
Malleable Proof Systems and Applications

Melissa Chase1, Markulf Kohlweiss2, Anna Lysyanskaya3, and
Sarah Meiklejohn?4

1 Microsoft Research Redmond
melissac@microsoft.com

2 Microsoft Research Cambridge
markulf@microsoft.com

3 Brown University
anna@cs.brown.edu

4 UC San Diego
smeiklej@cs.ucsd.edu

Abstract. Malleability for cryptography is not necessarily an oppor-
tunity for attack; in many cases it is a potentially useful feature that
can be exploited. In this work, we examine notions of malleability for
non-interactive zero-knowledge (NIZK) proofs. We start by defining a
malleable proof system, and then consider ways to meaningfully control
the malleability of the proof system, as in many settings we would like to
guarantee that only certain types of transformations can be performed.
As our motivating application, we consider a shorter proof for verifiable
shuffles. Our controlled-malleable proofs allow us for the first time to use
one compact proof to prove the correctness of an entire multi-step shuffle.
Each authority takes as input a set of encrypted votes and a controlled-
malleable NIZK proof that these are a shuffle of the original encrypted
votes submitted by the voters; it then permutes and re-randomizes these
votes and updates the proof by exploiting its controlled malleability.
As another application, we generically use controlled-malleable proofs to
realize a strong notion of encryption security.
Finally, we examine malleability in existing proof systems and observe
that Groth-Sahai proofs are malleable. We then go beyond this observa-
tion by characterizing all the ways in which they are malleable, and use
them to efficiently instantiate our generic constructions from above; this
means we can instantiate our proofs and all their applications using only
the Decision Linear (DLIN) assumption.

1 Introduction

Let L be a language in NP. For concreteness, consider the language of Diffie-
Hellman tuples: (G, g,X, Y, Z) ∈ LDH if there exist (x, y) such that g,X, Y, Z
are elements of the group G, X = gx, Y = gy, and Z = gxy. Suppose that we
have a polynomial time prover P , and a verifier V , and P wants to convince V
that (G, g,X, Y, Z) ∈ LDH . Does the efficient prover need to know the values

? Work done as an intern at Microsoft Research Redmond

(x, y) in order to convince the verifier? Not necessarily. Suppose that P is in
possession of a non-interactive zero-knowledge (NIZK) proof π′ that another
tuple, (G, g,X ′, Y ′, Z ′) ∈ LDH ; suppose in addition that P happens to know
(a, b) such that X = (X ′)a, Y = (Y ′)b, and Z = (Z ′)ab. Can he, using the
fact that he knows (a, b), transform π′ into a NIZK π for the related instance
(G, g,X, Y, Z)? In the sequel, we say that a proof system is malleable if it allows
a prover to derive proofs of statements (such as (G, g,X, Y, Z) ∈ LDH) not just
from witnesses for their truth, but also from proofs of related statements (such
as the proof π′ that (G, g,X ′, Y ′, Z ′) ∈ LDH).

In this paper, we consider malleability for non-interactive zero-knowledge
proof systems. Our contributions are threefold: (1) definitions; (2) constructions;
and (3) applications.

Motivating application. Why is malleability for non-interactive zero-knowledge
proof systems an interesting feature? Let us present, as a motivating application,
a verifiable vote shuffling scheme that becomes much more efficient if constructed
using malleable proofs.

In a vote shuffling scheme, we have a set of encrypted votes (v1, . . . , vn) sub-
mitted by n voters; each vote vi is an encryption of the voter’s ballot under some
trusted public key pk . The set of encrypted votes is then re-randomized5 and

shuffled, in turn, by several shuffling authorities. More precisely, let (v
(0)
1 , . . . , v

(0)
n)

= (v1, . . . , vn); then each authority Aj takes as input (v
(j−1)
1 , . . . , v

(j−1)
n), picks

a random permutation ρ and outputs (v
(j)
1 , . . . , v

(j)
n) = (ṽ

(j)
ρ(1), . . . , ṽ

(j)
ρ(n)), where

ṽ
(j)
i is a randomization of v

(j−1)
i . At the end, the final set of encrypted votes

(v
(`)
1 , . . . , v

(`)
n) is decrypted (for example, by a trustee who knows the decryption

key corresponding to pk , or via a threshold decryption protocol) and the election
can be tallied.

It is easy to see that, if we are dealing with an honest-but-curious adversary,
this scheme guarantees both correctness and privacy as long as at least one of
the authorities is honest. To make it withstand an active adversary, however, it
is necessary for all participants (both the voters and the shuffling authorities)
to prove (using a proof system with appropriate, technically subtle soundness
and zero-knowledge guarantees) that they are correctly following the protocol.
If these proofs are non-interactive, then the protocol gets the added benefit of
being universally verifiable: anyone with access to the original encrypted votes
and the output and proofs of each authority can verify that the votes were
shuffled correctly. Thus, any party wishing to verify an election with n voters
and ` shuffling authorities (and ` can potentially be quite large, for example a
large polynomial in n for cases where a small group is voting on a very sensitive
issue) will have to access Ω(n`) data just to read all the proofs.

5 It is therefore important that the encryption scheme used is randomizable, so that
on input a ciphertext c = Encpk (m; r) and randomness r′ one can compute c′ =
Encpk (m; r ∗ r′), where ∗ is some group operation.

Can the proof that the verifier needs to read be shorter than that? The

statement that needs to be verified is that the ciphertexts (v
(`)
1 , . . . , v

(`)
n) can be

obtained by randomizing and permuting the original votes (v1, . . . , vn). The wit-
ness for this statement is just some permutation (that is obtained by composing
the permutations applied by individual authorities) and randomness that went
into randomizing each ciphertext (that can be obtained by applying the group
operation repeatedly to the randomness used by each authority); thus, ignoring
the security parameter, the length of the witness can potentially be only O(n).6

Of course, no individual authority knows this witness. But each authority
Aj is given a proof πj−1 that, up until now, everything was permuted and ran-
domized correctly. Using controlled malleable proofs, from this πj−1 and its own

secret permutation ρj and vector of random values (r
(j)
1 , . . . , r

(j)
n), Aj should be

able to compute the proof π that his output is a permutation and randomization
of the original votes.

In this paper, we give a construction that roughly corresponds to this outline,
and prove its security. We must stress that even though this construction is a
more or less direct consequence of the new notion of controllable malleability, and
therefore may seem obvious in hindsight, it is actually a significant breakthrough
as far as the literature on efficient shuffles is concerned: for the first time, we
obtain a non-interactive construction in which the complexity of verifying the
tally with ` authorities is not ` times the complexity of verifying the tally with
one authority!

