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Abstract. In this paper, we explore a general methodology for convert-
ing composite order pairing-based cryptosystems into the prime order
setting. We employ the dual pairing vector space approach initiated by
Okamoto and Takashima and formulate versatile tools in this framework
that can be used to translate composite order schemes for which the prior
techniques of Freeman were insufficient. Our techniques are typically ap-
plicable for composite order schemes relying on the canceling property
and proven secure from variants of the subgroup decision assumption,
and will result in prime order schemes that are proven secure from the
decisional linear assumption. As an instructive example, we obtain a
translation of the Lewko-Waters composite order IBE scheme. This pro-
vides a close analog of the Boneh-Boyen IBE scheme that is proven fully
secure from the decisional linear assumption. In the full version of this
paper, we also provide a translation of the Lewko-Waters unbounded
HIBE scheme.

1 Introduction

Recently, several cryptosystems have been constructed in composite order bilin-
ear groups and proven secure from instances (and close variants) of the gen-
eral subgroup decision assumption defined in [3]. For example, the systems
presented in [27, 25, 29, 28, 26] provide diverse and advanced functionalities like
identity-based encryption (IBE), hierarchical identity-based encryption (HIBE),
and attribute-based encryption with strong security guarantees (e.g. full secu-
rity, leakage-resilience) proven from static assumptions. These works leverage
convenient features of composite order bilinear groups that are not shared by
prime order bilinear groups, most notably the presence of orthogonal subgroups
of coprime orders. Up to isomorphism, a composite order bilinear group has the
structure of a direct product of prime order subgroups, so every group element
can be decomposed as the product of components in the separate subgroups.
However, when the group order is hard to factor, such a decomposition is hard
to compute. The orthogonality of these subgroups means that they can function
as independent spaces, allowing a system designer to use them in different ways
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without any cross interactions between them destroying correctness. Security re-
lies on the assumption that these subgroups are essentially inseparable: given a
random group element, it should be hard to decide which subgroups contribute
non-trivial components to it.

Though composite order bilinear groups have appealing features, it is desir-
able to obtain the same functionalities and strong guarantees achieved in com-
posite order groups from other assumptions, particularly from the decisional
linear assumption (DLIN) in prime order bilinear groups. The ability to work
with prime order bilinear groups instead of composite order ones offers several
advantages. First, we can obtain security under the more standard decisional
linear assumption. Second, we can achieve much more efficient systems for the
same security levels. This is because in composite order groups, security typi-
cally relies on the hardness of factoring the group order. This requires the use
of large group orders, which results in considerably slower pairing operations.

There have been many previous examples of cryptosystems that were first
built in composite order groups while later analogs were obtained in prime order
groups. These include Groth-Ostrovsky-Sahai proofs [22, 21], the Boneh-Sahai-
Waters traitor tracing scheme [10, 15], and the functional encryption schemes
of Lewko-Okamoto-Sahai-Takashima-Waters [25, 33]. Waters also notes that the
dual system encryption techniques in [38] used to obtain prime order systems
were first instantiated in composite order groups. These results already suggest
that there are strong parallels between the composite order and prime order
settings, but the translation techniques are developed in system-specific ways.

Beyond improving the assumptions and efficiency for particular schemes, our
goal in this paper is to expand our general understanding of how tools that
are conveniently inherent in the composite order setting can be simulated in
the prime order setting. We begin by asking: what are the basic features of
composite order bilinear groups that are typically exploited by cryptographic
constructions and security proofs? Freeman considers this question in [14] and
identifies two such features, called projecting and canceling (we also refer to
canceling as “orthogonality”). Freeman then provides examples of how to con-
struct either of these properties using pairings of vectors of group elements in
prime order groups. Notably, Freeman does not provide a way of simultaneously
achieving both projecting and canceling. There may be good reason for this, since
Meiklejohn, Shacham, and Freeman [30] have shown that both properties cannot
be simultaneously achieved in prime order groups when one relies on the deci-
sional linear assumption in a “natural way”. By instantiating either projecting
or canceling in prime order groups, Freeman [14] successfully translates several
composite order schemes into prime order schemes: the Boneh-Goh-Nissim en-
cryption scheme [9], the Boneh-Sahai-Waters traitor tracing system [10], and the
Katz-Sahai-Waters predicate encryption scheme [24]. These translations use a
three step process. The first step is to write the scheme in an abstract framework
(replacing subgroups by subspaces of vectors in the exponent), the second step
is to translate the assumptions into prime order analogs, and the third step is
to transfer the security proof.



There are two aspects of Freeman’s approach that can render the results
unsatisfying in certain cases. First, the step of translating the assumptions often
does not result in standard assumptions like DLIN. A reduction to DLIN is only
provided for the most basic variant of the subgroup decision assumption, and
does not extend (for example) to the general subgroup decision assumption from
[3]. Second, the step of translating the proof fails for many schemes, including
all of the recent composite order schemes employing the dual system encryption
proof methodology [27, 25, 29, 28, 26]. These schemes use only canceling and not
projecting, and so this is unrelated to the limitations discussed in [30].

