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Abstract. We investigate commitment schemes whose messages, keys,
commitments, and decommitments are elements of bilinear groups, and
whose openings are verified by pairing product equations. Such commit-
ments facilitate efficient zero-knowledge proofs of knowledge of a correct
opening. We show two lower bounds on such schemes: a commitment
cannot be shorter than the message and verifying the opening in a sym-
metric bilinear group setting requires evaluating at least two independent
pairing product equations. We also present optimal constructions that
match the lower bounds in symmetric and asymmetric bilinear group
settings.

Keywords. Structure-Preserving Commitments, Homomorphic Trap-
door Commitments

1 Introduction

Efficient cryptographic protocols are often hand-crafted and their underlying
idea is hardly visible. On the other hand, modular design offers conceptual sim-
plicity in exchange of losing efficiency. Structure-preserving cryptography [1] is
a concept that facilitates modular yet reasonably efficient construction of cryp-
tographic protocols. It provides inter-operable cryptographic building blocks
whose input/output data consist only of group elements and their computa-
tions preserve the group structure. Combined with the Groth-Sahai (GS) proof
system [18], such structure-preserving schemes allow proofs of knowledge about
privacy-sensitive data present in their inputs and outputs. Commitments [9,
1], various signatures [1, 10, 2], and adaptive chosen-ciphertext secure public-
key encryption [8] have been presented in the context of structure-preserving
cryptography. They yield a number of applications including various privacy-
protecting signatures [1], efficient zero-knowledge arguments [17], and efficient
leakage-resilient signatures [13].

We revisit structure preserving commitment schemes. Their keys, messages,
commitments, and decommitments are elements of bilinear groups, and the open-
ing is verified by evaluating pairing product equations. Using a bilinear map
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G × G → GT , messages from the base group are either committed to target
group elements and the commitments are shrinking, or committed to group ele-
ments from the same group but commitments are larger than the messages. In
other words, there are two types of commitment functions: either “G→ GT and
shrinking” or “G→ G and expanding”. The former type, [1, 16], takes multiple
elements in the base group G as input and shrinks them into a constant number
of elements in the target group GT by exploiting the one-way nature of the map-
ping from G to GT . Involving elements in GT in a commitment is acceptable as
long as witness-indistinguishability is sufficient for the accompanying GS proofs,
but it is problematic if zero-knowledge is necessary. The latter type, [9, 3], which
we call strictly structure-preserving schemes, takes messages in G and also yields
commitments in G. Unfortunately, due to the absence of a one-way structure in
the mapping from G to G, their construction is more involved. Moreover, they
are expanding: commitments are 2-3 times larger than messages in the known
constructions. Nothing is known about the lower bound, and constructing more
efficient commitment schemes of the latter type has been an open problem.

Our Results. This paper presents two lower bounds on strictly structure-
preserving commitment schemes. First, we show that for a message of size k the
commitment must be at least size k; thus, negatively answering to the above-
stated open problem. This lower bound highlights the gap from the known upper
bound of 2k in [3]. The lower bound is obtained by assuming that key generation
and commitment functions are algebraic. By algebraic algorithms we mean any
computation conditioned so that, when outputting a group element, the algo-
rithm ”knows” its representation with respect to given bases. The class covers
a wide range of algorithms including all constructions in the standard model to
the best our knowledge. See Section 2.5 for more detailed discussion.

Next, we show that strictly structure-preserving commitment schemes for
symmetric bilinear groups require at least two pairing product equations in the
verification. The number of equations, as well as the size of commitments, is an
important factor in determining efficiency since the size of a zero-knowledge proof
of a correct opening grows linearly with the number of verification equations.
A scheme described in [3] achieves this bound but verifies k elements from a
commitment in one equation and other k elements in the other equation, which
requires 2k elements for a commitment. Thus it does not match to the first
lower bound. Because the lower bounds of a commitment size and the number
of equations are independent, we see that a scheme that achieves both bounds
is missing.

We close the gap by presenting two optimal constructions (except for small
additive constants). The first construction works over asymmetric bilinear groups,
yields commitments of size k+1, and verifies with one equation. The second con-
struction works over symmetric bilinear groups, yields commitments of k + 2,
and verifies with two equations. Both constructions implement trapdoor and
homomorphic properties. The schemes are computationally binding based on
simple standard computational assumptions. Finally, we assess their efficiency
in combination with GS zero-knowledge proofs of correct opening.
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2 Preliminaries

2.1 Bilinear Groups

Let G be a bilinear group generator that takes security parameter 1λ and outputs
a description of bilinear groups Λ := (p,G1,G2,GT , e,G, G̃) where G1, G2 and
GT are groups of prime order p, e is an efficient and non-degenerating bilinear
map e : G1×G2 → GT , and G and G̃ are generators of G1 and G2, respectively.
By Λ∗, we denote Λ without the generators G and G̃, i.e., Λ∗ = (p,G1,G2,GT , e).

By Λsym we denote a special case of Λ where G1 = G2 (and G = G̃), which is
also referred to as a symmetric setting. Λsxdh denotes a case where the decision
Diffie-Hellman (DDH) assumption holds in G1 and G2. This means that no effi-
cient mapping is available for either direction. Λsxdh is usually referred to as the
symmetric external DDH (SXDH) setting [22, 6, 15, 23]. For practical differences
between Λsym and Λsxdh, please refer to [14].

