
All-But-Many Lossy Trapdoor Functions

Dennis Hofheinz

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. We put forward a generalization of lossy trapdoor functions (LTFs).
Namely, all-but-many lossy trapdoor functions (ABM-LTFs) are LTFs that are
parametrized with tags. Each tag can either be injective or lossy, which leads to
an invertible or a lossy function. The interesting property of ABM-LTFs is that
it is possible to generate an arbitrary number of lossy tags by means of a special
trapdoor, while it is not feasible to produce lossy tags without this trapdoor.
Our definition and construction can be seen as generalizations of all-but-one
LTFs (due to Peikert and Waters) and all-but-N LTFs (due to Hemenway et al.).
However, to achieve ABM-LTFs (and thus a number of lossy tags which is not
bounded by any polynomial), we have to employ some new tricks. Concretely, we
give two constructions that use “disguised” variants of the Waters, resp. Boneh-
Boyen signature schemes to make the generation of lossy tags hard without trap-
door. In a nutshell, lossy tags simply correspond to valid signatures. At the same
time, tags are disguised (i.e., suitably blinded) to keep lossy tags indistinguishable
from injective tags.
ABM-LTFs are useful in settings in which there are a polynomial number of ad-
versarial challenges (e.g., challenge ciphertexts). Specifically, building on work
by Hemenway et al., we show that ABM-LTFs can be used to achieve selective
opening security against chosen-ciphertext attacks. One of our ABM-LTF con-
structions thus yields the first SO-CCA secure encryption scheme with compact
ciphertexts (O(1) group elements) whose efficiency does not depend on the num-
ber of challenges. Our second ABM-LTF construction yields an IND-CCA (and
in fact SO-CCA) secure encryption scheme whose security reduction is indepen-
dent of the number of challenges and decryption queries.

Keywords: lossy trapdoor functions, public-key encryption, selective opening
attacks.

1 Introduction

Lossy trapdoor functions. Lossy trapdoor functions (LTFs) have been formalized by
Peikert and Waters [30], in particular as a means to construct chosen-ciphertext (CCA)
secure public-key encryption (PKE) schemes from lattice assumptions. In a nutshell,
LTFs are functions that may be operated with an injective key (in which case a trapdoor
allows to efficiently invert the function), or with a lossy key (in which case the function
is highly non-injective, i.e., loses information). The key point is that injective and lossy
keys are computationally indistinguishable. Hence, in a security proof (say, for a PKE
scheme), injective keys can be replaced with lossy keys without an adversary noticing.
But once all keys are lossy, a ciphertext does not contain any (significant) information
anymore about the encrypted message. There exist quite efficient constructions of LTFs

based on a variety of assumptions (e.g., [30, 7, 10, 20]). Besides, LTFs have found
various applications in public-key encryption [22, 7, 6, 5, 23, 19] and beyond [16, 30,
27] (where [16] implicitly uses LTFs to build commitment schemes).

LTFs with tags and all-but-one LTFs. In the context of CCA-secure PKE schemes, it
is useful to have LTFs which are parametrized with a tag1. In all-but-one LTFs (ABO-
LTFs), all tags are injective (i.e., lead to an injective function), except for one single
lossy tag. During a proof of CCA security, this lossy tag will correspond to the (single)
challenge ciphertext handed to the adversary. All decryption queries an adversary may
make then correspond to injective tags, and so can be handled successfully. ABO-LTFs
have been defined, constructed, and used as described by Peikert and Waters [30].

Note that ABO-LTFs are not immediately useful in settings in which there is more
than one challenge ciphertext. One such setting is the selective opening (SO) security
of PKE schemes ([6], see also [11, 18]). Here, an adversary A is presented with a vec-
tor of ciphertexts (which correspond to eavesdropped ciphertexts), and gets to choose
a subset of these ciphertexts. This subset is then opened for A; intuitively, this corre-
sponds to a number of corruptions performed by A. A’s goal then is to find out any
nontrivial information about the unopened ciphertexts. It is currently not known how
to reduce this multi-challenge setting to a single-challenge setting (such as IND-CCA
security). In particular, ABO-LTFs are not immediately useful to achieve SO-CCA se-
curity. Namely, if we follow the described route to achieve security, we would have to
replace all challenge ciphertexts (and only those) with lossy ones. However, an ABO-
LTF has only one lossy tag, while there are many challenge ciphertexts.

All-but-N LTFs and their limitations. A natural solution has been given by Hemen-
way et al. [23], who define and construct all-but-N LTFs (ABN-LTFs). ABN-LTFs have
exactly N lossy tags; all other tags are injective. This can be used to equip exactly the
challenge ciphertexts with the lossy tags; all other ciphertexts then correspond to injec-
tive tags, and can thus be decrypted. Observe that ABN-LTFs encode the set of lossy
tags in their key. (That is, a computationally unbounded adversary could always brute-
force search which tags lead to a lossy function.) For instance, the construction of [23]
embeds a polynomial in the key (hidden in the exponent of group elements) such that
lossy tags are precisely the zeros of that polynomial.

Hence, ABN-LTFs have a severe drawback: namely, the space complexity of the
keys is at least linear in N . In particular, this affects the SO secure PKE schemes de-
rived in [23]: there is no single scheme that would work in arbitrary protocols (i.e., for
arbitrary N). Besides, their schemes quickly become inefficient as N gets larger, since
each encryption requires to evaluate a polynomial of degree N in the exponent.

Our contribution: LTFs with many lossy tags. In this work, we define and con-
struct all-but-many LTFs (ABM-LTFs). An ABM-LTF has superpolynomially many
lossy tags, which however require a special trapdoor to be found. This is the most cru-
cial difference to ABN-LTFs: with ABN-LTFs, the set of lossy tags is specified initially,
at construction time. Our ABM-LTFs have a trapdoor that allows to sample on the fly
from a superpolynomially large pool of lossy tags. (Of course, without that trapdoor,

1 What we call “tag” is usually called “branch.” We use “tag” in view of our later construction,
in which tags have a specific structure, and cannot be viewed as branches of a (binary) tree.

2

and even given arbitrarily many lossy tags, another lossy tag is still hard to find.) This
in particular allows for ABM-LTF instantiations with compact keys and images whose
size is independent of the number of lossy tags.

Our constructions can be viewed as “disguised” variants of the Waters, resp. Boneh-
Boyen (BB) signature schemes [33, 8]. Specifically, lossy tags correspond to valid sig-
natures. However, to make lossy and injective tags appear indistinguishable, we have to
blind signatures by encrypting them, or by multiplying them with a random subgroup
element. We give more details on our constructions below.
A DCR-based construction. Our first construction operates in ZNs+1 . (Larger s yield
lossier functions. For our applications, s = 2 will be sufficient.) A tag consists of two
Paillier/Damgård-Jurik encryptions E(x) ∈ ZNs+1 . At the core of our construction is a
variant of Waters signatures over ZNs+1 whose security can be reduced to the problem
of computing E(ab) from E(a) and E(b), i.e., of multiplying Paillier/DJ-encrypted mes-
sages. This “multiplication problem” may be interesting in its own right. If it is easy,
then Paillier/DJ is fully homomorphic; if it is infeasible, then we can use it as a “poor
man’s CDH assumption” in the plaintext domain of Paillier/DJ.

