
Quantum Proofs of KnowledgeDominique UnruhUniversity of Tartu, EstoniaAbstrat. We motivate, de�ne and onstrut quantum proofs of knowledge,proofs of knowledge seure against quantum adversaries. Our onstrutionsare based on a new quantum rewinding tehnique that allows us to extratwitnesses in many lassial proofs of knowledge. We give riteria under whiha lassial proof of knowledge is a quantum proof of knowledge. Combiningour results with Watrous' results on quantum zero-knowledge, we show thatthere are zero-knowledge quantum proofs of knowledge for all languages in NP(assuming quantum 1-1 one-way funtions).1 IntrodutionCryptographi protools, with few exeptions, are based on the assumption thatertain problems are omputationally hard. Typial examples inlude spei�number-theoreti problems suh as the di�ulty of �nding disrete logarithms,and general problems suh as inverting one-way funtions. It is well-known, how-ever, that many suh problems would beome easy in the advent of quantumomputers. Shor's algorithm [16℄, e.g., e�iently solves the disrete logarithmproblem and allows to fator large integers. While quantum omputers do notexist today, it is not unreasonable to expet quantum omputers to be availablein the future. To meet this threat, we need ryptographi protools that areseure even in the presene of an adversary with a quantum omputer. We stressthat this does not neessarily imply that the protool itself should make useof quantum tehnology; instead, it is preferable that the protool itself an beeasily implemented on today's readily-available lassial omputers.Finding suh quantum-seure protools, however, is not trivial. Even whenwe have found suitable omplexity-theoreti assumptions suh as the hardnessof ertain lattie problems, a lassial protool based on these assumptions mayfail to be seure against quantum omputers. The reason for this is that manyryptographi proofs use a tehnique alled rewinding. This tehnique requiresthat it is possible, when simulating some mahine, to make snapshots of thestate of that mahine and then later to go bak to that snapshot. As �rst ob-served by van de Graaf [9℄, lassial rewinding-based proofs do not arry over tothe quantum ase. Two features unique to the quantum setting prohibit (naive)rewinding: The no-loning theorem [21℄ states that quantum-information annotbe opied, so we annot make snapshots. Furthermore, measurements destroyinformation, so interating with a simulated mahine may destroy informationthat would be needed later.



This leads to the following observation: Even if a lassial protool is provenseure based on the hardness of some problem, and even if that problem ishard even for quantum omputers, we have no guarantee that the protool isseure against quantum omputers. The redution of the protool's seurity tothe problem's hardness may be based on inherently lassial features suh as thepossibility of rewinding.An example of a protool onstrution that su�ers from this di�ulty iszero-knowledge proofs. Zero-knowledge proofs are interative proofs with thespeial property that the veri�er does not learn anything exept the validity ofthe proven statement. Zero-knowledge proofs are inherently based on rewinding(at least as long as we do not assume additional trusted setup suh as so-alledommon-referene strings). Yet, zero-knowledge proofs are one of the most pow-erful tools available to the ryptographer; a multitude of protool onstrutionsuse zero-knowledge proofs. These protool onstrutions annot be proven se-ure without using rewinding. To resolve this issue, Watrous [19℄ introdued aquantum rewinding tehnique. This tehnique allows to prove the quantum se-urity of many ommon zero-knowledge proofs. One should note, however, thatWatrous' tehnique is restrited to a spei� type of rewinding: If we use Wa-trous' tehnique, whenever some mahine rewinds another mahine to an earlierpoint, the rewinding mahine forgets everything it learned after that point (weall this oblivious rewinding). That is, we an only use Watrous' tehnique tobaktrak if the rewinding mahine made a mistake that should be orreted, butit annot be used to ollet and ombine information from di�erent branhes ofan exeution.Construting quantum zero-knowledge proofs solves, however, only half of theproblem. In many, if not most, appliations of zero-knowledge proofs one needszero-knowledge proofs of knowledge. A proof of knowledge [7,3℄ is a proof systemwhih does not only show the truth of a ertain statement, but also that theprover knows a witness for that statement. This is made learer by an example:Assume that Alie wishes to onvine Bob that she (the prover) is in possessionof a signature issued by some erti�ation authority. For privay reasons, Aliedoes not wish to reveal the signature itself. If Alie uses a zero-knowledge proof,she an only show the statement �there exists a signature with respet to theCA's publi key�. This does not, however, ahieve anything: A signature alwaysexists in a mathematial sense, even if it has never been omputed. What Al-ie wishes to say is: �I know a signature with respet to the CA's publi key.�To prove suh a statement, Alie needs a zero-knowledge proof of knowledge; aproof of knowledge would onvine Bob that Alie indeed knows a witness, i.e.,a signature. Very roughly, the de�nition of a proof of knowledge is the following:Whenever the prover an onvine the veri�er, one an extrat the witness fromthe prover given orale aess to the prover. Here orale aess means that onean interat with the prover and rewind him. Thus, we have the same problemas in the ase of quantum zero-knowledge proofs: To get proofs of knowledgethat are seure against quantum adversaries, we need to use quantum rewind-ing. Unfortunately, Watrous' oblivious rewinding does not work here; proofs of



