p
and rounding appropriately; the noise is also reduced by a factor p′/p.

In the original Gentry framework [9], the multiplication of two mod-p cipher-
texts with noise size ρ gives a ciphertext with noise size ' 2ρ; after a second
multiplication level the noise becomes ' 4ρ, then ' 8ρ and so on; the noise size
grows exponentially with the number of multiplication levels. The modulus p is
a ceiling for correct decryption; therefore if the bit-size of p is k · ρ, the noise
ceiling is reached after only log2 k levels of multiplication. Fully homomorphic
encryption is achieved via bootstrapping, i.e. homomorphically evaluating the
decryption polynomial to obtain a refreshed ciphertext.

The breakthrough idea in the BGV framework [4] is to apply the modulus-
switching technique after every multiplication level, using a ladder of gradually
decreasing moduli pi. Start with two mod-p1 ciphertexts with noise ρ; as previously
after multiplication one gets a mod-p1 ciphertext with noise 2ρ. Now switch to a
new modulus p2 such that p2/p1 ' 2−ρ; after the switching one gets a mod-p2
ciphertext with noise back to 2ρ− ρ = ρ again; one can continue by multiplying
two mod-p2 ciphertexts, obtain a 2ρ-noise mod-p2 ciphertext and switch back to a
ρ-noise mod-p3 ciphertext, and so on. With a ladder of k moduli pi of decreasing
size (k + 1) · ρ, . . . , 3ρ, 2ρ one can therefore perform k levels of multiplication
instead of just log2 k. In other words the (largest) modulus size (k + 1) · ρ grows
only linearly with the multiplicative depth; this is an exponential improvement.

As explained in [4], bootstrapping is no longer strictly necessary to achieve
fully homomorphic encryption: namely one can always assume a polynomial upper-
bound on the number L of multiplicative levels of the circuit to be evaluated
homomorphically. However, bootstrapping is still an interesting operation as a
bootstrapped scheme can perform homomorphic evaluations indefinitely without
needing to specify at setup time a bound on the multiplicative depth. As shown
in [4] bootstrapping becomes also more efficient asymptotically in the BGV
framework.

5.2 Modulus-Switching for DGHV

The modulus-switching technique recalled in the previous section is a very
lightweight procedure to reduce the ciphertext noise by a factor roughly p/p′

without knowing the secret-key and without bootstrapping. However we cannot
apply this technique directly to DGHV since in DGHV the moduli p and p′ must
remain secret.

We now describe a technique for switching moduli in DGHV. We proceed
in two steps. Given as input a DGHV ciphertext c = q · p+ r, we first show in
Lemma 1 how to obtain a “virtual” ciphertext of the form c′ = 2k · q′ + r′ with
[q′] = [q]2, given the bits si in the following subset-sum sharing of 2k/p:

2k

p
=

Θ∑
i=1

si · yi + ε mod 2k+1

where the yi’s have κ bits of precision after the binary point, with |ε| ≤ 2−κ.
This is done by first “expanding” the initial ciphertext c using the yi’s, as in

the “squashed decryption” procedure in [9], and then “collapsing” the expanded
ciphertext into c′, using the secret-key vector s = (si). However we cannot reveal
s in clear, so instead we provide a DGHV encryption under p′ of the secret-key
bits si, as in the bootstrapped procedure. Then as showed in Lemma 2 the
expanded ciphertext can be collapsed into a new ciphertext c′′ under p′ instead
of p, for the same underlying plaintext; moreover as in the RLWE scheme the
noise is reduced by a factor ' p′/p.

Lemma 1. Let p be an odd integer. Let c = q · p+ r be a ciphertext. Let k be an
integer. Let κ ∈ Z be such that |c| < 2κ. Let y be a vector of Θ numbers with κ
bits of precision after the binary point, and let s be a vector of Θ bits such that
2k/p = 〈s,y〉+ ε mod 2k+1, where |ε| ≤ 2−κ. Let c = (bc · yie mod 2k+1)1≤i≤Θ.
Let c′ = 〈s, c〉. Then c′ = q′ · 2k + r′ with [q′]2 = [q]2 and r′ = br · 2k/pc + δ
where δ ∈ Z with |δ| ≤ Θ/2 + 2.