2.2 Notations

By G, we denote a base group, G1 or G2, when the difference is not important.
By G∗ we denote G \ {1G}. We use upper case letters to group elements and
corresponding lower case letters to represent the discrete-log of the group element
with respect to a fixed (but not necessarily explicit) base. For a set or a vector
of group elements, X ∈ Gn, the size of X refers to n and is denoted as |X|. We
consider X as a row vector. For a vector or an ordered set X, the i-th element
is denoted as X[i] or Xi.

We use multiplicative notations for group operations and additive notation
for vector operations. The transpose of X is denoted as Xt. A concatenation of

vectors X ∈ Gn and Y ∈ Gk is denoted as X||Y def
= (X1, . . . , Xn, Y1, . . . , Yk).

For X ∈ Gn and a ∈ Znp , we define aXt def
=
∏n
i=1X

ai
i . For a matrix A ∈ Zkp×Znp

and X ∈ Gn, AXt def
= (

∏n
i=1X

a1,i
i , · · · ,

∏n
i=1X

ak,i
i )t, where ai,j is entry (i, j)

of A. For X,Y ∈ Gn, X+Y
def
= (X1 ·Y1, . . . , Xn ·Yn). For X ∈ Gn1 and Y ∈ Gn2 ,

X · Y t is defined as
∏n
i=1 e(Xi, Yi). By 0 ∈ Gn we denote additive unity vector

0 = {1G, . . . , 1G}.
For aij ∈ Zp, T ∈ GT , Xi ∈ G1, and Yj ∈ G2, an equation of the form∏

i

∏
j

e(Xi, Yj)
aij = T

is called a pairing product equation (PPE). With our notation, any pairing
product equation for variables X ∈ Gk1 and Y ∈ Gn2 can be represented as
X AY t = T where A is a k × n matrix over Zp and T is a constant in GT . For
convenience, we may abuse these notations for vectors that consist of elements
from both G1 and G2 assuming that relevant entries of a multiplied scaler matrix
are zero so that the computation is well defined in either G1 or G2.

For a sequence of events, E1, . . . , En and a statement S, Pr[E1, . . . , En : S]
denotes the probability that S is satisfied when events E1, . . . , En occur. The
probability is taken over the random coins used in the events.
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2.3 Commitment Schemes

We focus on non-interactive commitment schemes and follow a standard syntac-
tical definition with the following setup.

Definition 1 (Commitment Scheme). A commitment scheme C is a quadru-
ple of efficient algorithms C = (Setup,Key,Com,Vrf) in which;

– gk ← Setup(1λ) is a common parameter generator that takes security param-
eter λ and outputs a set of common parameters, gk.

– ck ← Key(gk) is a key generator that takes gk as input and outputs commitment-
key ck. It may take extra parameters as input if needed. It is assumed that
ck determines the message space Mck . A messages is valid if it is in Mck .

– (com, open) ← Com(ck ,msg) is a commitment function that takes ck and
message, msg, and outputs commitment, com, and opening information,
open.

– 1/0← Vrf(ck , com,msg , open) is a verification function that takes ck, com,
msg, and open as input, and outputs 1 or 0 representing acceptance or re-
jection, respectively.

It is required that Pr[gk ← Setup(1λ), ck ← Key(gk), msg ←Mck , (com, open)←
Com(ck ,msg) : 1← Vrf(ck , com,msg , open)] = 1.

Definition 2 (Binding and Hiding Properties). A commitment scheme
is binding if, for any polynomial-time adversary A, Pr[gk ← Setup(1λ), ck ←
Key(gk), (com,msg , open,msg ′, open ′) ← A(ck) : 1 ← Vrf(ck , com,msg , open) ∧
1 ← Vrf(ck , com,msg ′, open ′)] is negligible. It is hiding if, for any polynomial-
time adversary A, advantage Pr[1← HideTCA (1)]−Pr[1← HideTCA (0)] is negligible
in λ where b′ ← HideTCA (b) is the process that gk ← Setup(1λ), ck ← Key(gk),
(msg0,msg1, ω)← A(ck), (com,−)← Com(ck ,msgb), b′ ← A(ω, com).

Definition 3 (Trapdoor Commitment Scheme). A commitment scheme is
called a trapdoor commitment scheme if Key additionally outputs a trapdoor-
key tk, and there is an efficient algorithm Equiv called equivocation algorithm
that takes (ck , tk , com,msg , open,msg ′) as input and outputs open ′ such that,
for legitimately generated ck, tk , and any valid messages msg and msg ′, it holds
that (com, open) ← Com(ck ,msg), open ′ ← Equiv(ck , tk , com,msg , open,msg ′),
1 ← Vrf(ck , com,msg ′, open ′), and two distributions (ck , com,msg , open) and
(ck , com,msg ′, open ′) over all choices of msg and msg ′ are indistinguishable.

Definition 3 is usually referred to as chameleon hash [20], and, in fact, is a
stronger requirement than the common definition of a trapdoor commitment
scheme (e.g., see [16]), which allows a different algorithm (taking tk as an input)
to compute equivocalable commitments.

