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Abstract. By examining the similarity of side-channel leakages, col-
lision attacks evade the indispensable hypothetical leakage models of
multi-query based side-channel distinguishers like correlation power anal-
ysis and mutual information analysis attacks. Most of the side-channel
collision attacks compare two selective observations, what makes them
similar to simple power analysis attacks. A multi-query collision attack
detecting several collisions at the same time by means of comparing the
leakage averages was presented at CHES 2010. To be successful this at-
tack requires the means of the side-channel leakages to be related to the
processed intermediate values. It therefore fails in case the mean values
and processed data are independent, even though the leakages and the
processed values follow a clear relationship. The contribution of this arti-
cle is to extend the scope of this attack by employing additional statistics
to detect the colliding situations. Instead of restricting the analyses to
evaluation of means, we propose to employ higher-order statistical mo-
ments and probability density functions as the �gure of merit to detect
collisions. Thus, our new techniques remove the shortcomings of the ex-
isting correlation collision attacks using �rst-order moments. In addition
to the theoretical discussion of our approach, practical evidence of its
suitability for side-channel evaluation is provided. We provide four case
studies, including three FPGA-based masked hardware implementations
and a software implementation using boolean masking on a microcon-
troller, to support our theoretical groundwork.

1 Introduction

Integration of embedded computers into our daily life, e.g., in automotive appli-
cations and smartcard applications for �nancial purposes, led to a widespread
deployment of security-sensitive devices. On the downside also adversaries ben-
e�t from the resulting easy physical accessibility, as it provides control over the
devices and thus simpli�es analyses. Consequently, today most sensitive embed-
ded systems need to be considered as operating in a hostile environment. For this
reason physical attacks, most notably side-channel analyses, are considered ma-
jor threats. For instance, power analysis and the closely related electro-magnetic
(EM) analysis can easily overcome the security features of unprotected designs
by monitoring the power consumption of the executing device. In order to distin-
guish the correct key hypothesis amongst the others di�erential power analysis



(DPA) [13] and its successor form, the correlation power analysis (CPA) [7], use
statistical tools: the di�erence of means and the Pearson correlation coe�cient,
respectively. The distinguisher is applied to side-channel observations classi�ed
into subsets de�ned by a boolean partitioning function in the case of a DPA or
by means of a hypothetical power model in case of a CPA. The later introduced
mutual information analysis (MIA) [11] provides a generic distinguisher that
lifts the need of sophisticated power models at the cost of an increased number
of required side-channel observations. Generally speaking, MIA is able to recover
secret information when the CPA fails due to the lack of a suitable power model.
However, the e�ciency of MIA also relies on the availability of a good hypothet-
ical model that re�ects the dependencies of the actual data-dependent leakage
provided by the side-channel observations. The loss of e�ciency becomes most
visible and even critical when the underlying function of the target device is not
a many-to-one mapping (see the detailed discussion provided in [26]).

In order to develop an attack method that does not require a device de-
pendent model, a new type of side-channel attacks has been introduced: the
side-channel based collision attacks [2, 3, 5, 24, 25]. These methods adopt col-
lision attacks to side-channel analyses and allow e�ciently extracting secrets
from side-channel measurements using only a small number of observations, es-
pecially when the design architecture of the target implementation is known to
the adversary (see e.g., [4] where collision attacks are combined with DPA).
Collision attacks, however, get infeasible when facing very noisy observations
or in presence of both, time-domain and data-domain randomizing countermea-
sures. Recent works propose a couple of techniques, e.g., in [3] to deal with
false-positive collision detections and [10] which reports a successful attack on a
mask-protected software implementation which exploits reused masks. Another
recent attack method [16] named correlation collision attack exploits conditions
that lead to a multitude of collisions whenever a key-dependent relation between
the processed input values is ful�lled. More precisely, it compares the sets of leak-
ages (averaged with respect to a �xed relevant input) of one e.g., S-box instance
when it processes two distinct input sets, each of which associated with a di�er-
ent part of the secret key. The relation between the inputs of the two sets, that
causes all averages to collide, exposes information on the secret key. During the
last years the independence of side-channel collision attacks from hypothetical
models and the e�ects of process variations which harden side-channel attacks
in nanoscale devices [23] increasingly attracts the attention of the community
to the new attack methods leading to new applications and variations as in [17]
and [10].