Proof. We have:

c′ =

Θ∑
i=1

si bc · yie+∆ · 2k+1 =

Θ∑
i=1

si · c · yi + δ1 +∆ · 2k+1

for some ∆ ∈ Z and |δ1| ≤ Θ/2. Using 〈s,y〉 = 2k/p− ε−µ ·2k+1 for some µ ∈ Z
this gives:

c′ − δ1 −∆2k+1 = c ·
(

2k

p
− ε− µ · 2k+1

)
= q · 2k + r · 2k

p
− c · ε− c · µ · 2k+1

Therefore we can write:
c′ = q′ · 2k + r′

where [q′]2 = [q]2 and r′ = br · 2k/pc+ δ for some δ ∈ Z with |δ| ≤ Θ/2 + 2. ut

As in [4], given a vector x ∈ [0, 2k+1[Θ we write x =
∑k
i=0 2j ·uj where all the

elements in vectors uj are bits, and we define BitDecomp(x, k) := (u0, . . . ,uk).
Similarly given a vector z ∈ RΘ we define Powersof2(z, k) := (z, 2 · z, . . . , 2k · z).
We have for any vectors x and z:〈

BitDecomp(x, k),Powersof2(z, k)
〉

= 〈x, z〉

The following lemma shows that given a ciphertext c encrypted under p and
with noise r we can compute a new ciphertext c′′ under p′ with noise r′′ ' r ·p′/p,
by using an encryption σ under p′ of the secret-key s corresponding to p.

Lemma 2. Let p and p′ be two odd integers. Let k be an integer such that
p′ < 2k. Let c = q · p + r be a ciphertext. Let κ ∈ Z be such that |c| < 2κ.
Let y be a vector of Θ numbers with κ bits of precision after the binary point,
and let s be a vector of Θ bits such that 2k/p = 〈s,y〉 + ε mod 2k+1, where
|ε| ≤ 2−κ. Let σ = p′ ·q+r+bs′ ·p′/2k+1e be an encryption of the secret-key s′ =
Powersof2(s, k), where q ← (Z∩ [0, 2γ/p′))(k+1)·Θ and r ← (Z∩(−2ρ, 2ρ))(k+1)·Θ.
Let c = (bc · yie mod 2k+1)1≤i≤Θ and let c′ = BitDecomp(c, k) be the expanded
ciphertext. Let c′′ = 2〈σ, c′〉+[c]2. Then c′′ = q′′ ·p′+r′′ where r′′ = br ·p′/pc+δ′
for some δ′ ∈ Z with |δ′| ≤ 2ρ+2 ·Θ · (k + 1), and [r]2 = [r′′]2.

Proof. We have, from σ = p′ · q + r + bs′ · p′/2k+1e:

c′′ = 2〈σ, c′〉+ [c]2 = 2p′ · 〈q, c′〉+ 2〈r, c′〉+ 2

〈⌊
s′ · p′

2k+1

⌉
, c′
〉

+ [c]2 (3)

Since the components of c′ are bits, we have using 2bx/2e = x+ ν with |ν| ≤ 1:

2

〈⌊
p′

2k+1
· s′
⌉
, c′
〉

=

〈
p′

2k
· s′, c′

〉
+ ν2 =

p′

2k
· 〈s′, c′〉+ ν2

where |ν2| ≤ Θ · (k + 1). Using 〈s′, c′〉 = 〈s, c〉 and since from Lemma 1 we have
〈s, c〉 = q′ · 2k + r′ with [q′]2 = [q]2 and r′ = br · 2k/pc + δ where δ ∈ Z with
|δ| ≤ Θ/2 + 2, we get:

