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Abstract. We apply and extend the recently introduced biclique frame-
work to IDEA and for the first time describe an approach to noticeably
speed-up key-recovery for the full 8.5 round IDEA.
We also show that the biclique approach to block cipher cryptanalysis
not only obtains results on more rounds, but also improves time and
data complexities over existing attacks. We consider the first 7.5 rounds
of IDEA and demonstrate a variant of the approach that works with
practical data complexity.
The conceptual contribution is the narrow-bicliques technique: the re-
cently introduced independent-biclique approach extended with ways to
allow for a significantly reduced data complexity with everything else
being equal. For this we use available degrees of freedom as known from
hash cryptanalysis to narrow the relevant differential trails. Our crypt-
analysis is of high computational complexity, and does not threaten the
practical use of IDEA in any way, yet the techniques are practically ver-
ified to a large extent.
Keywords: block ciphers, bicliques, meet-in-the-middle, IDEA, key re-
covery

1 Introduction

Since Rijndael has been chosen as a new cipher standard in 2001, block cipher
cryptanalysis has been less attractive for the cryptologic community. It may
be partly attributed to the eStream and SHA-3 competition, which essentially
diverted the attention of cryptanalysts to the design and analysis of new primi-
tives. The most efficient methods — differential and linear cryptanalysis, square
attacks, boomerang, meet-in-the-middle and impossible differential attacks —
have all been designed in the 90s or earlier, and undergone only a series of evolu-
tionary improvements. Occasional applications of hash function-specific methods
like rebound attacks operate mainly in weaker models of security.

The situation seems to change with the recent introduction of biclique attacks
on AES [6]. Even considered an extension to meet-in-the-middle attacks, the
biclique attack brings new techniques and tools to the world of block ciphers,
which were known mainly in the cryptanalysis of hash functions. In contrast
to earlier attempts to cryptanalyze AES[5], the new approach does not use any
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related keys. To understand the reasons behind the new results and to motivate
our work, we proceed with a more detailed story of meet-in-the-middle attacks
and their evolution.

Meet-in-the-middle attacks on block ciphers. The basic idea of meet-in-
the-middle attacks is to split an invertible transformation into two parts and
separate parameters that are involved in only one part. Then these parameters
can be searched independently with a match in the middle as a certificate of
a right combination. One of the first applications is the cryptanalysis of Dou-
bleDES EK2(EK1(·)), which demonstrated that the total security level is not
the sum of key lengths [12]. The reason is that given a plaintext/ciphertext pair,
an adversary is able to compute the internal middle state of a cipher trying all
possible values of K1 and K2 independently.

The same principle applies at the round level as well. If there is a sequence
of rounds in a block cipher that does not depend on a particular key bit, the
meet-in-the-middle attack might work. However, its application has been limited
by the design of block ciphers, the majority of which use the full key in the
very first rounds of a cipher. As a result, even as little as a half of a cipher is
rarely attacked, with four attacked rounds in AES [8] and seven in DES [9, 13].
Compared to 7-round attacks on AES [20], and full 16-round attacks on DES [21],
the meet-in-the-middle attacks were clearly inferior to other methods in spite
of their impressively low data complexity. The widespread use of meet-in-the-
middle attacks against the preimage resistance of hash functions follows this
argument, as the message schedule of, e.g., SHA-1, admits as many as 15 rounds
being independent of some message bits. The block ciphers KTANTAN [7] and
GOST [15], recently attacked within the meet-in-the-middle framework, also do
not use the full key for large number of rounds.

In this context the recent meet-in-the-middle attacks on the full AES [6]
might look as a counterexample. Nevertheless, they have not disclosed any new
key schedule properties. However, they are able to cover as many as 6 rounds
with a new construction — a biclique, inherited from hash function cryptanaly-
sis [17]. In addition to the aforementioned length of the biclique, its dimension is
another important property, and significantly contributes to the computational
advantage compared to brute-force approaches. A biclique does not impose con-
straints on the key schedule decomposition and can be long enough to add a
significant number of rounds to a meet-in-the-middle attack. The latter prop-
erty is, however, difficult to achieve when aiming for a significant advantage over
brute-force. When dealing with the full number of rounds, only AES-192 has
faced an improvement in a factor of four or larger. We additionally stress that
the non-ideal diffusion of a single AES round is an important factor for these
results. If AES had a full MDS matrix as the diffusion layer, like SHARK [22],
it would be much more difficult to attack. The data complexity would increase
greatly.

All these properties are significant issues when one wants to deal with a
cipher that achieves full diffusion in a single round. Hence IDEA, which has this
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property, is a natural challenge for a biclique attack. As explained further, we
have to leap over three well-diffusion rounds to successfully cryptanalyze the full
version of the cipher.

1.1 Cryptanalytic attacks on IDEA and our contribution.

The “International Data Encryption Standard” (IDEA) is one of the longest
standing and most analyzed ciphers known. It was designed by Lai and Massey
in 1991 [18, 19]. Except for negligibly small classes of weak keys only reduced
round variants up to 5 out of its 8.5 rounds have been cryptanalyzed in the most
relevant single-key setting. If the cryptanalyst were to choose arbitrary sequences
of middle-rounds results go up to 6 rounds, and in the less relevant related-key
model up to 7.5 rounds [2].