knowledge use rewinding to produe two (or more) di�erent protool traes andompute the witness by ombining the information from both traes. Thus, weare bak to where we started: to make lassial ryptographi protools work ina quantum setting, we need (in many ases) quantum zero-knowledge proofs ofknowledge, but we only have onstrutions for quantum zero-knowledge proofs.Our ontribution.We de�ne and onstrut quantum proofs of knowledge. Ourprotools are lassial (i.e., honest parties do not use quantum omputation orommuniation) but seure against quantum adversaries. Our onstrutions arebased on a new quantum rewinding tehnique (di�erent fromWatrous' tehnique)that allows us to extrat witnesses in many lassial proofs of knowledge. Wegive riteria under whih a lassial proof of knowledge is a quantum proof ofknowledge. Combining our results with Watrous' results on zero-knowledge, wean show that there are zero-knowledge quantum proofs of knowledge for alllanguages in NP (assuming quantum 1-1 one-way funtions). (We leave it as anopen question whether unonditionally seure protools exist for more restritedlanguages related, e.g., to lattie-problems.)Also, we believe that the use of our rewinding tehnique is not limited toQPoKs. For example, we enourage the reader to try to prove the followingwithout using our tehnique: Given a quantum omputationally binding om-mitment sheme, �rst let the adversary ommit, and then give a random value vto the adversary. Then the probability that the adversary opens the ommitmentto v is negligible.1Follow-up work. In subsequent work, Lunemann and Nielsen [14℄ and Hallgren,Smith, and Song [12℄ developed zero-knowledge QPoKs with the additional ad-vantage of allowing to simultaneously simulate an interation with the maliiousprover and extrat the witness; this property is neessary in some multi-partyomputations. (In ontrast, in our setting the initial state of the prover ould belost after extrating.) We stress, however, that this powerful feature omes at aost: They need onsiderably stronger assumptions, namely quantum mixed om-mitments (while we only need quantum 1-1 one-way funtions). Both their zero-knowledge property and their extratability hold only against polynomial-timeadversaries. In ontrast, we get unonditional extratability and omputationalzero-knowledge; and by adapting our onstrution to unonditionally hiding om-mitments, we ould instead make the zero-knowledge property unonditional �this would be neessary, e.g., for onstrutions that ahieve everlasting seurity.Finally, note that the protools from [14,12℄ are muh more involved than theirlassial ounterparts while we only slightly modify existing lassial protools.Thus, [14,12℄ give valuable alternatives to our protools but do not supersedethem.1 The de�nition of a omputationally binding ommitment only guarantees that theadversary annot simultaneously produe opening information for two di�erent val-ues. Thus, to get a ontradition, we need to rewind the adversary to extrat twovalues. If the ommitment is stritly binding (De�nition 9), our rewinding tehniquean be used.