Definition 4 (Homomorphic Commitment Scheme). A commitment scheme
is homomorphic if, for any legitimately generated ck, three binary operations, ·,
�, ⊗, are defined, and for any valid messages, msg and msg ′, it holds that
(com, open) ← Com(ck ,msg), (com, open) ← Com(ck ,msg), 1 ← Vrf(ck , com ·
com ′,msg �msg ′, open ⊗ open ′) with probability 1.
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2.4 Strictly Structure-Preserving Commitments

Definition 5 (Strictly Structure-Preserving Commitments). A commit-
ment scheme C is strictly structure-preserving with respect to a bilinear group
generator G if

– Setup(1λ) outputs gk that consists of Λ = (p,G1,G2,GT , e,G, G̃) generated
by G(1λ),

– Key outputs ck that consists of Λ∗ and group elements in G1 and G2,
– the messages consist of group elements in G1 and G2,
– Com outputs com and open that consist of elements in G1 and G2, and
– Vrf evaluates membership in G1 and G2 and evaluating pairing product equa-

tions over Λ∗.

Function Setup may also determine non-group elements, such as constants
in Zp, which are given implicitly to other functions as system parameters. Note
that the size of a message, denoted by k, may be limited by the size of ck . Also
note that, in a previous work [1], com is allowed to include elements in GT while
it is limited to G in the above strict case. This results in limiting the pairing
product equations in Vrf to have T = 1GT since none of ck , com, msg , open could
include elements from GT . Our lower bounds, however, hold even if ck and open
include T 6= 1 used for verification.

2.5 Algebraic Algorithms

Roughly, an algorithm A is algebraic over Λ if, whenever A is given elements
(X1, . . . , Xn) of a group and outputs an element Y in the same group, A should
“know” a representation (r1, . . . , rn) of Y that fulfils Y =

∏
Xri
i . We require

the property only with respect to the base groups. A formal definition follows.

Definition 6 (Algebraic Algorithm). Let A be a probabilistic polynomial
time algorithm that takes a bilinear group description Λ, a string aux ∈ {0, 1}∗,
and base group elements X ∈ Gk for some k as input; and outputs a group ele-
ment in G and a string ext ∈ {0, 1}∗. Algorithm A is called algebraic with respect
to G if there exists a probabilistic polynomial-time algorithm, Ext, receiving the
same input as A including the same random coins such that for any Λ← G(1λ),
all polynomial size X 6= (1, . . . , 1), and aux, the following probability, taken over
coin r, is negligible in λ.

Pr

 (Y1, . . . , Yn, ext)← A(Λ,X, aux ; r),
(y1, . . . ,yn, ext)← Ext(Λ,X, aux ; r)

: ∃i ∈ {1, . . . , n} s.t. Yi 6=
k∏
j=1

X
yi,j
j


The notion is often used for restricting a class of reduction algorithms for

showing impossibility of security proofs for practical cryptographic schemes by
black-box reduction, e.g., [7, 11]. The notion in this case implies the limitation
of current reduction techniques and considered as “not overly restrictive” as it
covers all known efficient reductions.
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The notion is also used for characterising constructions of cryptographic
schemes. In [2], the signing function is assumed computable only with generic
operations, which implies that it is algebraic. A closely related concept is known
as the knowledge of exponent assumption [12, 19, 5]. It is applied to adversary A
and considered as a “very strong assumption” since it is hardly falsifiable. It is
also generally undesirable to put a limitation on the ability of a malicious party.

Similar to [2], but with slightly more generality, we put a restriction on the
key generation and commitment algorithms so that they are algebraic. Though
this narrows the coverage of our result, it still covers quite a wide range of
approaches. It also suggests a direction to find a new construction that includes
non-algebraic operations yet the relation can be efficiently verified by generic
operations through pairing product equations.

2.6 Assumptions

Assumption 7 (Double Pairing Assumption (DBP)). Given Λ and (Gz, Gr)
← G∗1

2, it is hard to find (Z,R) ∈ G∗2 ×G∗2 that satisfies

1 = e(Gz, Z) e(Gr, R). (1)

Assumption 8 (Simultaneous Double Pairing Assumption (SDP)). Given
Λ and (Gz, Gr, Fz, Fs)← G∗1

4, it is hard to find (Z,R, S) ∈ G∗2
3 that satisfies

1 = e(Gz, Z) e(Gr, R) and 1 = e(Fz, Z) e(Fs, S). (2)

DBP is implied by DDH in G1. It does not hold for Λsym. SDP is implied by
DLIN [9] for Λsym. When Λsxdh is considered, we can assume the dual version of
these assumptions that swap G1 and G2.

3 Lower Bounds

We show two lower bounds for strictly structure-preserving commitment scheme
C over G. Let Λ ← G(1λ), ck := (Λ∗,V ), msg := M , com := C, open := D,
where V , M , C, D are vectors of elements in G1 and G2 in Λ. Let `v, `m, and
`c denote the size of V , M , and C, respectively.

3.1 Commitment Size

Theorem 9. If the discrete-logarithm problem in the base groups of Λ is hard,
Key and Com are algebraic, and `c < `m, then C is not binding.

Proof. Algorithm Com takes (Λ∗,V ,M) as input and outputs (C,D) under
the constraint that `c < `m. Since Com is algebraic, there exists an associated
algorithm ExtCom that takes the same input as Com does and outputs matrices
B1, B2, B3, B4 over Zp for which

(C)t = B1 (M)t +B2 (V )t and (D)t = B3 (M)t +B4 (V )t (3)
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hold. Note that B1 is an `c × `m rectangular matrix. We first consider the sym-
metric bilinear setting where G1 = G2 and represent the group by G. We later
argue that the same argument holds for asymmetric setting with trivial modifi-
cations.

