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Abstract. Traditionally, symmetric-key message authentication codes
(MACs) are easily built from pseudorandom functions (PRFs). In this
work we propose a wide variety of other approaches to building efficient
MACs, without going through a PRF first. In particular, unlike deter-
ministic PRF-based MACs, where each message has a unique valid tag,
we give a number of probabilistic MAC constructions from various other
primitives/assumptions. Our main results are summarized as follows:

– We show several new probabilistic MAC constructions from a vari-
ety of general assumptions, including CCA-secure encryption, Hash
Proof Systems and key-homomorphic weak PRFs. By instantiating
these frameworks under concrete number theoretic assumptions, we
get several schemes which are more efficient than just using a state-
of-the-art PRF instantiation under the corresponding assumption.

– For probabilistic MACs, unlike deterministic ones, unforgeability
against a chosen message attack (uf-cma) alone does not imply se-
curity if the adversary can additionally make verification queries
(uf-cmva). We give an efficient generic transformation from any uf-cma

secure MAC which is “message-hiding” into a uf-cmva secure MAC.
This resolves the main open problem of Kiltz et al. from Euro-
crypt’11; By using our transformation on their constructions, we
get the first efficient MACs from the LPN assumption.

– While all our new MAC constructions immediately give efficient ac-
tively secure, two-round symmetric-key identification schemes, we
also show a very simple, three-round actively secure identification
protocol from any weak PRF. In particular, the resulting protocol is
much more efficient than the trivial approach of building a regular
PRF from a weak PRF.

1 Introduction

Message Authentication Codes (MACs) are one of the most fundamental prim-
itives in cryptography. Historically, a vast majority of MAC constructions are
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based on pseudorandom functions (PRFs).5 In particular, since a PRF with
large output domain is also a MAC, most research on symmetric-key authen-
tication concentrated on designing and improving various PRF constructions.
This is done either using very fast heuristic constructions, such as block-cipher
based PRFs (e.g., CBC-MAC [6, 8] or HMAC [5, 4]), or using elegant, but slower
number-theoretic constructions, such as the Naor-Reingold (NR) PRF [33]. The
former have the speed advantage, but cannot be reduced to simple number-
theoretic hardness assumptions (such as the DDH assumption for NR-PRF),
and are not friendly to efficient zero-knowledge proofs about authenticated mes-
sages and/or their tags, which are needed in some important applications, such
as compact e-cash [12]. On the other hand, the latter are comparably inefficient,
due to their reliance on number theory. Somewhat surprisingly, the inefficiency
of existing number-theoretic PRFs goes beyond what one would expect by the
mere fact that “symmetric-key” operations are replaced by the more expensive
“public-key” operations. For example, when building a PRF based on discrete-
log-type of assumptions, such as DDH, one would naturally expect that the
secret key would contain a constant number of group elements/exponents, and
the PRF evaluation should cost at most a constant number of exponentiations. In
contrast, state-of-the art discrete-log-type PRFs either require a key of quadratic
size in the security parameter (e.g. the NR PRF [33]), or a number of exponenti-
ations linear in the security parameter (e.g., tree-type PRFs based on the GGM
transform [20] applied to some discrete-log-type pseudorandom generator), or
are based on exotic and relatively untested assumptions (e.g., Dodis-Yampolskiy
PRF [17] based on the so called “q-DDHI” assumption). In particular, to the
best of our knowledge, prior to this work it was unknown how to build a MAC
(let alone a PRF) based on the classical DDH assumption, where the secret
key consists of a constant number of group elements / exponents and the MAC
evaluation only require a constant number of exponentiations.

Of course, one way to improve such deficiencies of existing “algebraic MACs”
would be to improve the corresponding “algebraic PRF” constructions. However,
as the starting point of our work, we observe that there might exist alternative
approaches to building efficient MACs, without going through a PRF first. For ex-
ample, MACs only need to be unpredictable, so we might be able to build efficient
MACs from computational assumptions (e.g., CDH rather than DDH), with-
out expensive transformations from unpredictability-to-pseudorandomness [34].
Alternatively, even when relying on decisional assumptions (e.g. DDH), MAC
constructions are allowed to be probabilistic. In contrast, building a PRF effec-
tively forces one to design a MAC where there is only one valid tag for each
message, which turns out to be a serious limitation for algebraic constructions.6

5 Or block ciphers, which, for the purposes of analysis, are anyway treated as length-
preserving PRFs.

6 The observation that probabilistic MAC might have advantages over the folklore
“PRF-is-a-MAC” paradigm is not new, and goes back to at least Wegman and
Carter [40], and several other follow-up works (e.g., [30, 25, 16]). However, most prior
probabilistic MACs were still explicitly based on a PRF or a block cipher.



For example, it is instructive to look at the corresponding “public-key domain”
of digital signatures, where forcing the scheme to have a unique valid signature
appears to be very hard [32, 11] and, yet, not necessary for most applications
of digital signatures. In particular, prominent digital signature schemes in the
standard model7 [11, 39] are all probabilistic. In fact, such signature schemes
trivially give MACs. Of course, such MACs are not necessarily as efficient as
they could be, since they “unnecessarily” support public verification.8 However,
the point is that such trivial signature-based constructions already give a way to
build relatively efficient “algebraic MACs” without building an “algebraic PRF”
first.

Yet another motivation to building probabilistic MAC comes from the desire
of building efficient MACs (and, more generally, symmetric-key authentication
protocols) from the Learning Parity with Noise [24, 26, 28, 29] (LPN) assumption.
This very simple assumption states that one cannot recover a random vector
x from any polynomial number of noisy parities (a, 〈a, x〉 + e), where a is a
random vector and e is small random noise, and typically leads to very simple
and efficient schemes [19, 2, 38, 24, 26, 28, 29]. However, the critical dependence
on random errors makes it very hard to design deterministic primitives, such
as PRFs, from the LPN assumption. Interestingly, this ambitious challenge was
very recently overcome for a more complicated Learning With Errors (LWE)
assumption by [3], who build a PRF based on a new (but natural) variant of
the LWE assumption. However, the resulting PRF has the same deficiencies
(e.g., large secret key) as the NR-PRF, and is much less efficient than the direct
probabilistic MAC constructions from LPN/LWE assumptions recently obtained
by [29].