Our definitions. Care needs to be taken when defining malleable NIZKs suitable
for the above application. We first need malleability itself: from an instance x′

and a proof π′ that x′ ∈ L, we want to have an efficient algorithm ZKEval that
computes another instance x = T (x′) and a proof π that x ∈ L, where T is
some transformation (in the above example, x′ is a set of ciphertexts, and T is a
re-randomization and permutation of these ciphertexts). We want the resulting
proof to be derivation private, so that, from x and π, it is impossible to tell from
which T and x′ they were derived. (In the above example, it should be impossible
to tell how the ciphertexts were shuffled.) Finally, we want to ensure that the
proof system is sound, even in the presence of a zero-knowledge simulator that
provides proofs of adversarially chosen statements (so that we can relate the real-
world experiment where the adversary participates in shuffling the ciphertexts
to an ideal-world process that only has access to the final tally). To this end, we
define controlled malleability (as opposed to malleability that is out of control!)
that guarantees that, from proofs computed by an adversary, an extractor (with
a special extracting trapdoor) can compute either a witness to the truth of the

6 In our concrete construction we use a very simple approach to proving a shuffle in
which we represent the permutation as a matrix, thus the length of a single shuffle
proof is O(n2). This could potentially be improved using more sophisticated verifiable
shuffle techniques as we will mention later. Additionally, because we want to be able
to verify the fact that each authority participated in the shuffle, we will include a
public key for each authority involved and the size will actually grow to O(n2 + `).

statement, or the transformation T and some statement for which the simulator
had earlier provided a proof.

Our definitional approach to derivation privacy is inspired by circuit privacy
for fully homomorphic encryption [27, 40, 39, 13], also called function privacy or
unlinkability. Our definitional approach to controlled malleability is inspired by
the definitions of HCCA (homomorphic-CCA) secure encryption due to Prab-
hakaran and Rosulek [36]; it is also related to the recently proposed notion of
targeted malleability due to Boneh, Segev, and Waters [12]. (See the full version
of our paper [15] for more detailed comparison with these notions.)

Our construction. Our construction of controlled-malleable and derivation-private
NIZK proof systems consists of two steps. First, in Section 3, we show how to
construct a controlled-malleable derivation-private NIZK from any derivation-
private non-interactive witness-indistinguishable (NIWI) proof system and se-
cure signature scheme. Then, in Section 4.1 we show how to instantiate the
appropriate NIWI proof system and signature scheme using the Groth-Sahai
proof system [33] and a recent structure-preserving signature due to Chase and
Kohlweiss [14]; this combination means we can instantiate our proofs (and in fact
all of the constructions in our paper) using the Decision Linear (DLIN) assump-
tion [11]. The size of the resulting proof is linear in the size of the statement,
although the size of the structure-preserving signature does make it admittedly
much less efficient than Groth-Sahai proofs alone.

At the heart of our construction is the observation that the Groth-Sahai
(GS) proof system is malleable in ways that can be very useful. This feature
of GS proofs has been used in prior work in a wide variety of applications:
Belenkiy et al. [8] use the fact that the GS proof system can be randomized
in order to construct delegatable anonymous credentials; Dodis et al. [20] uses
homomorphic properties of GS proofs in order to create a signature scheme re-
silient to continuous leakage; Acar and Nguyen [7] use malleability to delegate
and update non-membership proofs for a cryptographic accumulator in their im-
plementation of a revocation mechanism for delegatable anonymous credentials;
and Fuchsbauer [24] uses malleability to transform a proof about the contents
of a commitment into a proof of knowledge of a signature on the committed
message in his construction of commuting signatures.

Compact verifiable shuffles. Armed with a construction of a controlled-malleable
and derivation-private NIZK, we proceed, in Section 6, to consider the problem
of obtaining a verifiable shuffle with compact proofs. We formally define this
concept, describe a generic construction from a semantically-secure encryption
scheme and a controlled-malleable and derivation-private NIZK following the
outline above, and finally argue that we can in fact construct such a proof system
for the appropriate set of transformations based on the instantiation described
in Section 4.1.

An application to encryption. Can controlled malleability of NIZKs give us con-
trolled malleability for encryption? That is to say, can we achieve a meaningful

notion of adaptively secure encryption, even while allowing computations on
encrypted data? Similarly to controlled malleability for proofs, we define in Sec-
tion 5 controlled malleability for encryption (directly inspired by the notion
of HCCA security; in this, our work can be considered closely related to that
of Prabhakaran and Rosulek), and show a general method for realizing it for
broad classes of unary transformations, using a semantically secure encryption
scheme with appropriate homomorphic properties and a controlled-malleable
and derivation-private NIZK for an appropriate language as building blocks.
Our construction follows easily from these properties, resulting in a much sim-
pler proof of security than was possible in previous works. (We note that our
methods do not extend to n-ary transformations for n > 1, because the same
limitations that apply for HCCA security, pointed out by Prabhakaran and Ro-
sulek, also apply here. The work of Boneh et al. overcomes this and allows for
binary transformations as well, with the sacrifice that, unlike both our scheme
and the Prabhakaran-Rosulek scheme, the encryption scheme can no longer sat-
isfy function privacy.)

Related work on shuffling ciphertexts. Shuffles and mixing in general were in-
troduced by Chaum in 1981 [16], and the problem of verifiable shuffles was
introduced by Sako and Kilian in 1995 [38]; the work on verifiable shuffles in the
ensuing sixteen years has been extensive and varied [2, 26, 6, 34, 29, 25, 41, 31]. In
1998, Abe [1] considered the problem of compact proofs of shuffles. Unlike our
non-interactive solution, his solution is based on an interactive protocol7 wherein
all mixing authorities must jointly generate a proof with size independent of `;
in comparison, our solution allows each authority to be offline before and after
it performs its shuffling of the ciphertexts. In terms of approaches most similar
to our own, Furukawa and Sako [26] use a permutation matrix to shuffle the
ciphertexts; they then prove that the matrix used was in fact a permutation
matrix, and that it was applied properly. Most recently, Groth and Lu [31] give
a verifiable shuffle that is non-interactive (the only one to do so without use
of the Fiat-Shamir heuristic [23]), uses pairing-based verifiability, and obtains
O(n) proof size for a single shuffle. The advantage, as outlined above, that our
construction has over all of these is that one proof suffices to show the security
of the entire shuffle; we do not require a separate proof from each mix server. An
interesting open problem is to see if there is some way to combine some of these
techniques with an appropriate controlled-malleable proof system to obtain a
multi-step shuffle with optimal proof size O(n+ `).

2 Definitions and Notation

Our definitional goal is to formulate what it means to construct a proof of
a particular statement using proofs of related statements. Let R(·, ·) be some
relation that is polynomial-time computable in the size of its first input; in the

7 The protocol could in fact be made non-interactive, but only using the Fiat-Shamir
heuristic [23] and thus the random oracle model.

sequel we call such a relation an efficient relation. Associated with R, there is
an NP language LR = {x | ∃ w such that R(x,w) = TRUE}.8 For example, let
R(x,w) be a relation that holds if the witness w = (a, b) demonstrates that the
instance x = (G, g,A,B,C) is a Diffie-Hellman tuple; i.e. it holds if g,A,B,C ∈
G and A = ga, B = gb, C = gab. Then the language associated with R is
LDH defined in the introduction. We often write (x,w) ∈ R to denote that
R(x,w) = TRUE .