We consider the starting rounds only as a more difficult and more natural
challenge. Attacks on middle-rounds weaken the cipher considerably as there
would be no equivalent of a whitening key. Moreover, the full key would be used
only after two rounds of the cipher, which is evidently not a property of the
actual design.

Our main technical results are a first method for key recovery of full IDEA
noticeably faster than brute force search, and improved attacks on round-reduced
variants. An overview of our new results as well as a comparison with earlier work
is given in Table 1. We list here the conceptually new approaches that eventually
led to this result:

– The independent-biclique strategy allows for higher dimensions which in turn
can lead to faster key recovery. A straightforward application to IDEA would
lead to the full codebook requirement even for a one-round biclique due to
the diffusion properties. It drastically differs from AES, where 3-round bi-
cliques may still yield reasonable data complexity. In this paper we extend
the independent-biclique framework to allow for lower data complexity re-
quirements. We achieve this by using available degrees of freedom for limiting
the diffusion in spite of high dimension. Hence we introduce the prefix “nar-
row”.

– In earlier work on AES the independent-biclique was always combined with
a key testing phase that loops over all keys. This combination is however not
necessary and many of our attacks do not require testing all keys.

– In previous meet-in-the-middle style attacks the Biryukov-Demirci relation
was used in a differential way to cancel out key dependencies, it was termed
”keyless Biryukov-Demirci relation”. Used in our framework, the BD relation
can be used directly, and hence avoids overhead computations.

To illustrate the flexibility of the narrow-biclique approach to IDEA, we also
consider round-reduced versions. As an example, consider IDEA reduced to the
first 5 rounds, which is the highest number of rounds that allowed results before.
For this we simultaneously improve time and memory complexity over other
pervious attacks, while at the same time achieving a practical data complexity
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Table 1. New key recovery for IDEA. By brute-force, the computations/success rate
ratio is 2128. For simplicity, only round-reduced variants starting from the actual be-
ginning of the cipher are considered.

Rounds Data Comp./succ.rate Memory Ref.
Biclique
rounds

Matching

first 5 217 2125.5 n.a. [24] - key-dep. BD
first 5 10 2119 224 [2] - differential BD
first 5 264 2115.3 n.a. [24] - key-dep. BD

first 5 225 2110 216 Sec. 6 1 direct
first 5 225 2101.5 + 2112MA 2110 Sec. 6 1 direct
first 6 241 2118.9 212 Sec. 7 1 direct BD

first 7.5 218 2126.5 23 Sec. 8 1.5 direct BD
first 7.5 252 2123.9 27 Sec. 8 1.5 direct BD

8.5 (full) 252 2126.06 23 Sec. 5 1.5 direct BD
8.5 (full) 259 2125.97 23 Sec. 5 1.5 direct BD

of only 225 chosen plaintexts. We also describe the first attack on the 6 initial
rounds of IDEA, with data complexity 241 and time complexity 2119, which is a
significant improvement over brute-force.

Independently and concurrently, Biham et al. [3] use similar techniques and
also arrive at improvements over previous work. However, for the same variant
of IDEA considered, the data complexities we obtain compare favourably to
theirs for the reasons outlined above. Note that in [3] middle rounds are consid-
ered, which we exclude for reasons outlined above. Hence for the same number of
rounds we attack a stronger cipher. For full IDEA, whereas we focus on minimiz-
ing time complexity Biham et al. consider a setting with little available data and
for this have a different approach that is closer to brute force time complexity.

In [4,10,14] classes of weak-keys were found for full IDEA. Even though the
class is for all practical purposes negligibly small (only up to a fraction of 2−64 of
all keys are affected), a small change for IDEA was proposed to get rid of these
weak-key properties [10]: a constant addition in the key schedule. Our approach
to key recovery even works for those strengthened variants of IDEA, in exactly
the same way, because it is independent of such constants.

2 Description of IDEA

In here we give a brief description of IDEA and discuss implementation cost
consideration that lead to a cost model in which we evaluate our subsequent
cryptanalytic results.

IDEA is a 8.5-round block cipher with a 64-bit state and a 128-bit key.
Internal state and subkeys are treated as 16-bit words. Each round is an invertible
transformation and follows the key addition (KA) layer (two multiplications,
two modular additions) with the multiplication-addition (MA) function (again,
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Fig. 1. One round of IDEA.

two multiplications, two modular additions). Addition is performed modulo 216.
Multiplication is performed modulo 216 + 1, where 0 is replaced with 216.

We denote input variables to round i by Xi, the subkeys of round i by
Zi. Additional input variables are depicted in the outline of a single round in
Figure 1. Key bits in subkeys are listed in Table 2, where the leftmost bit is the
most significant bit in the 16-bit word.