1.1 Our Results

Motivated by the above considerations, in this work we initiate a systematic
study of different methods for building efficient probabilistic MACs from a va-
riety assumptions, both general and specific, without going through the PRF
route. Our results can be summarized as follows:

Dealing with Verification Queries and Other Transformations. The desired no-
tion of security for probabilistic MACs is called “unforgeability against chosen
message and verification attack” uf-cmva, where an attacker can arbitrarily in-
terleave tagging queries (also called signing queries) and verification queries. For
deterministic MACs, where every message corresponds to exactly one possible
tag, this notion is equivalent to just considering a weaker notion called uf-cma

(unforgeability under chosen message attack) where the attacker can only make

7 In fact, even in the random oracle model there are noticeable advantages. E.g., full
domain hash (FDH) signatures [9] have worse exact security than probabilistic FDH
signatures, while Fiat-Shamir signatures [18] are inherently probabilistic.

8 Indeed, one of our results, described shortly, will be about “optimizing” such
signature-based constructions.



tagging queries but no verification queries. This is because, in the deterministic
case, the answers to verification queries are completely predictable to an attacker:
for any message for which a tagging query was already made the attacker knows
the unique tag on which the verification oracle will answer affirmatively, and for
any new message finding such a tag would be equivalent to breaking security
without the help of the verification oracle. Unfortunately, as discussed by [7],
the situation is more complicated for the case of probabilistic MACs where the
attacker might potentially get additional information by modifying a valid tag
of some message and seeing if this modified tag is still valid for the same mes-
sage. In fact, some important MAC constructions, such as the already mentioned
“basic” LPN-based construction of [29], suffer from such attacks and are only
uf-cma, but not uf-cmva secure.

In Section 3 we give several general transformations for probabilistic MACs.
The most important one, illustrated in Figure 1, efficiently turns a uf-cma secure
(i.e. unforgeable without verification queries) MAC which is “message hiding”
(a property we call ind-cma) into a uf-cmva secure (i.e. unforgeable with verifica-
tion queries) MAC. This transformation is very efficient, requiring just a small
amount of extra randomness and one invocation of a pairwise independent hash
function with fairly short output.

This transformation solves the main open problem left in Kiltz et al. [29], who
construct uf-cmva MACs from the learning parity with noise (LPN) problem. We
remark that [29] already implicitly give an uf-cma to uf-cmva transformation, but
it is quite inefficient, requiring the evaluation of a pairwise-independent permu-
tation over the entire tag of a uf-cma secure MAC. We list the two constructions
of uf-cma and suf-cma LPN based MACs from [29] in Section 4.5. Using our
transformations, we get uf-cmva secure MACs with basically the same efficiency
as these constructions.

Our second transformation extends the domain of an ind-cma secure MAC. A
well known technique to extend the domain of PRFs is the “hash then encrypt”
approach where one applies an almost universal hash function to the (long) input
before applying the PRF. This approach fails for MACs, but we show that it
works if the MAC is ind-cma secure. A similar observation has been already made
by Bellare [4] for “privacy preserving” MACs.

The last transformation, which actually does nothing except possibly restrict-
ing the message domain, states that a MAC which is only selectively secure is
also fully secure, albeit with quite a large loss in security. Such a transformation
was already proposed in the context of identity based encryption [10], and used
implicitly in the construction of LPN based MACs in [29].

New Constructions of Probabilistic MACs. In Section 4, we present a wide vari-
ety of new MAC constructions.

First, we show how to build an efficient MAC from any chosen ciphertext
attack (CCA) secure (symmetric- or public-key) encryption. At first glance, us-
ing CCA-secure encryption seems like a complete “overkill” for building MACs.
In fact, in the symmetric-key setting most CCA-secure encryption schemes are
actually built from MACs; e.g., via the encrypt-then-MAC paradigm. However,



if we are interested in obtaining number-theoretic/algebraic MACs using this ap-
proach, we would start with public-key CCA-secure encryption, such as Cramer-
Shoup encryption [15] or many of the subsequent schemes (e.g. [31, 22, 23, 37,
21]). Quite remarkably, CCA-secure encryption has received so much attention
lately, and the state-of-the-art constructions are so optimized by now, that the
MACs resulting from our simple transformation appear to be better, at least in
certain criteria, than the existing PRF constructions from the same assumptions.
For example, by using any state-of-the-art DDH-based scheme, such as those
by [15, 31, 22], we immediately obtain a probabilistic DDH-based MAC where
both the secret key and the tag are of constant size, and the tagging/verification
each take a constant number of exponentiations. As we mentioned, no such DDH-
based MAC was known prior to our work. In fact, several recent constructions
built efficient CCA-secure encryption schemes from computational assumptions,
such as CDH and factoring [13, 23, 21]. Although those schemes are less efficient
than the corresponding schemes based on decisional assumptions, they appear
to be more efficient than (or at least comparable with) the best known PRF
constructions from the same assumption. For example, the best factoring-based
PRF of [35] has a quadratic-size secret key, while our construction based on
the Hofheinz-Kiltz [23] CCA-encryption from factoring would have a linear-size
(constant number of group elements) secret key.

Second, we give an efficient MAC construction from any Hash Proof Systems
(HPS) [15]. Hash Proof Systems were originally defined [15] for the purpose
of building CCA-secure public-key encryption schemes, but have found many
other applications since. Here we continue this trend and give a direct MAC
construction from HPS, which is more optimized than building a CCA-secure
encryption from HPS, and then applying our prior transformation above.