A correlation collision attack [16] applies a statistical tool, i.e., the Pear-
son correlation coe�cient, on the means of side-channel observations that were
classi�ed with respect to known input data. This method is successful when the
means of the classi�ed side-channel observations are di�erent when they are esti-
mated using a large (but feasible) amount of observations. If the mean values do
not show the required dependency to processed data, the attack will fail, even in
case there is a clear relation between the processed values and the observed side-



channel leakages. To give an example, we refer to threshold implementations [19,
20], which claim that the averages of the side-channel leakages are independent
of the processed values. In this case a MIA might still be able to exploit the
leakage to recover a secret key [21]. Similarly a correlation collision attack is not
able to recover the desired secret in this case (as also stated in [18]), as it relies
on mean values. Indeed, this was one of the motivations for this work to ap-
ply other statistics in side-channel collision attacks in order to enable detection
of colliding situations also in cases where the mean values do not provide any
exploitable information.

In this article we discuss how to extend the scope of correlation collision
attacks to exploit dependencies in di�erent central moments from probability
theory and statistics. Furthermore, we elaborate on preprocessing schemes which
can be performed to improve correlation collision attacks. We show that in cer-
tain situations applying a preprocessing step prior to a correlation collision attack
on mean values is equivalent to the same attack targeting a high-order statisti-
cal moment. In order to generalize the scheme we moreover propose to compare
probability density functions (pdf) instead of any speci�c moments. Although
accurately estimating the pdfs is an expensive task that requires a high num-
ber of observations, this generalized approach does not require any assumptions
about the type and shape of the leakage distributions and may thus be worth
the additional e�orts.

In order to practically investigate our proposed schemes on di�erent im-
plementations we have considered both, an FPGA-based platform as well as a
microcontroller. Three di�erent masked hardware implementations were mapped
to our target FPGA device. These include i) an AES encryption engine using
the masked S-box presented in [8], ii) an implementation of PRESENT [6] us-
ing the threshold implementation countermeasure as presented in [22], and iii)
a threshold implementation of the AES as reported in [18]. Since the masked
values and the masks are processed simultaneously in all the aforementioned im-
plementations, a univariate attack method is an applicable choice. We show how
to use di�erent statistical moments in a collision attack to recover the desired
secret and we discuss their e�ciencies. As a fourth case study a software imple-
mentation of �rst-order boolean masking on a microcontroller is analyzed. Here,
since the masks and the masked values are processed sequentially, a multivariate
attack needs to be applied. We use this case study to illustrate possible solu-
tions including multivariate collision attacks and univariate ones which employ
a combining function.

2 Preliminaries

In the following we introduce the notation used in this paper and explain the
adopted side-channel model. Afterwards, Section 2.2 provides a short review of
linear collision attacks followed by a formal speci�cation of correlation collision
attacks.
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Fig. 1. Side-channel model

2.1 Notations and Side-channel Model

We consider a cryptographic device that performs the cryptographic operation
E on the given input x. E depends on the secret key k and outputs the value
y = Ek(x) (see Fig. 1). The algorithmic computations depending on x and k cause
internal state transitions (e.g., bit �ips). The internal state transitions a�ect the
side-channel observations o, which are noisy measurements of the leakages.

In Fig. 1 we suppose that the considered cryptographic operation is an iter-
ated symmetric block cipher that starts with a key whitening step represented
by the general conjunction �. To denote the small parts of input data and the
key used in a divide-and-conquer key recovery scheme on the cryptographic op-
eration E, we use the subscripts i, i.e., xi and ki, where i ∈ {1, . . . , p} and p is
the number of di�erent parts used. Furthermore, we introduce the functions Fi
(usually nonlinear), that independently process the key-whitened inputs xi�ki.
Although for simplicity we have supposed that each function Fi is performed at
a di�erent time ti

1, sequential or parallel execution of the functions Fi depends
on the actual implementations platform and architecture.

Performing q queries to the target device an adversary acquires the side-
channel measurements o1, . . . ,oq corresponding to the device's processing of
the supplied inputs x1, . . . , xq. The j-th measurement oj consists of p parts
oj1, . . . ,o

j
p corresponding to the computations of the functions Fi at times ti.