We construct an adversary A that breaks the binding property of C. First
A selects arbitrary M and computes (C,D) ← Com(Λ∗,V ,M). It then runs
ExtCom(Λ∗,V ,M) and obtains B1, . . . , B4. If an i-th column of B1 is zero, then
M ′ is formed by replacing Mi in M with a fresh arbitrary M ′i . If none of the
columns of B1 are zero, A finds a non-zero vector R that satisfies B1 (R)t = 0.
Then it computes M ′ = M + R. In either case, A then computes (D′)t :=
B3 (M ′)t + B4 (V )t, and outputs (C,M ,D,M ′,D′). This completes the de-
scription of A.

We first show that the above R can be efficiently found. By applying standard
Gaussian elimination to B1, one can efficiently find S1 that is the largest regular
sub-matrix of B1. Let I and J be the set of indexes of rows and columns of
B1, respectively, that form S1. By Ī and J̄ , we denote the rest of the indexes in
B1. Note that |I| = |J | and |J |+ |J̄ | = `m. Consider matrix S2 of size |I| × |J̄ |
formed by selecting entries B1[i][j], i ∈ I, and j ∈ J̄ . Such S2 can be formed
since J̄ is not empty due to `c < `m. Select arbitrary non-zero vector R2 of
size |J̄ | and compute (R1)t = −S−11 S2 (R2)t. Then R1 is a vector of size |J |.
Then compose R from R1 and R2 in such a way that R[J [i]] := R1[i] and
R[J̄ [i]] := R2[i] . Since R2 is not zero, the resulting R is not zero as well.
Let S be a matrix consisting of rows of B1 that belong to I. It then holds that
S ·(R)t = S1 (R1)t+S2 (R2)t = 0. Since other rows of B1 are linearly dependent
on S, we have B1 (R)t = 0 as expected.

We next show that A outputs a valid answer. First, 1← Vrf(Λ,V ,C,M ,D)
holds due to the correctness of C. Recall that Vrf consists of evaluating PPEs.
Every PPE in Vrf can be represented by

PPEi : (V ||C||M ||D)Ai (V ||C||M ||D)t = 1 (4)

with some constant matrix Ai over Zp. Suppose that ExtCom is successful and
(3) indeed holds. Then (4) can be rewritten by

(V ||M)Ei (V ||M)t = 1 (5)

with matrix Ei in which

Ei = F Ai F
t where F =

(
1`v B

t
2 0`v B

t
4

0`m Bt1 1`m Bt3

)
(6)

where 1n and 0n denote n× n identity and zero matrices over Zp, respectively.
Note that Ei depends on M (through the computation of B1 to B4); hence, (5)
holds for that M . Nevertheless, we claim that any M ′ that is even unrelated to
Ei fulfils (4) as long as (5) is fulfilled and C and D are computed as in (3).

Claim. For valid M ′(6= M) that fulfils

(V ||M ′)Ei (V ||M ′)t = 1, (7)
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for all i, relation

(V ||C ′||M ′||D′)Ai (V ||C ′||M ′||D′)t = 1 (8)

holds for all i with respect to

(C ′)t := B1 (M ′)t +B2 (V )t and (D′)t := B3 (M ′)t +B4 (V )t. (9)

Proof is trivial by converting (7) into (8) by using (6) and (9). As a consequence,
such (C ′,M ′,D′) fulfils 1 ← Vrf(Λ∗,V ,C ′,M ′,D′). We next make a strong
claim that any M ′ satisfies (7).

Claim. If the discrete-logarithm problem in G is hard, the relation (7) holds for
any M ′ ∈ G`m .

Intuition is that Com and ExtCom do not know the discrete-log of M in computing
B1 to B4. Thus the only way to fulfil (5) is to set B1 to B4 so that (5) is trivial
for M . It then holds for any M ′ as in (7). To formally reduce to the hardness
of the discrete-logarithm problem, we also require ExtKey to be algebraic so that
v is available to our reduction algorithm.

Proof. Consider the relation in the exponents of (7) where V is a constant and
M ′ is a variable. The relation is in a quadratic form, say Qi(m

′) = 0, whose
coefficients can be computed efficiently from Ei. To prove the statement, it
suffices to show that Qi is a constant polynomial for all i.

Suppose, on the contrary, that there exists i where Qi is a non-trivial polyno-
mial with probability εQ that is not negligible. The probability is taken over the
choice of V , M . (Recall that Ei depends on V and M . It also depends on the
randomness of the extractor of Com, but the theorem statement is conditional on
the success of the extractor.) We construct algorithm D that solves the discrete
logarithm problem by using Key, Com, and their extractors ExtKey and ExtCom
as follows. Let (Λ, Y ) be an instance of the discrete-logarithm problem where Λ
includes base G. The goal is to compute x := logG Y . Given (Λ, Y ), algorithm
D first generates commitment key (ck , tk) ← Key(Λ, k) where ck = (Λ∗,V ).
By invoking ExtKey, algorithm D obtains discrete-log v of V with respect to
G. (D halts if negligible extraction error occurs.) It then forms M by setting
Mj := Y γj with random γj , and runs (C,D) ← Com(Λ∗,V ,M). By running
ExtCom, algorithm D obtains B1, B2, B3 and B4. It then computes Ei and fur-
ther obtains quadratic polynomial Qi that is non-trivial by hypothesis. By using
the relation that mj = γj · x, D converts Qi into quadratic polynomial Q′i in x,
which is also non-trivial except for negligible probability. (The probability is over
the choice of every γi. Rigorously, the bound is given by Schwartz’s lemma [21]
since Qi is a low-degree polynomial in γj .) Finally, D solves Q′i(x) = 0 and
outputs x. The running time of D is polynomial since Key, Com, and their ex-
tractors run in polynomial-time and other computations are obviously executable
in polynomial-time. The success probability of D is almost the same as εQ except
for the negligible errors. This contradicts the hardness of the discrete-logarithm
problem in G.
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Now recall that M ′ is set to M + R and that B1 R = 0. Thus,