Third, we give a simple construction of probabilistic MACs from any key-
homomorphic weak PRF (hwPRF). Recall, a weak PRF [33] is a weakening of a
regular PRF, where the attacker can only see the PRF value at random points.
This weakening might result in much more efficient instantiations for a variety
of number-theoretic assumptions. For example, under the DDH assumption, the
basic modulo exponentiation fk(m) = mk is already a weak PRF, while the
regular NR-PRF from DDH is much less efficient. We say that such a weak
PRF fk(m) is key homomorphic (over appropriate algebraic domain and range)
if fak1+bk2

(m) = a · fk1
(m) + b · fk2

(m). (For example, the DDH-based weak
PRF above clearly has this property.) We actually give two probabilistic MACs
from any hwPRF. Our basic MAC is very simple and efficient, but only achieves
so called selective security, meaning that the attacker has to commit to the
message to be forged before the start of the attack. It is somewhat reminiscent
(in terms of its design and proof technique, but not in any formal way) to the
Boneh-Boyen selectively-secure signature scheme [11]. In contrast, our second
construction borrows the ideas from (fully secure) Waters signature scheme [39],
and builds a less efficient standard MAC from any hwPRF. Interestingly, both
constructions are only uf-cma secure, but do not appear to be uf-cmva-secure.
Luckily, our MACs are easily seen to be “message-hiding” (i.e., ind-cma-secure),



so we can apply our efficient generic transformation to argue full uf-cmva security
for both resulting constructions.

Our final MAC constructions are from signature schemes. Recall, any signa-
ture scheme trivially gives a MAC which “unnecessarily” supports public ver-
ification. This suggests that such constructions might be subject to significant
optimizations when “downgraded” into a MAC, both in terms of efficiency and
the underlying security assumption. Indeed, we show that this is true for the
(selectively-secure) Boneh-Boyen [11] signature scheme, and the (fully-secure)
Waters [39] signature schemes. For example, as signatures, both schemes re-
quire a bilinear group with a pairing, and are based on the CDH assumption in
such a group. We make a simple observation that when public verification is no
longer required, no pairing computations are needed, and standard (non-bilinear)
groups can be used. However, in doing so we can only prove (selective or full)
security under the gap-Diffie-Hellman assumption, which states that CDH is still
hard even given the DDH oracle. Luckily, we show how to apply the “twinning”
technique of Cash et al. [13] to get efficient MAC variants of both schemes which
can be proven secure under the standard CDH assumption.

Symmetric-Key Authentication Protocols. While all our new MAC constructions
immediately give efficient actively secure, two-round symmetric-key identifica-
tion schemes, in Section 4.6 we also show a very simple, three-round actively
secure identification protocol from any weak PRF (wPRF). In particular, the
resulting protocol is much more efficient than the trivial approach of building
a regular PRF from a weak PRF [33], and then doing the standard PRF-based
authentication. Given that all our prior MAC constructions required some al-
gebraic structure (which was indeed one of our motivations), we find a general
(and very efficient) construction of actively secure authentication protocols from
any wPRF to be very interesting.

Our protocol could be viewed as an abstraction of the LPN-based actively
secure authentication protocol of Katz and Shin [27], which in turn consists
of a parallel repetition of the HB+ protocol of Juels and Weiss [26]. Although
the LPN based setting introduces some complications due to handling of the
errors, the high level of our protocol and the security proof abstracts away the
corresponding proofs from [27, 26]. In fact, we could relax the notion of wPRF
slightly to allow for probabilistic computation with approximate correctness, so
that the protocol of [27] will become a special case of our wPRF-based protocol.

2 Definitions

2.1 Notation

We denote the set of integers modulo an integer q ≥ 1 by Zq. For a positive
integer k, [k] denotes the set {1, . . . , k}; [0] is the empty set. For a set X , x←R X
denotes sampling x from X according to the uniform distribution.



2.2 Message Authentication Codes

Amessage authentication codeMAC = {KG,TAG,VRFY} is a triple of algorithms
with associated key space K, message spaceM, and tag space T .
– Key Generation. The probabilistic key-generation algorithm k ← KG(1λ)

takes as input a security parameter λ ∈ N (in unary) and outputs a secret
key k ∈ K.

– Tagging. The probabilistic authentication algorithm σ ← TAGk(m) takes as
input a secret key k ∈ K and a message m ∈M and outputs an authentica-
tion tag σ ∈ T .

– Verification. The deterministic verification algorithm VRFYk(m,σ) takes as
input a secret key k ∈ K, a message m ∈M and a tag σ ∈ T and outputs a
decision: {accept, reject}.

If the TAG algorithm is deterministic one does not have to explicitly define VRFY,
since it is already defined by the TAG algorithm as VRFYk(m,σ) = accept iff
TAGk(m) = σ. We say that MAC has completeness error α if for all m ∈ M and
λ ∈ N,

Pr[VRFYk(m,σ) = reject ; k ← KG(1λ) , σ ← TAGk(m)] ≤ α.

Security. The standard security notion for a randomized MAC is unforgeabil-
ity under chosen message and chosen verification queries attack (uf-cmva). We
denote by Advuf-cmva

MAC (A, λ,QT , QV ), the advantage of the adversary A in forging
a message for a random key k ← KG(1λ), where A can make QT queries to
TAGk(·) and QV queries to VRFYk(·, ·). Formally this is the probability that the
following experiment outputs 1.

Experiment Expuf-cmva

MAC (A, λ,QT , QV )
k← KG(1λ)

Invoke ATAGk(·),VRFYk(·,·) who can make up to QT queries to TAGk(·)
and QV queries to VRFYk(·, ·).

Output 1 if A made a query (m∗, σ∗) to VRFYk(·, ·) where
1. VRFYk(m

∗, σ) = accept

2. A did not already make the query m∗ to TAGk(·)
Output 0 otherwise.

We also define a weaker notion of selective security, captured by the experiment
Expsuf-cmva

MAC , which is defined in the same way as above with the only difference
that A has to specify to the target message m∗ (that causes the experiment to
output 1) ahead of time, before making any queries to its oracles.