We stress that our construction does not yield a signature scheme; verification of
Waters signatures requires a pairing operation, to which we have no equivalent in
ZNs+1 . However, we will be able to construct a matrix M ∈ Z3×3

Ns+1 out of a tag, such
that the “decrypted matrix” M̃ = D(M) ∈ Z3×3

Ns has low rank iff the signature embed-
ded in the tag is valid. Essentially, this observation uses products of plaintexts occurring
in the determinant det(M̃) to implicitly implement a “pairing over ZNs+1” and verify
the signature. Similar techniques to encode arithmetic formulas in the determinant of a
matrix have been used, e.g., by [25, 2] in the context of secure computation.

Our function evaluation is now a suitable multiplication of the encrypted matrix M
with a plaintext vector X ∈ Z3

Ns , similar to the one from Peikert and Waters [30]. Con-
cretely, on input X , our function outputs an encryption of the ordinary matrix-vector
product M̃ ·X . If M̃ is non-singular, then we can invert this function using the decryp-
tion key. If M̃ has low rank, however, the function becomes lossy. This construction
has compact tags and function images; both consist only of a (small) constant number
of group elements, and only the public key has O(k) group elements, where k is the
security parameter. Thus, our construction does not scale in the numberN of lossy tags.
A pairing-based construction. Our second uses a product group G1 = 〈g1〉 × 〈h1〉
that allows for a pairing. We will implement BB signatures in 〈h1〉, while we blind with
elements from 〈g1〉. Consequently, our security proof requires both the Strong Diffie-
Hellman assumption (SDH, [8]) in 〈h1〉 and a subgroup indistinguishability assumption.

Tags are essentially matrices (Wi,j)i,j for Wi,j ∈ G1 = 〈g1〉 × 〈h1〉. Upon eval-
uation, this matrix is first suitably paired entry-wise to obtain a matrix (Mi,j)i,j over
GT = 〈gT 〉 × 〈hT 〉, the pairing’s target group. This operation will ensure that (a) Mi,j

(for i 6= j) always lies in 〈gT 〉, and (b) Mi,i lies in 〈gT 〉 iff the h1-factor of Wi,i con-
stitutes a valid BB signature for the whole tag. With these ideas in mind, we revisit the
original matrix-based LTF construction from [30] to obtain a function with trapdoors.

Unfortunately, using the matrix-based construction from [30] results in rather large
tags (of size O(n2) group elements for a function with domain {0, 1}n). On the bright
side, a number of random self-reducibility properties allow for a security proof whose

3

reduction quality does not degrade with the number N of lossy tags (i.e., challenge
ciphertexts) around. Specifically, neither construction nor reduction scale in N .

Applications. Given the work of [23], a straightforward application of our results is
the construction of an SO-CCA secure PKE scheme. (However, a slight tweak is re-
quired compared to the construction from [23] — see Section 5.3 for details.) Unlike
the PKE schemes from [23], both of our ABM-LTFs give an SO-CCA construction that
is independent of N , the number of challenge ciphertexts. Moreover, unlike the SO-
CCA secure PKE scheme from [19], our DCR-based SO-CCA scheme has compact
ciphertexts of O(1) group elements. Finally, unlike both [23] and [19], our pairing-
based scheme has a reduction that does not depend on N and the number of decryption
queries (see the full version for details).

As a side effect, our pairing-based scheme can be interpreted as a new kind of
CCA secure PKE scheme with a security proof that is tight in the number of challenges
and decryption queries. This solves an open problem of Bellare et al. [4], although the
scheme should be seen as a (relatively inefficient) proof of concept rather than a practi-
cal system. Also, to be fair, we should mention that the SDH assumption we use in our
pairing-based ABM-LTF already has a flavor of accommodating multiple challenges:
an SDH instance contains polynomially many group elements.

Open problems. An interesting open problem is to find different, and in particular ef-
ficient and tightly secure ABM-LTFs under reasonable assumptions. This would imply
efficient and tightly (SO-)CCA-secure encryption schemes. (With our constructions,
one basically has to choose between efficiency and a tight reduction.) Also, our pairing-
based PKE scheme achieves only indistinguishability-based, but not (in any obvious
way) simulation-based SO security [6]. (To achieve simulation-based SO security, a
simulator must essentially be able to efficiently explain lossy ciphertexts as encryp-
tions of any given message, see [6, 19].) However, as we demonstrate in case of our
DCR-based scheme, in some cases ABM-LTFs can be equipped with an additional “ex-
plainability” property that leads to simulation-based SO security (see the full version
for details). It would be interesting to find other applications of ABM-LTFs. One re-
viewer suggested that ABM-LTFs can be used instead of ABO-LTFs in the commitment
scheme from Nishimaki et al. [27], with the goal of attaining reusable commitments.

Organization. After fixing some notation in Section 2, we proceed to our definition
of ABM-LTFs in Section 3. We define and analyze our DCR-based ABM-LTF in Sec-
tion 4. We then show how ABM-LTFs imply CCA-secure (indistinguishability-based)
selective-opening security in Section 5. Due to lack of space, we postpone a detailed
description and analysis of our pairing-based ABM-LTF to the full version.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, k ∈ N denotes
the security parameter. For a finite set S, we denote by s ← S the process of sam-
pling s uniformly from S. For a probabilistic algorithm A, we denote y ← A(x;R)
the process of running A on input x and with randomness R, and assigning y the
result. We let RA denote the randomness space of A; we require RA to be of the

4

form RA = {0, 1}r. We write y ← A(x) for y ← A(x;R) with uniformly cho-
sen R ∈ RA, and we write y1, . . . , ym ← A(x) for y1 ← A(x), . . . , ym ← A(x)
with fresh randomness in each execution. If A’s running time is polynomial in k, then
A is called probabilistic polynomial-time (PPT). The statistical distance of two ran-
dom variables X and Y over some countable domain S is defined as SD (X ; Y) :=
1
2

∑
s∈S |Pr [X = s]− Pr [Y = s]|.

Chameleon hashing. A chameleon hash function (CHF, see [26]) is collision-resistant
when only the public key of the function is known. However, this collision-resistance
can be broken (in a very strong sense) with a suitable trapdoor. We will assume an input
domain of {0, 1}∗. We do not lose (much) on generality here, since one can always first
apply a collision-resistant hash function on the input to get a fixed-size input.

Definition 1 (Chameleon hash function). A chameleon hash function CH consists of
the following PPT algorithms:
Key generation. CH.Gen(1k) outputs a key pkCH along with a trapdoor tdCH.
Evaluation. CH.Eval(pkCH, X;RCH) maps an input X ∈ {0, 1}∗ to an image Y . By

RCH, we denote the randomness used in the process. We require that if RCH is
uniformly distributed, then so is Y (over its respective domain).