(C ′)
t

= B1 (M ′)
t

+B2 (V )
t

= B1 (M)
t

+B2 (V )
t

= (C)
t
. (10)

Due to the above claims, 1 ← Vrf(Λ,V ,C,M ′,D′) holds. Furthermore, M 6=
M ′ since R 6= 0. Thus, (C,M ,D,M ′,D′) is a valid solution that breaks the
binding property of C. This completes the proof in the symmetric group setting.

In the asymmetric setting where M and other vectors consist of elements
from both G1 and G2, essentially the same argument holds since elements in
the gruops do not mix each other. In the following, we only describe the points
where the argument has to be adjusted.

– Every vector is split into G1 vector and G2 vector, e.g., M = (M1,M2) ∈
G`m1

1 ×G`m2
2 for `m1 + `m2 = `m.

– By running ExtCom, we obtain Bj in the form of

Bj =

(
Bj1 0
0 Bj2

)
(11)

so that linear computation such as (3) is well defined.
– Without loss of generality, we assume that |C1| < |M1|. (Otherwise, |C2| <
|M2| holds.) Then, we can obtain non-zero vector R1 from B11 in the same
way as we obtain R from B1 in the symmetric case. By setting R = (R1,0),
we have B1R = 0 as desired.

– Pairing product equations (4), (5), (7) and (8) are modified so that their left
and right vectors consist only of G1 and G2, respectively, for computational
consistency. Also, matrix Ei in (6) is modified to Ei = F1Ai (F2)t where Fi
is formed by using B1i, B2i, B3i, and B4i in the same manner as in F in (6).

– In the second claim, we require hardness of the discrete-logarithm problem
in both G1 and G2. Depending on which of M1 and M2 polynomial Qi is
non-trivial, we solve the discrete-logarithm problem in G1 or G2, respectively.

3.2 Number of Verification Equations

Theorem 10. If Λ = Λsym, `m ≥ 2, and Vrf evaluates only one PPE, then C is
not binding.

Proof. By focusing on M1 and M2 in M , the PPE in the verification can be
written as

e(M1,M1)a1 e(M1,K1)b1 e(M2,M2)a2 e(M2,K2)b2 e(M1,M2)c P = 1 (12)

where a1, b1, a2, b2, c ∈ Zp are constants determined by the common parameter,
and K1 and K2 are linear combinations of elements in V , C, D and M \
{M1,M2}, and P is a product of pairings that does not involve M1 and M2. Let
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f be the polynomial that represents the relation in the exponent of the leftmost
five pairings of (12). Namely,

f := a1m
2
1 + b1 k1m1 + cm1m2 + b2 k2m2 + a2m

2
2, (13)

where m1, m2, k1, and k2 are the discrete-logs of M1, M2, K1, and K2 with
respect to the generator, say G, in Λ.

Given a commitment-key (Λ∗,V ), we set M = 1 and honestly compute C
and D by running Com. These C and D define K1, K2, and P in (12). Let
f(m1,m2) be f , as defined in (13), with k1 and k2 determined by these K1 and
K2. We have f(0, 0) = 0 and look for another pair (m′1,m

′
2) 6= (0, 0) that fulfils

f(m′1,m
′
2) = 0. Such (m′1,m

′
2) yield (M ′1,M

′
2) = (Gm

′
1 , Gm

′
2) 6= (1, 1).

Next, we show how to obtain such (M ′1,M
′
2):

– If (a1, a2, c) = (0, 0, 0), we have f(m1,m2) = b1 k1m1 + b2 k2m2. We then
proceed with the following sub-cases.
• If b1 k1 6= 0 and b2 k2 6= 0, then m′1 := k2 and m′2 := (−b1/b2) · k1 results

in (m′1,m
′
2) 6= (0, 0) and f(m′1,m

′
2) = 0. Thus, setting M ′1 := K2 and

M ′2 := K
−b1/b2
1 works.

• If biki = 0 for i = 1 or i = 2, or both, f(m1,m2) is independent of mi.
Therefore, any non-zero m′i suffices. Simply select arbitrary non-zero m′i
and compute M ′i = Gm

′
i .

– If (a1, a2, c) 6= (0, 0, 0), we do as follows.
• If b1 k1 = 0 and b2 k2 = 0, we have f(m1,m2) = a1m

2
1+cm1m2+a2m

2
2.