Note that each side-channel measurement itself still consists of multiple samples.
That is, the i-th part of the j-th measurement, i.e., the vector oji , denotes s

subsequently measured samples oji,1, . . . , o
j
i,s.

2

For example in a CPA attack, for a speci�c portion i the adversary determines
wi as a vector of estimated internal state transitions wji , ∀ 1 ≤ j ≤ q using the

input portion xji and a hypothesis for the key portion ki. Then, he evaluates his

1 Times are measured relative to the the start of each processing of E
2 Note that in each measurement j the measurement parts oj

i=1,...,p may overlap in
some sample points. This is helpful when the exact time instances ti are uncertain
but their distances, e.g., the number of clock cycles between the consecutive ti, are
known.



guess by comparing the leakage modeled by L̂(wi) to the actual measurements
oji,s. Hereby the leakages of the sample points s ∈ {1, . . . , s} are considered in-
dependently. The most appealing advantage of the collision attacks, which are
restated in the following, is to avoid requiring the hypothetical leakage model
L̂(·).

2.2 Correlation Collision Attack

In the case that two functions Fi1 and Fi2 (i1 6= i2 ∈ {1, . . . , p}) are identical
(see Fig. 1), a collision attack might be possible. Analyzing the measurements
oi1 and oi2 a collision attack aims at detecting situations where both functions
process the same value. In this case injective functions Fi1 = Fi2 (e.g., the AES
S-box) allow concluding

Fi1(xi1 � ki1) = Fi2(xi2 � ki2)
⇔ xi1 � ki1 = xi2 � ki2
⇔ (xi1)

−1 � xi1 � ki1 � (ki2)
−1

= (xi1)
−1 � xi2 � ki2 � (ki2)

−1

⇔ ∆ki1,i2 = ki1 � (ki2)
−1

= (xi1)
−1 � xi2 ,

where (ki2)
−1

and (xi1)
−1

are respectively a right inverse of ki2 and a left in-

verse of xi1 , i.e., ki2 � (ki2)
−1

= er and (xi1)
−1 � xi1 = el, where er and el are

respectively a right and a left identity element of operation �. Since xi1 and xi2
are supposed to be known to the adversary, ∆ki1,i2 gets revealed detecting such
a collision. If additional instances of the function Fi are processed within the
analyzed algorithm E, all available instances can be pairwise evaluated to reveal
terms ∆k·,· as described above. Depending on the target algorithm this allows
an adversary to either determine all parts of the key or to signi�cantly shrink
the key space, what allows for feasible exhaustive key searches.

When the target device implements the AES, the functions Fi are AES S-
boxes and the conjunction � is the �rst call to the AddRoundKey operation (i.e.,
xi⊕ki, ⊕ denoting bitwise XOR) prior to the �rst round of the encryption. Then,
detecting a collision (called linear collision on AES [3])∆ki1,i2 = ki1⊕ki2 = xi1⊕xi2
is recovered. In this case, the adversary can recover a maximum of 15 linearly
independent relations between the key portions allowing the key search space to
be restricted to 28.

In the �rst generation of side-channel collision attacks, e.g., [2�5, 24, 25], the
collision detection process is implemented by pairwise comparing measurement
parts (oj1i1 , o

j2
i2
) where j1, j2 ∈ {1, . . . , q}. Also, di�erent methods were used to

perform the comparison (e.g., the Euclidean distance in [25]). Although one
needs to deal with false-positive comparison results, this attack is feasible when
the target device and architecture sequentially processes the algorithm, e.g., a
microcontroller. Also, the more clock cycles the observations (oj1i1 , o

j2
i2
) include,

the more robust the detection gets, leading to a more feasible attack.
However, when attacking a hardware implementation which simultaneously

performs multiple operations or when randomizing countermeasures or noise



addition schemes are embedded into the target device, examining the similarity
of a pair of measurement parts will probably fail to detect the collisions. Also,
in these cases each measurement part oi usually covers only a single clock cycle.
The attack introduced in [16] (the so-called correlation collision attack) uses a
di�erent scheme to overcome such problems. As the instances of the functions
Fi1 and Fi2 always collide whenever the condition xi2 = xi1 �∆ki1,i2 holds, ∆ki1,i2
can be recovered by means of a hypothesis test. In order to do so, two sets of
mean vectors, denoted by ¯i1 and ¯i2 , are computed. Each set ¯i consists of 2n