Equivocation. CH.Equiv(tdCH, X,RCH, X
′) outputs randomness R′CH with

CH.Eval(pkCH, X;RCH) = CH.Eval(pkCH, X
′;R′CH) (1)

for the corresponding key pkCH. We require that for any X,X ′, if RCH is uniformly
distributed, then so is R′CH.

We require that CH is collision-resistant in the sense that given pkCH, it is infeasible to
find X,RCH, X

′, R′CH with X 6= X ′ that meet (1). Formally, for every PPT B,

AdvcrCH,B(k) := Pr
[
X 6= X ′ and (1) holds | (X,RCH, X

′, R′CH)← B(1k, pkCH)
]

is negligible, where (pkCH, tdCH)← CH.Gen(1k).

Lossy trapdoor functions. Lossy trapdoor functions (see [30]) are a variant of trapdoor
one-way functions. They may be operated in an “injective mode” (which allows to invert
the function) and a “lossy mode” in which the function is non-injective. For simplicity,
we restrict to an input domain {0, 1}n for polynomially bounded n = n(k) > 0.

Definition 2 (Lossy trapdoor function). A lossy trapdoor function (LTF) LTF with
domain Dom consists of the following algorithms:
Key generation. LTF.IGen(1k) yields an evaluation key ek and an inversion key ik .
Evaluation. LTF.Eval(ek , X) (withX ∈ Dom) yields an image Y . Write Y = fek (X).
Inversion. LTF.Invert(ik , Y) outputs a preimage X . Write X = f−1ik (Y).
Lossy key generation. LTF.LGen(1k) outputs an evaluation key ek ′.
We require the following:
Correctness. For all (ek , ik)← LTF.IGen(1k), X ∈ Dom, it is f−1ik (fek (X)) = X .
Indistinguishability. The first output of LTF.IGen(1k) is indistinguishable from the

output of LTF.LGen(1k), i.e.,

AdvindLTF,A(k) := Pr
[
A(1k, ek) = 1

]
− Pr

[
A(1k, ek ′) = 1

]
is negligible for all PPT A, for (ek , ik)← LTF.IGen(1k), ek ′ ← LTF.LGen(1k).

5

Lossiness. We say that LTF is `-lossy if for all possible ek ′ ← LTF.LGen(1k), the
image set fek ′(Dom) is of size at most |Dom|/2`.

3 Definition of ABM-LTFs

We are now ready to define ABM-LTFs. As already discussed in Section 1, ABM-LTFs
generalize ABO-LTFs and ABN-LTFs in the sense that there is a superpolynomially
large pool of lossy tags from which we can sample. We require that even given oracle
access to such a sampler of lossy tags, it is not feasible to produce a (fresh) non-injective
tag. Furthermore, it should be hard to distinguish lossy from injective tags.

Definition 3 (ABM-LTF). An all-but-many lossy trapdoor function (ABM-LTF) ABM
with domain Dom consists of the following PPT algorithms:
Key generation. ABM.Gen(1k) yields an evaluation key ek , an inversion key ik , and

a tag key tk . The evaluation key ek defines a set T = Tp × {0, 1}∗ that contains
the disjoint sets of lossy tags Tloss ⊆ T and injective tags Tinj ⊆ T . Tags are of the
form t = (tp, ta), where tp ∈ Tp is the core part of the tag, and ta ∈ {0, 1}∗ is the
auxiliary part of the tag.

Evaluation. ABM.Eval(ek , t,X) (for t ∈ T , X ∈ Dom) produces Y =: fek ,t(X).
Inversion. ABM.Invert(ik , t, Y) (with t ∈ Tinj) outputs a preimage X =: f−1ik ,t(Y).
Lossy tag generation. ABM.LTag(tk , ta) takes as input an auxiliary part ta ∈ {0, 1}∗

and outputs a core tag tp such that t = (tp, ta) is lossy.
We require the following:
Correctness. For all possible (ek , ik , tk) ← ABM.Gen(1k), t ∈ Tinj, and X ∈ Dom,

it is always f−1ik ,t(fek ,t(X)) = X .
Lossiness. We say that ABM is `-lossy if for all possible (ek , ik , tk)← ABM.Gen(1k),

and all lossy tags t ∈ Tloss, the image set fek ,t(Dom) is of size at most |Dom|/2`.
Indistinguishability. Even multiple lossy tags are indistinguishable from random tags:

AdvindABM,A(k) := Pr
[
A(1k, ek)ABM.LTag(tk ,·) = 1

]
− Pr

[
A(1k, ek)OTp (·) = 1

]
is negligible for all PPT A, where (ek , ik , tk) ← ABM.Gen(1k), and OT (·) ig-
nores its input and returns a uniform and independent core tag tp ← Tp.

Evasiveness. Non-injective tags are hard to find, even given multiple lossy tags:

AdvevaABM,A(k) := Pr
[
A(1k, ek)ABM.LTag(tk ,·) ∈ T \ Tinj

]
is negligible with (ek , ik , tk) ← ABM.Gen(1k), and for any PPT algorithm A
that never outputs tags obtained through oracle queries (i.e., A never outputs tags
t = (tp, ta), where tp has been obtained by an oracle query ta).

On our tagging mechanism. Our tagging mechanism is different from the mechanism
from ABO-, resp. ABN-LTFs. In particular, our tag selection involves an auxiliary and a
core tag part; lossy tags can be produced for arbitrary auxiliary tags. (Conceptually, this
resembles the two-stage tag selection process from Abe et al. [1] in the context of hybrid

6

encryption.) On the other hand, ABO- and ABN-LTFs simply have fully arbitrary (user-
selected) bitstrings as tags.

The reason for our more complicated tagging mechanism is that during a security
proof, tags are usually context-dependent and not simply random. For instance, a com-
mon trick in the public-key encryption context is the following: upon encryption, choose
a one-time signature keypair (v, s), set the tag to the verification key v, and then finally
sign the whole ciphertext using the signing key s. This trick has been used numerous
times (e.g., [17, 12, 30, 31]) and ensures that a tag cannot be re-used by an adversary in
a decryption query. (To re-use that tag, an adversary would essentially have to forge a
signature under v.)

However, in our constructions, in particular lossy tags cannot be freely chosen. (This
is different from ABO- and ABN-LTFs and stems from the fact that there are superpoly-
nomially many lossy tags.) But as outlined, during a security proof, we would like to
embed auxiliary information in a tag, while being able to force the tag to be lossy. We
thus divide the tag into an auxiliary part (which can be used to embed, e.g., a verification
key for a one-time signature), and a core part (which will be used to enforce lossiness).

4 A DCR-based ABM-LTF

We now construct an ABM-LTF ABMD in rings ZNs+1 for composite N . Domain and
codomain of our function will be Z3

Ns and (Z∗Ns+1)3, respectively. One should have in
mind a value of s ≥ 2 here, since we will prove that ABMD is ((s− 1) log2(N))-lossy.