Definition 1 ((Selective) unforgeability under chosen message (& veri-
fication) attack.). A MAC is (t, QT , QV , ε)-uf-cmva secure if for any A running
in time t we have Pr[Expuf-cmva

MAC (A, λ,QT , QV ) = 1] ≤ ε. It is (t, QT , ε)-uf-cma

secure if it is (t, QT , 1, ε)-uf-cmva-secure. That is, uf-cma security does not allow
the adversary to make any verification queries except for the one forgery attempt.
We also define the selective security notions suf-cma and suf-cmva security anal-
ogously by considering the experiment Expsuf-cmva(MAC).



In the next section we show a simple generic transformation which turns any
uf-cma-secure MAC into a uf-cmva-secure MAC. For this transformation to work,
we need one extra non-standard property for MAC to hold, namely that tags
computationally “hide” the message. A similar notion called “privacy preserving
MACs” was considered by Bellare [4]. His notion is for deterministic MACs,
whereas our notion can only be achieved for probabilistic MACs.

Definition 2 (ind-cma: indistinguishability under chosen message at-
tack). A MAC is (t, QT , ε)-ind-cma secure if no adversary A running in time t
can distinguish tags for chosen messages from tags for a fixed message, say 0,
i.e.

∣

∣

∣

∣

Pr
k←KG(1λ)

[ATAGk(·)(1λ) = 1]− Pr
k←KG(1λ)

[ATAGk(0)(1λ) = 1]

∣

∣

∣

∣

≤ ε .

Here TAGk(0) is an oracle which ignores its input, and outputs a tag for some
fixed message 0 using key K. Note that a MAC that is secure against ind-cma

adversaries must be probabilistic, otherwise A can trivially distinguish by queries
on two different messages m 6= m′, and checking if the tags she receives are
identical, which will be the case iff the oracle implements TAGk(0).

3 Transformations for MACs

In this section we give some general transformations for MACs as discussed in
the introduction.

3.1 From One to Multiple Verification Queries: uf-cma + ind-cma ⇒

uf-cmva

Let µ = µ(λ) denote a statistical security parameter and let H be a fam-
ily of pairwise independent hash functions h : T → {0, 1}µ. From MAC =
{KG,TAG,VRFY} with key space K, message spaceM×{0, 1}µ, and tag space
T we construct MAC = {KG,TAG,VRFY} with key space K×H, message space
M, and tag space T × {0, 1}µ as follows.
– Key Generation. Algorithm KG(1λ) runs k ← KG(1λ) and samples a pairwise

independent hash function h← H with h : T → {0, 1}µ. It outputs (k, h) as
the secret key.

– Tagging. The tagging algorithm TAG(k,h)(m) samples b←R {0, 1}µ and runs
z ← TAGk(m‖b). It returns (z, h(z)⊕ b) as the tag.

m ‖ TAG(K, .) z

h

$ b ⊕ h(z)⊕ b

h m

⊕ ‖ VRFY(K, .)

Fig. 1. TAG and VRFY with key (k, h), message m and randomness b.



– Verification. The verification algorithm VRFY(k,h)(m, (z, y)) computes b =
y ⊕ h(z) and outputs VRFYk(m‖b, z).

Theorem 1 (uf-cma + ind-cma ⇒ uf-cmva). For any t, QT , QV ∈ N, ε > 0, if
MAC is
– (t, QT , ε)-uf-cma secure (unforgeable with no verification queries)
– (t, QT , ε)-ind-cma secure (indistinguishable)

then MAC is (t′, QT , QV , ε
′)-uf-cmva secure (unforgeable with verification queries)

where
t′ ≈ t ε′ = 2QV ε+ 2QV QT /2

µ.

The proof of Theorem 1 can be found in the full version of this paper.

3.2 Domain Extension for ind-cma MACs

A simple way to extend the domain of a pseudorandom function from n to
m > n bits is the “hash then encrypt” paradigm, where one first hashes the m
bit input down to n bits using an ǫ-universal function, before applying the PRF.
Unfortunately this simple trick does not work for (deterministic or probabilistic)
MACs. Informally, the reason is that the output of a MAC does not “hide” its
input, and thus an adversary can potentially learn the key of the hash function
used (once she knows the key, she can find collisions for g which allows to break
the MAC.) Below we show that, not surprisingly, for MACs where we explicitly
require that they hide their input, as captured by the ind-cma notion, extending
the domain using a universal hash function is safe.

Proposition 1 (Domain Extension for ind-cma Secure MACs). Consider
MAC = {KG,TAG,VRFY} with (small) message space M = {0, 1}n, and let
MAC′ = {KG′,TAG′,VRFY′} for large message space {0, 1}m be derived from
MAC by first hashing the message using an β-universal hash function g : {0, 1}ℓ×
{0, 1}m → {0, 1}n. (Using existing constructions we can set β = 2−n+1, ℓ =
4(n+ logm), see the full version of the paper for details.) If MAC is

(t, Q, ε)− uf-cma secure and (t, Q, ε)− ind-cma secure

then, for any Q′ ≤ Q, MAC′ is

(1) (t′, Q′, 2ε+Q′β)− uf-cma secure and (2) (t′, Q′, ε)− ind-cma secure

where t′ ≈ t can be derived from the proof.

The proof of Proposition 1 can be found in the full version of this paper.

3.3 From Selective to Full Security: suf-cma ⇒ uf-cma

In this section we make the simple observation, that every selectively chosen-
message secure MAC is also a chosen-message secure MAC, as we can simply
guess the forgery. This guessing will loose a factor 2µ in security if the domain
is {0, 1}µ.



Proposition 2 (From selective to full security). Consider a MAC MAC =
{KG,TAG,VRFY} with domain {0, 1}µ. If MAC is (t, Q, ε)−suf-cma secure, then
it is (t, Q, ε2µ)− uf-cma secure.

The proof of Proposition 2 can be found in the full version of this paper.