Organization. In Setion 1.1, we give an overview over the tehniques under-lying our results. In Setion 2 we present and disuss the de�nition of quantumproofs of knowledge (QPoKs). In Setion 3, we give riteria under whih a proofsystem is a QPoK. In Setion 4, we show that zero-knowledge QPoKs exist forall languages in NP. Omitted proofs and de�nitions are presented in the fullversion [18℄.1.1 Our tehniquesDe�ning proofs of knowledge. In the lassial setting, proofs of knowledgeare de�ned as follows:2 A proof system onsisting of a prover P and a veri�er V isa proof of knowledge (PoK) with knowledge error κ if there is a polynomial-timemahine K (the extrator) suh that the following holds: For any prover P∗, if P∗onvines V with probability PrV ≥ κ, then KP
∗ (the extrator K with rewindingblak-box aess to P∗) outputs a witness with probability PrK ≥ 1

p
(PrV−κ)d forsome polynomial p and onstant d > 0. In order to transfer this de�nition to thequantum setting, we need to speify what it means that K has quantum rewindingblak-box aess to P∗. We hoose the following de�nition: Let U denote theunitary transformation desribing one ativation of P∗ (if P∗ is not unitary, thisneeds to work for all puri�ations of P∗). K may invoke U (this orresponds torunning P∗), he may invoke the inverse U † of U (this orresponds to rewinding

P∗ by one ativation), and he may read/write a shared register N for exhangingmessages with P∗. But K may not make snapshots of the state of P∗. Allowing
K to invoke U † is justi�ed by the fat that all quantum iruits are reversible;given a iruit for U , we an e�iently apply U †. Note that previous blak-boxonstrutions suh as Watrous' rewinding tehnique and Grover's algorithm [10℄make use of this fat. We an now de�ne quantum proofs of knowledge: (P,V)is a quantum proof of knowledge (QPoK) with knowledge error κ i� there is apolynomial-time quantum algorithm K suh that for all maliious provers P∗,
KP

∗ (the extrator K with quantum rewinding blak-box aess to P∗) outputs awitness with probability PrK ≥ 1
p
(PrV−κ)d for some polynomial p and onstant

d > 0.We illustrate that QPoKs aording to this de�nition are indeed useful foranalyzing ryptographi protools. Assume the following toy protool: In phase
1, a erti�ation authority (CA) signs the pair (Alice, a) where a is Alie'sage. In phase 2, Alie uses a zero-knowledge QPoK with negligible knowledgeerror κ to prove to Bob that she possesses a signature σ on (Alice, a′) for some
a′ ≥ 21. That is, a witness in this QPoK would onsist of an integer a′ ≥ 21 anda signature σ on (Alice, a′) with respet to the CA's publi key. We an nowshow that, if Alie is underage, i.e., if a < 21, Bob aepts the QPoK only withnegligible probability: Assume that Bob aepts with non-negligible probability
ν. Then, by the de�nition of QPoKs, KAlice will, with probability 1

p
(ν − κ)d,2 This is one of di�erent possible de�nitions, loosely following [11℄. It permits us toavoid the use of expeted polynomial-time. We disuss alternatives in Setion 2.2�On the suess probability of the extrator�.



output an integer a′ ≥ 21 and a (forged) signature σ on (Alice, a′) with respetto the CA's publi key (given the information learned in phase 1 as auxiliaryinput). Notie that 1
p
(ν − κ)d is non-negligible. However, the CA only signed

(Alice, a) with a < 21. This implies that KAlice an produe with non-negligibleprobability a valid signature of a message that has never been signed by the CA.This ontradits the seurity of the signature sheme (assuming, e.g., existentialunforgeability [8℄). This shows the seurity of our toy protool.Relation to lassial proofs of knowledge. Notie that a quantum proof ofknowledge aording to our de�nition is not neessarily a lassial PoK beausethe quantum extrator might have more omputational power. (E.g., in a proofsystem where the witness is a fatorization, a quantum extrator ould just om-pute this witness himself.) We stress that this �paradox� is not partiular to ourde�nition, it ours with all simulation-based de�nitions (e.g., zero-knowledge[19℄, universal omposability [17℄). If needed, one an avoid this �paradox� byrequiring the extrator/simulator to be lassial if the maliious prover/veri�eris. (This would atually be equivalent to requiring that the sheme is both alassial ZK PoK and a quantum one.)Ampli�ation. Our toy example shows that QPoKs with negligible knowledgeerror an be used to show the seurity of protools. But what about QPoKs withnon-negligible knowledge error? In the lassial ase, we know that the knowl-edge error of a PoK an be made exponentially small by sequential repetition.Fortunately, this result arries over to the quantum ase; its proof follows thesame lines.Elementary onstrutions. In order to understand our onstrutions ofQPoKs, let us �rst revisit a ommon method for onstruting lassial PoKs.Assume a protool that onsists of three messages: the ommitment (sent bythe prover), the hallenge (piked from a set C and sent by the veri�er), andthe response (sent by prover). Assume that there is an e�ient algorithm K0that omputes a witness given two onversations with the same ommitmentbut di�erent hallenges; this property is alled speial soundness. Then we anonstrut the following (lassial) extrator K: KP
∗ runs P∗ using a random hal-lenge ch. Then KP