4.1 Setting and assumptions

In the following, let N = PQ for primes P and Q, and fix a positive integer s. Write
ϕ(N) := (P − 1)(Q − 1). We will silently assume that P and Q are chosen from
a distribution that depends on the security parameter. Unless indicated otherwise, all
computations will take place in ZNs+1 , i.e., modulo Ns+1. It will be useful to es-
tablish the notation h := 1 + N ∈ ZNs+1 . We also define algorithms E and D by
E(x) = rN

s

hx for x ∈ ZNs and a uniformly and independently chosen r ∈ Z∗Ns+1 ,
and D(c) = ((cϕ(N))1/ϕ(N) mod Ns − 1)/N ∈ ZNs for c ∈ ZNs+1 . That is, E and D
are Paillier/Damgård-Jurik encryption and decryption operations as in [28, 14], so that
D(rN

s

hx) = x and D(E(x)) = x. Moreover, D can be efficiently computed using the
factorization of N . We will also apply D to vectors or matrices over ZNs+1 , by which
we mean component-wise application. We make the following assumptions:

Assumption 1. The s-Decisional Composite Residuosity (short: s-DCR) assumption
holds iff

Advs-dcr
D (k) := Pr

[
D(1k, N, rN

s

) = 1
]
− Pr

[
D(1k, N, rN

s

h) = 1
]

is negligible for all PPT D, where r ← Z∗Ns+1 is chosen uniformly.

Assumption 1 is rather common and equivalent to the semantic security of the Pail-
lier [28] and Damgård-Jurik (DJ) [14] encryption schemes. In fact, it turns out that all

7

s-DCR assumptions are (tightly) equivalent to 1-DCR [14]. Nonetheless, we make s
explicit here to allow for a simpler exposition. Also note that Assumption 1 supports a
form of random self-reducibility. Namely, given one challenge element c ∈ Z∗Ns+1 , it is
possible to generate many fresh challenges ci with the same decryption D(ci) = D(c)
by re-randomizing the rN

s

part.

Assumption 2. The No-Multiplication (short: No-Mult) assumption holds iff

Advmult
A (k) := Pr

[
A(1k, N, c1, c2) = c∗ ∈ Z∗N2 for D(c∗) = D(c1) · D(c2) mod Ns

]
is negligible for all PPT A, where c1, c2 ← Z∗N2 are chosen uniformly.

The No-Mult assumption stipulates that it is infeasible to multiply Paillier-encrypted
messages. If No-Mult (along with s-DCR and a somewhat annoying technical assump-
tion explained below) hold, then our upcoming construction will be secure. But if the
No-Mult problem is easy, then Paillier encryption is fully homomorphic.2

The following technical lemma will be useful later on, because it shows how to lift
ZN2 -encryptions to ZNs+1 -encryptions.

Lemma 1 (Lifting, implicit in [14]). Let s ≥ 1 and τ : ZN2 → ZNs+1 be the canon-
ical embedding with τ(c mod N2) = c mod Ns+1 for c ∈ ZN2 interpreted as an
integer from {0, . . . , N2 − 1}. Then, for any c ∈ Z∗N2 , and X := D(τ(c)) ∈ ZNs and
x := D(c) ∈ ZN , we have X = x mod N .

Proof. Consider the canonical homomorphism π : ZNs+1 → ZN2 . Write Z∗Ns+1 =
〈gs〉×〈hs〉 for some gs ∈ Z∗Ns+1 of order ϕ(N) and hs := 1+N mod Ns+1. We have
π(〈gs〉) = 〈g1〉 and π(hxs) = hx mod N

1 . Since π ◦ π̂ = idZN2 , this gives π̂(gu1h
x
1) =

gu
′

s hx+x
′N

s for suitable u′, x′.

Unfortunately, we need another assumption to exclude certain corner cases:

Assumption 3. We require that the following function is negligible for all PPT A:

AdvnoninvA (k) := Pr
[
A(1k, N) = c ∈ ZN2 such that 1 < gcd(D(c), N) < N

]
.

Intuitively, Assumption 3 stipulates that it is infeasible to generate Paillier encryptions
of “funny messages.” Note that actually knowing any such message allows to factor N .

4.2 Our construction

Overall idea. The first idea in our construction will be to use the No-Mult assump-
tion as a “poor man’s CDH assumption” in order to implement Waters signatures [33]
over ZNs+1 . Recall that the verification of Waters signatures requires a pairing oper-
ation, which corresponds to the multiplication of two Paillier/DJ-encrypted messages

2 Of course, there is a third, less enjoyable possibility. It is always conceivable that an algorithm
breaks No-Mult with low but non-negligible probability. Such an algorithm may not be useful
for constructive purposes. Besides, if either s-DCR or the annoying technical assumption do
not hold, then our construction may not be secure.

8

in our setting. We do not have such a multiplication operation available; however, for
our purposes, signatures will never actually have to be verified, so this will not pose a
problem. We note that the original Waters signatures from [33] are re-randomizable and
thus not strongly unforgeable. To achieve the evasiveness property from Definition 3,
we will thus combine Waters signatures with a chameleon hash function, much like
Boneh et al. [9] did to make Waters signatures strongly unforgeable.

Secondly, we will construct 3 × 3-matrices M = (Mi,j)i,j over ZNs+1 , in which
we carefully embed our variant of Waters signatures. Valid signatures will correspond
to singular “plaintext matrices” M̃ := (D(Mi,j))i,j ; invalid signatures correspond to
full-rank matrices M̃ . We will define our ABM-LTF f as a suitable matrix-vector mul-
tiplication of M with an input vector X ∈ Z3

Ns . For a suitable choice of s, the resulting
f will be lossy if det(M̃) = 0.
Key generation. ABM.Gen(1k) first chooses N = PQ, and a key pkCH along with
trapdoor tdCH for a chameleon hash function CH. Finally, ABM.Gen chooses a, b ←
ZNs , as well as k + 1 values hi ← ZNs for 0 ≤ i ≤ k, and sets

A← E(a) B ← E(b) Hi ← E(hi) (for 0 ≤ i ≤ k)
ek = (N,A,B, (Hi)

k
i=0, pkCH) ik = (ek , P,Q) tk = (ek , a, b, (hi)

k
i=0, tdCH).