mean vectors
{
m0

i , . . . ,m
2n−1
i

}
, where n is the bit-length of a plaintext (or

key) portion. Each mean vector mx
i , x ∈ F2n again consists of s mean samples

(mx
i,1, . . . ,m

x
i,s) which are de�ned as

mx
i,s =

1

qxi

q∑
j=1,xj

i =x

oji,s, s ∈ {1, . . . , s}, x ∈ F2n ,

where qxi denotes the cardinality of the set
{
j : 1 ≤ j ≤ q |xji = x

}
. Now based

on ∆k̂, i.e., a hypothesis for ∆ki1,i2 , two vectors m
′
i1,s and

∆k̂
m′i2,s are extracted

from the two sets ¯i1 and ¯i2 de�ned above:

m′i1,s = (m ′
0

i1,s, . . . , m
′2n−1

i1,s ), m ′
x
i1,s = mx

i1,s, x ∈ F2n

∆k̂
m′i2,s = (

∆k̂
m ′

0

i2,s, . . . ,
∆k̂

m ′
2n−1

i2,s ),
∆k̂

m ′
x
i2,s = mx�∆k̂

i2,s
, x ∈ F2n .

Now Pearson's correlation coe�cient can be used to measure the similarity of

the pair of vectors m′i1,s and
∆k̂
m′i2,s. The most similar vectors at the analyzed

sample point s indicate the most probable ∆k̂. This procedure � similar to most
of the non-pro�led attacks � is repeated for each sample point s independently.
The time instances ti1 and ti2 (see Fig. 1) are initially not known to an adver-
sary without detailed information on the implemented architecture of the target
device, but [16] proposes a method to reveal this information. The suggested
method is to analyze the variance of {mx

i,s : ∀ x ∈ F2n}: If the means of the
measurements at sample point s depend on the inputs xi, the variance at sample
point s is signi�cantly increased compared to other sample points.

3 Shortcomings and Our Solutions

Since only the mean values contribute to the comparison metric of the original
correlation collision attack, it cannot detect collisions whenever the means of the
leakages do not depend on processed data, even if the distributions of the leakages
show a strong data dependence. As an example consider the distributions in
Fig. 2. Since the shown distributions have the same mean, the attack will fail,
although the distributions can clearly be distinguished by their shape.
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Fig. 2. Examples of probability distributions with the same mean

3.1 Higher-Order Moments

While the mean of all the probability distributions shown in Fig. 2 is the same,
their higher-order moments are di�erent. For instance, Figures 2(b), (c), and (d)
can be discriminated by their skewnesses. Also, Fig. 2(a) can be distinguished
from Figures 2(b), (c), and (d) by the variance, and from Fig. 2(e) by the kurtosis.
Therefore, in order to extend the scheme, one can exploit the di�erences in the
higher statistical moments similarly to the analysis of the mean values performed
before. In other words, extending the notations given in Section 2.2 we can
calculate the sets of the d-th central moments (d > 1) d¯i1 and d¯i2 of the i1-
th and i2-th measurement parts. As before, each set d¯i consists of 2n vectors{
dµ

0
i , . . . , dµ

2n−1
i

}
, and each vector dµ

x
i includes s elements ( dµ

x
i,1, . . . , dµ

x
i,s)

which are the d-th central moment values for the di�erent sample points. The
d-th central moment for a sample point is calculated by

dµ
x
i,s =

1

qxi

q∑
j=1,xj

i =x

(
oji,s −m

x
i,s

)d
, s ∈ {1, . . . , s}, x ∈ F2n .

Note that 2¯i indicates the variances, and for d > 2 it is recommended to use

the standardized central moments de�ned as dµ
x
i,s(√

2µ
x
i,s

)d . The remaining task is

to create vectors of the sets de�ned again in order to compare them. Using the
same rules as before, a hypothesis ∆k̂ is used to construct the two vectors

dµ
′
i1,s = ( dµ

′0
i1,s, . . . , dµ

′2n−1

i1,s ), dµ
′x
i1,s = dµ

x
i1,s, x ∈ F2n

∆k̂
dµ
′
i2,s = (

∆k̂
d µ
′0
i2,s, . . . ,

∆k̂
d µ
′2n−1

i2,s ),
∆k̂
d µ
′x
i2,s = dµ

x�∆k̂
i2,s

, x ∈ F2n .