Compared to all other operations of IDEA, the multiplication modulo 216+1
is the most expensive. It can either be realized as a 17-bit multiplier, using a
table of size 216, or with the help of two or three lookup tables of size 28. This
naturally motivates the model we use to estimate time complexities in this paper:
counting multiplications and/or table lookups, and relating them to the number
of multiplications needed for IDEA. Each round of IDEA needs four of these
multiplications, and the additional key addition layer at the end (often counted
as 0.5 round) needs another two. Hence in total 34 multiplications are needed for
a single computation. Some of our attacks require the computation of a single
output bit of the multiplication which we model with a cost of 0.5 multiplications
(see references to complexity estimates in various models in [25]).

3 Biclique attack

Biclique attacks were introduced for hash function cryptanalysis [17] as an exten-
sion to the initial structure technique [23], and later applied to block ciphers [6].
In the biclique attack on block ciphers the full key space is partitioned into
groups of keys, so that keys in a group can be efficiently tested in the meet-in-
the-middle framework.
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The keyspace partition can be described in various ways. For permutation-
based key schedules as in IDEA we simply introduce three sets of key bits: Kb,
Kf , and Kg. In a key group the value Kg is fixed (and hence enumerates the
groups), and Kb and Kf take all possible values.

Biclique. A biclique is a set of internal states, which are constructed either
in the first or in the last rounds of a cipher and mapped to each other by
specifically chosen keys. We consider the former option only in the paper. Let f
be the mapping describing the first cipher rounds, then a biclique for a group
Kg is a set of states {Pi}, {Sj} such that

Pi
Kb=i ||Kf=j−−−−−−−−−→

f
Sj .

Keys in a group are tested as follows. A cryptanalyst asks for the encryption
of plaintexts Pi and gets ciphertexts Ci. Then he checks if

∃ i, j : Sj
Kb=i ||Kf=j−−−−−−−−−→

g
Ci, (1)

where g maps states Sj to ciphertexts. A biclique is said to have dimension d, if
both Kb and Kf have d bits.

Key testing. Each key group is tested separately. There are two approaches to
test keys within a group. In the first approach a cryptanalyst uses an interme-
diate variable v that can be computed in both directions:

Sj
Kf=j−−−−→
g1

v
?
= v

Kb=i←−−−
g2

Ci.

The functions g1 and g2 are called chunks. This approach is illustrated in Fig-
ure 2. The computational complexity of testing a single group is

Cbiclique + 2|K
f |Cg1 + 2|K

b|Cg2 + Crecheck,

where Cg1 and Cg2 are the costs of computing v, Cbiclique is the biclique con-
struction cost, and Crecheck is the cost of rechecking key candidates on other
state bits or another plaintext/ciphertext pair. The full complexity is derived by
the multiplication on the total number of groups.

In the second case a cryptanalyst is unable to find a variable with these
properties. Then he tests each key individually

Sj
Kb=i ||Kf=j−−−−−−−−−→

g1
v

?
= v

Kb=i ||Kf=j←−−−−−−−−−
g2

Ci,

but reuses the computations of chunks, which are defined as parts of g1 and g2
that are independent of Kb and Kf , respectively.

This technique was called an independent-biclique approach [6] due to use of
independent differential trails in the biclique construction.
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Fig. 2. Key testing with a biclique of three plaintexts and three internal states.

Bicliques based on independent differentials. An easy way to construct
biclique is to use related-key differentials that do not share active nonlinear
components. Let (P, S,K) be a tuple of a plaintext, an internal state, and a key.
Let also Kf and Kb be tuples of key bits.

Proposition 1 ([6]). Suppose that the tuple (P0, S0,K0) conforms to the two
sets of related-key differential trails:

0
∆Kf=∆K

j7−−−−−−−→
f

∆j ; ∇i
∆Kb=∇K

i7−−−−−−→
f

0,

that share no active non-linear transformations. Then the following states

Pi = P0 ⊕∇i, Sj = S0 ⊕∆j .

form a biclique for a group of keys defined by K0.

Narrow-bicliques. A straightforward application of the independent differen-
tials technique limits the length of a biclique to the number of rounds needed
for the full diffusion. In AES one may use truncated differentials with probabil-
ity 1, and they would still allow for bicliques over the last three rounds. This
is virtually impossible for IDEA, as any one-round truncated differential with
probability 1 covers the full state and necessitate the full codebook. Therefore,
the biclique differentials must be sparse and hence probabilistic.

We propose to amplify the biclique differentials with guess-and-determine and
message modification-like techniques, so that even high-dimensional bicliques
would not require the full codebook. Similar techniques have been used for the
hash function SHA-2 [17], but aimed only for the independency of trails, but
not sparsity. In contrast, for block ciphers the sparsity of a trail is a crucial
parameter for the data complexity, as uncontrolled difference results into an
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uncontrolled plaintexts. It gets much worse in a cipher, whose key is much larger
than a plaintext, since the number of bicliques to be constructed greatly exceed
the codebook size. As a result, with high probability every possible plaintext
becomes involved in a biclique, and this situation we want to avoid.