2

〈⌊
p′

2k+1
· s′
⌉
, c′
〉

=
p′

2k
·(q′ ·2k+r′)+ν2 = q′ ·p′+ p′

2k
·r′+ν2 = q′ ·p′+r · p

′

p
+ν3

where |ν3| ≤ |ν2|+Θ/2 + 3 ≤ 2Θ · (k+ 1). Therefore we obtain from equation (3):

c′′ = 2p′ · 〈q, c′〉+ 2〈r, c′〉+ q′ · p′ + r · p
′

p
+ ν3 + [c]2 = q′′ · p′ + r′′

where q′′ := q′ + 2〈q, c′〉 and r′′ = br · p′/pc+ δ′ for some δ′ ∈ Z with:

|δ′| ≤ |2〈r, c′〉|+1+ |ν3|+1 ≤ 2ρ+1 ·Θ ·(k+1)+2Θ ·(k+1)+2 ≤ 2ρ+2 ·Θ ·(k+1)

Eventually from [c′′]2 = [c]2, [c]2 = [q]2 ⊕ [r]2, [c′′]2 = [q′′]2 ⊕ [r′′]2 and [q′′]2 =
[q′]2 = [q]2, we obtain [r]2 = [r′′]2 as required. ut

5.3 The Modulus-Switching Algorithm for DGHV

From Lemma 2 we can now specify the modulus-switching algorithm for DGHV.

SwitchKeyGen(pk, sk, pk′, sk′):

1. Take as input two DGHV secret-keys p and p′ of size η and η′. Let κ = 2γ+η
where γ is the size of the public key integers xi under p.

2. Generate a vector y of Θ random numbers modulo 2η
′+1 with κ bits of

precision after the binary point, and a random vector s of Θ bits such
that 2η

′
/p = 〈s,y〉+ ε mod 2η

′+1 where |ε| ≤ 2−κ. Generate the expanded
secret-key s′ = Powersof2(s, η′)

3. Compute a vector encryption σ of s′ under sk′, defined as follows:

σ = p′ · q + r +

⌊
s′ · p′

2η′+1

⌉
(4)

where q ← (Z ∩ [0, q′0))(η
′+1)·Θ and r ← (Z ∩ (−2ρ

′
, 2ρ
′
))(η

′+1)·Θ, where q′0 is
from x′0 = q′0 · p′ + r′ in pk′.

4. Output τpk→pk′ = (y,σ).

SwitchKey(τpk→pk′ , c):

1. Let y,σ ← τpk→pk′

2. Compute the expanded ciphertext c = (bc · yie mod 2η
′+1)1≤i≤Θ and let

c′ = BitDecomp(c, η′).
3. Output c′′ = 2〈σ, c′〉+ [c]2.

5.4 The DGHV Scheme Without Bootstrapping

We are now ready to describe our DGHV variant in the BGV framework, that
is without bootstrapping. As in [4] we construct a leveled fully homomorphic
scheme, i.e. an encryption scheme whose parameters depend polynomially on the
depth of the circuits that the scheme can evaluate.

FHE.KeyGen(1λ, 1L). Take as input the security parameter λ and the number of
levels L. Let µ be a parameter specified later. Generate a ladder of L decreasing
moduli of size ηi = (i+ 1)µ from ηL = (L+ 1)µ down to η1 = 2µ. For each ηi
run DGHV.KeyGen(1λ) from Section 2 to generate a random odd integer pi of
size ηi; we take the same parameter γ for all i. Let pki be the corresponding
public key and ski = pi be the corresponding secret-key. For j = L down to
2 run τpkj→pkj−1 ← SwitchKeyGen(pkj , skj , pkj−1, skj−1). The full public key is
pk = (pkL, τpkL→pkL−1

, . . . , τpk2→pk1) and the secret-key is sk = (p1, . . . , pL).

FHE.Encrypt(pk,m ∈ {0, 1}). Run DGHV.Encrypt(pkL,m).