Using the same comparison technique as in the original correlation collision at-
tack, one can compare the aforementioned vectors using the Pearson correlation
coe�cient at each sample point and for each ∆k̂ independently.

In fact, the use of high-order central statistical moments is equivalent to
perform a preprocessing step on the side-channel observations before running
the original correlation collision attack. For instance, for d = 2 the use of 2¯i
(variance) is identical to squaring the mean-free traces and then computing the



mean sets (¯i). d = 3 and d = 4 (skewness and kurtosis if standardized) are the
same as cubing and getting the fourth power of the mean-free traces. As shown
later in Section 4 the use of high-order moments leads to e�cient attack methods
to analyze masked implementations that process the masks and the masked data
simultaneously. We should highlight that the higher the moment, the harder it
is to estimate. That is, a large number of observations q are required to obtain
a reasonably precise estimation. Thus, the use of higher-oder moments (d > 4)
is very limited in practice. Nevertheless, there might be architectures where the
attacks can still bene�t from going to these higher-order moments.

3.2 Collision Detection using Probability Density Functions

In order to generalize the scheme we also evaluated collision detection by com-
paring pdfs instead of focusing on a particular moment. To do so, we de�ne Pi

as a family of 2n sets
{

P0
i , . . . , P2n−1

i

}
. Each set Px

i consists of s probability

density functions
{
f xi,1 (O) , . . . , f xi,s (O)

}
de�ned as follows.

f xi,s (O = o) = Pr [H(Oi,s) = o|Xi = x] , s ∈ {1, . . . , s}, x ∈ F2n

Here we introduced the random variables Oi,s and Xi describing the distribu-
tion of the observed values oi,s and the input portions xi respectively. Further-
more, we introduced a new random variable O, which is used to estimate the
pdf of Oi,s. We denote the sample space of O as O and samples as o. We further
introduced a function H(Oi,s) (e.g., bins of a histogram), which maps samples
of Oi,s to elements of O, i.e., the sample space O used to estimate the pdf may
di�er from the sample space of the observed values.

We continue as before and extract the sets P′i1,s and
∆k̂

P′i2,s from the families
Pi1 and Pi2 , each of which includes 2n pdfs

Pi1,s =
{
f ′

0

i1,s (O) , . . . , f ′
2n−1

i1,s (O)
}
, f ′

x
i1,s (O) = f xi1,s (O) , x ∈ F2n

∆k̂
P′i2,s =

{
∆k̂

f ′
0

i2,s (O) , . . . ,
∆k̂

f ′
2n−1

i2,s (O)
}
,

∆k̂
f ′

x
i2,s (O) = f x�∆k̂

i2,s
(O) , x ∈ F2n .

In contrast to the central moments discussed before, we now need to compare
vectors of distributions instead of scalar vectors in order to �nd a similarity
metric that allows distinguishing collisions. Fortunately, comparing pdfs is a well-
studied task used in many di�erent research �elds, e.g., pattern recognition. The
well-known methods include the Squared Euclidean, Kullback-Leibler, Je�reys,
f-divergence, and several others (for a comprehensive list see [9]). In the following
we summarize the Kullback-Leibler (KL) divergence [14], which is the basis of
several other schemes and including the metric we used in our experiments.

Kullback-Leibler divergence is a non-negative measure of the di�erence be-
tween two probability distributions p(O) and q(O). For the discrete case it is



de�ned as

DKL(p(O)||q(O)) =
∑
o∈O

p(o) log
p(o)

q(o)
.

In fact, KL divergence is not a true distance metric as it is not symmetric,
i.e., DKL(p(O)||q(O)) 6= DKL(q(O)||p(O)). Therefore, other schemes have been
introduced to develop a symmetric metric with similar properties. For instance,

DJ(p(O)||q(O)) = DKL(p(O)||q(O)) + DKL(q(O)||p(O)) =
∑
o∈O

(p(o)− q(o)) log
p(o)

q(o)
,

the symmetric form of the KL divergence is constructed using the addition
method. This metric is also known as the Je�reys divergence [12] and is used
to perform our experiments. While we use a discrete sample space O for the
remainder of this paper, there is an extension of our approach to continuous dis-
tributions, which replaces the discrete KL divergence with its continuous equiv-
alent.