The reason for this failure is instructive to examine. As Freeman points out,
“the recent identity-based encryption scheme of Lewko and Waters [27] uses
explicitly in its security proof the fact that the group G has two subgroups of
relatively prime order”. The major obstacle here is not translating the description
of the scheme or its assumptions - instead the problem lies in translating a trick
in the security proof. The trick works as follows. Suppose we have a group G of
order N = p1p2 . . . pm, where p1, . . . , pm are distinct primes. Then if we take an
element g1 ∈ G of order p1 (i.e. an element of the subgroup of G with order p1)
and a random exponent a ∈ ZN , the group element ga1 reveals no information
about the value of amodulo the other primes. Only amod p1 is revealed. The fact
that amod p2, for instance, is uniformly random even conditioned on amod p1
follows from the Chinese Remainder Theorem. In the security proof of the Lewko-
Waters scheme, there are elements of the form ga1 in the public parameters, and
the fact that amod p2 remains information-theoretically hidden is later used to
argue that all the keys and ciphertext received by the attacker are properly
distributed in the midst of a hybrid argument.

Clearly, in a prime order group, we cannot hope to construct subgroups with
coprime orders. There are a few possible paths for resolving this difficulty. We
could start by reworking proofs in the composite order setting to avoid using this
trick and then hope to apply the techniques of [14] without modification. This
approach is likely to result in more complicated (though still static) assump-
tions in the composite order setting, which will translate into more complicated
assumptions in the prime order setting. Since we prefer to rely only on the deci-
sional linear assumption, we follow an alternate strategy: finding a version of this
trick in prime order groups that does not rely on coprimeness. This is possible
because coprimeness here is used a mechanism for achieving “parameter hiding,”
meaning that some useful information is information-theoretically hidden from
the attacker, even after the public parameters are revealed. We can construct
an alternate mechanism in prime order groups that similarly enables a form of
parameter hiding.

Our Contribution We present versatile tools that can be used to translate com-
posite order bilinear systems relying on canceling to prime order bilinear systems,
particularly those whose security proofs rely on general subgroup decision as-
sumptions and employ the coprime mechanism discussed above. This includes
schemes like [27], which could not be handled by Freeman’s methods. Our tools
are based in the dual pairing vector space framework initiated by Okamoto and



Takashima [31, 32]. We observe that dual pairing vector spaces provide a mech-
anism for parameter hiding that can be used in place of coprimeness. We then
formulate an assumption in prime order groups that can be used to mimic the
effect of the general subgroup decision assumption in composite order groups.
We prove that this assumption is implied by DLIN. Putting these ingredients
together, we obtain a flexible toolkit for turning a class of composite order con-
structions into prime order constructions that can be proven secure from DLIN.

We demonstrate the use of our toolkit by providing a translation of the
composite order Lewko-Waters IBE construction [27]. This yields a prime order
IBE construction that is proven fully secure from DLIN and also inherits the
intuitive structure of the Boneh-Boyen IBE [5]. Compared to the fully secure
prime order IBE construction in [38], our scheme achieves comparable efficiency
and security with a simpler structure. As a second application, we provide a
translation of the Lewko-Waters unbounded HIBE scheme [29] in the full version.
This additionally demonstrates how to handle delegation of secret keys with our
tools.

We note that some composite order systems employing dual system encryp-
tion, such as the attribute-based encryption scheme in [25], already have analogs
in prime order groups proven secure from DLIN using dual pairing vector spaces.
In [33], Okamoto and Takashima provide a functional encryption scheme in prime
order bilinear groups that is proven fully secure under DLIN. Their construc-
tion encompasses both attribute-based and inner product encryption, and their
proof relies on dual system encryption techniques, similarly to [25]. While they
focus on providing a particular construction and proof, our goal is to formulate a
more general strategy for translating composite order schemes into prime order
schemes with analogous proofs.

Other Related Work The concept of identity-based encryption was first proposed
by Shamir [36] and later constructed by Boneh and Franklin [8] and Cocks [13].
In an identity-based encryption scheme, users are associated with identities and
obtain secret keys from a master authority. Encryption to any identity can be
done knowing only the identity and some global public parameters. Both of the
initial constructions of IBE were proven secure in the random oracle model. The
first standard model constructions, by Canetti, Halevi, and Katz [11] and Boneh
and Boyen [5] relied on selective security, which is a more restrictive security
model requiring the attacker to announce the identity to be attacker prior to
viewing the public parameters. Subsequently, Boneh and Boyen [6], Gentry [16],
and Waters [37, 38] provided constructions proven fully secure in the standard
model from various assumptions. Except for the scheme of [13], which relied on
the quadratic residuousity assumption, all of the schemes we have cited above
rely on bilinear groups. A lattice-based IBE construction was first provided by
Gentry, Peikert, and Vaikuntanathan in [18].

Hierarchical identity-based encryption was proposed by Horwitz and Lynn
[23] and then constructed by Gentry and Silverberg [19] in the random oracle
model. In a HIBE scheme, users are associated with identity vectors that indicate
their places in a hierarchy (a user Alice is a superior of the user Bob if her identity



vector is a prefix of his). Any user can obtain a secret key for his identity vector
either from the master authority or from one of his superiors (i.e. a mechanism
for key delegation to subordinates is provided). Selectively secure standard model
constructions of HIBE were provided by Boneh and Boyen [5] and Boneh, Boyen,
and Goh [7] in the bilinear setting and by Cash, Hofheinz, Kiltz, and Peikert
[12] and Agrawal, Boneh, and Boyen [1, 2] in the lattice-based setting. Fully
secure constructions allowing polynomial depth were given by Gentry and Halevi
[17], Waters [38], and Lewko and Waters [27]. The first unbounded construction
(meaning that the maximal depth is not bounded by the public parameters) was
given by Lewko and Waters in [29].