FHE.Decrypt(sk, c). Suppose that the ciphertext is under modulus pj . Output
m← [c]pj mod 2.

FHE.Add(pk, c1, c2). Suppose that the two ciphertexts c1 and c2 are encrypted
under the same pkj ; if they are not, use FHE.Refresh below to make it so. First
compute c3 ← c1 + c2. Then output c4 ← FHE.Refresh(τpkj→pkj−1 , c3), unless
both ciphertexts are encrypted under pk1; in this case, simply output c3.

FHE.Mult(pk, c1, c2). Suppose that the two ciphertexts c1 and c2 are encrypted
under the same pkj ; if they are not, use FHE.Refresh below to make it so. First
compute c3 ← c1 · c2. Then output c4 ← FHE.Refresh(τpkj→pkj−1

, c3), unless both
ciphertexts are encrypted under pk1; in this case, simply output c3.

FHE.Refresh(τpkj+1→pkj , c). Output c′ ← SwitchKey(τpkj+1→pkj , c).

5.5 Correctness and Security

We show in the full version of this paper [6] how to fix the parameter µ so that
the ciphertext noise for every modulus in the ladder remains roughly the same,
and we prove that FHE is a correct leveled FHE scheme.

Theorem 3. For some µ = O(λ+logL), FHE is a correct L-leveled FHE scheme;
specifically it correctly evaluates circuits of depth L with Add and Mult gates over
GF (2).

We show in the full version of this paper [6] that the resulting FHE is
semantically secure under the following new assumption.

Definition 2 (Decisional Approximate GCD). The (ρ, η, γ)-Decisional Ap-
proximate GCD Problem is: For a random η-bit odd integer p, given polynomially
many samples from Dγ,ρ(p), and given an integer z = x+ b · b2j · p/2η+1e for a
given random integer j ∈ [0, η], where x← Dγ,ρ(p) and b← {0, 1}, find b.

The Decisional Approximate GCD assumption is defined in the usual way.
It is clearly stronger than the standard Approximate GCD assumption. We
were not able to base the security of the leveled DGHV scheme on the standard
Approximate GCD assumption; this is due to equation (4) which requires a
non-standard encryption of the secret-key bits.

Theorem 4. FHE is semantically secure under the Decisional Approximate GCD
assumption and under the hardness of subset sum assumption.

6 Improved Attack against the Approximate GCD
Algorithm

Recently, Chen and Nguyen [5] described an improved exponential algorithm for
solving the approximate common divisor problem: they obtain a complexity of
Õ(2ρ/2) for the partial version (with an exact multiple x0 = q0 · p) and Õ(23ρ/2)
for the general version (with near-multiples only).4

In this section, we show that the latter complexity can be heuristically
improved to Õ(2ρ) provided that sufficiently many near-multiples are available,
which is the case in the DGHV scheme. Our algorithm has memory complexity
Õ(2ρ), instead of only Õ(2ρ/2) for the Chen and Nguyen attack.

Indeed, assume that we have s large near-multiples x1, . . . , xs of a given prime
p0, of the hidden form xj = p0qj + rj , where qj ∈ [0, 2γ/p0) (for γ polynomial in
ρ) and rj ∈ [0, 2ρ) are chosen uniformly and independently at random. We claim

that p0 can then be recovered with overwhelming probability in time Õ(2
s+1
s−1ρ)

(and with significant probability in time Õ(2
s
s−1ρ)).

The algorithm is as follows. For j = 1, . . . , s, let:

yj =

2ρ−1∏
i=0

(xj − i)

Clearly, p0 divides the GCD g = gcd(y1, . . . , ys). Each yi can be computed in
time quasilinear in 2ρ using a product tree, and the GCD can be evaluated as
gcd(· · · gcd(gcd(y1, y2), y3), . . . , ys) using s− 1 quasilinear GCD computations on
numbers of size O(2ρ · γ) = Õ(2ρ). Hence, the whole computation of g takes time
Õ(s · 2ρ).
4 Namely to solve the general version using the partial version algorithm it suffices to

do exhaustive search on the ρ bits of noise in x0 = q0 · p+ r0.