Tags. Recall that a tag t = (tp, ta) consists of a core part tp and an auxiliary part
ta ∈ {0, 1}∗. Core parts are of the form tp = (R,Z,RCH) with R,Z ∈ Z∗Ns+1 and
randomness RCH for CH. (Thus, random core parts are simply uniform values R,Z ∈
Z∗Ns+1 and uniform CH-randomness.) With t, we associate the chameleon hash value
T := CH.Eval(pkCH, (R,Z, ta)), and a group hash value H := H0

∏
i∈T Hi, where

i ∈ T means that the i-th bit of T is 1. Let h := D(H) = h0 +
∑
i∈T hi. Also, we

associate with t the matrices

M =

Z A R
B h 1
H 1 h

 ∈ Z3×3
Ns+1 M̃ =

z a rb 1 0
h 0 1

 ∈ Z3×3
Ns , (2)

where M̃ = D(M) is the component-wise decryption of M , and r = D(R) and z =

D(Z). It will be useful to note that det(M̃) = z − (ab + rh). We will call t lossy if
det(M̃) = 0, i.e., if z = ab+ rh; we say that t is injective if M̃ is invertible.
Lossy tag generation. ABM.LTag(tk , ta), given tk = ((N,A,B, (Hi)i), a, b, (hi)

k
i=0,

tdCH) and an auxiliary tag part ta ∈ {0, 1}∗, picks an image T of CH that can later
be explained (using tdCH) as the image of an arbitrary preimage (R,Z, ta). Let h :=
h0 +

∑
i∈T hi and R ← E(r) for uniform r ← ZNs , and set Z ← E(z) for z =

ab+rh. Finally, letRCH be CH-randomness for which T = CH.Eval(pkCH, (R,Z, ta)).
Obviously, this yields uniformly distributed lossy tag parts (R,Z,RCH).
Evaluation. ABM.Eval(ek , t,X), for ek = (N,A,B, (Hi)i, pkCH), t = ((R,Z,RCH),
ta), and a preimage X = (Xi)

3
i=1 ∈ Z3

Ns , first computes the matrix M = (Mi,j)i,j as
in (2). Then, ABM.Eval computes and outputs

Y :=M ◦X :=

 3∏
j=1

M
Xj

i,j

3

i=1

.

9

Note that the decryption D(Y) is simply the ordinary matrix-vector product D(M) ·X .

Inversion and correctness. ABM.Invert(ik , t, Y), given an inversion key ik , a tag t,
and an image Y = (Yi)

3
i=1, determines X = (Yi)

3
i=1 as follows. First, ABM.Invert

computes the matrices M and M̃ = D(M) as in (2), using P,Q. For correctness, we
can assume that the tag t is injective, so M̃ is invertible; let M̃−1 be its inverse. Since
D(Y) = M̃ ·X , ABM.Invert can retrieve X as M̃−1 · D(Y) = M̃−1 · M̃ ·X .

4.3 Security analysis

Theorem 1 (Security of ABMD). Assume that Assumption 1, Assumption 2, and As-
sumption 3 hold, that CH is a chameleon hash function, and that s ≥ 2. Then the
algorithms described in Section 4.2 form an ABM-LTF ABMD as per Definition 3.

We have yet to prove lossiness, indistinguishability, and evasiveness.

Lossiness. Our proof of lossiness loosely follows Peikert and Waters [30]:

Lemma 2 (Lossiness of ABMD). ABMD is ((s− 1) log2(N))-lossy.

Proof. Assume an evaluation key ek = (N,A,B, (Hi)i, pkCH), and a lossy tag t, so
that the matrix M̃ from (2) is of rank ≤ 2. Hence, any fixed decrypted image

D(fek ,t(X)) = D(M ◦X) = M̃ ·X

leaves at least one inner product 〈C,X〉 ∈ ZNs (for C ∈ Z3
Ns that only depends on

M̃) completely undetermined. The additional information contained in the encryption
randomness of an image Y = fek ,t(X) fixes the components of X and thus 〈C,X〉
only modulo ϕ(N) < N . Thus, for any given image Y , there are at least bNs/ϕ(N)c ≥
Ns−1 possible values for 〈C,X〉 and thus possible preimages. The claim follows.

Indistinguishability. Observe that lossy tags can be produced without knowledge of
the factorization of N . Hence, even while producing lossy tags, we can use the indistin-
guishability of Paillier/DJ encryptions E(x). This allows to substitute the encryptions
R = E(r), Z = E(z) in lossy tags by independently uniform encryptions. This step
also makes the CH-randomness independently uniform, and we end up with random
tags. We omit the straightforward formal proof and state:

Lemma 3 (Indistinguishability of ABMD). Given the assumptions from Theorem 1,
ABMD is indistinguishable. Concretely, for any PPT adversary A, there exists an s-
DCR distinguisher D of roughly the same complexity as A, such that

AdvindABMD,A(k) = Advs-dcr
D (k). (3)

The tightness of the reduction in (3) stems from the random self-reducibility of s-DCR.

Evasiveness. It remains to prove evasiveness.

10

Lemma 4 (Evasiveness of ABMD). Given the assumptions from Theorem 1, ABMD
is evasive. Concretely, for any PPT adversary A that makes at most Q = Q(k) oracle
queries, there exist adversaries B, D, and F of roughly the same complexity as A, with

AdvevaABMD,A(k) ≤ O(kQ(k))·Advmult
F (k)+AdvnoninvE (k)+

∣∣∣Advs-dcr
D (k)

∣∣∣+AdvcrCH,B(k).

At its core, the proof of Lemma 4 adapts the security proof of Waters signatures to
ZNs+1 . That is, we will create a setup in which we can prepare Q(k) lossy tags (which
correspond to valid signatures), and the tag the adversary finally outputs will be inter-
preted as a forged signature. Crucial to this argument will be a suitable setup of the
group hash function (Hi)

k
i=0. Depending on the (group) hash value, we will either be

able to create a lossy tag with that hash, or use any lossy tag with that hash to solve a
underlying No-Mult challenge. With a suitable setup, we can hope that with probability
O(1/(kQ(k))), Q(k) lossy tags can be created, and the adversary’s output can be used
to solve an No-Mult challenge. The proof of Lemma 4 is somewhat complicated by the
fact that in order to use the collision-resistance of the employed CHF, we have to first
work our way towards a setting in which the CHF trapdoor is not used. This leads to a
somewhat tedious “deferred analysis” (see [21]) and the s-DCR term in the lemma.

Proof. We turn to the full proof of Lemma 4. Fix an adversaryA. We proceed in games.
In Game 1,A(ek) interacts with an ABM.LTag(tk , ·) oracle that produces core tag parts
for lossy tags tp = ((R,Z,RCH), ta) that satisfy z = ab+rh for r = D(R), z = D(Z),
and h = D(H) with H = H0

∏
i∈T Hi and T = CH.Eval(pkCH, (R,Z, ta)). Without

loss of generality, we assume that A makes exactly Q oracle queries, where Q = Q(k)
is a suitable polynomial. Let badi denote the event that the output of A in Game i is a
lossy tag, i.e., lies in Tloss. By definition,

Pr [bad1] = Pr
[
AABM.LTag(tk ,·)(ek) ∈ Tloss

]
, (4)

where the keys ek and tk are generated via (ek , ik , tk)← ABM.Gen(1k).