Remark 1 (Security Loss and Domain Extension). The security loss from the
above transformation is 2µ for MACs with message space {0, 1}µ. In order to
keep the security loss small, we are better off if we start with a MAC that has
a small domain, or if we artificially restrict its domain to the first µ bits. Once
we get a fully secure MAC on a small domain, we can always apply the domain-
extension trick from Section 3.2 (using β = 2−µ+1) to expand this domain back
up. Using both transformations together, we can turn any MAC that is (t, Q, ε)-
suf-cma and ind-cma secure into a (t′, Q′, ε′)-uf-cma and (t′, Q′, ε)-ind-cma secure
MAC with the same-size (or arbitrarily larger) domain and where t′ ≈ t, and ε′

depends on our arbitrary choice of µ as ε′ = ε2µ+1+Q′/2µ−1. In particular, if for
some super-polynomial t, Q we assume a known corresponding negligible value
ε such that the original MAC is (t, Q, ε)-suf-cma, we can set µ = log(1/ε)/2
and the resulting MAC will be secure in the standard asymptotic sense - i.e.
(t′, Q′, ǫ′)-uf-cma for all polynomial t′, Q′, 1/ǫ′.

4 Constructions of Authentication Protocols

In this section we provide a number of MACs from a variety of underlying prim-
itives such as CCA-secure encryption, hash proof systems [15], homomorphic
weak PRFs, and digital signatures. For concreteness, the constructions obtained
from Diffie-Hellman type assumptions are summarized in Table 1; the construc-
tions we obtain from the LPN assumption are summarized in Table 2. The
constructions which are only uf-cma or suf-cma secure can be boosted to full
cmva-security using the transformations from Section 3.

MAC construction Secret Key k Tag σ on m Security Assumption

MACCS (§4.1) (ω, x, x′, y, k2) ∈ Z
4
p ×G (U,Uω, UxH(U,V1,m)+x′

, Uz · k2) ∈ G
4

uf-cmva DDH

MACHPS (§4.2) (ω, x, x′) ∈ Z
3
p (U,Uω, UxH(U,V1,m)+x′

) ∈ G
3

uf-cmva DDH

MAChwPRF (§4.3) (x, x′) ∈ Z
2
p (U,Uxm+x′

) ∈ G
2

suf-cma DDH

MACWhwPRF (§4.3) (x, x′

0, . . . , x
′

λ) ∈ Z
λ+2
p (U,Ux+

∑
x′

i
mi) ∈ G

2
uf-cma DDH

MACBB (§4.4) (x, x′, y) ∈ Z
3
p (U, gxy · Uxm+x′

) ∈ G
2

suf-cmva gap-CDH

MACTBB (§4.4) (x1, x2, x
′

1, x
′

2, y) ∈ Z
5
p (U, gx1yUx1m+x′

1 , gx2yUx2m+x′

2) ∈ G
3
suf-cmva CDH

MACWaters (§4.4) (x, y, x′

1, . . . , x
′

λ) ∈ Z
λ+2
p (U, gxy · Ux+

∑
x′

i
mi) ∈ G

2
uf-cmva gap-CDH

Table 1. Overview of MAC constructions over prime-order groups. In all protocols,
TAGk(m) first generates U ←R G and derives the rest of σ deterministically from U

and k.



MAC construction Key size Tag size Security Assumption

MACLPN (§4.5) Z
2ℓ
2 Z

(ℓ+1)×n

2 suf-cma & ind-cma LPN

MACBilinLPN (§4.5) Z
ℓ×λ
2 Z

(ℓ+1)×n

2 uf-cma & ind-cma LPN

Table 2. Overview of MAC constructions from the LPN problem from [29].

4.1 Constructions from CCA-secure Encryption

Let E = (KGE,ENC,DEC) be a (t, QE , QD, ǫ)-CCA secure labeled encryption
scheme (see the full version of the paper for a formal definition.) Define MAC =
(KGMAC,TAG,VRFY) as follows.
– Key Generation. k = (k1, k2) ← KGMAC(1

λ) samples k1 ← KGE(1
λ) and

k2 ←R {0, 1}λ.
– Tagging. TAG(k1,k2)(m) samples σ ← ENCk1

(k2,m), i.e., it encrypts the
plaintext k2 using m as a label.

– Verification. VRFY(k1,k2)(m,σ) output accept iff DECk1
(c,m)

?

= k2.

Theorem 2. Assume that E is a (t, QE , QD, ǫ)-CCA secure labeled encryption
scheme. Then the construction MAC above is (t′, QT , QV , ǫ

′)-uf-cmva secure with
t′ ≈ t, QT = QE, QV = QD and ǫ′ = QT · ǫ+ 2−λ.

The proof of Theorem 2 can be found in the full version of this paper.

Examples. There exists CCA-secure (public-key) encryption schemes from a
variety of assumptions such as DDH [14, 31, 22], Paillier [15], lattices [37], and
factoring [23]. In Table 1 we describe MACCS, which is MACENC instantiated with
Cramer-Shoup encryption.

4.2 Constructions from Hash proof Systems

We now give a more direct construction of a MAC from any hash proof system.
We recall the notion of (labeled) hash proof systems as introduced by Cramer
and Shoup [15]. Let C,K be sets and V ⊂ C a language. In the context of public-
key encryption (and viewing a hash proof system as a labeled key encapsulation
mechanism (KEM) with “special algebraic properties”) one may think of C as
the set of all ciphertexts, V ⊂ C as the set of all valid (consistent) ciphertexts,
and K as the set of all symmetric keys. Let Λℓ

k
: C × L → K be a labeled hash

function indexed with k ∈ SK and label ℓ ∈ L, where SK and L are sets. A hash
function Λk is projective if there exists a projection µ : SK → PK such that
µ(k) ∈ PK defines the action of Λℓ

k
over the subset V . That is, for every C ∈ V ,

the value K = Λℓ
k
(C ) is uniquely determined by µ(k), C . In contrast, nothing

is guaranteed for C ∈ C \ V , and it may not be possible to compute Λk(C ) from
µ(k) and C . A projective hash function is universal2 if for all C ,C ∗ ∈ C \ V ,
ℓ, ℓ∗ ∈ L with ℓ 6= ℓ∗,