Attribute-based encryption (ABE) is a more flexible functionality than (H)IBE,
first introduced by Sahai and Waters in [35]. In an ABE scheme, keys and cipher-
texts are associated with attributes and access policies instead of identities. In a
ciphertext-policy ABE scheme, keys are associated with attributes and cipher-
texts are associated with access policies. In a key-policy ABE scheme, keys are
associated with access policies and ciphertexts are associated with attributes. In
both cases, a key can decrypt a ciphertext if and only if the attributes satisfy
the formula. There are several constructions of both kinds of ABE schemes, e.g.
[35, 20, 34, 4, 25, 33, 39].

The dual system encryption methodology was introduced by Waters in [38]
as a tool for proving full security of advanced functionalities such as (H)IBE and
ABE. It was further developed in several subsequent works [27, 25, 33, 26, 29, 28].
Most of these works have used composite order groups as a convenient setting
for instantiating the dual system methodology, with the exception of [33]. Here,
we extend and generalize the techniques of [33] to demonstrate that this use of
composite order groups can be viewed as an intermediary step in the development
of prime order systems whose security relies on the DLIN assumption.

2 Background

2.1 Composite Order Bilinear Groups

When G is a bilinear group of composite order N = p1p2 . . . pm (where p1, p2,
. . ., pm are distinct primes), we let e : G×G→ GT denote its bilinear map (also
referred to as a pairing). We note that both G and GT are cyclic groups of order
N . For each pi, G has a subgroup of order pi denoted by Gpi . We let g1, . . . , gm
denote generators of Gp1 through Gpm respectively. Each element g ∈ G can
be expressed as g = ga11 ga22 · · · gamm for some a1, . . . , am ∈ ZN , where each ai
is unique modulo pi. We will refer to gaii as the “Gpi component” of g. When
ai is congruent to zero modulo pi, we say that g has no Gpi component. The
subgroups Gp1 , . . . , Gpm are “orthogonal” under the bilinear map e, meaning
that if h ∈ Gpi and u ∈ Gpj for i ̸= j, then e(h, u) = 1, where 1 denotes the
identity element in GT .

General Subgroup Decision Assumption The general subgroup decision assump-
tion for composite order bilinear groups (formulated in [3]) is a family of static



complexity assumptions based on the intuition that it should be hard to de-
termine which components are present in a random group element, except for
what can be trivially determined by testing for orthogonality with other given
group elements. More precisely, for each non-empty subset S ⊆ [m], there is
an associated subgroup of order

∏
i∈S pi in G, which we will denote by GS .

For two distinct, non-empty subsets S0 and S1, we assume it is hard to distin-
guish a random element of GS0 from a random element of GS1 , when one is
only given random elements of GS2

, . . . , GSk
where for each 2 ≤ j ≤ k, either

Sj ∩ S0 = ∅ = Sj ∩ S1 or Sj ∩ S0 ̸= ∅ ≠ Sj ∩ S1.
More formally, we let G denote a group generation algorithm, which takes

in m and a security parameter λ and outputs a bilinear group G of order N =
p1 · · · pm, where p1, . . . , pm are distinct primes. The General Subgroup Decision
Assumption with respect to G is defined as follows.

Definition 1. General Subgroup Decision Assumption. Let S0, S1, S2, . . . , Sk be
non-empty subsets of [m] such that for each 2 ≤ j ≤ k, either Sj ∩ S0 = ∅ =
Sj ∩ S1 or Sj ∩ S0 ̸= ∅ ̸= Sj ∩ S1. Given a group generator G, we define the
following distribution:

G := (N = p1 · · · pm, G,GT , e)
R←− G,

Z0
R←− GS0 , Z1

R←− GS1 , Z2
R←− GS2 , . . . , Zk

R←− GSk
,

D := (G, Z2, . . . , Zk).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,Z0) = 1]− P [A(D,Z1) = 1]|

is negligible in the security parameter λ.

We note that this assumption holds in the generic group model, assuming it
is hard to find a non-trivial factor of the group order N .

Restricting to challenge sets differing by one element We observe that it suffices
to consider challenge sets S0 and S1 of the form S1 = S0 ∪ {i} for some i ∈ [m],
i /∈ S0. We refer to this restricted class of subgroup decision assumptions as the
1-General Subgroup Decision Assumption. To see that the 1-general subgroup
decision assumption implies the general subgroup decision assumption, we show
that any instance of the general subgroup decision assumption is implied by a
sequence of the more restricted instances. More precisely, for general S0, S1, we
let U denote the set S0∪S1−S0. For any i in U , the 1-general subgroup decision
assumption implies that it hard to distinguish a random element of GS0 from
a random element of GS0∪{i}, even given random elements from GS2 , . . . , GSk

.
That is because each of the sets S2, . . . , Sk either does not intersect S1 or S0 and
hence does not intersect S0 or S0 ∪ {i} ⊆ S1, or intersects both S0 and S0 ∪ {i}.
We can now incrementally add the other elements of U using instances of the
1-general subgroup decision assumption, ultimately showing that it is hard to



distinguish a random element of GS0 from a random element of GS0∪S1 . We can
reverse the process and subtract one element at a time from S0 ∪ S1 until we
arrive at S1. Thus, the seemingly more restrictive 1-general subgroup decision
assumption implies the general subgroup decision assumption.