Now, we argue that with high probability on the choice of the (qj , rj), all the
prime factors of g except p0 are smaller than a bound B that is not much larger
than 2ρ. Then, p0 can be recovered as g/g′, where g′ is the B-smooth part of
g, which can in turn be computed in time quasilinear in max(B, |g|), e.g. using
Bernstein’s algorithm [1]. Overall, the full time complexity of the attack is thus
Õ(max(B, s · 2ρ)), or simply Õ(B) assuming that s = O(ρ), and without loss
of generality that B > 2ρ. All we need to find is how to choose B to obtain a
sufficient success probability.

The probability that all the prime factors of g except p0 are smaller than B
is the probability that, for every prime p ≥ B other than p0, not all the xj ’s are
congruent to one of 0, 1, . . . , 2ρ − 1 mod p. This happens with probability very
close to 1− (2ρ/p)s. Hence, the probability that all the prime factors of g except
p0 are smaller than B is essentially given by the following Euler product:

Ps,ρ(B) =
∏
p≥B
p6=p0

(
1− 2sρ

ps

)

(which clearly converges to some positive value smaller than 1 since s ≥ 2 and
B > 2ρ). We prove in the full version of this paper [6] the following estimate on
this Euler product.

Lemma 3. For any B > 2ρ+1/s, we have:

1− Ps,ρ(B) <
2s

s− 1
· 2sρ

Bs−1 logB

In particular, if we pick B = 2
s
s−1ρ, we obtain Ps,ρ(B) > 1− 2/(ρ log 2): thus,

the problem can be solved in time Õ(2
s
s−1ρ) with significant success probability.

And if we pick B = 2
s+1
s−1ρ, we get Ps,ρ(B) > 1− 2−ρ: hence, the problem can be

solved in time Õ(2
s+1
s−1ρ) with an overwhelming success probability.

We see in both cases that for any given ε > 0, the complexity becomes
O(2(1+ε)ρ) if s is large enough. Better yet, if s = ω(1) (for example Θ(ρ))
near-multiples are available, the problem can be solved in time Õ(2ρ) with
overwhelming probability.

As in [5] we can perform a time-memory trade-off. First split the product y1
into d sub-products zk’s, and guess which of these sub-products z = zk contains
p0. Let g = gcd(z, y2, . . . , ys). The first GCD computation gcd(z, y2) can be
performed in time Õ(2ρ) and memory Õ(2ρ/d) by first computing y2 mod z using
a product tree; the remaining gcd’s can be computed with the same complexity;
the same holds for recovering the B-smooth part of g. Hence p0 can be recovered
in time Õ(d · 2ρ) and memory Õ(2ρ/d).

6.1 Experimental Results

We have implemented the previous attack; see the full version of this paper [6]
for the source code. Table 1 shows that our attack performs well in practice; it is
roughly 200 times faster than the corresponding attack of Chen and Nguyen for
the smallest set of parameters considered in [5].

Instance ρ γ log2 mem. running time running time [5]

Micro 12 104 26.3 40 s

Toy (Section 8) 13 61 · 103 29.9 13 min 22 s

Toy’ ([5] without x0) 17 1.6 · 105 35.3 17 h 50 min 3495 hours

Table 1. Running time of the attack, on a single core of an Amazon EC2 Cluster
Compute Eight Extra Large Instance instance (featuring an Intel Xeon E5 processor at
2.5 GHz and 60.5 GB of memory), with parameter s = ρ. For the third instance, the
running time of the Chen-Nguyen attack [5] was estimated by multiplying the running
time from [5] (1.6 min) by 2ρ.