∗ rewinds P∗ to the point after it produed the ommitment,and then K
P
∗ runs P∗ with a random hallenge ch ′. If both exeutions lead to anaepting onversation, and ch 6= ch

′, K0 an ompute a witness. The probabilityof getting two aepting onversations an be shown to be Pr2V, where PrV is theprobability of the veri�er aepting P
∗'s proof. From this, a simple alulationshows that the knowledge error of the protool is 1/#C.If we diretly translate this approah to the quantum setting, we end upwith the following extrator: K runs one step of P∗, measures the ommitment

com , provides a random hallenge ch, runs the seond step of P∗, measures theresponse, runs the inverse of the seond step of P∗, provides a random hallenge
ch

′, runs the seond step of P∗, and measures the response resp′. If ch 6= ch′,and both (com , ch, resp) and (com , ch ′, resp′) are aepting onversations, thenwe get a witness using K0. We all this extrator the anonial extrator. The



problem is to bound the probability F of getting two aepting onversations. Inthe lassial setting, one uses that the two onversations are essentially indepen-dent (given a �xed ommitment), and eah of them is, from the point of viewof P∗, the same as an interation with the honest veri�er V. In the quantumsetting, this is not the ase. Measuring resp disturbs the state of P∗; we heneannot make any statement about the probability that the seond onversationis aepting.How an we solve this problem? Note that we annot use Watrous' obliviousrewinding sine we need to remember both responses resp and resp′ from twodi�erent exeution paths of P∗. Instead, we observe that, the more informationwe measure in the �rst onversation (i.e., the longer resp is), the more we destroythe state of P∗ used in the seond onversation. Conversely, if would measureonly one bit, the disturbane of P∗'s state would be small enough to still get asu�iently high suess probability. But if resp would ontain only one bit, itwould learly be too short to be of any use for K0. Yet, it turns out that thison�it an be resolved: In order not to disturb P∗'s state, we only need that the
resp information-theoretially ontains little information. For K0, however, evenan information-theoretially determined resp is still useful; it might, for example,reveal a value whih P∗ was already ommitted to. To make use of this observa-tion, we introdue an additional ondition on our proof systems, strit soundness.A proof system has strit soundness if for any ommitment and hallenge, thereis at most one response that makes the onversation aepting. Given a proofsystem with speial and strit soundness, we an show that measuring resp doesnot disturb P∗'s state too muh; the anonial extrator is suessful with prob-ability approximately Pr3V. A preise alulation shows that a proof system withspeial and strit soundness has knowledge error 1/√#C.QPoKs for all languages in NP. Blum [4℄ presents a lassial zero-knowledgePoK for showing the knowledge of a Hamiltonian yle. Using a suitable om-mitment sheme (it should have the property that the opening information isuniquely determined by the ommitment), the proof system is easily seen tohave speial and strit soundness, thus it is a QPoK. By sequential repetition,we get a QPoK for Hamiltonian yles. Using the Watrous' results, we get thatthe QPoK is also zero-knowledge. Using the fat that the Hamiltonian yleproblem is NP-omplete, we get zero-knowledge QPoKs for all languages in NP(assuming quantum 1-1 one-way funtions).1.2 PreliminariesGeneral. A non-negative funtion µ is alled negligible if for all c > 0 and allsu�iently large k, µ(k) < k−c. ⊕ denotes the XOR operation on bitstrings. #Cis the ardinality of the set C.Quantum systems.We an only give a terse overview over the formalism usedin quantum omputing. For a thorough introdution, we reommend the text-book by Nielsen and Chuang [15, Chap. 1�2℄. A (pure) state in a quantum system