2.2 Prime Order Bilinear Groups

We now let G denote a bilinear group of prime order p, with bilinear map e :
G × G → GT . More generally, one may have a bilinear map e : G ×H → GT ,
where G and H are different groups. For simplicity in this paper, we will always
consider groups where G = H.

In addition to referring to individual elements of G, we will also consider
“vectors” of group elements. For v = (v1, . . . , vn) ∈ Znp and g ∈ G, we write gv

to denote a n-tuple of elements of G:

gv := (gv1 , gv2 , . . . , gvn).

We can also perform scalar multiplication and vector addition in the exponent.
For any a ∈ Zp and v,w ∈ Znp , we have:

gav := (gav1 , . . . , gavn), gv+w = (gv1+w1 , . . . , gvn+wn).

We define en to denote the product of the componentwise pairings:

en(g
v, gw) :=

n∏
i=1

e(gvi , gwi) = e(g, g)v·w.

Here, the dot product is taken modulo p.

Dual Pairing Vector Spaces We will employ the concept of dual pairing vector
spaces from [31, 32]. For a fixed (constant) dimension n, we will choose two
random bases B := (b1, . . . , bn) and B∗ := (b∗1, . . . , b

∗
n) of Znp , subject to the

constraint that they are “dual orthonormal”, meaning that

bi · b∗j = 0 (mod p),

whenever i ̸= j, and
bi · b∗i = ψ

for all i, where ψ is a uniformly random element of Zp. (This is a slight abuse
of the terminology “orthonormal”, since ψ is not constrained to be 1.)

For a generator g ∈ G, we note that

en(g
bi , gb

∗
j ) = 1

whenever i ̸= j, where 1 here denotes the identity element in GT .
We note that choosing random dual orthonormal bases (B,B∗) can equiva-

lently be thought of as choosing a random basis B, choosing a random vector b∗1



subject to the constraint that it is orthogonal to b2, . . . , bn, defining ψ = b1 · b∗1,
and then choosing b∗2 so that it is orthogonal to b1, b3, . . . , bn, and has dot prod-
uct with b2 equal to ψ, and so on. We will later use the notation (D,D∗) and
d1, . . . , etc. to also denote dual orthonormal bases and their vectors (and even
F,F∗ and f1, etc.). This is because we will sometimes be handling more than
one pair of dual orthonormal bases at a time, and we use different notation to
avoid confusing them.

Decisional Linear Assumption The complexity assumption we will rely on in
prime order bilinear groups is the Decisional Linear Assumption. To define this
formally, we let G denote a group generation algorithm, which takes in a security
parameter λ and outputs a bilinear group G of order p.

Definition 2. Decisional Linear Assumption. Given a group generator G, we
define the following distribution:

G := (p,G,GT , e)
R←− G,

g, f, v, w
R←− G, c1, c2, w

R←− Zp,

D := (g, f, v, f c1 , vc2).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A :=
∣∣P [
A(D, gc1+c2) = 1

]
− P

[
A(D, gc1+c2+w) = 1

]∣∣
is negligible in the security parameter λ.

3 Our Main Tools

There is an additional feature of composite order groups that is often exploited
along with canceling/orthogonality in the security proofs for composite order
constructions: we call this parameter hiding. In composite order groups, parame-
ter hiding takes the following form. Consider a composite order group G of order
N = p1p2 and an element g1 ∈ Gp1 (an element of order p1). Then if we sample a
uniformly random exponent a ∈ ZN and produce ga1 , this reveals nothing about
the value of a modulo p2. More precisely, the Chinese Remainder theorem guar-
antees that the value of a modulo p2 conditioned on the value of a modulo p1 is
still uniformly random, and ga1 only depends on the value of a modulo p1. This
allows a party choosing a to publish ga1 and still hide some information about a,
namely its value modulo p2. Note that this party only needs to know N and g1:
it does not need to know the factorization of N .

This is an extremely useful tool in security proofs, enabling a simulator to
choose some secret random exponents, publish the public parameters by raising
known subgroup elements to these exponents, and still information-theoretically
hide the values of these exponents modulo some of the primes. These hidden
values can be leveraged later in the security game to argue that something looks



well-distributed in the attacker’s view, even if this does not hold in the simu-
lator’s view. This sort of trick is crucial in proofs employing the dual system
encryption methodology.

Replicating this trick in prime order groups seems challenging, since if one
is given g and ga in a prime order group, a is completely revealed modulo p in
an information-theoretic sense. To resolve this issue, we use dual pairing vector
spaces. We observe that a form of parameter hiding is achieved by using dual
orthonormal bases: one can generate a random pair of dual orthonormal bases
(B,B∗) for Znp , apply an invertible change of basis matrix A to a subset of these
basis vectors, and produce a new pair of dual orthonormal bases which is also
randomly distributed, independently of A. This allows us to hide a random
matrix A. We formulate this precisely below.