Let T = (Tx, Tw) be a pair of efficiently computable n-ary functions, where
Tx : {{0, 1}∗}n → {0, 1}∗, Tw : {{0, 1}∗}n → {0, 1}∗. In what follows, we refer
to such a tuple T as an n-ary transformation.

Definition 2.1. An efficient relation R is closed under an n-ary transforma-
tion T = (Tx, Tw) if for any n-tuple {(x1, w1), . . . , (xn, wn)} ∈ Rn, the pair
(Tx(x1, . . . , xn), Tw(w1, . . . , wn)) ∈ R. If R is closed under T , then we say that
T is admissible for R. Let T be some set of transformations; if for every T ∈ T ,
T is admissible for R, then T is an allowable set of transformations.

For example, for the DH relation R described above, consider T = (Tx, Tw)
where for some (a′, b′), Tx(G, g,A,B,C) = (G, g,Aa

′
, Bb

′
, Ca

′b′) and Tw(a, b) =
(aa′, bb′); then the Diffie-Hellman relation R is closed under transformation T ,
and additionally the set T of transformations of this form (i.e., where there
is a transformation T corresponding to any pair (a′, b′)) is an allowable set of
transformations.

Our goal is to define non-interactive zero-knowledge and witness-indistinguish-
able proof systems for efficient relations R that are (1) malleable with respect to
an allowable set of transformations T ; that is to say, for any T ∈ T , given proofs
for x1, . . . xn ∈ LR, they can be transformed into a proof that Tx(x1, . . . , xn) ∈
LR; and (2) derivation-private; that is to say, the resulting proof cannot be
distinguished from one freshly computed by a prover on input (Tx(x1, . . . , xn),
Tw(w1, . . . , wn)). Before we can proceed, however, we need to recall the definition
of a non-interactive zero-knowledge proof system.

A proof system for an efficient relation R allows a prover to prove that a
value x is in the associated language LR. A non-interactive (NI) proof system
with efficient provers [10, 21] consists of three PPT algorithms: the algorithm
CRSSetup(1k) that generates a common reference string (CRS) σcrs, the algo-
rithm P(σcrs, x, w) that outputs a proof π that x ∈ LR, and the algorithm
V(σcrs, x, π) that verifies the proof; such a proof system must be complete (mean-
ing the verifier will always accept an honestly generated proof) and sound (mean-
ing that a verifier cannot be fooled into accepting a proof for a false statement).
A NI zero-knowledge proof (NIZK) [28, 10], additionally requires the existence
of a simulator S that can generate proofs without access to a witness, while a
NI witness-indistinguishable proof system [22] has the requirement that proofs
generated using two different witnesses for the same x are indistinguishable from

8 Without the restriction that R is efficient in its first input, the resulting language
won’t necessarily be in NP.

each other. A NI proof of knowledge [28, 9] additionally requires an efficient ex-
tractor algorithm E that, on input a proof that x ∈ LR, finds a witness for the
instance x.

We use the original definitions for completeness and soundness of NI proof
systems in the common-reference-string model [10]. The version of the defini-
tion of zero-knowledge for NIZK we give is originally due to Feige, Lapidot and
Shamir (FLS) [21]; they call it “adaptive multi-theorem NIZK.” We also use the
FLS definition of witness indistinguishability. The version of knowledge extrac-
tion we use is a generalization of the definition of knowledge extraction given
by Groth, Ostrovsky and Sahai (GOS) [32]: they defined the notion of perfect
knowledge extraction, while here we find it useful to generalize their definition,
in the straightforward way, to the case when extraction is not perfect. Due to
space constraints, a formal definition for non-interactive zero-knowledge proofs
of knowledge (NIZKPoK) systems and non-interactive witness-indistinguishable
proofs of knowledge (NIWIPoK) systems combining all of these concepts can be
found in the full version of our paper [15].

Next, we define a malleable proof system; i.e., one in which, from proofs
(π1, . . . , πn) that (x1, . . . , xn) ∈ L, one can compute a proof π that Tx(x1, . . . , xn)
∈ L, for an admissible transformation T = (Tx, Tw):

Definition 2.2 (Malleable non-interactive proof system). Let (CRSSetup,
P,V) be a non-interactive proof system for a relation R. Let T be an allowable set
of transformations for R. Then this proof system is malleable with respect to T if
there exists an efficient algorithm ZKEval that on input (σcrs, T, {xi, πi}), where
T ∈ T is an n-ary transformation and V(σcrs, xi, πi) = 1 for all i, 1 ≤ i ≤ n,
outputs a valid proof π for the statement x = Tx({xi}) (i.e., a proof π such that
V(σcrs, x, π) = 1).

Going back to our above example, the algorithm ZKEval will take as input
the transformation T (which is equivalent to taking as input the values a′ and
b′), and a proof π1 that x1 = (G, g,A,B,C) is a DH tuple, and output a proof
π that x = Tx(x1) = (G, g,Aa

′
, Bb

′
, Ca

′b′) is a DH tuple.

2.1 Derivation privacy for proofs

In addition to malleability, we must also consider a definition of derivation pri-
vacy analogous to the notion of function privacy for encryption. (In the encryp-
tion setting this is also called unlinkability [36]; for a formal definition see the
full version [15].) We have the following definition:

Definition 2.3 (Derivation privacy). For a NI proof system (CRSSetup,P,V,
ZKEval) for an efficient relation R malleable with respect to T , an adversary A,
and a bit b, let pAb (k) be the probability of the event that b′ = 0 in the following
game:

– Step 1. σcrs
$←− CRSSetup(1k).

– Step 2. (state, x1, w1, π1, . . . , xq, wq, πq, T)
$←− A(σcrs).

– Step 3. If V(σcrs, xi, πi) = 0 for some i, (xi, wi) 6∈ R for some i, or T /∈ T ,
abort and output ⊥. Otherwise, form

π
$←−
{
P(σcrs, Tx(x1, . . . , xq), Tw(w1, . . . , wq)) if b = 0
ZKEval(σcrs, T, {xi, πi}) if b = 1.

– Step 4. b′
$←− A(state, π).

We say that the proof system is derivation private if for all PPT algorithms
A there exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

In some cases, we would like to work with a stronger definition that applies
only for NIZKs. In this case, the adversary will not be asked to provide witnesses
or distinguish between the outputs of the prover and ZKEval, but instead between
the zero-knowledge simulator and ZKEval. It will also be given the simulation
trapdoor so that it can generate its own simulated proofs.

Definition 2.4 (Strong derivation privacy). For a malleable NIZK proof
system (CRSSetup,P,V,ZKEval) with an associated simulator (S1, S2), a given
adversary A, and a bit b, let pAb (k) be the probability of the event that b′ = 0 in
the following game:

– Step 1. (σsim, τs)
$←− S1(1k).

– Step 2. (state, x1, π1, . . . , xq, πq, T)
$←− A(σsim, τs).

– Step 3. If V(σsim, xi, πi) = 0 for some i, (x1, . . . , xq) is not in the domain of
Tx, or T /∈ T , abort and output ⊥. Otherwise, form

π
$←−
{
S2(σsim, τs, Tx(x1, . . . , xq)) if b = 0
ZKEval(σsim, T, {xi, πi}) if b = 1.