In our attacks on IDEA we employ various techniques and tools to control the
biclique differentials and reduce the data complexity. As a validity certificate,
we have implemented a large portion of our biclique construction algorithms
on a PC. We experimentally verified the amount of freedom we have in the
algorithms and our ability to spend that freedom on setting specific plaintext
bits to predefined constants.

A large-memory variant. One of the appealing properties of biclique crypt-
analysis is the fact that memory requirements are naturally low, only exponential
in the dimension of the biclique, which is usually a small constant. In here we
show a rather generic way to speed-up biclique key recovery if a very large, but
only sequentially accessible memory is available.

The basic idea is that all those computations that do not depend on replies
of the plaintext or ciphertext oracle can be stored and reused for multiple key
recoveries. When doing this, the computational complexity to recover the first
key remains the same, for subsequent key recoveries however, less computations
are needed. In Section 6, for 5-round IDEA we give an example where this gives
a noticable speed-up.

4 Biryukov-Demirci Relation

The Biryukov-Demirci relation was introduced in [16] as a combination of two
observations by Biryukov (unpublished) and Demirci [11]. Consider two consec-
utive rounds of IDEA and two lines of computations:

Xi
2 → Xi+1

3 → Xi+2
2 and Xi

3 → Xi+1
2 → Xi+2

3

For these lines we have:(
(Xi

2 � Zi2)⊕ (si � ti)
)
� Zi+1

3 = Xi+2
2 ⊕ ti+1; (A)(

(Xi
3 � Zi3)⊕ ti

)
� Zi+1

2 = Xi+2
3 ⊕ (si+1 � ti+1). (B)

For the least significant bit the modular addition resolves into XOR:

LSB(Xi
2 ⊕ Zi2 ⊕ si ⊕ ti ⊕ Zi+1

3 ⊕ ti+1) = LSB(Xi+2
2 );

LSB(Xi
3 ⊕ Zi3 ⊕ ti ⊕ Zi+1

2 ⊕ si+1 ⊕ ti+1) = LSB(Xi+2
3 ).

Let us sum the equations and redistribute the summands:

LSB(Xi
2⊕Xi

3⊕Zi2⊕Zi3⊕ si) = LSB(Xi+2
2 ⊕Xi+2

3 ⊕ si+1⊕Zi+1
2 ⊕Zi+1

3 ). (2)
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Therefore, for the matching in the MITM attack it is enough to computeXi
2, X

i
3, s

i

in the forward direction, andXi+2
2 , Xi+2

3 , si+1 in the backward direction. To com-
pute si+1 it is enough to compute Xi+2

1 , Xi+2
2 and know an appropriate subkey

Zi+1
5 . If some bits of subkeys Zi+1

2 and Zi+1
3 belong to Kb or Kf , they are dis-

tributed to corresponding sides of the equation (this technique named indirect
partial matching [1] was applied to hash functions).

The BD-relation essentially excludes six multiplication operations, or about
1.5 rounds, from the matching part.

Improved filtering. We can improve the filtering provided by the BD relation
by considering more than one bit in equations (A) and (B). More precisely,
we consider Xi

2, Xi
3, si, Xi+2

2 , Xi+2
3 , si+1, Zi2, Zi3, Zi+1

2 and Zi+1
3 as known

parameters, and we denote the left hand side and the right hand of (A) and (B)
as LA(ti), RA(ti+1), LB(ti) and RB(ti+1), respectively.

If we know k bits of ti, we can compute k bits of LA(ti) and LB(ti), and k+1
bits of LA(ti) ⊕ LB(ti). Similarly, if we know k bits of ti+1, we can compute k
bits of RA(ti+1) and RB(ti+1), and k+1 bits of RA(ti+1)⊕RB(ti+1). As seen in
the previous section, some values of the parameters are incompatible with any
choice of ti or ti+1. In order to improve the filtering, we will guess some bits of
ti and ti+1 and exclude more parameter choices.

For instance, if we guess one bit of ti and ti+1, we can compute 1 bit of LA,B
and 2 bits of LA ⊕ LB in the forward direction, and 1 bit of RA,B and 2 bits of
RA ⊕RB in the backward direction. We put those values a hash table for every
value of ti and ti+1, and we look for a match between the forward values and
the backward values for some value of ti and ti+1. We can show that there is a
match with probability 3/8 which means that we have a filtering of 1.41 bits.

More precisely, for given value of Xi
2, Xi

3, si, Zi2, Zi3, Zi+1
2 , Zi+1

3 in the
forward direction, and Xi+2

2 , Xi+2
3 , si+1 in the backward direction, there exists

a choice for the first bit of ti, ti+1 that result in a match iff:

(LA ⊕ LB)[0] = (RA ⊕RB)[0] and


(LA(0)⊕ LB(0))[1] = (RA(α)⊕RB(α))[1]

or

(LA(1)⊕ LB(1))[1] = (RA(ᾱ)⊕RB(ᾱ))[1]

where α = (LA ⊕RA)[0]