3.1 Parameter Hiding in Dual Orthonormal Bases

We consider taking dual orthonormal bases and applying a linear change of basis
to a subset of their vectors. We do this in such a way that we produce new dual
orthonormal bases. In this subsection, we prove that if we start with randomly
sampled dual orthonormal bases, then the resulting bases will also be random -
in particular, the distribution of the final bases reveals nothing about the change
of basis matrix that was employed. This “hidden” matrix can then be leveraged
in security proofs as a way of separating the simulator’s view from the attacker’s.

To describe this formally, we let m ≤ n be fixed positive integers and A ∈
Zm×m
p be an invertible matrix. We let Sm ⊆ [n] be a subset of size m (|S| = m).

For any dual orthonormal bases B,B∗, we can then define new dual orthonormal
bases BA,B∗

A as follows. We let Bm denote the n × m matrix over Zp whose
columns are the vectors bi ∈ B such that i ∈ Sm. Then BmA is also an n ×m
matrix. We form BA by retaining all of the vectors bi ∈ B for i /∈ Sm and
exchanging the bi for i ∈ Sm with the columns of BmA. To define B∗

A, we
similarly let B∗

m denote the n×m matrix over Zp whose columns are the vectors
b∗i ∈ B∗ such that i ∈ Sm. Then B∗

m(A−1)t is also an n×m matrix, where (A−1)t

denotes the transpose of A−1. We form B∗
A by retaining all of the vectors b∗i ∈ B∗

for i /∈ Sm and exchanging the bi for i ∈ Sm with the columns of B∗
m(A−1)t.

To see that BA and B∗
A are dual orthonormal bases, note that for i ∈ Sm, the

corresponding basis vector in BA can be expressed as a linear combination of the
basis vectors bj ∈ B with j ∈ Sm, and the coefficients of this linear combination
correspond to a column of A, say the ℓth column (equivalently, say i is the ℓth

element of Sm). When ℓ ̸= ℓ′, the ℓth column of A is orthogonal to the (ℓ′)th

column of (A−1)t. This means that the ith vector of BA will be orthogonal to
the (i′)th vector of B∗

A whenever i ̸= i′. Moreover, the ℓth column of A and the
ℓth column of (A−1)t have dot product equal to 1, so the dot product of the ith

vector of BA and the ith vector of B∗
A will be equal to the same value ψ as in

the original bases B and B∗.

For a fixed dimension n and prime p, we let (B,B∗)
R←− Dual(Zdp) denote

choosing random dual orthonormal bases B and B∗ of Znp . Here, Dual(Znp ) de-
notes the set of dual orthonormal bases.



Lemma 1. For any fixed positive integers m ≤ n, any fixed invertible A ∈
Zm×m
p and set Sm ⊆ [n] of size m, if (B,B∗)

R←− Dual(Zdp), then (BA,B∗
A) is also

distributed as a random sample from Dual(Zdp). In particular, the distribution
of (BA,B∗

A) is independent of A.

Proof. There is a one-to-one correspondence between (B,B∗) and (BA,B∗
A): given

(BA,B∗
A), one can recover (B,B∗) by applying A−1 to the vectors in BA whose

indices are in Sm, and applying At to the corresponding vectors in B∗
A. This

shows that every pair of dual orthonormal bases is equally likely to occur as
BA,B∗

A.

3.2 The Subspace Assumption

We now state a complexity assumption in prime order groups that we will use
to simulate the effects of subgroup decision assumptions in composite order
groups. We call this the Subspace Assumption. In the full version, we show that
the subspace assumption is implied by the decisional linear assumption.

In prime order groups, basis vectors in the exponent take the place of sub-
groups. Since we are using dual orthonormal bases, our new concept of orthog-
onality between “subgroups” becomes asymmetric. If we have dual orthonormal
bases B,B∗ and we think of “subgroup 1” in B as corresponding to the span
of b1, . . . , b4, then this is not orthogonal to the other vectors in B, but it is or-
thogonal to vectors b∗5, . . . , b

∗
n in B∗. Essentially, the notion of a single subgroup

has now been split into a pair of “subgroups”, one for each side of the pairing,
and orthogonality between different subgroups now only holds for elements on
opposite sides.

This sort of asymmetry can be quite useful. For example, consider an instance
of the general subgroup decision assumption in composite order groups, where
the task is to distinguish a random element of Gp1 from Gp1p2 . In this case,
we cannot give out an element of Gp2 , since it can trivially be used to break
the assumption by pairing it with the challenge term and seeing if the result is
the identity. If we instead use dual orthonormal bases in a prime order group,
the situation is a bit different. Suppose that given gv, the task is to distinguish
whether the exponent vector v is in the span of b∗1, b

∗
2 or in the larger span of

b∗1, b
∗
2, b

∗
3. We cannot give out gb3 , since one could then break the assumption

by testing if en(g
v, gb3) = e(g, g)v·b3 is the identity, but we can give out gb

∗
3 .

Our definition of the subspace assumption is motivated by this and our obser-
vation in Section 2.1 that the general subgroup decision assumption in composite
order groups can be restricted to distinguishing between sets that differ by one
element. What this means is that to simulate the uses of the general subgroup
decision in composite order groups, one can focus merely on creating an ana-
log for expansion into one new “subgroup” at a time. At its core, our subspace
assumption says that if one is given gv, then it is hard to tell if v is randomly
chosen from the span of b∗1, b

∗
2 or from the larger span of b∗1, b

∗
2, b

∗
3, even if one is

given scalar multiples of all bases vectors in B and B∗ in the exponent, except for
b3. We augment this by also given out a random linear combination of b1, b2, b3



in the exponent. We then generalize this by replicating the same structure for k
3-tuples of vectors, with the random linear combinations having the same coeffi-
cients. (The fact that these coefficients are the same prevents this from following
immediately from the assumption for a single 3-tuple applied in hybrid fashion.)