– Step 4. b′
$←− A(state, π).

We say that the proof system is strongly derivation private if for all PPT algo-
rithms A there exists a negligible function ν(·) such that |pA0 (k)−pA1 (k)| < ν(k).

As we will see in Section 3, schemes that satisfy the weaker notion of deriva-
tion privacy can in fact be generically “boosted” to obtain schemes that satisfy
the stronger notion. We can also show a generic way to obtain derivation pri-
vacy using malleability and the notion of randomizability for proofs, defined by
Belenkiy et al. [8]; this can be found in the full version of the paper [15].

3 Controlled Malleability for NIZKs

Is the notion of malleability compatible with the notion of a proof of knowledge or
with strong notions like simulation soundness? Recall that to achieve simulation
soundness, as defined by Sahai and de Santis et al. [37, 19], we intuitively want

an adversary A to be unable to produce a proof of a new false statement even
if it can request many such proofs from the simulator; for the even stronger
notion of simulation-extractability as defined by de Santis et al. and Groth [19,
30], a proof system must admit an efficient extractor that finds witnesses to all
statements proved by an adversary, again even when the adversary has access
to a simulator.

Malleability, in contrast, explicitly allows an adversary to take as input the
values x′, π′, apply some admissible transformation T to x′ to obtain x = Tx(x′),
and compute a proof π that x ∈ LR; importantly, the adversary can do all this
without knowing the original witness w′. Suppose, for a malleable proof system,
that the adversary is given as input a simulated proof π′ that was generated
without access to the witness w′ for x′, and for concreteness let T be the identity
transformation. Then requiring that, on input (x, π), the extractor should output
w, implies that membership in LR can be tested for a given x by computing a
simulated proof, mauling it, and then extracting the witness from the resulting
proof (formally, this would mean that LR ∈ RP). Thus, seemingly, one cannot
reconcile the notion of malleability with that of a simulation-extractable proof
of knowledge.

Surprisingly, however, under a relaxed but still meaningful extractability re-
quirement, we can have a proof system that is both malleable and simulation-
extractable to a satisfactory extent; we call this notion controlled malleability.
Essentially this definition will require that the extractor can extract either a
valid witness, or a previously proved statement x′ and a transformation T in our
allowed set T that could be used to transform x′ into the new statement x. To
demonstrate that our definition is useful, we will show in Section 5 that it can
be used to realize a strong notion of encryption security, and in Section 6 that
it can also be used to reduce the overall size of proofs for verifiable shuffles.

Definition 3.1 (Controlled-malleable simulation sound extractability).
Let (CRSSetup,P,V) be a NIZKPoK system for an efficient relation R, with
a simulator (S1, S2) and an extractor (E1, E2). Let T be an allowable set of
unary transformations for the relation R such that membership in T is efficiently
testable. Let SE 1 be an algorithm that, on input 1k outputs (σcrs, τs, τe) such
that (σcrs, τs) is distributed identically to the output of S1. Let A be given, and
consider the following game:

– Step 1. (σcrs, τs, τe)
$←− SE1(1k).

– Step 2. (x, π)
$←− AS2(σcrs,τs,·)(σcrs, τe).

– Step 3. (w, x′, T)← E2(σcrs, τe, x, π).

We say that the NIZKPoK satisfies controlled-malleable simulation-sound
extractability (CM-SSE, for short) if for all PPT algorithms A there exists a neg-
ligible function ν(·) such that the probability (over the choices of SE 1, A, and S2)
that V(σcrs, x, π) = 1 and (x, π) 6∈ Q (where Q is the set of queried statements
and their responses) but either (1) w 6= ⊥ and (x,w) 6∈ R; (2) (x′, T) 6= (⊥,⊥)
and either x′ 6∈ Qx (the set of queried instances), x 6= Tx(x′), or T 6∈ T ; or (3)
(w, x′, T) = (⊥,⊥,⊥) is at most ν(k).

This definition is actually closely related to simulation-extractability; in fact,
if we restrict our set of transformations to be T = ∅, we obtain exactly Groth’s
notion of simulation-sound extractability. Note also that this definition does not
require that a proof system actually be malleable, it only requires that, should
it happen to be malleable, this malleability be limited in a controlled way. Thus,
a simulation-sound extractable proof system would also satisfy our definition,
for any set T , even though it is not malleable. We refer to a proof system that
is both strongly derivation private and controlled-malleable simulation-sound
extractable as a controlled-malleable NIZK (cm-NIZK).

Finally, note that our definition applies only to unary transformations. This
is because our requirement that we can extract the transformation T means we
cannot hope to construct cm-NIZKs for n-ary transformations where n > 1, as
this would seem to necessarily expand the size of the proof (similarly to what
Prabhakaran and Rosulek show for HCCA encryption [36]). We therefore achieve
cm-NIZKs for classes of unary transformations that are closed under composition
(i.e., T ′ ◦ T ∈ T for all T, T ′ ∈ T). In addition, our simulation strategy depends
on the identity transformation being a member of T , so we can achieve cm-NIZKs
only for classes of transformations that include the identity transformation.

A generic construction

Let R be an efficient relation, and suppose T is an allowable set of transfor-
mations for R that contains the identity transformation; suppose further that
membership in T is efficiently testable. Let (KeyGen,Sign,Verify) be a secure
signature scheme. Let (CRSSetupWI,PWI,VWI) be a NIWIPoK for the following
relation RWI: ((x, vk), (w, x′, T, σ)) ∈ RWI if (x,w) ∈ R or Verify(vk , σ, x′) = 1,
x = Tx(x′), and T ∈ T . Consider the proof system (CRSSetup,P,V) defined as
follows:

– CRSSetup(1k): First generate σWIcrs
$←− CRSSetupWI(1

k) and (vk , sk)
$←−

KeyGen(1k); then output σcrs := (σWIcrs , vk).

– P(σcrs, x, w): Output π
$←− PWI(σWIcrs , xWI, wWI), where xWI = (x, vk) and

wWI = (w,⊥,⊥,⊥).
– V(σcrs, x, π): Output VWI(σWIcrs , xWI, π) where xWI = (x, vk).

To obtain strong derivation privacy with respect to R and T we also require
the NIWIPoK to be derivation private with respect to RWI and a set of transfor-
mations TWI such that for every T ′ = (T ′x, T

′
w) ∈ T there exists a TWI(T

′) ∈ TWI.
For TWI(T

′) = (TWI,x, TWI,w) we require that TWI,x(x, vk) = (T ′x(x), vk), and
TWI,w(w, x′, T, σ) = (T ′w(w), x′, T ′◦T, σ). Assuming our underlying NIWI is mal-
leable, we can define ZKEval in terms of ZKEvalWI:

– ZKEval(σcrs, T, x, π): Output ZKEvalWI(σWIcrs , TWI(T), xWI, π) where xWI =
(x, vk).