7 Implementation of DGHV with Compressed Public
Key

In this section we describe an implementation of the DGHV scheme with the
compression technique of Section 3; we use the variant with x0 = q0 · p. We refer
to the full version of this paper [6] for a full description of the resulting scheme,
and we provide the source code of our implementation in [17].

Asymptotic Key Size. To prevent lattice attacks against the sparse subset-
sum problem, one must have Θ2 = γ · ω(log λ); see [7, 16] for more details. One
can then take ρ = λ, η = Õ(λ2), γ = Õ(λ5), α = Õ(λ2), τ = Õ(λ3) and
Θ = Õ(λ3). Using our compression technique the public key size is roughly
2γ + (τ +Θ) · (η + λ) = Õ(λ5) bits.

Concrete Key Size and Execution Speed We have updated the parameters
from [7] to take into account the improved approximate-GCD attack from [5]; see
Table 2. The attack from [5] is memory bounded; however we took a conservative
approach and considered a memory unbounded adversary. As in [7] we take
n = 4 and θ = 15 for all security levels. We can see in Table 2 that compression
reduces the public key size considerably. Table 3 shows no significant performance
degradation with respect to [7].

Instance λ ρ η γ × 10−6 α τ Θ pk size

Toy 42 27 1026 0.15 936 158 144 77 KB

Small 52 41 1558 0.83 1476 572 533 437 KB

Medium 62 56 2128 4.20 2016 2110 1972 2207 KB

Large 72 71 2698 19.35 2556 7659 7897 10.3 MB

Table 2. The concrete parameters of various test instances and their respective public
key sizes, for DGHV with compressed public-key.

Instance KeyGen Encrypt Decrypt Expand Recrypt

Toy 0.06 s 0.05 s 0.00 s 0.01 s 0.41 s

Small 1.3 s 1.0 s 0.00 s 0.15 s 4.5 s

Medium 28 s 21 s 0.01 s 2.7 s 51 s

Large 10 min 7 min 15 s 0.05 s 51 s 11 min 34 s

Table 3. Timings of our Sage 4.7.2 [15] code (single core of a desktop computer with
an Intel Core2 Duo E8400 at 3 GHz), for DGHV with compressed public-key.

8 Implementation of Leveled DGHV

In this section we describe an implementation of the leveled DGHV scheme
described in Section 5 in the BGV framework. We implement the modulus-
switching procedure as described in Section 5.3, with an optimization of the
ciphertext expansion procedure (see below). We also implement the bootstrapping
operation; although not strictly necessary, this enables to get a FHE that can
perform homomorphic evaluations indefinitely without needing to specify at setup
time a bound on the multiplicative level.

8.1 Faster Ciphertext Expansion

We consider the modulus-switching procedure of Section 5.3. The initial modulus
p has size η and the new modulus p′ has size η′ < η. The first modulus p is
shared among the yi elements as

2η
′

p
=

Θ∑
i=1

si · yi + ε mod 2η
′+1 (5)

where the si’s are bits, the yi’s have κ bits of precision after the binary point,
and |ε| ≤ 2−κ. In practice one can generate the yi’s pseudo-randomly (except y1),
as suggested in [7]. However the ciphertext expansion from Step 2 of SwitchKey
algorithm (Section 5.3) is a time-consuming procedure.

Therefore instead of using pseudo-random yi’s we use the following (admittedly
aggressive) optimization. Let δ be a parameter specified later. We generate a
random y with κ+ δ ·Θ · η bits of precision after the binary point, and we define
the yi’s for 2 ≤ i ≤ Θ as:

yi =
[
y · 2i·δ·η

]
2η′+1

keeping only κ bits of precision after the binary point for each yi as previously. We
fix y1 so that equality (5) holds, assuming s1 = 1. Then the ciphertext expansion
from Step 2 of the SwitchKey algorithm (Section 5.3) can be computed as follows,
for all 2 ≤ i ≤ Θ:

zi = bc · yie mod 2η
′+1 = bc · y · 2i·δ·ηe mod 2η

′+1

Therefore computing all the zi’s (except z1) is now essentially a single multiplica-
tion c · y. In the full version of this paper [6] we describe a lattice attack against
this optimization; we show that the attack is thwarted by selecting δ such that
δ ·Θ · η ≥ 3γ.