We now give the formal description of the subspace assumption. For a fixed

dimension n ≥ 3 and prime p, we recall that (B,B∗)
R←− Dual(Znp ) denotes

choosing random dual orthonormal bases B and B∗ of Znp , and Dual(Znp ) denotes
the set of dual orthonormal bases. Our assumption is additionally parameterized
by a positive integer k ≤ n

3 .

Definition 3. (Subspace Assumption) Given a group generator G, we define the
following distribution:

G := (p,G,GT , e)
R←− G, (B,B∗)

R←− Dual(Znp ),

g
R←− G, η, β, τ1, τ2, τ3, µ1, µ2, µ3

R←− Zp,

U1 := gµ1b1+µ2bk+1+µ3b2k+1 , U2 := gµ1b2+µ2bk+2+µ3b2k+2 , . . . ,

Uk := gµ1bk+µ2b2k+µ3b3k , V1 := gτ1ηb
∗
1+τ2βb

∗
k+1 , V2 := gτ1ηb

∗
2+τ2βb

∗
k+2 , . . . ,

Vk := gτ1ηb
∗
k+τ2βb

∗
2k , W1 := gτ1ηb

∗
1+τ2βb

∗
k+1+τ3b

∗
2k+1 ,

W2 := gτ1ηb
∗
2+τ2βb

∗
k+2+τ3b

∗
2k+2 , . . . ,Wk := gτ1ηb

∗
k+τ2βb

∗
2k+τ3b

∗
3k

D :=
(
gb1 , gb2 , . . . , gb2k , gb3k+1 , . . . , gbn , gηb

∗
1 , . . . , gηb

∗
k ,

gβb
∗
k+1 , . . . , gβb

∗
2k , gb

∗
2k+1 , . . . , gb

∗
n , U1, U2, . . . , Uk, µ3

)
.

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A(D,V1, . . . , Vk) = 1]− P [A(D,W1, . . . ,Wk) = 1]|

is negligible in the security parameter λ.

We have included in D more terms than will be necessary for many appli-
cations of this assumption. We will work exclusively with the k = 1 and k = 2
cases. We present the assumption in the form above to make it more versatile
for use in future applications. We additionally note that the form stated above
can be further generalized to involve multiple, independently generated dual or-
thonormal bases (B1,B∗

1), (B2,B∗
2), . . . , (Bj ,B∗

j ), for any fixed j. The terms in the
assumption would be duplicated for each pair of bases, with the same values of
η, β, τ1, τ2, τ3, µ1, µ2, µ3. We will not need this generalization for the applications
we present. To help the reader see the main structure of this assumption through
the burdensome notation, we include a heuristic illustration of the k = 2 case.

In the diagram, the top rows illustrate the U terms, while the bottom rows
illustrate the V,W terms. The solid ovals and rectangles indicate the presence
of basis vectors. The crossed rectangles indicate basis elements of B which are
present in U1, U2 but are not given out in isolation. The dotted ovals adorned by
question marks indicate the basis vectors whose presence depends on whether
we consider the V ’s or the W ’s.
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Fig. 1. Subspace Assumption with k = 2

4 Analog of the Boneh-Boyen IBE Scheme

In this section, we employ our subspace assumption and our parameter hiding
technique for dual orthonormal bases to prove full security for a close analog of
the Boneh-Boyen IBE scheme from the decisional linear assumption. This is the
same security guarantee achieved for the IBE scheme in [38] and our efficiency
is also similar. The advantage of our scheme is that it is a much closer analog
to the original Boneh-Boyen IBE, and resultingly has a simpler, more intuitive
structure.

Our security proof essentially mirrors the structure of the security proof given
in [27], which provides a fully secure variant of the Boneh-Boyen IBE scheme
in composite order groups. This serves as an illustrative example of how our
techniques can be used to simulate dual system encryption proofs in the prime
order setting that were originally presented in composite order groups.

4.1 Our Construction

We will use dual orthonormal bases (D,D∗) of Z6
p, where p is the prime order

of our bilinear group G. Public parameters and ciphertexts will have exponents
described in terms of the basis vectors in D, while secret keys will have exponents
described in terms of D∗. The first four basis vectors of each will constitute the
“normal space” (like Gp1 in the LW scheme), and the last two basis vectors of
each will constitute the “semi-functional space” (like Gp2 in the LW scheme).

By using dual pairing vector spaces, we avoid the need to simulate Gp3 . In the
LW scheme, the purpose of Gp3 is to allow the creation of other semi-functional
keys while a challenge key is changing from normal to semi-functional. More
precisely, it allows the subgroup decision assumption to give out an element
of Gp2p3 that can be used to generate semi-functional keys when the task is to
distinguish a random element of Gp1p3 from a random element of G. We note that
if we did not use Gp3 here and instead tried to create all of the semi-functional
keys from a term in Gp1p2 , then these keys would not be properly randomized
in the Gp2 subgroup because the structure of the scheme is enforced in the Gp1
subgroup. Pairwise independence cannot save us here because there are many
keys. However, the asymmetry of dual pairing vector spaces avoids this issue:
while we are expanding the challenge key into the “semi-functional space” in D∗,
we can still know a basis for the semi-functional space of D∗ in the exponent -
it is only the corresponding terms in the semi-functional space of D that we do



not have access to in isolation. This allows us to make the other semi-functional
keys without needing to create an analog of the Gp3 subgroup.