To see that this construction gives us the desired properties, we have the
following three theorems; due to space constraints, the proofs can be found in
the full version of our paper [15]:

Theorem 3.1. If the underlying non-interactive proof system is witness indis-
tinguishable, the scheme described above is zero knowledge.

Theorem 3.2. If the underlying signature scheme is EUF-CMA secure and
the underlying NIWIPoK is extractable, the scheme described above satisfies
controlled-malleable simulation-sound extractability.

Theorem 3.3. If the underlying NIWIPoK is derivation private for TWI (as
defined in Definition 2.3), then the scheme described above is strongly derivation
private for T (as defined in Definition 2.4).

In addition, we would like to ensure that this construction can in fact be in-
stantiated efficiently for many useful sets T with a derivation-private NIWIPoK;
it turns out that this can be done by combining Groth-Sahai proofs [33] with a
special type of signature called a structure-preserving signature. For more details,
we defer to Section 4.2.

4 Instantiating cm-NIZKs Using Groth-Sahai Proofs

In this section, we explore the malleability of Groth-Sahai (GS) proofs [33]. This
will allow us to efficiently instantiate controlled-malleable proofs for a large class
of transformations.

4.1 Malleability for Groth-Sahai Proofs

We aim to fully characterize the class of transformations with respect to which
GS proofs can be made malleable. First, we recall that GS proofs allow a prover
to prove knowledge of a satisfying assignment to a list of (homogeneous) pairing
product equations eq of the form

∏
i,j∈[1..n] e(xi, xj)

γij = 1 concerning the set of
variables x1, . . . , xn ∈ G. Furthermore, some of the variables in these equations
may be fixed to be specific constant values (for example, the public group gen-
erator g). In what follows we will use a, b, c, . . . to denote fixed constants, and
x,y, z, . . . to denote unconstrained variables. An instance x of such a pairing
product statement consists of the list of equations eq1, . . . , eq` (fully described

by their exponents {γ(1)ij }, . . . , {γ
(`)
ij }) and the values of the constrained variables

(fully described by the list a1, . . . , an′ ∈ G for n′ ≤ n).
In the existing literature, there are already various examples [20, 7, 24] of

ways in which pairing product statements and the accompanying Groth-Sahai
proofs can be mauled. Here, we attempt to generalize these previous works by
providing a characterization of all the ways in which GS proofs of pairing product
statements can be mauled; we then show, in the full version of our paper [15],
how these previous examples can be obtained as special cases of our general
characterization.

To start, we describe transformations on pairing product instances in terms of
a few basic operations. We will say that any transformation that can be described
as a composition of these operations is a valid transformation. For each valid

transformation we show, in the full version, that there is a corresponding ZKEval
procedure that updates the GS proof to prove the new statement. Finally, we
present in the full version some other convenient operations that can be derived
from our minimal set.

To help illustrate the usage of our basic transformations, we consider their ef-
fect on the pairing product instance (eq1, eq2, a, b), where eq1 := e(x, b)e(a, b) =
1 and eq2 := e(a,y) = 1. Note that here we will describe the transformations
in terms of their effect on the instances, but in all of these operations the corre-
sponding witness transformations Tw are easily derived from the instance trans-
formations Tx.

Definition 4.1. (Informal) A valid transformation is one that can be expressed
as some combination of (a polynomial number of) the following six operations:

1. Merge equations: MergeEq(eqi, eqj) adds the product of eqi and eqj as a new
equation.
Ex. MergeEq(eq1, eq2) adds the equation e(x, b)e(a, b)e(a,y) = 1

2. Merge variables: MergeVar(x, y, z, S) generates a new variable z. If x and y
are both constants, z will have value xy. Otherwise z will be unconstrained.
For every variable w in the set S, we add the equation e(xy,w)−1e(z, w) =
1.9

Ex. MergeVar(x, a, z, {x, b, z}) adds the variable z and the equations
e(xa,x)−1e(z,x) = 1, e(xa, b)−1e(z, b) = 1, and e(xa, z)−1e(z, z) = 1.

3. Exponentiate variable: ExpVar(x, δ, z, S) generates a new variable z. If x is
a constant, z = xδ, otherwise z will be unconstrained. For every variable
w ∈ S, we add the equation e(x,w)−δe(z, w) = 1.
Ex. ExpVar(x, δ, z, {x, b, z}) adds the variable z and the equations
e(x,x)−δe(z,x) = 1, e(x, b)−δe(z, b) = 1, and e(x, z)−δe(z, z) = 1.

4. Add constant equation: Add({ai}, {bj}, {γij}) takes a set of constants ai, bi,
satisfying a pairing product equation

∏
e(ai, bj)

γij = 1 and adds these vari-
ables and the new equation to the statement.
Ex. Add({g}, {1}, {1}) adds the variables g, 1 and equation eq3 := e(g, 1) = 1.
We often write as a shorthand Add(eq3 := e(g, 1) = 1).

5. Remove equation: RemoveEq(eqi) simply removes equation eqi from the list.
Ex. RemoveEq(eq2) removes the equation e(a,y) = 1 from the equation list.

6. Remove variable: RemoveVar(x) removes the variable x from the variable set
iff x does not appear in any of the listed equations.
Ex. We cannot remove any of the variables from the example statement.
However, we could do RemoveEq(eq2) and then RemoveVar(y), which would
remove the equation e(a,y) = 1 from the equation list and the variable y
from the set of variables.

A proof of the following lemma appears in the full version:

Lemma 4.1. There exists an efficient procedure ZKEval such that given any
pairing product instance x, any valid transformation T , and any accepting Groth-
Sahai proof π for x, ZKEval(x, π, T) produces an accepting proof for T (x).

9 This is shorthand for e(x,w)−1e(y, w)−1e(z, w) = 1.

4.2 An efficient instantiation of controlled malleable NIZKs

Looking back at Section 3 we see that there are two main components needed
to efficiently instantiate a controlled-malleable NIZK proof system: appropri-
ately malleable proofs and signatures that can be used in conjunction with these
proofs.

First we consider the set of relations and tranformations for which we can
use Groth-Sahai proofs to construct the necessary malleable NIWIPoKs.

Definition 4.2. For a relation R and a class of transformations T , we say
(R, T) is CM-friendly if the following six properties hold: (1) representable state-
ments: any instance and witness of R can be represented as a set of group ele-
ments; (2) representable transformations: any transformation in T can be rep-
resented as a set of group elements; (3) provable statements: we can prove the
statement (x,w) ∈ R using pairing product equations; (4) provable transforma-
tions: we can prove the statement “Tx(x′) = x for T ∈ T ” using pairing product
equations; (5) transformable statements: for any T ∈ T there is a valid transfor-
mation from the statement “(x,w) ∈ R” to the statement “(Tx(x), Tw(w)) ∈ R”;
and (6) transformable transformations: for any T, T ′ ∈ T there is a valid trans-
formation from the statement “Tx(x′) = x for T = (Tx, Tw) ∈ T ” to the state-
ment “T ′x ◦ Tx(x′) = T ′x(x) for T ′ ◦ T ∈ T .”