Getting rid of (chameleon) hash collisions. To describe Game 2, let badhash be
the event that A finally outputs a tag t = ((R,Z,RCH), ta) with a CHF hash T =
CH.Eval((R,Z, ta);RCH) that has already appeared as the CHF hash of an ABM.LTag
output (with the corresponding auxiliary tag part input). Now Game 2 is the same as
Game 1, except that we abort (and do not raise event bad2) if badhash occurs. Obviously,

Pr [bad1]− Pr [bad2] ≤ Pr [badhash] . (5)

It would seem intuitive to try to use CH’s collision resistance to bound Pr [badhash].
Unfortunately, we cannot rely on CH’s collision resistance in Game 2 yet, since we use
CH’s trapdoor in the process of generating lossy tags. So instead, we use a technique
called “deferred analysis” [21] to bound Pr [badhash]. The idea is to forget about the
storyline of our evasiveness proof for the moment and develop Game 2 further up to a
point at which we can use CH’s collision resistance to bound Pr [badhash].

This part of the proof largely follows the argument from Lemma 3. Concretely, we
can substitute the lossy core tag parts output by ABM.LTag by uniformly random core

11

tag parts. At this point, CH’s trapdoor is no longer required to implement the oracle
A interacts with. Hence we can apply CH’s collision resistance to bound Pr [badhash]
in this modified game. This also implies a bound on Pr [badhash] in Game 2: since the
occurrence of badhash is obvious from the interaction between A and the experiment,
Pr [badhash] must be preserved across these transformations. We omit the details, and
state the result of this deferred analysis:

Pr [badhash] ≤
∣∣∣Advs-dcr

D (k)
∣∣∣+ AdvcrCH,B(k) (6)

for suitable adversaries D, E, and B. This ends the deferred analysis step, and we are
back on track in our evasiveness proof.
Preparing the setup for our reduction. In Game 3, we set up the group hash function
given by (Hi)

k
i=0 differently. Namely, for 0 ≤ i ≤ k, we choose independent γi ←

ZNs , and set

Hi := AαiE(γi), so that hi := D(Hi) = αia+ γi mod Ns (7)

for independent αi ∈ Z yet to be determined. Note that this yields an identical distribu-
tion of the Hi no matter how concretely we choose the αi. For convenience, we write
α = α0 +

∑
i∈T αi and γ = γ0 +

∑
i∈T γi for a given tag t with associated CH-image

T . This in particular implies h := D(H) = αa + γ for the corresponding group hash
H = H0

∏
i∈T Hi. Our changes in Game 3 are purely conceptual, and so

Pr [bad3] = Pr [bad2] . (8)

To describe Game 4, let t(i) denote the i-th lossy core tag part output by ABM.LTag

(including the corresponding auxiliary part t(i)a), and let t∗ be the tag finally output by
A. Similarly, we denote with T (i), α∗, etc. the intermediate values for the tags output by
ABM.LTag and A. Now let goodsetup be the event that gcd(α(i), N) = 1 for all i, and
that α∗ = 0. In Game 4, we abort (and do not raise event bad4) if ¬goodsetup occurs.
(In other words, we only continue if each H(i) has an invertible A-component, and if
H∗ has no A-component.)

Waters [33] implicitly shows that for a suitable distribution of αi, the probability
Pr
[
goodsetup

]
can be kept reasonably high:

Lemma 5 (Waters [33], Claim 2, adapted to our setting). In the situation of Game
4, there exist efficiently computable distributions αi, such that for every possible view
view that A could experience in Game 4, we have

Pr
[
goodsetup | view

]
≥ O(1/(kQ(k))). (9)

This directly implies

Pr [bad4] ≥ Pr
[
goodsetup

]
· Pr [bad3] . (10)

An annoying corner case. Let Pr [badtag] be the event that A outputs a tag t∗ for
which det(M̃∗) = z∗ − (ab + r∗h∗) is neither invertible nor 0 modulo N . This in

12

particular means that t∗ is neither injective nor lossy. A straightforward reduction to
Assumption 3 shows that

Pr [badtag] ≤ AdvnoninvE (k) (11)

for an adversary E that simulates Game 4 and outputs Z∗/(hab · (R∗)h∗) mod N2.
The final reduction. We now claim that

Pr [bad4] ≤ Advmult
F (k) + Pr [badtag] (12)

for the following adversary F on the No-Mult assumption. Our argument follows in the
footsteps of the security proof of Waters’ signature scheme [33]. Our No-Mult adversary
F obtains as input c1, c2 ∈ ZN2 , and is supposed to output c∗ ∈ ZN2 with D(c1) ·
D(c2) = D(c∗) ∈ ZN . In order to do so, F simulates Game 4. F incorporates its own
challenge as A := τ(c1)E(a

′N) and B := τ(c2)E(b
′N) for the embedding τ from

Lemma 1 and uniform a′, b′ ∈ ZNs−1 . This gives uniformly distributed A,B ∈ Z∗Ns+1 .
Furthermore, by Lemma 1, we have a = D(c1) mod N and b = D(c2) mod N for
a := D(A) and b := D(B). Note that F can still compute all Hi and thus ek efficiently
using (7).

We now describe how F constructs lossy tags, as required to implement oracle Tloss
of Game 4. Since the CH trapdoor tdCH is under F ’s control, we can assume a given
CH-value T to which we can later map our tag ((R,Z), ta). By our changes from Game
4, we can also assume that the corresponding α = α0 +

∑
i∈T αi is invertible modulo

Ns and known. We pick δ ← ZNs , and set

R := B−1/α mod Ns

E(δ) Z := AαδBγ/αE(γδ).

With the corresponding CH-randomnessRCH, this yields perfectly distributed lossy tags
satisfying

D(A)·D(B)+D(R)·D(H) = ab+(−b/α+δ)(αa+γ) = αδa−(γ/α)b+γδ = D(Z).

Note that this generation of lossy tags is not possible when α = 0.
So far, we have argued that F can simulate Game 4 perfectly for A. It remains to

show how F can extract an No-Mult solution out of a tag t∗ output by A. Unless badtag
occurs or t∗ is injective, we have

z∗ = D(Z∗) = D(A) · D(B) + D(R∗) · D(H∗) = ab+ r∗h∗ mod N.

Since we abort otherwise, we may assume that α∗ = 0, so that z∗ = ab + r∗h∗ =
ab+γ∗r∗ mod N for known γ∗. This implies ab = z∗−γ∗r∗ mod N , so F can derive
and output a ZN2 -encryption of ab as Z∗/(R∗)γ

∗
mod N2. This shows (12).

Taking (4)-(12) together shows Lemma 4.

5 Application: selective opening security

5.1 ABM-LTFs with explainable tags

For the application of SOA-CCA security, we need a slight variant of ABM-LTFs. Con-
cretely, we require that values that are revealed during a ciphertext opening can be

13

explained as uniformly chosen “without ulterior motive,” if only their distribution is
uniform. (This is called “invertible sampling” by Damgård and Nielsen [15].)