The core of the Boneh-Boyen scheme is a cancelation between terms in two
pairings, one with the identity appearing on the ciphertext side and the other
with the identity appearing on the key side. This is combined with a mechanism
for preventing multiplication manipulation of the identity. In our scheme, this
core cancelation is duplicated: instead of having one cancelation, we have two,
each with its own random coefficients. The first cancelation will occur for the
d1,d2 and d∗

1,d
∗
2 components, and the second will occur for the d3,d4 and d∗

3,d
∗
4

components.
This expansion gives us room to use the subspace assumption with parameter

k = 2 to transition from 4-dimensional exponents for normal keys and ciphertexts
to 6-dimensional exponents for semi-functional keys and ciphertexts. Having
a 2-dimensional semi-functional space allows us to implement nominal semi-
functionality. To prevent multiplicative manipulations of the identities in our
scheme is rather easy, since the orthogonality of the dual bases allows us to “tie”
all the components of the keys and ciphertexts together without causing cross
interactions that interfere with decryption.

We assume that messages M are elements of GT (the target group of the
bilinear map) and that identities ID are elements of Zp.

Setup(λ) → MSK,PP The setup algorithm takes in the security parameter
λ and chooses a bilinear group G of sufficiently large prime order p. We let
e : G×G→ GT denote the bilinear map. We set n = 6. The algorithm samples

random dual orthonormal bases, (D,D∗)
R←− Dual(Znp ). We let d1, . . . ,d6 denote

the elements of D and d∗
1, . . . ,d

∗
6 denote the elements of D∗. It also chooses

random values α, θ, σ ∈ Zp. The public parameters are computed as:

PP :=
{
G, p, e(g, g)αθd1·d∗

1 , gd1 , . . . , gd4

}
.

(We note that d1 ·d∗
1 = ψ by definition of D,D∗, but we write out the dot product

when we feel it is more instructive.) The master secret key is:

MSK :=
{
gθd

∗
1 , gαθd

∗
1 , gθd

∗
2 , gσd

∗
3 , gσd

∗
4

}
.

KeyGen(MSK, ID)→ SKID The key generation algorithm chooses random val-
ues r1, r2 ∈ Zp and forms the secret key as:

SKID := g(α+r1ID)θd∗
1−r1θd

∗
2+r2IDσd

∗
3−r2σd

∗
4 .

Encrypt(M, ID,PP) → CT The encryption algorithm chooses random values
s1, s2 ∈ Zp and forms the ciphertext as:

CT :=
{
C1 :=M

(
e(g, g)αθd1·d∗

1

)s1
, C2 := gs1d1+s1IDd2+s2d3+s2IDd4

}
.



Decrypt(CT, SKID)→M The decryption algorithm computes the message as:

M := C1/en(SKID, C2).

Recall that n = 6, so this requires six pairings.

4.2 Semi-functional Algorithms

We choose to define our semi-functional objects by providing algorithms that
generate them. We note that these algorithms are only provided for definitional
purposes, and are not part of the IBE system. In particular, they do not need
to be efficiently computable from the public parameters and master secret key
alone.

KeyGenSF The semi-functional key generation algorithm chooses random values
r1, r2, t5, t6 ∈ Zp and forms the secret key as

SKID := g(α+r1ID)θd∗
1−r1θd

∗
2+r2IDσd

∗
3−r2σd

∗
4+t5d

∗
5+t6d

∗
6 .

This is distributed like a normal key with additional random multiples of d∗
5 and

d∗
6 added in the exponent.

EncryptSF The semi-functional encryption algorithm chooses random values
s1, s2, z5, z6 ∈ Zp and forms the ciphertext as:

CT :=
{
C1 :=M

(
e(g, g)αθd1·d∗

1

)s1
, C2 := gs1d1+s1IDd2+s2d3+s2IDd4+z5d5+z6d6

}
.

This is distributed like a normal ciphertext with additional random multiples of
d5 and d6 added in the exponent.

We observe that if one applies the decryption procedure with a semi-functional
key and a normal ciphertext, decryption will succeed because d∗

5,d
∗
6 are orthogo-

nal to all of the vectors in exponent of C2, and hence have no effect on decryption.
Similarly, decryption of a semi-functional ciphertext by a normal key will also
succeed because d5,d6 are orthogonal to all of the vectors in the exponent of
the key. When both the ciphertext and key are semi-functional, the result of
en(SKID, C2) will have an additional term, namely e(g, g)t5z5d5·d∗

5+t6z6d6·d∗
6 =

e(g, g)(t5z5+t6z6)ψ. Decryption will then fail unless t5z5 + t6z6 ≡ 0mod p. If this
modular equation holds, we say that the key and ciphertext pair is nominally
semi-functional. We note that this is possible, even when none of t5, z5, t6, z6 are
congruent to zero modulo p (this is why we have designated a semi-functional
space of dimension two).

In the full version, we prove the following theorem. Here, we sketch the outline
of the proof.