(pk , Λℓ∗

k
(C ∗), Λℓ

k
(C )) = (pk ,K, Λℓ

k
(C )) (1)



(as joint distributions) where in the above pk = µ(k) for k ←R SK andK ←R K.
It is extracting if for all C ∈ C (including valid ones) and ℓ ∈ L,

Λℓ
k
(C ) = K (2)

where in the above k ←R SK and K ←R K.
A labeled hash proof system HPS = (Param,Pub,Priv) consists of three algo-

rithms. The randomized algorithm Param(1k) generates parametrized instances
of params = (group,K, C,V ,PK,SK, Λ(·) : C → K, µ : SK → PK), where group
may contain some additional structural parameters. The deterministic public
evaluation algorithm Pub inputs the projection key pk = µ(k), C ∈ V , a witness
r of the fact that C ∈ V , and a label ℓ ∈ L, and returns K = Λℓ

k
(C ). The de-

terministic private evaluation algorithm Priv inputs k ∈ SK and returns Λℓ
k
(C ),

without knowing a witness. We further assume that µ is efficiently computable
and that there are efficient algorithms given for sampling k ∈ SK, sampling
C ∈ V uniformly (or negligibly close to) together with a witness r, sampling
C ∈ C uniformly, and for checking membership in C.

As computational problem we require that the subset membership problem is
(ǫ, t)-hard in HPS which means that for all adversaries B that run in time ≤ t,

∣

∣Pr[B(C,V ,C1) = 1]− Pr[B(C,V ,C0) = 1]
∣

∣ ≤ ǫ

where C is taken from the output of Param(1k), C1 ←R C and C0 ←R C \ V .

Construction. We define a MAC MACHPS = {KG,TAG,VRFY} with associated
key space K = SK, message spaceM = L, and tag space T = C ×K as follows.
– Key Generation. The key-generation algorithm KG samples k ←R SK and

outputs k.
– Tagging. The probabilistic authentication algorithm TAGk(m) picks C ←R

V . It computes K = Λm
k
(C ) ∈ K and outputs σ = (C ,K).

– Verification. The verification algorithm VRFYk(m,σ) parses σ = (C ,K) and
outputs accept iff K = Λm

k
(C ).

Note that the construction does not use the public evaluation algorithm Pub of
HPS. Both tagging and verification only use the private evaluation algorithm
Priv.

Theorem 3. Let HPS be universal2 and extracting. If the subset membership
problem is (t, ε)-hard, then MACHPS is (t′, ε′, QT , QV )-uf-cmva secure with ε′ =
QT ε+O(QTQV )/|K| and t′ ≈ t.

The proof of Theorem 3 can be found in the full version of this paper.

Example. We recall a universal2 HPS by Cramer and Shoup [15], whose hard
subset membership problem is based on the DDH assumption. Let G be a group
of prime-order p and let g1, g2 be two independent generators of G. Define L =
Zp, C = G2 and V = {(gr1, gr2) ⊂ G2 : r ∈ Zp}. The value r ∈ Zp is a witness
of C ∈ V . Let SK = Z4

p, PK = G2, and K = G. For k = (x1, x2, y1, y2) ∈ Z4
p,



define µ(k) = (gx1

1 gx2

2 , gy1

1 gy2

2 ). This defines the output of Param(1k). For C =
(c1, c2) ∈ C and ℓ ∈ L, define

Λℓ
k
(C ) := cx1ℓ+y1

1 cx2ℓ+y2

2 . (3)

This defines Priv(k ,C ). Given pk = µ(k) = (X1, X2), C ∈ V and a witness
r ∈ Zp such that C = (gr1 , g

r
2) public evaluation Pub(pk ,C , r) computes K =

Λk (C ) as K = (Xℓ
1X2)

r. Correctness follows by (3) and the definition of µ.
This completes the description of HPS. Clearly, under the DDH assumption, the
subset membership problem is hard in HPS. Moreover, this HPS is known to be
universal2 [15] and can be verified to be extracting.

Applying our construction from Theorem 3 we get the following MAC which
we give in its equivalent (but more efficient) “explicit rejection” variant. Let G be
a group of prime order p and g be a random generator of G. LetH : G2×M→ Zp

be a (target) collision resistant hash function. We define a message authentication
code MACHPS = {KG,TAG,VRFY} with associated key space K = Z3

p, message
spaceM, and tag space T = G3 as follows.

– Key Generation. The key-generation algorithm KG outputs a secret key k =

(ω, x, x′)←R Z3
p.

– Tagging.The probabilistic authentication algorithmTAGk(m) samples U ←R

G and outputs an authentication tag σ = (U, V1, V2) = (U,Uω, Uxℓ+x′

) ∈ G3,
where ℓ = H(U, V1,m).

– Verification. The verification algorithm VRFYk(m,σ) parses σ = (U, V1, V2) ∈
G3 and outputs accept iff Aω = V1 and Uxℓ+x′

= V2, where ℓ = H(U, V1,m).

4.3 Construction from Key-Homomorphic Weak-PRFs

Definition 3. Let K = K(λ),X = X (λ),Y = Y(λ) and {fk : X 7→ Y}k∈K be a
weak PRF. We say that {fk} is key-homomorphic weak PRF if K,Y are groups
with an efficient group operation (written additively) of prime order q = q(λ)
and if for any fixed x ∈ X the function fk(x) is a group homomorphism of
K 7→ Y. In particular, for any k1, k2 ∈ K and a, b ∈ Zq, we have fa·k1+b·k2

(x) =
a · fk1

(x) + b · fk2
(x).

Construction. Let {fk : X 7→ Y}k∈K be a key-homomorphic weak PRF where
K,Y are of prime order q = q(λ). Define MAC = (KG,TAG,VRFY) with key-
space K ×K and message-space Zq via:

– Key Generation. KG(1λ) chooses k1, k2 ←R K uniformly at random and out-
puts k = (k1, k2).