Finally we use the following straightforward optimization: instead of using
BitDecomp and Powersof2 with bits, we use words of size ω bits instead. This
decreases the running time of SwitchKey by a factor of about ω, at the cost
of increasing the resulting noise by roughly ω bits. We took ω = 32 in our
implementation.

8.2 Bootstrapping: The Decryption Circuit.

Recall that the decryption function in the DGHV scheme is:

m←

[
c−

⌊
Θ∑
i=1

si · zi

⌉]
2

(6)

where zi = [c · yi]2 for 1 ≤ i ≤ Θ is the expanded ciphertext, keeping only
n = dlog2(θ+1)e bits of precision after the binary point for each zi. The si’s form a

sparse Θ-dimensional vector of Hamming weight θ, such that 1/p =
∑Θ
i=1 si ·yi+ε

where the yi’s have κ bits of precision after the binary point, and |ε| ≤ 2−κ.
Note that for bootstrapping the decryption circuit is only used for the smallest
modulus p in the ladder. The following lemma shows that the message m can be
computed using a circuit of multiplicative depth exactly n.

Lemma 4. Let a = [a0, . . . , an] and b = [b0, . . . , bn] be two integers of size n+ 1
bits, where every bit ai and bi has multiplicative depth at most i. Then every bit
ci of the sum c = (a+ b) mod 2n+1 = [c0, . . . , cn] has multiplicative depth at most
i.

Proof. Let δi be the i-th carry bit, with δ0 = 0. We have ci = ai ⊕ bi ⊕ δi
for 0 ≤ i ≤ n, where δi = ai−1 · bi−1 + ai−1 · δi−1 + bi−1 · δi−1 for 1 ≤ i ≤ n.
Therefore by recursion δi has multiplicative depth at most i; this implies that ci
has multiplicative depth at most i. ut

Therefore using a simple loop the sum of the Θ numbers si · zi in equation (6)
can be computed with a circuit of multiplicative depth n. Since a subsequent
homomorphic operation (either addition or multiplication) must be possible
between refreshed ciphertexts, the full bootstrapping procedure requires a leveled
FHE scheme with multiplicative depth L = n+ 1. Note that for bootstrapping
an encryption of the secret-key bits si (corresponding to the last modulus p1 in
the ladder) must be provided under pL, the first modulus in the ladder, so that
the homomorphic evaluation of m in equation (6) can start under the public key
pkL.

8.3 Implementation Results

In this section we describe an implementation of the leveled DGHV scheme,
including the bootstrapping operation. As mentioned previously we cannot use
the variant with noise-free x0 = q0 · p since otherwise p could be recovered using
the ECM; namely the smallest modulus in the ladder has size only 2µ = 164 bits
for the “Large” instance.

We summarize in Tables 4 and 5 the performance of our implementation of
the leveled DGHV scheme. We denote by η the size of the largest modulus in the
ladder. The running time of the Recrypt operation is disappointing compared to
the non-leveled implementation from Section 7; however we think that there is
room for improvement.

Instance λ ρ η µ γ × 10−6 Θ pk size

Toy 42 14 336 56 0.061 195 354 KB

Small 52 20 390 65 0.27 735 1690 KB

Medium 62 26 438 73 1.02 2925 7.9 MB

Large 72 34 492 82 2.20 5700 18 MB

Table 4. The concrete parameters of various test instances and their respective public-
key sizes for leveled DGHV.