This shows that the parameters will be compatible with probability 1/2×3/4 =
3/8, and this has been verified experimentally. We can show in the same way
that we have a filtering of roughly 2 bits when guessing 3 bits of ti and ti+1; in
this case we have to evaluate LA,B and RA,B for 8 values of ti and ti+1, which
still costs less than one evaluation of the block cipher (we can evaluate four 4-bit
values of LA,B or RA,B in parallel using 16-bit operations). We can have 5 bits
of filtering using the full 16 bits of t, but we don’t see how to use that efficiently.
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5 Key recovery for the full IDEA

Our approach to cryptanalyze the full IDEA is to construct a short biclique of
high dimension, and cover the remaining rounds with the independent-biclique
approach. To find an optimal configuration of Kf and Kb bits, and also of the
matching position, we have run a short search program. First, we figured out that
the longest biclique that is still efficient covers 1.5 rounds. Then we computed
the maximum chunk length and hence the minimum matching cost. Then we
selected for Kf the bits that form long chunks after round 1, and for Kb the
bits that form long chunks ending with the ciphertext.

According to the search results, we have chosen the following key partitioning,
which results in a biclique of dimension 3:

– Kg (guess): bits K0...40, 42...47, 50...124.
– Kf (forward): bits K125...127.
– Kb (backward): bits K41,48,49.

We have also chosen the partition of the full IDEA into a biclique, chunks,
and the matching part according to Table 2. It is also illustrated in Figure 3.
By the attack algorithm, each chunk is computed 23 times per key group, and
the operations in the matching part are computed for each key. The Biryukov-
Demirci relation (2) serves as internal variable for the matching in rounds 4–6:

LSB(X4
2 ⊕X4

3 ⊕ Z4
2 ⊕ Z4

3 ⊕ s4)︸ ︷︷ ︸
computed forwards

?
= LSB(X6

2 ⊕X6
3 ⊕ s5)⊕ LSB(Z5

2 ⊕ Z5
3 )︸ ︷︷ ︸

computed backwards

.

Biclique. A straightforward way to construct a biclique with our key partition
would be as follows. Fix Kg and choose arbitrarily a plaintext P0. For Kb = 0
and each value of Kf compute internal states S0, S1, . . . , S7 that are tuples
of variables (Y 2

1 , Y
2
2 , Y

2
3 , Y

2
4 ). Consider S0 and for Kf = 0 and each value of

Kb compute plaintexts P0, P1, . . . , P7. Since differentials resulting from the key
differences in Kb and Kf do not interleave, these plaintexts and states form a
biclique:

Pi
Kb=i ||Kf=j−−−−−−−−−→

f
Sj .

However, we do not control the plaintexts P1, . . . , P7. Since we construct 2122

bicliques, we are likely to cover the full codebook. To reduce the data complex-
ity, we implement a more complicated biclique construction algorithm, which
enforces particular plaintext bits to zero in every biclique.

The improved algorithm works as follows:

1. Fix Kg, Kf = Kb = 000.
2. Choose arbitrarily Y 2

3 , Y 2
4 , p1.

– For each Kb (eight options) compute the output of the MA function;
– For each Kb (eight options) compute X1

2 — second word of the plaintext.
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Table 2. Round partition for 8.5-round attack. The cipher is splitted into four parts,
whose subkey bits are listed. The parts are a biclique, two chunks (where either Kb or
Kf ) are not used, and matching (where both Kb and Kf are used). The latter part
dominates the complexity.

Round Z1 Z2 Z3 Z4 Z5 Z6

� � � � � �
Biclique

1 0–15 16–31 32–47 48–63 64–79 80–95
2 96–111 112–127↓ 25–40 41–56↑

Chunk 1 (Kb not used)

2 57–72 73–88
3 89–104 105–120 121-8↓ 9–24 50–65 66–81
4 82–97 98–113 114–1 2–17 18–33

Matching

4 34–49↑
5 75–90 91–106 107–122 123–10 11–26 27–42
6 43–58 59–74 100–115 116–3 4–19 20–35
7 36–51 52–67 68–83 84–99 125–12↓ 13–28

Chunk 2 (Kf not used)

8 29–44 45–60 61–76 77–92 93–108 109–124
9 22–37 38–53↑ 54–69 70–85

– Check if 5 least significant bits of each X1
2 are zero (many other bit sets

would work as well). If not, choose other Y 2
3 , Y 2

4 , p1.
– Note that this implies that the 5 least significant bits of s1 and t1 are

the same for all Kb. Therefore the 5 least significant bits of X1
3 will also

be the same for all Kb.
3. Choose a value t with the 5 least significant bits set to zero

– Use t as X1
3 with Kb = 000, and compute X2

1 and X2
2 .

– For each Kb (eight options) compute X1
1 — first word of the plaintext,

from X2
1 and X2

2 .
– Check if the least significant bit of each X1

1 — first word of the plaintext
— is zero. If not, choose another t. If all the t’s have been tried, choose
another Y 2

3 , Y 2
4 , p1.

4. Compute other plaintext words for each Kb. Derive plaintexts P0, P1, . . . , P7.
5. Vary Kf and derive internal states S0, S1, . . . , S7.