Practical Considerations: In this section we want to highlight a few aspects
to help practitioners to adopt our approach:

� Methods like this, that rely on estimating pdfs (e.g., MIA) allow for a va-
riety of estimation methods to be used, such as histograms or parameter
estimation. In Section 4 we show results derived from histograms.

� As the Je�rys divergence measures a distance, the smallest value indicates
the most similar distributions.

� Any scheme similar to the Je�reys divergence compares only two pdfs, while
our method requires to compare two sets of pdfs. To compensate this, we
employ the metric of a weighted mean of the Je�reys divergence values:

D∆k̂
i1,i2,s =

2n−1∑
x=0

(
DJ

(
f ′

x
i1,s (O) ||∆k̂

f ′
x
i2,s (O)

)
· Pr

[
Xi1 = x

∣∣∣Xi2 = Xi1 �∆k̂
])

.

While we introduced our approaches for univariate moments and distribu-
tions, an extension to multivariate analyses is straightforward. We provide an
example of a multivariate analysis in Section 4.4, where we demonstrate an at-
tack on an all-or-nothing secret sharing scheme.

4 Practical Experiments

We used two di�erent platforms to perform our practical analyses: the Xilinx
Virtex-II Pro FPGA embedded in a SASEBO [1] board and a multi-purpose
smartcard based on an Atmel ATMega163 microcontroller. Four implementa-
tions, all employing di�erent masking schemes, were used to evaluate our new ap-
proach. Three of these implementations ran on the hardware platform (FPGA),



(a) (b)

Fig. 3. Result of the collision attack using pdfs on the masked AES implementation
based on [8] (a) using 200 000 traces and (b) at point 2.19µs over the number of traces

the remaining one was a software solution executed on the smartcard. A LeCroy
WP715Zi 1.5GHz oscilloscope equipped with a di�erential probe was used to
collect power consumption traces in the VDD path of both platforms. In the fol-
lowing, we �rst present our results analyzing the hardware implementations. The
case study of the protected software implementation is detailed in Section 4.4,
which provides a glance at multivariate collision attacks.

4.1 Canright-Batina's Masked AES S-box

In [16] a serialized masked AES encryption is analyzed, where a single masked
S-box instance using the design from [8] is used to subsequently process all Sub-
Bytes transformations. The interested reader can �nd an abstract schematic of
this architecture in Fig. 7 in the Appendix (architecture is detailed in [16]). The
existence of �rst-order leakage of masked S-boxes implemented in hardware is
well-known to the side-channel community [15]. Therefore, a correlation collision
attack employing �rst-order moments (means) can exploit this �rst-order leak-
age caused by glitches using around 20 000 measurements. At this, all random
masks followed a uniform distribution, and no masks were reused (see [16]).

Since the �rst-order moments have already shown a dependency on processed
data, an analysis of the higher-order moments is not required to perform an
attack. Nevertheless, in order to evaluate the feasibility and e�ciency of our
attack, we implemented the most general form of the attack, the one using pdfs
to detect the collisions, on a set of 200 000 measurements. Using histograms with
8 bins we estimated the families of pdfs Pi1 and Pi2 for two processed portions

(here bytes) i1 and i2. The result of computing D∆k̂
i1,i2,s

∀∆k̂ ∈ {0, . . . , 255} for each
sample point s, is shown in Fig. 3(a).3 In addition to the increased complexity of
the computations, we �nd that the attack using the pdfs also requires a slightly
higher amount of measurements (cf. Fig. 3(b)). One reason, amongst others, of
this is the low accuracy of the pdf estimation by means of histograms.

3 For reasons of visualization we actually show the di�erence of the Je�reys divergence

to the largest observed value, i.e., D∆k̂
i1,i2,s −max(D∆Ki1,i2,s).



4.2 Threshold Implementation of PRESENT

Threshold implementations were proposed in [19] and later extended in [20]
and [21] to overcome the �rst-order leakage caused by glitches when masks and
masked data are processed by combinational hardware circuits. This scheme is
a countermeasure at the algorithm level, and a couple of implementations of the
PRESENT cipher based on that have been presented in [22]. We selected pro�le

2 of [22], where only the data state is shared using 3 shares and only one instance
of the shared S-box is used by the design. Fig. 8 in the Appendix sketches the
architecture and shows exemplary measurements. So far only CPA attacks using
the straight forward power models, i.e., HW and HD, have been presented [22].
Our analysis provides the �rst collision attack on this architecture.