is desribed by a unit vetor |Φ〉 in some Hilbert spae H. We always assume adesignated orthonormal basis for eah Hilbert spae, alled the omputationalbasis. The tensor produt of several states (desribing a joint system) is written
|Φ〉 ⊗ |Ψ〉. We write 〈Ψ | for the linear transformation mapping |Φ〉 to the salarprodut 〈Ψ |Φ〉. The norm ‖|Φ〉‖ is de�ned as √〈Φ|Φ〉. A unit vetor is a vetorwith ‖|Φ〉‖ = 1. The Hermitean transpose of a linear operator A is written A†.2 Quantum Proofs of Knowledge2.1 De�nitionsInterative mahines. A quantum interative mahine M (mahine, for short)is a mahine that gets two inputs, a lassial input x and a quantum input |Φ〉.
M operates on two quantum registers; a network register N and a register SM forthe state. SM is initialized with |Φ〉. The operation of M is desribed by a unitarytransformation Mx (depending on the lassial input x). In eah ativation of M,
Mx is applied to N,SM. We write 〈M(x, |Φ〉),M′(x′, |Φ′〉)〉 for the lassial outputof M′ in an interation where M is ativated �rst (and where M and M′ sharethe register N). Often, we will omit the quantum input |Φ〉 or |Φ′〉. In this ase,we assume the input |0〉.Orales algorithms with rewinding. A quantum orale algorithm A is analgorithm that has orale aess to a mahine M. In an exeution A

M(x′,|Φ〉)(x),two registers N,SM are used for the ommuniation with and the state of M. A'sbehavior is desribed by a quantum iruit; A has aess to two speial gates
� and �

† that invoke the unitary transformations Mx′ and M
†
x′ , respetively.This orresponds to running and rewinding M. A is not allowed to aess SMdiretly, and he is allowed to apply � and �

† only to N,SM. (I.e., A has noaess to the internal state and the quantum input of the prover. Any aess tothis information is done by ommuniating with M.) Details on the de�nitions ofinterative quantum mahines and quantum orale algorithms are given in thefull version [18℄.Proof systems. A quantum proof system for a relation R is a pair of twomahines (P,V). We all P the prover and V the veri�er. The prover expets alassial input (x,w) with (x,w) ∈ R, the veri�er expets only the input x. Weall (P,V) omplete if there is a negligible funtion µ suh that for all (x,w) ∈ R,we have that Pr[〈P(x,w),V(x)〉 = 1] ≥ 1−µ(|x|). (Remember that, if we do notexpliitly speify a quantum input, we assume the quantum input |0〉.) Althoughwe allow P and V to be quantum mahines, and in partiular to send and reeivequantum messages, we will not need this property in the following; all protoolsonstruted in this paper will onsist of lassial mahines. We all a (P,V) soundwith soundness error s i� for all maliious prover P∗, all auxiliary inputs |Φ〉, andall x with ∄w : (x,w) ∈ R, we have Pr[〈P∗(x, |Φ〉),V(x)〉 = 1] ≤ s(|x|). A proofsystem is omputational zero-knowledge i� for all polynomial-time veri�ers V∗there is a polynomial-time mahine S (the simulator) suh that for all auxiliary



inputs |Φ〉, and all (x,w) ∈ R, we have that the quantum state of V∗ after aninteration 〈P(x,w),V∗(x, |Φ〉)〉 is omputationally indistinguishable from theoutput of S(x, |Φ〉); we refer to [19℄ for details.Quantum Proofs of Knowledge.We an now de�ne quantum proofs of knowl-edge (QPoKs). Roughly, a quantum proof system (P,V) is a QPoK if there is aquantum orale algorithm K (the extrator) that ahieves the following: When-ever some maliious prover P∗ onvines V that a ertain statement holds, theextrator KP
∗ with orale aess to P∗ is able to return a witness. Here, we allowa ertain knowledge error κ; if P∗ onvines V with a probability smaller than κ,we do not require anything. Furthermore, we also do not require that the suessprobability of KP