Instance KeyGen Encrypt Decrypt Mult & Scale Recrypt

Toy 0.36 s 0.01 s 0.00 s 0.04 s 8.8 s

Small 5.4 s 0.07 s 0.00 s 0.59 s 101 s

Medium 1 min 12 s 0.85 s 0.00 s 9.1 s 32 min 38 s

Large 6 min 18 s 3.4 s 0.00 s 41 s 2 h 27 min

Table 5. Timings of our Sage 4.7.2 [15] code (single core of a desktop computer with
an Intel Core2 Duo E8400 at 3 GHz).

Acknowledgments

We would like to thank Tancrède Lepoint, Phong Nguyen and the EUROCRYPT
referees for their helpful comments.

References

1. D.J. Bernstein, How to Find Smooth Parts of Integers, 2004. Available at http:

//cr.yp.to/papers.html#smoothparts.

2. Z. Brakerski and V. Vaikuntanathan, Efficient Fully Homomorphic Encryption from
(Standard) LWE. Proceedings of FOCS 2011. Full version available at IACR eprint.

3. Z. Brakerski and V. Vaikuntanathan, Fully Homomorphic Encryption for Ring-LWE
and Security for Key Dependent Messages. In P. Rogaway (Ed.), CRYPTO 2011,
LNCS, vol. 6841, Springer, 2011, pp. 505–524.

4. Z. Brakerski, C. Gentry and V. Vaikuntanathan, Fully Homomorphic Encryption
without Bootstrapping. Cryptology ePrint Archive, Report 2011/277.

5. Y. Chen and P.Q. Nguyen, Faster Algorithms for Approximate Common Divisors:
Breaking Fully-Homomorphic-Encryption Challenges over the Integers. Cryptology
ePrint Archive, Report 2011/436.

6. J.S. Coron, D. Naccache and M. Tibouchi, Public-key Compression and Modulus
Switching for Fully Homomorphic Encryption over the Integers. Full version of this
paper. Cryptology ePrint Archive, Report 2011/440.

7. J.S. Coron, A. Mandal, D. Naccache and M. Tibouchi, Fully Homomorphic Encryp-
tion over the Integers with Shorter Public Keys. In P. Rogaway (Ed.), CRYPTO
2011, LNCS, vol. 6841, Springer, 2011, pp. 487–504. Full version available at IACR
eprint.

8. M. van Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan, Fully homomorphic
encryption over the integers. In H. Gilbert (Ed.), EUROCRYPT 2010, LNCS, vol.
6110, Springer, 2010, pp. 24–43.

9. C. Gentry, A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Univer-
sity, 2009. Available at http://crypto.stanford.edu/craig.

10. C. Gentry and S. Halevi, Implementing Gentry’s fully homomorphic encryption
scheme. In K. Paterson (Ed.), EUROCRYPT 2011, LNCS, vol. 6632, Springer,
2011, pp. 129–148.

11. K. Lauter, M. Naehrig and V. Vaikuntanathan, Can Homomorphic Encryption be
Practical?, Cryptology ePrint Archive, Report 2011/405.

12. A. K. Lenstra, Generating RSA Moduli with a Predetermined Portion. In K. Ohta
and D. Pei (Eds.), ASIACRYPT 1998, LNCS, vol. 1514, Springer, 1998, pp. 1–10.

13. H.W. Lenstra, Factoring integers with elliptic curves. Annals of Mathematics, vol.
126(3): 1987, pp. 649–673.

14. N.P. Smart and F. Vercauteren, Fully homomorphic encryption with relatively
small key and ciphertext sizes. In P.Q. Nguyen and D. Pointcheval (Eds.), PKC
2010, LNCS, vol. 6056, Springer, 2010, pp. 420–443.

15. W.A. Stein et al., Sage Mathematics Software (Version 4.7.2), The Sage Development
Team, 2011, http://www.sagemath.org.

16. D. Stehlé and R. Steinfeld, Faster fully homomorphic encryption. In M. Abe (Ed.),
ASIACRYPT 2010, LNCS, vol. 6477, Springer, 2010, pp. 377–394.

17. https://github.com/coron/fhe