We collected 100 million traces of this implementation using uniformly dis-
tributed plaintexts and masks. Two plaintext/key portions (here nibbles), that
are consecutively processed, are selected. In addition to the general approach
using pdfs, the collision attacks using the �rst three moments (mean, variance,
and skewness) have been performed. The corresponding results are shown in
Fig. 4. According to Fig. 4(a) the �rst-order moments do not show any depen-
dency to the processed values, what con�rms the claim given in [21]. However,
higher-order moments (see Fig. 4(b) and Fig. 4(d)) are strongly dependent on
the unmasked values. As expected, also the attack using pdfs (Fig. 4(f)) al-
lows recovering the secret. Since all attacks need roughly the same number of
measurements to succeed, i.e., around 5 million (see Fig. 4(c), Fig. 4(e)), and
Fig. 4(g)), analyzing statistical moments is to be preferred over the slower pdf
approach. Note that using e.g., second-order moments is equivalent to having a
preprocessing step squaring the mean-free traces. Successful attacks using high-
order moments thus do not contradict the statement given in [21] that threshold
implementations prevent �rst-order leakage.

4.3 Threshold Implementation of AES

The same countermeasure, i.e., threshold implementation, has been applied to
AES in [18]. Although this design does not ful�ll all the requirements of a thresh-
old implementation, re-masked registers were employed to provide the missing
property of uniformity (see [21] for the requirements and their meaning). It has
been shown that the �nal design of [18], which applies several internal PRNGs
to provide the required fresh masks, is resistant to correlation collision attacks
based on means, even when as much as 400 million measurements are used.
However, the authors reported that a MIA attack can exploit the leakage using
80 million measurements. Therefore this is a suitable target to evaluate our new
methods using higher-order moments and/or pdfs. Similar to the design targeted
in Section 4.2 again only one instance of the shared S-box is used in the analyzed
architecture. Moreover, the S-box design is based on a four-stage pipeline, thus
leakage may appear in several clock cycles. Again, a schematic illustrating the
architecture can be found in the Appendix (Fig. 9).



(a) using means

(b) using variances (c) using variances at point 4µs

(d) using skewnesses (e) using skewnesses at point 4µs

(f) using pdfs (g) using pdfs at point 4µs

Fig. 4. Result of the collision attacks on a threshold implementation of PRESENT
(left) using 100 million traces, (right) over the number of measurements.

We have collected 100 million measurements of this design implemented on
our FPGA platform. We have selected two portions (here bytes) whose cor-
responding key-whitened plaintext bytes are processed consecutively. Collision
attacks using the pdfs and the second- and third-order moments targeting the
linear di�erence between the two selected key bytes have been performed.4 The
results, which are shown in Fig. 5, reveal a dependency on chosen processed data
in the second-order moment, but not in the third-order moment. This might be

4 We ignored the �rst-order moment due to the results reported by in [18].



(a) using variances (b) using variances at point 4.1µs

(c) using skewnesses

(d) using pdfs (e) using pdfs at point 4.1µs

Fig. 5. Results the collision attacks on a threshold implementation of AES (left) using
100 million traces and (right) over the number of traces

due to the re-masked registers not present in the design investigated in Sec-
tion 4.2. The number of required measurements is also interesting. Compared
to that shown in [18] our attack needs around 20 million using variances and
50 million using pdfs (see Fig. 5(b) and Fig. 5(e)). This provides another exam-
ple that employing statistical moments instead of pdfs is not only faster but also
is more e�cient with respect to the number of required measurements.

4.4 Boolean Masking in Software

The last case study is a software implementation of the AES based on boolean
masking. Two random mask bytes (input mask and output mask) are considered
for each plaintext byte (in sum 256 mask bits) at the start of each encryption
run. After masking the plaintext bytes using the input masks, the AddRoundkey
operation is performed. Afterwards, for each state byte a masked S-box table is
constructed in memory, which satis�es the state byte's input and output masks.
See Fig. 10 in the appendix for a schematic of the design.