Therefore, a single biclique can be constructed in 240 time, and 11 plaintext bits
(15, 27–31 and 43–47) are set to zero. We notice that key bits 16–25, 32–40,
57–63, 96–124 are neutral for the biclique and can be flipped without violating
its plaintext property. Therefore, we can reuse the biclique for 255 key groups
and hence make the amortized cost negligible.

The first part of the construction require that there exist a choice of Y 2
3 , Y 2

4 ,
p1 so that the 5 least significant bits of each X1

2 are zero; this is expected to be
the case for a proportion 1−e−8 > 99.9 of the keys. For the full construction, we
have a 58-bit condition, which will be satisfied by a proportion 1−e−11 ≈ 99.99%
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Fig. 3. Attack on the full IDEA (rounds 1–9). Having constructed a biclique, we par-
tially encrypt output states (chunk 1), ask for ciphertexts, partially decrypt them
(chunk 2), and match with the help of the BD-relation. The relation allows to ignore
about 1.5 rounds of computation.

of the keys. We can also control one more bit of X1
1 , but this leads to a 61-bit

conditions, which is satisfied by 95% of the key. Alternatively, we can look for a
six bit match in X1

2 and X1
3 , and a one bit match in X1

1 . This gives control over
13 bits of the plaintext, but it only works for less than (1 − 1/e) ≈ 63% of the
keys. Finally, we can achieve various tradeoffs by changing the dimension of the
biclique; we can control:

– 23 bits of a dim.-2 biclique with succ. rate (1− e−4)(1− e−5) > 97.5%
– 24 bits of a dim.-2 biclique with succ. rate (1− e−4)(1− e−2) > 84%
– 11 bits of a dim.-3 biclique with succ. rate (1− e−8)(1− e−11) > 99.9%
– 12 bits of a dim.-3 biclique with succ. rate (1− e−8)(1− e−3) > 94%
– 5 bits of a dim.-4 biclique with succ. rate (1− e−16)(1− e−14) > 99.9999%

Complexity. Each biclique tests 26 keys. The first chunk employs 9 multipli-
cations, the second chunk — 6 multiplications, the matching part — 13 multi-
plications (and hence 7 when we use the relation, of which two compute only a
single output bit and are hence counted as a half multiplication is discussed in
Section 2). We recheck on Y 5

1 , for which we need 2 multiplications: on Z4
6 and

Z5
1 . A negligible proportion of keys is rechecked on the full state and on another

plaintext/ciphertext pair. Therefore, 26 keys are tested with

9 · 8 + 6 · 8 + (5 +
1

2
+

1

2
) · 64 + 2 · 32 = 632 multiplications = 24.06

calls of IDEA. The total time complexity is hence 2126.06.
We can expand Kb to 4 bits for the cost of increased data complexity. As

we would be able to spend only 4 degrees of freedom per plaintext, the data
complexity becomes 259 and the number of multiplications for 27 keys is 1064
which yields a total complexity of about 2125.97 calls of IDEA, as an easily be
computed:

9 · 8 + 6 · 16 + (5 +
1

2
+

1

2
) · 128 + 2 · 64 = 1064 multiplications.
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6 New 5 round attack

The only 5-round attacks that start at the beginning of the cipher are the follow-
ing. Biham et al. mention the possibility of an attack with memory complexity
224 and time complexity of 2119. The fastest attack so far needs 2115.5 time, but
also the full codebook. In here we provide the fastest attack which additionally
requires only 225 chosen plaintexts.

– Kg (guess): bits K0...8, 25...49, 75...127.
– Kf (forward): bits K50...74.
– Kb (backward): bits K9...24.

We can easily construct a biclique of size 225 × 216 in round 1, since the
paths are clearly independent: the backward key only affects X1

1 and X1
2 , while

the forward key affects Y 1
3 , p

1, q1 and everything after the MA function. The
matching point is p3 (16 bits), which can be computed in both chunks.

We can control 39 bits of the plaintext in the following way:

– We start with X1
3 = 0, X1

4 = 0, some arbitrary value for Y 1
1 , and Y 1

2 =
29K25...31 + 0x1ff

– We can then compute X1
1 and X1

2 for each choice of Kb. Note that the high
7 bits of X1

2 = Y 1
2 �K16...31 will be zeros because there will be no carry in

the subtraction.
– Finally we compute X2

1 , X
2
2 , X

2
3 , X

2
4 for each choice of Kf .

The biclique construction has negligible cost, as we can use most of the key bits
as neutral.

Alternatively, we can see this attack as a basic MITM if we start with state
Y 1
1 , Y 1

2 , X1
3 , X1

4 . In the forward part, we can compute p3 independently of Kb.
For the backward part we compute X1

1 and X1
2 , then we query the oracle on

that state, and continue the computation from the ciphertext X1
1 , X

1
2 , X

1
3 , X

1
4 ,

up to p3.
If we flip key bits 112–127, only 2 multiplications in round 2 are affected.

Therefore, in the first chunk we need only 3 multiplications to recompute in total.
In the second chunk we recompute 7 multiplications. The matching comes for
free, but the 225 key candidates must be rechecked on 1 multiplication. Hence the
total complexity of testing 2128−25−16 = 287 key groups is computed as follows:

C = 287
(

4

20
225 +

7

20
216
)

= 2110.