By selecting non-zero m′1 and solving m′2 for f = 0 (if f(m1,m2) =
0 is independent of m2, arbitrary m′2 suffices), we have (M ′1,M

′
2) =

(Gm1 , Gm2) 6= (1, 1).
• If b1 k1 6= 0 or b2 k2 6= 0, we consider setting m2 = δ m1 for some δ. With

this relation, (13) is written as

f(m1,m2) = m1

{
(a1 + a2 δ

2 + c δ)m1 + (b1 k1 + b2 k2 δ)
}
. (14)

We need (14) to have a non-zero solution for m1. Therefore, we set δ so
that a1 + a2 δ

2 + c δ 6= 0 and b1 k1 + b2 k2 δ 6= 0 hold. (There are at most
two δ for which these inequalities do not hold. For an arbitrary δ, the
first inequality can be tested directly, whereas the second is through the
relation Kb1

1 K
b2δ
2 6= 1. Thus, by trying at most three non-zero different

δ, we have an appropriate δ.) Then

m′1 = − b1 k1 + b2 k2δ

a1 + a2 δ2 + c δ
and m′2 = δ m′1

fulfil (m′1,m
′
2) 6= (0, 0) and f(m′1,m

′
2) = 0. This corresponds to setting

M ′1 := (Kb1
1 K

b2 δ
2 )

1
a1+a2 δ

2+c δ and M ′2 := (M ′1)δ.

By replacing M1 and M2 in M with M ′1 and M ′2 computed as described
above, we obtain M ′ 6= M , which is consistent with C and D; Hence, the
binding property breaks.
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4 Optimal Constructions

4.1 In Asymmetric Setting

Let G be a generator of asymmetric bilinear groups. Scheme 1 in Fig. 1 is for
messages M = (M1, . . . ,Mk) ∈ Gk2 for some fixed constant k specified at the
time of commitment-key generation. The default generators G and G̃ in Λ can
be used as G0 and H, respectively. One can switch G1 and G2 in the description
to obtain a dual scheme that accepts messages in G1. It also implies a scheme for
messages from both G1 and G2. We show that the scheme is correct, perfectly
hiding, and computationally binding as well as trapdoor and homomorphic.

[Scheme 1]

Setup(1λ): Run G(1λ) and obtain Λ := (p,G1,G2,GT , e, G, G̃). Output Λ.
Key(Λ, k): Select G0 and H uniformly from G∗1 and G∗2, respectively. For i =

1, . . . , k, compute Gi := Gγi0 for random γi ∈ Z∗p. Output commitment-key
ck = (Λ∗, H,G0, . . . , Gk) and trapdoor tk = (γ1, . . . , γk).

Com(ck,M): Randomly select τ0, . . . , τk ∈ Zp and compute

Ci := Mi ·Hτi (for i = 1, . . . , k), Ck+1 :=

k∏
j=0

G
τj
j , and (15)

D := Hτ0 . (16)

Then output C := (C1, . . . , Ck+1) and D.
Vrf(ck,C,M , D): Output 1 if

e(Ck+1, H) = e(G0, D)

k∏
i=1

e(Gi, Ci/Mi) (17)

holds. Output 0, otherwise.
Equiv(ck, tk,C,M , D,M ′): Take (γ1, . . . , γk) from tk. Then output D′ such that

D′ := D ·
k∏
i=1

(M ′i/Mi)
γi . (18)

Fig. 1. Homomorphic trapdoor commitment scheme in asymmetric bilinear group set-
ting.

Theorem 11. Scheme 1 is correct.

Proof. For any C and D correctly computed for ck and M as in (15), the right-
hand of verification equation (17) is

e(G0, D)

k∏
i=1

e(Gi, Ci/Mi) = e(G0, H
τ0)

k∏
i=1

e(Gi, H
τi) = e(Ck+1, H). (19)
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Thus (ck ,C,M , D) passes the verification with probability 1.

Theorem 12. Scheme 1 is perfectly hiding and computationally binding if the
DBP assumption holds for Λ.

Proof. It is perfectly hiding because, for every commitment C = (C1, . . . , Ck+1) ∈
G1 × Gk2 and every message M = (M1, . . . ,Mk) ∈ Gk2 , there exists a unique
(τ0, . . . , τk) ∈ Zk+1

p that is consistent with relations (15), (16) and (17).
The binding property is proven by constructing an algorithm B that breaks

DBP using an adversary A that successfully computes two openings for a com-
mitment. Given an instance (Λ,Gz, Gr) of DBP, algorithm B works as follows.

– Randomly select ρ0 from Z∗p and compute G0 := Gρ0r .
– For i = 1, . . . , k, randomly select ζi ∈ Z∗p and ρi ∈ Zp and compute Gi :=

Gζiz G
ρi
r . If Gi = 1 for any i, B aborts; since the probability for this is negli-

gible, this does not affect the overall success of B.
– Run A with input ck = (Λ∗, H,G0, . . . , Gk).
– Given commitment C and two openings (M ,D) and (M ′,D′) from A,

compute

Z? =

k∏
i=1

(
M ′i
Mi

)ζi
and R? =

(
D

D′

)ρ0 k∏
i=1

(
M ′i
Mi

)ρi
. (20)

– Output (Z?, R?).