In order for the signatures to be used within our construction, we know that
they need to have pairing-based verifiability (i.e., we can represent the Verify
algorithm in terms of a set of GS equations), and that the values being signed
must be group elements so that they can be efficiently extracted from the proof
(as GS proofs are extractable for group elements only, not exponents). These re-
quirements seem to imply the need for structure-preserving signatures [3], which
we can define for the symmetric setting as follows:

Definition 4.3. A signature scheme (KeyGen,Sign,Verify) over a bilinear group
(p,G,GT , g, e) is said to be structure preserving if the verification key, messages,
and signatures all consist of group elements in G, and the verification algorithm
evaluates membership in G and pairing product equations.

Since their introduction, three structure-preserving signature schemes have
emerged that would be suitable for our purposes; all three have advantages and
disadvantages. The first, due to Abe, Haralambiev, and Ohkubo [5, 3] is quite
efficient but uses a slightly strong q-type assumption. The second, due to Abe et
al. [4], is optimally efficient but provably secure only in the generic group model.
The third and most recent, due to Chase and Kohlweiss [14], is significantly
less efficient than the previous two, but relies for its security on Decision Linear
(DLIN) [11], which is already a relatively well-established assumption.

Because we can also instantiate GS proofs using DLIN, we focus on this last
structure-preserving signature, keeping in mind that others may be substituted
in for the sake of efficiency (but at the cost of adding an assumption). Putting
these signatures and GS proofs together, we can show our main result of this

section: given any CM-friendly relation and set of transformations (R, T), we
can combine structure-preserving signatures and malleable proofs to obtain a
cm-NIZK. This can be stated as the following theorem (a proof of which can be
found in the full version of our paper):

Theorem 4.1. Given a derivation private NIWIPoK for pairing product state-
ments that is malleable for the set of all valid transformations, and a structure
preserving signature scheme, we can construct a cm-NIZK for any CM-friendly
relation and transformation set (R, T).

In the full version of our paper, we show that Groth-Sahai proofs are mal-
leable for the set of all valid transformations (as outlined in Definition 4.1). As
Groth-Sahai proofs and structure-preserving signatures can both be constructed
based on DLIN, we obtain the following theorem:

Theorem 4.2. If DLIN holds, then we can construct a cm-NIZK that satis-
fies strong derivation privacy for any CM-friendly relation and transformation
set (R, T).

5 Controlled Malleability for Encryption

As we mentioned earlier, malleability can also be an attractive feature for a
cryptosystem: it allows computation on encrypted data. On the other hand, it
seems to be in conflict with security: if a ciphertext can be transformed into
a ciphertext for a related message, then the encryption scheme is clearly not
secure under an adaptive chosen ciphertext attack, which is the standard notion
of security for encryption.

Prabhakaran and Rosulek [35, 36] were the first to define and realize a mean-
ingful notion of security in this context. They introduced re-randomizable CCA
security (RCCA) [35] and homomorphic CCA security (HCCA) [36]. In a nut-
shell, their definition of security is given as a game between a challenger and an
adversary; the adversary receives a public key and a challenge ciphertext and
can query the challenger for decryptions of ciphertexts. The challenger’s cipher-
text c∗ is either a valid encryption of some message, or a dummy ciphertext; in
the former case, the challenger answers the decryption queries honestly; in the
latter case, the challenger may decide that a decryption query is a “derivative”
ciphertext computed from c∗ using some transformation T ; if this is an allowed
transformation, the challenger responds with T (m), else it rejects the query.
The adversary wins if it correctly guesses whether its challenge ciphertext was
meaningful.10 Prabhakaran and Rosulek achieve their notion of security under
the decisional Diffie-Hellman assumption using ad-hoc techniques reminiscent of
the Cramer-Shoup [17] cryptosystem.

In this section, we show that controlled-malleable NIZKs can be used as
a general tool for achieving RCCA and HCCA security. Our construction is

10 A formal definition and more detailed explanation of their notion of homomorphic-
CCA (HCCA) security can be found in the full version of our paper [15].

more modular than that of Prabhakaran and Rosulek: we construct a controlled-
malleable-CCA-secure encryption scheme generically from a semantically secure
one and a cm-NIZK for an appropriate language; where controlled-malleable-
CCA security is our own notion of security that is, in some sense, a generalization
of RCCA security and also captures the security goals of HCCA security. We
then show how our construction can be instantiated using Groth-Sahai proofs,
under the DLIN assumption in groups with bilinear maps.

5.1 Definition of Controlled-Malleable CCA Security

Our definitional goals here are (1) to give a definition of controlled malleability
for encryption that closely mirrors our definition of controlled malleability for
proofs, and (2) to give a definition that can be easily related to previous notions
such as CCA, RCCA, and HCCA. We call this notion of security controlled-
malleable CCA (CM-CCA) security.

Following Prabhakaran and Rosulek [36], CM-CCA requires the existence of
two algorithms, SimEnc and SimExt. SimEnc creates ciphertexts that are dis-
tributed indistinguishably from regular ciphertexts (those generated using the
encryption algorithm Enc), but contain no information about the queried mes-
sage; this is modeled by having SimEnc not take any message as input. SimExt
allows the challenger to track “derivative” ciphertexts. That is to say, on in-
put a ciphertext c, SimExt determines if it was obtained by transforming some
ciphertext c′ previously generated using SimEnc; if so, SimExt outputs the cor-
responding transformation T .

The game between the challenger and the adversary in the definition of se-
curity is somewhat different from that in the definition by Prabhakaran and
Rosulek. Specifically, we do not have a single challenge ciphertext c∗; instead,
the adversary has access to encryption and decryption oracles. Intuitively, for
our definition we would like to say that an adversary cannot distinguish between
two worlds: the real world in which it is given access to honest encryption and
decryption oracles, and an ideal world in which it is given access to an ideal
encryption oracle (which outputs ciphertexts containing no information about
the queried message) and a decryption oracle that outputs a special answer for
ciphertexts derived from the ideal ciphertexts (by using SimExt to track such
ciphertexts) and honestly decrypts otherwise.

Let us consider transformations more closely. Recall that, for proofs of lan-
guage membership, a transformation T ∈ T consists of a pair of transformations
(Tx, Tw), where Tx acts on the instances, and Tw on the witnesses. What is the
analogue for ciphertexts? A legal transformation Tx on a ciphertext implies some
legal transformation Tm on an underlying message and a corresponding transfor-
mation Tr on the underlying randomness. Thus, here we view transformations
as tuples T = (Tx, (Tm, Tr)), where Tx acts on the ciphertexts, Tm acts on the
plaintexts, and Tr acts on the randomness.

In the full version of our paper [15], we relate CM-CCA security to CCA,
RCCA and HCCA security. Specifically, we show that (1) when the class of

allowed transformation T is the empty set, CM-CCA implies regular CCA se-
curity; (2) when the class of allowed transformations is as follows: T ∈ T if
T = (Tx, (Tm, Tr)) where Tm is the identity transformation, then CM-CCA se-
curity implies RCCA security; (3) in more general cases we show that it implies
the notion of targeted malleability introduced by Boneh et al. [12]; in addition,
we show that our notion satisfies the UC definition given by Prabhakaran and
Rosulek, so that it captures the desired HCCA security goals, even if it does not
satisfy their definition of HCCA security (which is in fact a stronger notion).