When trying to recover multiple independent keys, and following the large-
memory variant outlined in Section 3, the results of 225 forward computations
for all 287 bicliques could be precomputed and stored in the form of a table of
225 · 16 bits (for p3) for each keygroup together with the plaintext. Hence at
the cost of a memory of size equivalent to 2110 blocks (of 64 bits each) that
needs to be accessed 225 · 287 = 2112 times in a sequential way for every individ-
ual key recovery, the computational cost would drop to about an equivalent of
287
(

7
20216

)
= 2101.5 IDEA calls, as only the backwards computations need to be

performed for every keygroup with the respective oracle responses.

13



Table 3. Round partition for the 5-round attack

Round Z1 Z2 Z3 Z4 Z5 Z6

Biclique

1 0–15 16–31 32–47 48–63 64–79 80–95

Chunk 1

2 96–111 112–127 25–40 41–56 57–72 73–88
3 89–104 121-8

Chunk 2

4 82–97 98–113 18–33 34–49
5 75–90 91–106 107–122 123–10 11–26 27–42

7 New 6 round attack

The best currently known 6-round attack, the very recent and still unpublished
MITM approach of [2] works for 6-rounds only with a single starting position
that does not coincide with the actual start of the cipher. In here we give the
first 6-round attack.

The key partition is as follows:

– Kg (guess): bits K0...65, 75...111.
– Kf (forward): bits K66...74.
– Kb (backward): bits K112...127.

We use a one-round biclique at the end of the cipher, in round 6. Then we
compute s2 in the forward direction and s3 in the backward direction, and use
the BD relation.

For the construction of the biclique, we start with Y 6
1 = 0, X6

2 = −K59...74,
Y 6
3 = 0 and Y 6

4 = 0. For each Kf , we compute the final state at the end of
round 6. We note that we have X7

1 = X7
2 and the 7 most significant digits of X7

3

and X7
4 are also equal. Thus, we control 23 bits of the ciphertext, and the data

complexity is 241.
In order to filter out enough bad guesses, we will use 9 bicliques for each Kg.

The most expensive part of the attack is the backward computation of s3. For
each Kg guess, this costs:

9 ·
(

25 + 216 + 216 +
1

2
· 216

)
= 220.5 multiplications = 215.9 IDEA calls

The total complexity is therefore 2103 · 215.9 = 2118.9.

8 New 7.5 round attack

In the 7.5-round attack we construct a biclique in the first 1.5 rounds. The key
partitioning is defined as follows:

– Kg (guess): bits K0...24, 25...40, 42...99, 125...127.

14
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Fig. 4. Biclique ∇-differential in 7.5-round attack.

– Kf (forward): bits K100...124.

– Kb (backward): bits K25,41.

The differentials based on Kf and Kb do not interleave in the first 1.5 rounds.
Therefore, we can construct a biclique in a straightforward way similar to the full-
round attack. However, the differential generated by Kb affects the full plaintext.
To reduce the data complexity we construct two bicliques for a key group so that
the differential generated by Kb vanishes at the input of the MA-function.

We proceed as follows. For the first biclique we fix K25⊕K41 = 0, and for the
second one K25⊕K41 = 1. As a result, a difference in Kb generates simultaneous
differences in Z2

3 and Z2
4 . Denote the difference in Z2

3 by ∇ (generated by bit
K25), and in Z2

4 by ∇′ (generated by K41). We want the difference in X2
4 to be

equal to ∇ so that the MA-structure have zero input difference (Figure 4). We
fulfill this condition by random trials. Bicliques are hence constructed as follows:

1. Fix X1
1 = X1

2 = X1
3 = 0;

2. Choose arbitrarily values for X1
4 :

– Generate internal states for the biclique;

– Check whether the MA function has zero input difference. If not, try
another value of X1

4 .

Computational and data complexity. A single pair of biclique is generated
in less than 216 calls of IDEA. This value is amortized since we can derive
219 more bicliques by changing key bits 96–104, (and recomputing Y 2

1 ), 125–127
(recompute Y 2

2 ) and bits 57–63 of Z1
4 (and recomputing the plaintext). Therefore,

an amortized cost to construct a biclique is negligible.

15



Since the ∇-differential affects the most significant bit of X1
2 only, the plain-

texts generated in bicliques have 47 bits fixed to zero. Therefore, the data com-
plexity does not exceed 217. The full computational complexity of the attack is
computed as follows:

C = 2107
(
Cbicl + 213Cchunk1 + 2Cchunk2 + 213Crecheck

)
,

where we test 2106 key groups with two bicliques each. The amortized biclique
construction cost is negligible. We note that the multiplication by Z2

5 in round 2
is also amortized as the change in key bits 57–63 does not affect it. Therefore, the
total number of multiplications in the first chunk is 1+4+2 = 7 multiplications,
in the second chunk — 1 + 3 + 4 + 2 = 10 multiplications, to recheck — 3
multiplications (to compute the full p5 in both directions). The total complexity
is hence 2127 10

30 = 2126.5.
We can decrease the time complexity for the cost of the increase in the data

complexity. Let us assign one more bit to Kb so that there are 8 values of Kb.
We spend 64 bits of freedom in the internal state to fix 13 bits of each biclique
plaintext, as shown for the attack on the full IDEA. Then the complexity is
estimated as follows:

C = 2100
(

225
8

30
+ 23

10

30
+ 228

1

2
· 2

30

)
= 2124.1.