Since both (M ,D) and (M ′,D′) fulfil (17) for the same commitment C, divid-
ing the two verification equations yields

1 = e

(
G0,

D

D′

) k∏
i=1

e

(
Gi,

M ′i
Mi

)
= e

(
Gρ0r ,

D

D′

) k∏
i=1

e

(
Gζiz G

ρi
r ,

M ′i
Mi

)
(21)

= e

(
Gz,

k∏
i=1

(
M ′i
Mi

)ζi)
e

(
Gr,

(
D

D′

)ρ0 k∏
i=1

(
M ′i
Mi

)ρi)
(22)

= e(Gz, Z
?) e(Gr, R

?). (23)

Since M 6= M ′, there exists i such that M ′i/Mi 6= 1. Also, ζi is independent from
the view of the adversary, i.e., for every choice of ζi, there exist a corresponding
ρi that gives the same Gi. Accordingly, Z? =

∏
i(M

′
i/Mi)

ζi 6= 1 holds with
overwhelming probability, and (Z?, R?) is a valid answer to the instance of DBP.
Therefore, B breaks DBP with the same probability that A breaks the binding
property of Scheme 1 (minus a negligible difference).

Theorem 13. Scheme 1 is trapdoor and homomorphic.

Proof. For the trapdoor property, observe that, for any trapdoor tk generated
by Key, and for any valid M and (C, D) generated by Com, and D′ generated
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by Equiv for any valid M ′, it holds that

e(G0, D
′)

k∏
i=1

e(Gi, Ci/M
′
i) = e(G0, D ·

k∏
i=1

(M ′i/Mi)
γi)

k∏
i=1

e(Gi, Ci/M
′
i) (24)

= e(G0, D)

k∏
i=1

e(Gγi0 ,M
′
i/Mi)

k∏
i=1

e(Gi, Ci/M
′
i) (25)

= e(G0, D)

k∏
i=1

e(Gi, Ci/Mi) (26)

= e(Ck+1, H). (27)

Thus (M ′, D′) is a correct opening of C computed from M . Also observe that
(ck ,M ,C) uniquely determines D and so is (ck ,M ′,C) and D′. Therefore,
distributions (ck ,M ,C, D) and (ck ,M ′,C, D′) over all choices of M and M ′

are identical.
To check the homomorphic property, let (ck ,C,M , D) and (ck ,C ′,M ′, D′)

satisfy verification equation (17). Also, let M? := M +M ′, C? := C +C ′, and
D? := D ·D′. Then it holds that

e(G0, D
?)

k∏
i=1

e(Gi, C
?
i /M

?
i ) (28)

= e(G0, D) e(G0, D
′)

k∏
i=1

e(Gi, Ci/Mi)

k∏
i=1

e(Gi, C
′
i/M

′
i) (29)

= e(Ck+1, H) e(C ′k+1, H) (30)

= e(C?k+1, H). (31)

4.2 In Symmetric Setting

Let G be a generator of symmetric bilinear groups. Scheme 2 in Fig. 2 is for
messages M = (M1, . . . ,Mk) ∈ Gk1 for some fixed constant k specified at the
time of commitment-key generation. The default generator G in Λ can be used
as H in the key generation.

Theorem 14. Scheme 2 is correct.

Proof. For correctly generated/computed (ck,C,M ,D), the following holds:

e(G0, D1)

k∏
i=1

e(Gi, Ci/Mi) = e(G0, H
τ0)

k∏
i=1

e(Gi, H
τi) = e(Ck+1, H) (37)

e(F0, D2)

k∏
i=1

e(Fi, Ci/Mi) = e(F0, H
µ0)

k∏
i=1

e(Fi, H
τi) = e(Ck+2, H). (38)

Thus it passes the verification with probability 1.
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[Scheme 2]

Setup(1λ): Run G(1λ) and obtain Λ := (p,G1,GT , e, G). Output Λ.
Key(Λ, k): Select H, G0 and F0 from G1 uniformly. For i = 1, . . . , k, com-

pute Gi := Gγi0 and Fi := F δi0 for random γi, δi ∈ Z∗p. Output ck :=
(Λ∗, H, (Gi, Fi)

k
i=0) and tk := ((γi, δi)

k
i=1).

Com(ck,M): Choose µ0, τ0, . . . , τk ∈ Zp randomly and compute (for i = 1, . . . k)

Ci := Mi ·Hτi , Ck+1 := Gτ00

k∏
j=1

G
τj
j , Ck+2 := Fµ0

0

k∏
j=1

F
τj
j , (32)

D1 := Hτ0 , and D2 := Hµ0 . (33)

Output C := (C1, . . . , Ck+2) and D = (D1, D2).
Vrf(ck,C,M ,D): Output 1 if the following equations hold. Output 0, otherwise.

e(Ck+1, H) = e(G0, D1)

k∏
i=1

e(Gi, Ci/Mi) (34)

e(Ck+2, H) = e(F0, D2)
k∏
i=1

e(Fi, Ci/Mi) (35)

Equiv(ck, tk,C,M ,D,M ′): Parse tk as ((γi, δi)
k
i=1). Output D′ = (D′1, D

′
2) such

that

D′1 := D1 ·
k∏
i=1

(M ′i/Mi)
γi , and D′2 := D2 ·

k∏
i=1

(M ′i/Mi)
δi . (36)

Fig. 2. Homomorphic trapdoor commitment scheme in symmetric bilinear group set-
ting.

Theorem 15. Scheme 2 is perfectly hiding and computationally binding if the
SDP assumption holds for Λ.