Finally, because our cm-NIZK is malleable only with respect to unary trans-
formations, we inherit the limitation that our encryption scheme is malleable
only with respect to unary transformations as well; as our security definition is
closely related to HCCA security and Prabharakan and Rosulek in fact prove
HCCA security (combined with unlinkability) is impossible with respect to bi-
nary transformations, this is perhaps not surprising.

Definition 5.1. For an encryption scheme (KeyGen,Enc,Dec), a class of trans-
formations T , an adversary A, and a bit b, let pAb (k) be the probability of the

event b′ = 0 in the following game: first (pk , sk)
$←− K(1k), and next b′

$←−
AEpk (·),Dsk (·)(pk), where (K,E,D) are defined as (KeyGen,Enc,Dec) if b = 0,
and the following algorithms (defined for a state set Q = Qm×Qc = {(mi, ci)})
if b = 1:

Procedure K(1k) Procedure E(pk ,m) Procedure D(sk , c)

(pk , sk , τ1, τ2) c
$←− SimEnc(pk , τ1) (c′, T)← SimExt(sk , τ2, c)

$←− SimKeyGen(1k) add (m, c) to Q if ∃i s.t. c′ = ci ∈ Qc and T 6= ⊥
return pk return c return Tm(mi)

else
return Dec(sk , c)

We say that the encryption scheme is controlled-malleable-CCA secure (or CM-
CCA secure for short) if there exist PPT algorithms SimKeyGen, SimEnc, and
SimExt as used above such that for all PPT algorithms A there exists a negligible
function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

As mentioned earlier, we can obtain an encryption scheme that achieves this
notion of security; we do this by combining a cm-NIZK (CRSSetup,P,V) for the
relation R such that ((pk , c), (m, r)) ∈ R iff c := Enc′(pk ,m; r) and an IND-
CPA-secure encryption scheme (KeyGen′,Enc′,Dec′). Due to space constraints,
our construction and efficient instantiation of this scheme can be found in the
full version of our paper [15].

6 Compactly Proving Correctness of a Shuffle

As described in the introduction, we achieve a notion of verifiability for shuffles
that does not require each mix server to output its own proof of correctness;

instead, using the malleability of our proofs, each mix server can maul the proof
of the previous one. One point that it is important to keep in mind with this
approach is that the soundness of the scheme does not follow directly from the
soundness of each of the individual proofs anymore; instead, one proof must
somehow suffice to prove the validity of the entire series of shuffles, yet still
remain compact. To capture this requirement, we define a new notion for the
security of a shuffle, that we call compact verifiability.

To define our notion, we assume that a verifiable shuffle consists of three
algorithms: a Setup algorithm that outputs the parameters for the shuffle and
the identifying public keys for the honest mix servers, a Shuffle algorithm that
takes in a set of ciphertexts and outputs both a shuffle of these ciphertexts and
a proof that the shuffle was done properly, and finally a Verify algorithm that
checks the validity of the proofs.

In our definition, the adversary is given the public keys of all the honest shuf-
fling authorities, as well as an honestly generated public key for the encryption
scheme. It can then provide a list of ciphertexts and ask that they be shuffled by
one of the honest authorities (we call this an initial shuffle), or provide a set of
input ciphertexts, a set of shuffled ciphertexts, and a proof, and ask one of the
honest authorities to shuffle the ciphertexts again and update the proof. Finally,
the adversary produces challenge values consisting of a set of input ciphertexts,
a set of shuffled ciphertexts and a proof that includes the public key of at least
one of the honest authorities. If this proof verifies, it receives either the decryp-
tion of the shuffled ciphertexts, or a random permutation of the decryptions of
the initial ciphertexts. Our definition requires that it should be hard for the
adversary to distinguish which of the two it is given.

We also require that the input ciphertexts are always accompanied by a proof
that they are well-formed; i.e., a proof of knowledge of a valid message and the
randomness used in encryption. This is usually necessary in many applications
(for example in voting when each voter must prove that he has encrypted a valid
vote), and in our construction it means that we can easily handle an adversary
who produces the input ciphertexts in invalid ways; e.g., by mauling ciphertexts
from a previous shuffle, or by submitting malformed ciphertexts.

Definition 6.1. For a verifiable shuffle (Setup,Shuffle,Verify) with respect to an
encryption scheme (KeyGen,Enc,Dec), a given adversary A and a bit b ∈ {0, 1},
let pAb (k) be the probability that b′ = 0 in the following experiment:

– Step 1. (params, sk , S = {pk i}, {sk i})
$←− Setup(1k).

– Step 2. A gets params, S, and access to the following two oracles: an initial
shuffle oracle that, on input ({ci, πi}, pk `) for pk ` ∈ S, outputs ({c′i}, π, {pk `})
(if all the proofs of knowledge πi verify), where π is a proof that the {c′i}
constitute a valid shuffle of the {ci} performed by the user corresponding
to pk ` (i.e., the user who knows sk `), and a shuffle oracle that, on input
({ci, πi}, {c′i}, π, {pk j}, pkm) for pkm ∈ S, outputs ({c′′i }, π′, {pk j} ∪ pkm).

– Step 3. Eventually, A outputs a tuple ({ci, πi}, {c′i}, π, S′ = {pk j}).
– Step 4. If Verify(params, ({ci, πi}, {c′i}, π, {pk j})) = 1 and S ∩ S′ 6= ∅ then

continue; otherwise simply abort and output ⊥. If b = 0 give A {Dec(sk , c′i)},

and if b = 1 then give A ϕ({Dec(sk , ci)}), where ϕ is a random permutation

ϕ
$←− Sn.

– Step 5. A outputs a guess bit b′.

We say that the shuffle is compactly verifiable if for all PPT algorithms A there
exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

Our compactly-verifiable shuffle construction will utilize four building blocks:
a hard relation Rpk (as defined by Damg̊ard [18, Definition 3]), a re-randomizable
IND-CPA-secure encryption scheme (KeyGen,ReRand,Enc,Dec), a proof of knowl-
edge (CRSSetup,P,V), and a cm-NIZK (CRSSetup′,P ′,V ′). The hard relation
will be used to ensure that the secret key sk j known to the j-th mix server
cannot be derived from its public key pk j ,

11 the proof of knowledge will be
created by the users performing the initial encryptions to prove knowledge
of their votes, and the cm-NIZK will be used to prove that a given collec-
tion {c′i} is a valid shuffle of a collection {ci}, performed by the mix servers
corresponding to a set of public keys {pk j}. This means that the instances
are of the form x = (pk , {ci}, {c′i}, {pk j}), witnesses are of the form w =
(ϕ, {ri}, {sk j}) (where ϕ is the permutation used, {ri} is the randomness used
to re-randomize the ciphertexts, and {sk j} are the secret keys corresponding

to {pk j}), and the relation R is ((pk , {ci}, {c′i}, {pk j}`
′

i=1), (ϕ, {ri}, {sk j})) ∈
R iff {c′i} = {ReRand(pk , ϕ(ci); ri)} ∧ (pkj , skj) ∈ Rpk ∀j ∈ [1..`′]. The valid
transformations are then T(ϕ′,{r′i},{sk

+
j ,pk

+
j },{pk

−
j })

= (Tx, Tw), where Tx(pk , {ci},
{c′i}, {pk j}) := (pk , {ci}, {ReRand(pk , ϕ′(ci); r

′
i)}, {pk j} ∪ ({pk+j } \ {pk−j })) and

Tw transforms the witness accordingly. Due to space constraints, a formal out-
line of how these primitives are combined can be found in the full version of our
paper, along with a proof of the following theorem:

Theorem 6.1. If the encryption scheme is re-randomizable and IND-CPA se-
cure, Rpk is a hard relation, the proofs πi are NIZKPoKs, and the proof π is a
cm-NIZK, then the above construction gives a compactly verifiable shuffle.