∗ is as high as the suess probability of P∗; instead, we onlyrequire that it is polynomially related. Finally, to failitate the use of QPoKs assubprotools, we give the maliious prover an auxiliary input |Φ〉. We get thefollowing de�nition:De�nition 1 (Quantum Proofs of Knowledge). We all a proof system
(P,V) for a relation R quantum extratable with knowledge error κ if there existsa onstant d > 0, a polynomially-bounded funtion p > 0, and a polynomial-timequantum orale mahine K suh that for any interative quantum mahine P∗,any state |ψ〉, and any x ∈ {0, 1}∗, we have that

Pr[〈P∗(x, |ψ〉),V(x)〉 = 1] ≥ κ(|x|) =⇒

Pr[(x,w) ∈ R : w ← K
P
∗(x,|ψ〉)(x)] ≥ 1

p(|x|)

(

Pr
[

〈P∗(x, |ψ〉),V(x)〉 = 1
]

−κ(|x|)
)d

.A quantum proof of knowledge for R with knowledge error κ (QPoK, for short)is a omplete3 quantum extratable proof system for R with knowledge error κ.Note that by quantifying over all unitary provers P∗, we impliitly quantify overall puri�ations of all possible non-unitary provers. Note that extratabilitywith knowledge error κ implies soundness with soundness error κ. We thus donot need to expliitly require soundness in De�nition 1. The knowledge error κan be made exponentially small by sequential repetition:Theorem 2. Let n be a polynomially bounded and e�iently omputable fun-tion. Let (P,V) be extratable with knowledge error κ. Let (P′,V′) be the proofsystem onsisting of n-sequential exeutions of (P,V). Then (P′,V′) is extratablewith knowledge error κn.2.2 DisussionIn this setion, we motivate various design hoies made in the de�nition ofQPoKs.Aess to the blak-box prover's state and input. The extrator has noaess to the prover's state nor to its quantum input. (This is modeled by the fat3 I.e., for honest prover and veri�er, the proof sueeds with overwhelming probability.



that an orale algorithm may not apply any gates exept for �,�† to the registerontaining the orale's state and quantum input.) In this, we follow [3℄ who arguein Setion 4.3 that a proof of knowledge is supposed to �apture the knowledgeof the prover demonstrated by the interation� and that thus the extrator is notsupposed to see the internal state of the prover. We stress, however, that ourresults are independent of this issue; they also hold if we allow the extrator toaess the prover's state diretly.Unitary & invertible provers � tehnial view. Probably the most im-portant design hoie in our de�nition is to require the prover to be a unitaryoperation, and to allow the extrator to also exeute the inverse of this oper-ation. We begin with a disussion of this design hoie from a tehnial pointof view. First, we stress that seems that these assumptions are neessary: Sinein a quantum world, making a snapshot/opy of a state is not possible or evenwell-de�ned, we have to allow the extrator to run the prover �bakwards�. Butthe inverse of a non-unitary quantum operation does not, in general, exist. Thusrewinding seems only possible with respet to unitary provers. Seond, the prob-ably most important question is: Does the de�nition, from an operational pointof view, make sense? That is, does our de�nition behave well in ryptographi,redution-based proofs? A �nal answer to this question an only be given whenmore protools using QPoKs have been analyzed. However, the toy protool dis-ussed on page 4 gives a �rst indiation that our de�nition an be used in asimilar fashion to lassial proofs of knowledge. Third, we would like to remindthe reader that any non-unitary prover an be transformed into a unitary one bypuri�ation before applying the de�nition of QPoKs. Thus allowing only unitarymaliious provers does not seem to be a restrition in pratie.Unitary & invertible provers � philosophial view. Intuitively, a QPoKshould guarantee that a prover that onvines the veri�er �knows� the witness.4The basi idea is that if an extrator an extrat the witness using only whatis available to the prover, then the prover �knew� the witness (or ould haveomputed it). In partiular, we may allow the extrator to run a puri�ed (unitary)version of the prover beause the prover himself ould have done so. Similarlyfor the inverse of that operation. Of ourse, this leaves the question why we givethese two apabilities to the extrator but not others (e.g., aess to the iruit ofthe prover)? We would like to stress that analogous questions are still open (froma philosophial point) even in the lassial ase: Why is it natural to allow anextrator to rewind the prover?Why is it natural to give a trapdoor for a ommonreferene string to the extrator? We would like to point out one justi�ation forthe assumption that the prover is unitary, though: [3℄ suggests that we �apturethe knowledge of the prover demonstrated by the interation�. A prover thatperforms non-unitary operations is idential in terms of its interation to onethat is puri�ed. Thus, by restriting to unitary provers, we ome loser to onlyapturing the interation but not the inner workings of the prover.4 We believe, though, that this issue is seondary to the tehnial suitability; it ismuh more important that a QPoK is useful as a ryptographi subprotool.