Since every intermediate result is masked by a random value, no univariate
attacks can recover a secret. In order to perform a bivariate collision attack
using pdfs, we (at the moment) suppose that the two interesting sample points
(s1, s2) in the measurement parts, that denote the time of processing the masked
value and the corresponding mask, are known. Then, a set Pi consists of joint
probability density functions f xi,s1,s2 (O1, O2). The attack then works analogue to
the univariate one, except for the comparison step. Here Je�reys divergence is
extended to measure the distance between two joint pdfs as

DJ(p(O1, O2)||q(O1, O2)) =
∑
o1∈O1

∑
o2∈O2

(p(o1, o2)− q(o1, o2)) log
p(o1, o2)

q(o1, o2)
.

To use the joint statistical moments, the analysis employs the (d1 > 0, d2 > 0)

d1,d2µ
x
i,s1,s2 =

1

qxi

q∑
j=1,xj

i =x

(
oji,s1 −m

x
i,s1

)d1 (
oji,s2 −m

x
i,s2

)d2
.

In fact, the attack analyzing 1,1µ
x
i,s1,s2 is equivalent to combining the correspond-

ing sample points by means of a �multiplication� prior to the averaging step in
a univariate collision attack. The dependencies on higher-moments are familiar
from traditional higher-order attacks, which exploit them when applying com-
bining functions.

Since �nding the interesting sample points (s1, s2) in multivariate attacks is
always a challenging task, we tried to make use of the moments to mitigate this
problem. We collected 250 000 traces from our target implementation using uni-
formly selected plaintext and mask bytes. Since the construction of the masked
S-box tables is time consuming, the measured traces are much longer than the
ones of the previously shown case studies. Each trace covers 10 000 clock cycles
and was compressed to a vector of 10 000 peaks corresponding to the peaks of
the clock cycles. Since the masked value and the mask are processed with a time
distance of � most likely � a small number of clock cycles, we de�ned a win-
dow of around 30 clock cycles to sum up adjacent peaks (sliding average). First,
we assumed that each measurement part oji covers all summed peak points.
Computing the second-order central moments 2¯i for two portions i1 and i2 and
getting the variance of each set at each summed peak point separately led to
the two variance curves shown in Fig. 6(a). The graphics clearly exposes the
(time) distance between the same process performed on each portion. With this
knowledge the measurement parts can be accordingly selected and thus it allows
executing a collision attack. The result from a collision attack on second-order
moments depicted in Fig. 6(b) con�rms our theoretical reasoning and provides
evidence of the strength of the attack.

5 Conclusions

The attack presented in this work is fundamentally similar to the correlation col-
lision attack presented in [16]. We extended the scheme to employ higher-order
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(a) two variances of the 2nd-order moments (b) attack results using 2nd-order moments

Fig. 6. Result of the attacks on a software implementation of the AES (boolean mask-
ing) after two preprocessing steps: 1) peak extraction, 2) sum over a 30 peak point
window

moments and introduced a general form of the attack, which makes use of the
distribution of side-channel leakages. As supported by the experimental results,
the presented methods allow improving univariate collision attacks. We showed
that by slightly increasing the computation complexity (e.g., variance vs. mean)
the collision attacks can defeat the security provided by one of the most promi-
nent proposed masking schemes for hardware, i.e., threshold implementations.
Additionally, we discussed the possible options to perform multivariate collision
attacks using either high-order moments or joint probability distributions. We
concluded our case studies analyzing a masked software implementation, and
presented a scheme to localize the interesting points for a collision attack em-
ploying high-order moments.

The majority of the � usually unprotected � devices have a straightforward
and known leakage behavior. Thus, in most cases traditional approaches, e.g.,
CPA using HW model, can be applied. However, in case that masking coun-
termeasures are applied and the leakage points must be combined the leakage
model may not be appropriately guessed and the issue addressed in [26] may
become critical. In summary, the collision attacks are an essential tool for secu-
rity evaluations in situations where the leakage model of the target device is not
known and cannot be obtained by pro�ling.
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Fig. 7. Schematic of the �rst case study (a masked AES encryption module using [8])
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Fig. 8. Schematic of the second case study (a threshold implementation of PRESENT
taken from [22])
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Fig. 9. Schematic of the third case study (a threshold implementation of AES taken
from [18])
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