Definition 4 (Efficiently samplable and explainable). A finite set S is efficiently sam-
plable and explainable if any element of S can be explained as the result of a uniform
sampling. Formally, there are PPT algorithms SampS , ExplS , such that
1. SampS(1

k) uniformly samples from S, and
2. for any s ∈ S, ExplS(s) outputs random coins for Samp that are uniformly dis-

tributed among all random coins R with SampS(1
k;R) = s.

Definition 5 (ABM-LTF with explainable tags). An ABM-LTF has explainable tags
if the core part of tags is efficiently samplable and explainable. Formally, if we write
T = Tp × Taux, where Tp and Taux denote the core and auxiliary parts of tags, then Tp
is efficiently samplable and explainable.

Explainable tags and our ABM-LTFs. Our DCR-based ABM-LTF ABMD has ex-
plainable tags, as Z∗Ns+1 is efficiently explainable. Concretely, SampZ∗

Ns+1
can choose

a uniform s ← ZNs+1 and test s for invertibility. If s is invertible, we are done; if not,
we can factor N and choose a uniform s′ ← Z∗Ns+1 directly, using the group order of
Z∗Ns+1 . Similarly, our pairing-based ABM-LTF ABMP has explainable tags as soon as
the employed group G1 is efficiently samplable and explainable. We will also have to
explain the CHF randomness RCH in both of our constructions. Fortunately, the CHF
randomness of many known constructions [29, 26, 16, 3, 13, 24] consists of uniform
values (over an explainable domain), which are efficiently samplable and explainable.

5.2 Selective opening security

PKE schemes. A public-key encryption (PKE) scheme consists of three PPT algo-
rithms (PKE.Gen,PKE.Enc,PKE.Dec). Key generation PKE.Gen(1k) outputs a pub-
lic key pk and a secret key sk . Encryption PKE.Enc(pk ,msg) takes a public key pk
and a message msg , and outputs a ciphertext C. Decryption PKE.Dec(sk , C) takes
a secret key sk and a ciphertext C, and outputs a message msg . For correctness, we
want PKE.Dec(sk , C) = msg for all msg , all (pk , sk) ← PKE.Gen(1k), and all
C ← (pk ,msg). For simplicity, we only consider message spaces {0, 1}k.
Definition of selective opening security. Following [18, 6, 23], we present a definition
for security under selective openings that captures security under adaptive attacks. The
definition is indistinguishability-based; it demands that even an adversary that gets to
see a vector of ciphertexts cannot distinguish the true contents of the ciphertexts from
independently sampled plaintexts.3 To model adaptive corruptions, our notion also al-
lows the adversary to request “openings” of adaptively selected ciphertexts.

Definition 6 (Efficiently re-samplable). Let N = N(k) > 0, and let dist be a joint
distribution over ({0, 1}k)N . We say that dist is efficiently re-samplable if there is a

3 Like previous works, we restrict ourselves to message distributions that allow for an efficient
re-sampling. We explain in the full version how to achieve simulation-based selective opening
security for arbitrary message spaces.

14

PPT algorithm ReSampdist such that for any I ⊆ [N] and any partial vector msg′I :=
(msg ′(i))i∈I ∈ ({0, 1}k)|I|, ReSampdist(msg′I) samples from the distribution dist,
conditioned on msg(i) = msg ′(i) for all i ∈ I.

Definition 7 (IND-SO-CCA security). A PKE scheme PKE = (PKE.Gen,PKE.Enc,
PKE.Dec) is IND-SO-CCA secure iff for every polynomially bounded function N =
N(k) > 0, and every stateful PPT adversary A, the function

Advcca-so
PKE,A(k) := Pr

[
Expind-so-cca-b

PKE,A (k) = 1
]
− 1

2

is negligible. Here, the experiment Expind-so-cca-b
PKE,A (k) is defined as follows:

Experiment Expind-so-cca-b
PKE,A

b← {0, 1}
(pk , sk)← PKE.Gen(1k)
(dist,ReSampdist)← APKE.Dec(sk ,·)(pk)
msg0 := (msg(i))i∈[n] ← dist

R := (R(i))i∈[n] ← (RPKE.Enc)
N

C := (C(i))i∈[n] := (PKE.Enc(pk ,msg(i);R(i)))i∈[n]
I ← APKE.Dec(sk ,·)(select,C)
msg1 := ReSampdist(msgI)
outA ← APKE.Dec(sk ,·)(output, (msg(i), R(i))i∈I ,msgb)
return (outA = b)

We only allow A that (a) always output efficiently re-samplable distributions dist over
({0, 1}k)N with corresponding efficient re-sampling algorithms ReSampdist, (b) never
submit a received challenge ciphertext C(i) to their decryption oracle PKE.Dec(sk , ·),
and (c) always produce binary final output outA.

This definition can be generalized in many ways, e.g., to more opening phases, or more
encryption keys. We focus on the one-phase, one-key case for ease of presentation; our
techniques apply equally to a suitably generalized security definitions.

5.3 IND-SO-CCA security from ABM-LTFs

The construction. To construct our IND-SO-CCA secure PKE scheme, we require the
following ingredients:

– an LTF LTF = (LTF.IGen, LTF.Eval, LTF.Invert, LTF.LGen) with domain {0, 1}n
(as in Definition 2) that is `′-lossy,

– an efficiently explainable ABM-LTF ABM = (ABM.Gen,ABM.Eval,ABM.Invert,
ABM.LTag) with domain4 {0, 1}n and tag set T = Tp × Taux (as in Definition 5)
that is `-lossy, and

4 In case of our DCR-based ABM-LTF ABMD, the desired domain {0, 1}n must be suitably
mapped to ABMD’s “native domain” Z3

Ns .

15

– a family UH of universal hash functions h : {0, 1}n → {0, 1}k, so that for any
f : {0, 1}n → {0, 1}`′+`, it is SD ((h, f(X), h(X)) ; (h, f(X), U)) = O(2−2k),
where h← UH, X ← {0, 1}n, and U ← {0, 1}k.

Then, consider the following PKE scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec):

Alg. PKE.Gen(1k)
(ek ′, ik ′)← LTF.IGen(1k)
(ek , ik , tk)← ABM.Gen(1k)
pk := (ek ′, ek)
sk := (ik ′, ek)
return (pk , sk)

Alg. PKE.Enc(pk ,msg)
parse pk =: (ek ′, ek)
X ← {0, 1}n
ρ := h(X)⊕msg
Y ′ := fek ′(X)
tp := SampTp(1

k;Rtp)
Y := fek ,(tp,(ρ,Y ′))(X)
C := (ρ, Y ′, tp, Y)
return C

Alg. PKE.Dec(sk , C)
parse sk =: (ik ′, ek),
C =: (ρ, Y ′, tp, Y)

X ← f−1ik ′ (Y
′)

if Y 6= fek ,(tp,(ρ,Y ′))(X)
return ⊥

msg := h(X)⊕ ρ
return msg

The core of this scheme is a (deterministic) double encryption as in [30, 23]. One en-
cryption (namely, Y ′) is generated using an LTF, and the other (namely, Y) is generated
using an ABM-LTF. In the security proof, the LTF will be switched to lossy mode,
and the ABM-LTF will be used with lossy tags precisely for the (IND-SO-CCA) chal-
lenge ciphertexts. This will guarantee that all challenge ciphertexts will be lossy. At the
same time, the evasiveness property of our ABM-LTF will guarantee that no adversary
can come up with a decryption query that corresponds to a lossy ABM-LTF tag. As a
consequence, we will be able to answer all decryption queries during the security proof.