Proof. It is perfectly hiding due to the uniform choice of (µ0, τ0, τ1, . . . , τk) when
committing, and due to the fact that for every commitment C = (C1, . . . , Ck+2) ∈
G1

k+2 and for every message M = (M1, . . . ,Mk) ∈ G1
k there exists a unique

pair (D1, D2) that satisfies equations (34)-(35).
The binding property is shown by constructing an algorithm B that breaks

SDP using an adversary A that successfully computes two openings for a com-
mitment. Given an instance (Λ,Gz, Gr, Fz, Fs) of SDP, algorithm B works as
follows.

– Pick random ρ0 and ω0 from Z∗p and compute G0 := Gρ0r , and F0 := Fω0
s .

– For i = 1, . . . , k, pick random ζi ∈ Z∗p and ρi, ωi ∈ Zp and compute Gi :=

Gζiz G
ρi
r , and Fi := F ζiz F

ωi
s . If Gi = 1 or F1 = 1 for any i, B aborts; since the

probability for this is negligible, we can ignore such cases.
– Run A with input ck = (Λ∗, H,G0, F0, . . . , Gk, Fk).
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– Given commitment C and two openings (M ,D) and (M ′,D′) from A,
compute

Z? =

k∏
i=1

(
M ′i
Mi

)ζi
, R? =

(
D1

D′2

)ρ0 k∏
i=1

(
M ′i
Mi

)ρi
, S? =

(
D2

D′2

)ω0 k∏
i=1

(
M ′i
Mi

)ωi
.

– Output (Z?, R?, S?).

Since both (M , D1) and (M ′, D′1) fulfils (34) with C, dividing the two equations
yields

1 = e

(
G0,

D1

D′1

) k∏
i=1

e

(
Gi,

M ′i
Mi

)
= e

(
Gρ0r ,

D1

D′1

) k∏
i=1

e

(
Gζiz G

ρi
r ,

M ′i
Mi

)

= e

(
Gz,

k∏
i=1

(
M ′i
Mi

)ζi)
e

(
Gr,

(
D1

D′1

)ρ0 k∏
i=1

(
M ′i
Mi

)ρi)
= e(Gz, Z

?) e(Gr, R
?).

Similarly, from (M , D2) and (M ′, D′2) fulfilling (35) with C, we have

1 = e

(
F0,

D2

D′2

) k∏
i=1

e

(
Fi,

M ′i
Mi

)
= e(Fz, Z

?) e(Fs, S
?).

Since M 6= M ′, there exists i such that M ′i/Mi 6= 1. Observe that ζi is in-
dependent from the view of the adversary, i.e., for every choice of ζi, there
exist corresponding ρi and ωi that give the same Gi and Fi, respectively. Thus,
Z? =

∏
i(M

′
i/Mi)

ζi 6= 1 holds with overwhelming probability, and (Z?, R?, S?)
is a valid answer to the instance of SDP. Accordingly, B breaks SDP if A can
break the binding property with a non-negligible probability.

Theorem 16. Scheme 2 is trapdoor and homomorphic.

The proof is analogous to that that of Theorem 13; thus, it is omitted.

4.3 Efficiency

Table 1 compares storage and computation costs to commit to a message con-
sisting of k group elements. Schemes for symmetric setting are above the line
and those for asymmetric setting are below the line. In [3], another scheme in
an asymmetric setting is discussed without details. The scheme yields a commit-
ment of at least 2k, which is not optimal.

We also assess the efficiency in combination of GS proofs. A typical proof
statement would be “I can open the commitment.” It uses (M ,D) as witness
and (V ,C) as constants in the theorem statement represented by PPEs in the
verification predicate. Table 2 shows the size of the witness, theorem, and proof
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Scheme Setting |V | |M | |C| |D| #(pairings) #(PPE) assumption

CLY09 [9] Λsym 5 k 3k 3k 9k 3k DLIN
AHO10 [3] Λsym 2k + 2 k 2k + 2 2 2k + 2 2 SDP
Scheme 2 Λsym 2k + 2 k k + 2 2 2k + 4 2 SDP

Scheme 1 Λsxdh (k, 0) (0, k) (1, k) (0, 1) k + 2 1 DBP

Table 1. Efficiency comparison. The size indicates the number of elements in a
commitment-key V , a commitment C, and a decommitment D for a message M
consisting of k group elements. For Scheme 1, (x, y) means x elements in G1 (or G2)
and y elements in G2 (or G1, resp.). #(pairings) and #(PPE) indicate the number of
pairings and pairing product equations in the verification predicate, respectively.

in the example. We also show the total size for a theorem and a proof in bits with
a reasonable parameter setting (which is considered as comparable security to an
RSA modulus of 2000 bits) where elements in G are 380 bits in the symmetric
setting, and elements in G1 and G2 are 224 bits and 448 bits, respectively,
assuming the use of point compression [4]. Scheme 1 is optimized by considering
the dual scheme taking messages from G1.

Size in Bits
Scheme Setting |witness| |theorem| |proof| k = 1 5 10

CLY09 [9] Λsym 4k 3k + 5 39k 17860 81700 161500
AHO10 [3] Λsym k + 2 4k + 4 15k + 24 17860 46740 82840
Scheme 2 Λsym k + 2 3k + 4 12k + 21 15200 38000 66500

Scheme 1 Λsxdh (0, k + 1) (k + 1, k) (0, 6k + 8) 4256 12320 22400

Table 2. Storage costs for proving correct opening in zero-knowledge by GS proofs.
Figures for |proof| include commitments of the witness and a proof. Size in bits indicates
|theorem|+ |proof| in bits.
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