Acknowledgments

Anna Lysyanskaya was supported by NSF grants 1012060, 0964379, 0831293,
and by a Sloan Foundation fellowship, and Sarah Meiklejohn was supported in
part by a MURI grant administered by the Air Force Office of Scientific Research
and in part by a graduate fellowship from the Charles Lee Powell Foundation.

References

1. M. Abe. Universally verifiable mix-net with verification work indendent of the
number of mix-servers. In Proceedings of EUROCRYPT 1998, volume 1403 of
Lecture Notes in Computer Science, pages 437–447. Springer, 1998.

11 It is worth mentioning that generically we can use a one-way function to obtain this
property, but that we cannot efficiently instantiate this in our setting and so use
instead a hard relation (for more on this see the full version of our paper).

2. M. Abe. Mix-networks on permutation networks. In Proceedings of Asiacrypt 1999,
pages 258–273, 1999.

3. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-
preserving signatures and commitments to group elements. In Proceedings of
Crypto 2010, volume 6223 of LNCS, pages 209–236, 2010.

4. M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Optimal structure-preserving
signatures in asymmetric bilinear groups. In Proceedings of Crypto 2011, volume
6841 of LNCS, pages 649–666, 2011.

5. M. Abe, K. Haralambiev, and M. Ohkubo. Signing on elements in bilinear groups
for modular protocol design. Cryptology ePrint Archive, Report 2010/133, 2010.
http://eprint.iacr.org/2010/133.

6. M. Abe and F. Hoshino. Remarks on mix-networks based on permutation networks.
In Proceedings of PKC 2001, pages 317–324, 2001.

7. T. Acar and L. Nguyen. Revocation for delegatable anonymous credentials. In
Proceedings of PKC 2011, pages 423–440, 2011.

8. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and
H. Shacham. Delegatable anonymous credentials. In Proceedings of Crypto 2009,
volume 5677 of LNCS, pages 108–125. Springer-Verlag, 2009.

9. M. Bellare and O. Goldreich. On defining proofs of knowledge. In Proceedings of
Crypto 1992, volume 740 of LNCS, pages 390–420. Springer-Verlag, 1992.

10. M. Blum, A. de Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge.
SIAM Journal of Computing, 20(6):1084–1118, 1991.

11. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proceedings of
Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer-Verlag, 2004.

12. D. Boneh, G. Segev, and B. Waters. Targeted malleability: homomorphic encryp-
tion for restricted computations. In Proceedings of ITCS 2012, 2012. To appear.

13. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In Proceedings of Crypto 2011,
pages 505–524, 2011.

14. M. Chase and M. Kohlweiss. A domain transformations for structure-preserving
signatures on group elements. Cryptology ePrint Archive, Report 2011/342, 2011.
http://eprint.iacr.org/2011/342.

15. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof
systems and applications. Cryptology ePrint Archive, Report 2012/012, 2012.
http://eprint.iacr.org/2012/012.

16. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–88, 1981.

17. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Proceedings of Crypto 1998, pages
13–25, 1998.

18. I. Damg̊ard. On sigma protocols. http://www.daimi.au.dk/~ivan/Sigma.pdf.
19. A. de Santis, G. di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust

non-interactive zero knowledge. In Proceedings of Crypto 2001, volume 2139 of
LNCS, pages 566–598. Springer-Verlag, 2001.

20. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Cryptography against
continuous memory attacks. In Proceedings of FOCS 2010, pages 511–520, 2010.

21. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM Journal of Computing, 29(1):1–28, 1999.

22. U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.
In Proceedings of STOC 1990, pages 416–426, 1990.

23. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Proceedings of Crypto 1986, volume 263 of LNCS, pages
186–194. Springer-Verlag, 1986.

24. G. Fuchsbauer. Commuting signatures and verifiable encryption. In Proceedings
of Eurocrypt 2011, pages 224–245, 2011.

25. J. Furukawa. Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans-
actions on Fundamentals of Electronic, Communications and Computer Science,
88(1):172–188, 2005.

26. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Proceedings
of Crypto 2001, pages 368–387, 2001.

27. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
STOC 2009, pages 169–178, 2009.

28. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. In Proceedings of STOC 1985, pages 186–208, 1985.

29. J. Groth. A verifiable secret shuffle of homomorphic encryptions. In Proceedings
of PKC 2003, volume 2567 of LNCS, pages 145–160. Springer-Verlag, 2003.

30. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In Proceedings of Asiacrypt 2006, volume 4284 of LNCS, pages
444–459. Springer-Verlag, 2006.

31. J. Groth and S. Lu. A non-interactive shuffle with pairing-based verifiability. In
Proceedings of Asiacrypt 2007, volume 4833 of LNCS, pages 51–67. Springer-Verlag,
2007.

32. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero-knowledge for
NP. In Proceedings of Eurocrypt 2006, volume 4004 of LNCS, pages 339–358.
Springer-Verlag, 2006.

33. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In Proceedings of Eurocrypt 2008, volume 4965 of LNCS, pages 415–432. Springer-
Verlag, 2008.

34. A. Neff. A verifiable secret shuffle and its applications to e-voting. In Proceedings
of CCS 2001, pages 116–125, 2001.

35. M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In Pro-
ceedings of Crypto 2007, volume 4622 of LNCS, pages 517–534. Springer-Verlag,
2007.

36. M. Prabhakaran and M. Rosulek. Homomorphic encryption with CCA security.
In Proceedings of ICALP 2008, pages 667–678, 2008.

37. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proceedings of FOCS 1999, pages 543–553, 1999.

38. K. Sako and J. Kilian. Receipt-free mix-type voting scheme. In Proceedings of
Eurocrypt 1995, volume 921 of LNCS, pages 393–403. Springer-Verlag, 1995.

39. N. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small
key and ciphertext sizes. In Proceedings of PKC 2010, pages 420–443, 2010.

40. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In Proceedings of Eurocrypt 2010, volume 6110 of
LNCS, pages 24–43. Springer-Verlag, 2010.

41. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In Pro-
ceedings of Asiacrypt 2005, pages 273–292, 2005.