We can further reduce the complexity using the improved BD filtering on
two bits described in Section 4, which filters out 5/8 of the candidates. First we
consider bits 112-113, 105-106, 121-122, 114-115 as part of Kg instead of Kf , so
that all the keys involved in the BD relation are part of Kg. We also use some
precomputations. For each Kb, we compute s5, and we evaluate RA(t5) and
RB(t5) for 2 guesses of t5. Then, we consider the potential candidates from the
forward chunk: for each possible 1-bit value of X4

2 , X4
3 and s4, plus the second

bit of X4
2 ⊕X4

3 ⊕ s4 we guess 1 bit of t4 in order to compute LA(t4) and LB(t4);
then we can filter the corresponding candidates for Kb (we expect 3 candidates
on average). Then for each Kf , we just use this table to recover the candidates.
For the complexity evaluation, we assume that finding a match in the hash table
costs the same as one multiplication. This yields a complexity of:

C = 2108
(

217
8

30
+ 23

10 + 2 + 25

30
+ 220

3

8
· 2

30

)
= 2123.9.

9 On Practical Verification

Especially for the type of cryptanalysis described in this paper where carrying
out an attack in full is computationally infeasible, practical verification of attack
details and steps is important in order to get confidence in it. To address this,
we explicitly state the following:

– We have implemented the dimension-3 biclique construction of Section 5,
which works as expected, and takes a few hours on a desktop PC. An example
is given in Appendix A.
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– We have implemented the improved matching procedure as described in
Section 4. We have verified that we have the expected number of remaining
candidates.

10 Concluding discussion

We showed that a number of extensions to the recently introduced biclique frame-
work and specific properties of IDEA eventually lead to the cryptanalysis of the
full version of the cipher. Though IDEA withstood all cryptanalysis attempts in
the last 20 years, it is now vulnerable to key recovery methods that are about 4
times faster than brute force search. We also show attacks on the first 7.5 rounds
where the attack algorithm does not have to consider each key separately, result-
ing in a larger complexity advantage. For smaller number of rounds we surpass
the best attacks so far, hence refuting the view that biclique attacks lead only
to a small advantage over the brute-force.

We emphasize the use of several techniques from hash function cryptanalysis,
which are usually associated with the start-in-the-middle framework. Following
the recent work on AES, we demonstrate that these techniques are important
also in secret-key cryptanalysis. We foresee widespread application of tools aimed
for data complexity reduction, which could be based on our concept of narrow-
bicliques.

As a natural application of a new concept we would again name AES. Be-
ing able to construct high-dimensional bicliques rather deep in the cipher with
reasonable data complexity, an adversary might be able to get a significant ad-
vantage over brute-force for the full number of rounds, and possibly even present
the best attacks on already broken number of rounds. As meet-in-the-middle at-
tacks might potentially work in 2n/2 time, it would be extremely interesting to
figure out the number of AES rounds that could be broken with this almost
practical complexity.

This line of work opens up more questions that we feel are important:

1. Bounds for biclique attacks. With a biclique attack in this paper that is
218 times faster than brute force (or 226.5 times faster if large sequentially
accessable memory is available) an earlier intuition that this class of attacks
only allows for rather small speed-ups over brute force search is dismissed.
Nevertheless it may be possible to give meaningful bounds on classes of
biclique attacks.

2. How to best defend against biclique cryptanalysis? In this paper we see
that even a more conservative key schedule design for IDEA is almost as
vulnerable. It seems as if only very expensive key schedule designs, i.e. those
where the key can not easily be deduced from subkey material, would provide
resistance. This remains a topic of future work, though.
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A Biclique example

We give an example of a dimension-3 biclique for the first 1.5 round of IDEA. It is
built with the bits of Kg set to the key 0x0102030405060708090a0b0c0d0e0f10,
and the bits used for Kf and Kb are 41, 48, 49 and 116, 117, 118, respectively.
Each plaintext has 11 bits set to zero as explained in Section 5.

P0 1754 5580 00c0 d05b S0 7092 7352 f5b1 7272

P1 0f10 ca00 a440 aa79 S1 7092 7152 f5b1 7272

P2 bda8 f580 a0a0 c6b7 S2 7092 6f52 f5b1 7272

P3 17c4 86a0 6f00 6c69 S3 7092 6d52 f5b1 7272

P4 e9fe 6500 5100 143a S4 7092 6b52 f5b1 7272

P5 9252 0200 ec00 230c S5 7092 6952 f5b1 7272

P6 aa8e b5a0 5fc0 16ef S6 7092 6752 f5b1 7272

P7 4a9e c520 b040 ecc0 S7 7092 6552 f5b1 7272
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