Theorem 1. Under the decisional linear assumption, the IBE scheme presented
in Section 4.1 is fully secure.

We prove this using a hybrid argument over a sequence of games, following
the LW strategy. We start with the real security game, denoted by Gamereal.
We let q denote the number of keys requested by the attacker. We define the
following additional games.



Gamei for i = 0, 1, . . . , q Gamei is like Gamereal, except the ciphertext given to
the attacker is semi-functional (i.e. generated by a call to EncryptSF instead of
Encrypt) and the first i keys given to the attacker are semi-functional (generated
by KeyGenSF). The remaining keys are normal. We note that in Game0, all of
the keys are normal, and in Gameq, all of the keys are semi-functional.

Gamefinal Gamefinal is like Gameq, except that the ciphertext is a semi-functional
encryption of a random message in GT , instead of one of the messages supplied
by the attacker.

We transition from Gamereal to Game0, then to Game1, and so on, until
we arrive at Gameq. We prove that with each transition, the attacker’s advan-
tage cannot change by a non-negligible amount. As a last step, we transition
to Gamefinal, where it is clear that the attacker’s advantage is zero. These
transitions are accomplished in the following lemmas, all using the subspace as-
sumption. We let AdvrealA denote the advantage of an algorithm A in the real

game, AdviA denote its advantage in Gamei, and Adv
final
A denote its advantage

in Gamefinal.
We begin with the transition from Gamereal to Game0. At the analogous step

in the LW proof, a subgroup decision assumption is used to expand the ciphertext
from Gp1 into Gp1p2 . Here, we use the subspace assumption with k = 2 to expand
the ciphertext exponent vector from the span of d1, . . . ,d4 into the larger span
of d1, . . . ,d6. We use a very basic instance of the parameter hiding technique to
argue that the resulting coefficients of d5 and d6 are randomly distributed: this
is done by initially embedding a random 2× 2 change of basis matrix A into our
setting of the basis vectors d5,d6.

We now handle the transition from Gamei−1 to Gamei. At this step in the
LW proof, a subgroup decision assumption is used to expand the ith secret key
from Gp1p3 into G = Gp1p2p3 . Analogously, we will use the subspace assumption
to expand the ith secret key exponent vector from the span of d∗

1, . . . ,d
∗
4 into the

larger span of d∗
1, . . . ,d

∗
6. We will embed a 2 × 2 change of basis matrix A and

set D = BA and D∗ = B∗
A, where A is applied to b5, b6 to form d5,d6. As in the

LW proof, we cannot be given an object that resides solely in the semi-functional
space of the ciphertext (e.g. we cannot be given gd5 , gd6), but we are given objects
that have semi-functional components attached to normal components, and we
can use these to create the semi-functional ciphertext. In the LW proof, a term in
Gp1p2 in used. Here, an exponent vector that is a linear combination of b1, b3, b5
and another exponent vector that is a linear combination of b2, b4, b6 are used. In
our case, making the other normal and semi-functional keys is straightforward,
since we are given scalar multiples of all of the vectors of D∗ in the exponent. We
use the fact that the matrix A is hidden from the attacker in order to argue that
the semi-functional parts of the ciphertext and ith key appear well-distributed.

The final step of the LW proof uses an assumption that it is not technically an
instance of the general subgroup decision assumption, but is of a similar flavor.
In our case, we use a slightly different strategy: we use the subspace assumption
with k = 1 twice to randomize each appearance of s1 in the C2 term of the
ciphertext, thereby severing its link with the blinding factor. The end result is



the same - we obtain a semi-functional encryption of a random message. This
randomization of s1 is accomplished by first expanding an exponent vector from
the span of d5,d6 into the larger span of d5,d6,d2 and then expanding an
exponent vector from the span of d5,d6 into the larger span of d5,d6,d1. We
note that the knowledge of the µ3 value in the subspace assumption is used
here to ensure that while we are doing the first expansion, for example, we can
make the two occurrences of r1 in the keys match consistently (this is necessary
because gd

∗
2 by itself will not be known during this step).

5 Further Applications

As a second demonstration of our tools, in the full version of this paper we
consider a variant of the Lewko-Waters unbounded HIBE construction [29]. The
composite order construction we present is simpler than the one presented in
[29], at the cost of using more subgroups. Since we will ultimately simulate these
subgroups in a prime order group, such a cost is no longer a significant detriment.
In designing our prime order translation and proof, we will proceed along a path
that is very similar to the path we took to translate the more basic IBE scheme.
However, we now must take care to preserve delegation ability throughout our
proof. As a result, we employ a different strategy for the final step of the proof.
The details of our composite order construction, its prime order translation, and
security proofs in both settings can be found in the full version of this paper.

In applying our tools to the both IBE and unbounded HIBE applications,
we see that there is some flexibility in how we choose the construction, organize
the hybrid games, and embed the subspace assumption in our reductions. All
of these considerations interact, allowing us to make tradeoffs. The amount of
flexibility available in applying our tools make them suitably versatile to handle
a wider variety of applications as well. In particular, they can be applied in the
attribute-based encryption setting. We suspect that applying our techniques to
the composite order ABE constructions in [25] would result in a system and
proof quite similar to the functional encryption schemes presented by Okamoto
and Takashima in [33], who obtain security from the decisional linear assumption
through dual pairing vector spaces.
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