Relation to the construction of Hemenway et al.. Our construction is almost identi-
cal to the one of Hemenway et al. [23], which in turn builds upon the construction of an
IND-CCA secure encryption scheme from an all-but-one lossy trapdoor function [30].
However, while we employ ABM-LTFs, [23] employ “all-but-N lossy trapdoor func-
tions” (ABN-LTFs), which are defined similarly to ABM-LTFs, only with the number
of lossy tags fixed in advance (to a polynomial value N). Thus, unlike in our schemes,
the number of challenge ciphertexts N has to be fixed in advance with [23]. Further-
more, the complexity of the schemes from [23] grows (linearly) in the number N of
challenge ciphertexts. On the other hand, ABN-LTFs also allow to explicitly determine
all lossy tags in advance, upon key generation. (For instance, all lossy tags can be cho-
sen as suitable signature verification keys or chameleon hash values.) With ABM-LTFs,
lossy tags are generated on the fly, through ABM.LTag. This difference is the reason for
the auxiliary tag parts in the ABM-LTF definition, cf. Section 3.

Theorem 2. If LTF is an LTF, ABM is an efficiently explainable ABM-LTF, and UH is
an UHF family as described, then PKE is IND-SO-CCA secure. In particular, for every
IND-SO-CCA adversary A on PKE that makes at most q = q(k) decryption queries,
there exist adversaries B, C, and D of roughly same complexity as A, and such that∣∣Advcca-so

PKE,A(k)
∣∣ ≤ ∣∣∣AdvindABM,B(k)

∣∣∣+ q(k) · AdvevaABM,C(k) +
∣∣∣AdvindLTF,D(k)

∣∣∣+O(2−k).

Note that the reduction does not depend on N , the number of challenge ciphertexts.
On the other hand, the number of an adversary’s decryption queries goes linearly into

16

the reduction factor. We can get rid of this factor of q(k) in case of our pairing-based
ABM-LTF ABMP; see the full version. We also prove Theorem 2 in the full version.
Acknowledgements. The author would like to thank Florian Böhl, Serge Fehr, Eike
Kiltz, and Hoeteck Wee for helpful discussions concerning SO-CCA security. The
anonymous Crypto 2011 and Eurocrypt 2012 referees, and in particular one Eurocrypt
referee have given very useful comments that helped to improve the paper. Jorge Villar
pointed me to [32], a result that improves the reduction of our pairing-based ABM-LTF.

References
[1] Masayuki Abe, Rosario Gennaro, and Kaoru Kurosawa. Tag-KEM/DEM: A new framework

for hybrid encryption. Journal of Cryptology, 21(1):97–130, January 2008.
[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In

52nd FOCS. IEEE Computer Society Press, 2011.
[3] Giuseppe Ateniese and Breno de Medeiros. Identity-based chameleon hash and applica-

tions. In Ari Juels, editor, FC 2004, volume 3110 of LNCS, pages 164–180. Springer,
February 2004.

[4] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-
user setting: Security proofs and improvements. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 259–274. Springer, May 2000.

[5] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham,
and Scott Yilek. Hedged public-key encryption: How to protect against bad randomness. In
Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 232–249. Springer,
December 2009.

[6] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for
encryption and commitment secure under selective opening. In Antoine Joux, editor, EU-
ROCRYPT 2009, volume 5479 of LNCS, pages 1–35. Springer, April 2009.

[7] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for deter-
ministic encryption, and efficient constructions without random oracles. In David Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS, pages 335–359. Springer, August 2008.

[8] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH
assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April 2008.

[9] Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures based on
computational Diffie-Hellman. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal
Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 229–240. Springer, April 2006.

[10] Xavier Boyen and Brent Waters. Shrinking the keys of discrete-log-type lossy trapdoor
functions. In Jianying Zhou and Moti Yung, editors, ACNS 10, volume 6123 of LNCS,
pages 35–52. Springer, June 2010.

[11] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In 28th ACM STOC, pages 639–648. ACM Press, May 1996.

[12] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 207–222. Springer, May 2004.

[13] Benoı̂t Chevallier-Mames and Marc Joye. A practical and tightly secure signature scheme
without hash function. In Masayuki Abe, editor, CT-RSA 2007, volume 4377 of LNCS,
pages 339–356. Springer, February 2007.

[14] Ivan Damgård and Mats Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001, volume
1992 of LNCS, pages 119–136. Springer, February 2001.

17

[15] Ivan Damgård and Jesper Buus Nielsen. Improved non-committing encryption schemes
based on a general complexity assumption. In Mihir Bellare, editor, CRYPTO 2000, volume
1880 of LNCS, pages 432–450. Springer, August 2000.

[16] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 581–596. Springer, August 2002.

[17] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In 23rd ACM
STOC, pages 542–552. ACM Press, May 1991.

[18] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions. In
40th FOCS, pages 523–534. IEEE Computer Society Press, October 1999.

[19] Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Encryption schemes se-
cure against chosen-ciphertext selective opening attacks. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 381–402. Springer, May 2010.

[20] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev. More
constructions of lossy and correlation-secure trapdoor functions. In Phong Q. Nguyen and
David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 279–295. Springer,
May 2010.

[21] Rosario Gennaro and Victor Shoup. A note on an encryption scheme of Kurosawa and
Desmedt. Cryptology ePrint Archive, Report 2004/194, 2004. http://eprint.iacr.
org/.

[22] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

[23] Brett Hemenway, Benoit Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption:
Constructions from general assumptions and efficient selective opening chosen ciphertext
security. In ASIACRYPT, LNCS. Springer, 2011.

[24] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under standard
assumptions. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
333–350. Springer, April 2009.

[25] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In ICALP 2002, LNCS, pages 244–256. Springer, 2002.

[26] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS 2000. The Internet Society,
February 2000.

[27] Ryo Nishimaki, Eiichiro Fujisaki, and Keisuke Tanaka. Efficient non-interactive universally
composable string-commitment schemes. In ProvSec 2009, pages 3–18, 2009.

[28] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer,
May 1999.

[29] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140.
Springer, August 1992.

[30] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196. ACM
Press, May 2008.

[31] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. In Omer
Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 419–436. Springer, March 2009.

[32] Jorge Villar. An efficient reduction from DDH to the rank problem. 2011.
[33] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald

Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, May
2005.

18

http://eprint.iacr.org/
http://eprint.iacr.org/

	All-But-Many Lossy Trapdoor Functions
	Dennis Hofheinz