– Tagging. TAG(k1,k2)(m) chooses x ← X uniformly at random and sets y =
fm·k1+k2

(x). Output σ = (x, y).
– Verification. VRFY(k1,k2)(m,σ) parses σ = (x, y) and outputs accept iff

fm·k1+k2
(x)

?

= y.



Theorem 4. If {fk} is a (t, Q, ǫ)-weak PRF which is key-homomorphic over
groups K,Y of prime order q = q(λ). Then the above construction is a (t′, Q, ǫ′)-
suf-cma-MAC (selective unforgeability, no verification queries) with t′ ≈ t and
ǫ′ = ǫ+ 1/q. It is also (t′, Q, ǫ)-ind-cma.

The proof of Theorem 4 can be found in the full version of this paper.

DDH example. To instantiate the above MAC, we can take some DDH group G

of prime order q. Let K = Zq, X = G, Y = G (which we now write multiplica-
tively) and define fk(x) = xk. This is a weak PRF by the DDH assumption. Fur-
thermore, it is key-homomorphic with fa·k1+b·k2

(x) = (fk1
(x))a(fk2

(x))b. There-
fore, the above construction gives us the suf-cma MAC MAChwPRF for messages
m ∈ Zq, defined by TAGk1,k2

(m) := (g, h) with g ← G and h := gk1·m+k2 . See
Table 1.

LWE example. To obtain another instantiation from the learning with erros
problem, we use a recent construction of a weak PRF implicitly given in [3]. For
integers p < q and x ∈ Zq, define ⌈x⌋p = ⌈(p/q) · x⌋ mod p. For a vector x ∈ Zm

q

we extend this notion component wise to ⌈x⌋p ∈ Zm
p .

We let K = Zm×n
q , X = Zn

q , Y = Zm
p (written additively) and define fK(x) =

⌊K ·x⌉p. This is a weak PRF under the Learning with Rounding (LWR) assump-
tion of [3]. If p, q are integers such that q/p and the inverse LWE error rate 1/α are
super-polynomial in n, then the LWEα assumption implies the LWR assumption
[3]. Furthermore, it is key-homomorphic with fa·K1+b·K2

(x) = afK1
(x)+bfK2

(x)
for almost all inputs x ∈ X . (This is sufficient for our generic construction.)
Therefore, the above construction gives us the suf-cma and ind-cma secure MAC
for messages m ∈ Zq, defined by TAGK1,K2

(m) = (x,y) with x ← Zn
q and

y = ⌊(mK1 +K2)x⌉p. (The message space can be extended to Zn
q by encoding

m ∈ Zn
q into a matrix M ∈ Zn×n

q using a full-rank-difference encoding [1, 29].)

Full security. As an alternative to the transformation from Section 3.3, we sketch
how to use Waters’ argument [39] to obtain a (full) uf-cma-secure MAC from
a homomorphic weak PRF. Let {fk : X 7→ Y}k∈K be a key-homomorphic
weak PRF where K,Y are of prime order q = q(λ). Now define MACWhwPRF =
(KG,TAG,VRFY) with key-space Kλ+1 and message-space {0, 1}λ via:
– KG(1λ): Choose k0 . . . kλ ←R K at random, output k = (k0, . . . , kλ).
– TAGk(m): Choose x←R X uniformly at random and set y = fk0+

∑
kimi

(x).
Output σ = (x, y).

– VRFYk(m,σ): Parse σ = (x, y) and outpt accept iff fk0+
∑

kimi
(x)

?

= y.
The resulting MACWhwPRF can be proved to be uf-cma and ind-cma-secure. A
DDH-based example instantiation is contained in Table 1.

4.4 Constructions from Signatures

Clearly, an uf-cma-secure digital signature scheme directly implies an uf-cmva-
secure MAC. In certain cases we can obtain improved efficiency, as we demon-
strate with a MAC derived from Boneh-Boyen signatures [11]. Concretely, we



can instantiate the MAC in any prime-order groups, no bilinear maps are needed.
We define a message authentication code MACBB = {KG,TAG,VRFY} with as-
sociated key space K = G× Z

2
p, message spaceM = Zp, and tag space T = G

2

as follows.

– Key Generation. The key-generation algorithm KG outputs a secret key k =

(x, x′, y)←R Z3
p.

– Tagging.The probabilistic authentication algorithmTAGk(m) samples U ←R

G and outputs an authentication tag σ = (U, gxy · Uxm+x′

) ∈ G2.
– Verification. The verification algorithm VRFYk(m,σ) parses σ = (U, V ) ∈ G2

and outputs accept iff gxy · Uxm+x′

= V .

Theorem 5. If the gap-CDH assumption is (t, QT +QV , ε)-hard, then MACBB

is (t′, ε′, QT , QV ) suf-cmva secure with ε′ = ε and t′ ≈ t.

The proof of Theorem 5 can be found in the full version of this paper. The
above construction is only secure under the gap-CDH assumption. We now show
how to apply the twinning technique [13] to obtain a MAC secure under the
standard CDH assumption. We define a message authentication code MACTBB =
{KG,TAG,VRFY} with associated key space K = Z5

p, message space M = Zp,
and tag space T = G3 as follows.

– Key Generation. The key-generation algorithm KG outputs a secret key k =

(x1, x
′
1, x2, x

′
2, y)←R Z5

p.
– Tagging. The probabilistic authentication algorithm TAGk(m) picks U ←R

G and outputs an authentication tag σ = (U, V1 = gx1yUx1m+x′

1 , V2 =
gx2yUx2m+x′

2) ∈ G3.
– Verification. The verification algorithm VRFYk(m,σ) parses σ = (U, V1, V2)

and outputs accept iff gx1yUx1m+x′

1 = V1 and gx2yUx2m+x′

2 = V2.

Theorem 6. If the CDH problem is (t, ε)-hard, then MAC is (t′, ε′, QT , QV )
suf-cmva secure with ε′ = ε+O((QT +QV )/p) and t′ ≈ t.

The proof of Theorem 6 can be found in the full version of this paper. We re-
mark that MACBB and MACTBB are only selectively secure (suf-cmva) MACs.
Even though this is sufficient for obtaining man-in-the-middle secure authenti-
cation protocols, to obtain a fully secure MAC MACWaters, one can update the
constructions using Waters’ hash function [39]. The drawback is that the secret
key then contains λ many elements in Zp and that the security reduction is not
tight anymore. We remark that it is also possible to build slightly more efficient
suf-cmva-secure MACs from the (Gap) q-Diffie-Hellman inversion problems.

4.5 Constructions from the LPN assumption

In this section we review the suf-cma and uf-cma-secure MACs constructions
implicitly given in [29, Section 4]. To both constructions can apply the transfor-
mations from Section 3 to obtain efficient uf-cmva-secure MACs.



First construction (suf-cma). Let n denote the number of repetitions, τ
the parameter of the Bernoulli distribution, and τ ′ := 1/4 + τ/2 controls the
correctness error.

We define a message authentication code MACLPN = {KG,TAG,VRFY} with
associated key space K = Z2ℓ

2 , message spaceM = {m ∈ Z2ℓ
2 : hw(m) = ℓ}, and

tag space T = Z
(ℓ+1)n
2 as follows.

– Key Generation. The key-generation algorithm KG outputs a secret key a

vector x←R Z2ℓ
2 .

– Tagging.The probabilistic authentication algorithm TAGx(m) samplesR←R

Z
ℓ×n
2 and outputs an authentication tag σ = (R,RT · x↓m + e), where

e ∈ Zn
2 is sampled according the Bernoulli distribution with parameter τ

and x↓m ∈ Z
ℓ
2 is the vector obtained from x by deleting all entries where

mi = 0.
– Verification. The verification algorithm VRFYx(m, σ) parses σ = (R, z) ∈

Z
ℓ×n
2 × Zn

2 and outputs accept iff |RT · x↓m − z| ≤ τ ′n.

Concretely, [29, Th. 4] shows (implicitly)9 that MACLPN has 2−O(n) complete-
ness error and is suf-cma and ind-cma-secure under the LPNℓ,τ assumption in
dimension ≈ ℓ and Bernoulli parameter τ .

Second construction (uf-cma). We define a message authentication code
MACBilinLPN = {KG,TAG,VRFY} with associated key space K = Z

ℓ×λ
2 , message

spaceM = Zλ
2 , and tag space T = Z

(ℓ+1)n
2 as follows.

– Key Generation. The key-generation algorithm KG outputs a secret key a

matrix X←R Z
ℓ×µ
2 .

– Tagging.The probabilistic authentication algorithm TAGX(m) samplesR←R

Z
ℓ×n
2 and outputs an authentication tag σ = (R,RT ·X·m+e), where e ∈ Zn

2

is sampled according the Bernoulli distribution with parameter τ .
– Verification. The verification algorithm VRFYX(m, σ) parses σ = (R, z) ∈

Z
ℓ×n
2 × Z

n
2 and outputs accept iff |RT ·X ·m− z| ≤ τ ′n.

[29, Th. 5] shows that MACBilinLPN is uf-cma and ind-cma-secure under the LPNℓ,τ

assumption. We remark that MACBilinLPN can also be viewed as an instantiation
of MACWhwPRF of Section 4.3 when generalizing the construction to randomized
weak PRFs and using fx(R) = RTx+e which is a randomized weak PRF under
LPN.

4.6 Three-Round Authentication from Any Weak PRF

We now state our authentication protocol Π using any wPRF family F =
{fk1

: X1 7→ Y}k1∈K1
and any weak Almost XOR-Universal (wAXU) fam-

ily H = {hk2
: X2 7→ Y}k2∈K2

(see the full version of the paper for more details
on how H can be instantiated.)

9 [29] give a direct construction of a MAC that is suf-cmva secure. MACLPN is the
underlying MAC that can be proved only suf-cma secure.



The key generation algorithm KG(1λ) selects random k1 ← K1, k2 ← K2 and
outputs k = (k1, k2). Following this, the three round protocol between a Tag
T (k) and a reader R(k) is defined below:
– T → R: choose random r ∈ X1 and send r to R.
– R → T : choose random x ∈ X2 and send x to T .
– T → R: compute z = fk1

(r) + hk2
(x) and send z to R.

– R: accept if and only if z
?

= fk1
(r) + hk2

(x).

Theorem 7. Assuming that F = {fk1
} is a (t, Q, ε)-wPRF and H = {hk2

} is
(t, ρ)-wAXU. Then the above authentication protocol is (t′, Q, ε′)-secure against
active adversaries, with t′ = t/2 and ε′ =

√
ε+ ρ.

In particular, setting F = H and X1 = X2 = X , we get ε′ =
√

2ε+ 1
|X | +

1
|Y| .

The proof of Theroem 7 can be found in the full version of this paper.

Example. To instantiate the above authentication protocol, we can take some
DDH group G of prime order q. Let K = K1 = K2 = Zq, X = X1 = X2 = G,
Y = G (which we now write multiplicatively). For notational convenience, let us
denote k1 = a, k2 = b, r = g, and define fa(g) := ga, hb(x) := xb so that F is
a wPRF by DDH, and H = F is wAXU by DDH as well. We get the following
very simple DDH-based protocol with secret key k = (a, b).
– T → R: choose random g ∈ G and send g to R.
– R → T : choose random x ∈ G and send x to T .
– T → R: compute z = gaxb ∈ G and send z to R.
– R: accept if and only if z

?

= gaxb.
It is interesting to compare the above actively secure authentication protocol

with Okamoto’s public-key authentication protocol based on the discrete log as-
sumption [36]. On the one hand, Okamoto’s scheme is based on a weaker assump-
tion and works in the public-key setting. On the other hand, our DDH-based
protocol is more efficient. Our verifier only has to perform two exponentiations,
while Okamoto’s verifier needs to do three exponentiations. Also, our last flow z
contains one group element, while Okamoto’s protocol contains two exponents,
which is likely going to be longer.
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