On the suess probability of the extrator. We require the extratorto run in polynomial-time and to sueed with probability 1
p
(PrV − κ)d where

PrV is the probability that the prover onvines the veri�er. (We all this anA-style de�nition.) In lassial PoKs, a more ommon de�nition is to requirethe extrator to have expeted runtime p
PrV−κ and to sueed with probability 1.(We all this a B-style de�nition.) This de�nition is known to be equivalentto the de�nition in whih the extrator runs in expeted polynomial-time andsueeds with probability 1

p
(PrV − κ). (We all this a C-style de�nition.) Theadvantage of an A-style de�nition (whih follows [11℄) is that we an onsiderpolynomial-time extrators (instead of expeted polynomial-time extrators). Toget extrators for B-style and C-style de�nitions, one has to inrease the suessprobability of an extrator by repeatedly invoking it until it outputs a orretwitness. In the quantum ase, however, this does not work diretly: If the invokedextrator fails one, the auxiliary input of the prover is destroyed. The obliviousrewinding tehnique by Watrous' would seem to help here, but when tryingto apply that tehnique one gets the requirement that the invoked extrators'suess probability must be independent of the auxiliary input. This ondition isnot neessarily ful�lled. To summarize, all three styles of de�nitions have theiradvantages, but it is not lear how one ould ful�l B- and C-style de�nitionsin the quantum ase. This is why we hose an A-style de�nition. There are,however, appliations that would bene�t from a proof system ful�lling a C-stylede�nition. For example, general multi-party omputation protools suh as [5℄use extrators as part of the onstrution of the simulator for the multi-partyomputation; these extrators must then sueed with probability lose to 1. Weleave the onstrution of C-style QPoKs as an open problem.3 Elementary onstrutionsIn this setion, we show that under ertain onditions, a lassial PoK is alsoa QPoK (i.e., seure against maliious quantum provers). The �rst onditionrefers to the outer form of the protool; we require that the proof systems isa protool with three messages (ommitment, hallenge, and response) with apubli-oin veri�er. Suh protools are alled Σ-protools. Furthermore, we re-quire that the proof system has speial soundness. This means that given twoaepting onversations between prover and veri�er that have the same ommit-ment but di�erent hallenges, we an e�iently ompute a witness. Σ-protoolswith speial soundness are well-studied in the lassial ase; many e�ient las-sial protools with these properties exist. The third ondition (strit soundness)is non-standard. We require that given the ommitment and the hallenge of aonversation, there is at most one response that would make the veri�er aept.We require strit soundness to ensure that the response given by the prover doesnot ontain too muh information; measuring it will then not disturb the stateof the prover too muh. Not all known protools have strit soundness (the prooffor graph isomorphism [6℄ is an example). Fortunately, many protools do satisfy



strit soundness; a slight variation of the proof for Hamiltonian yles [4℄ is anexample (see Setion 4).De�nition 3 (Σ-protool). A proof system (P,V) is alled a Σ-protool if Pand V are lassial, the interation onsists of three messages com , ch, resp (sentby P, V, and P, respetively, and alled ommitment, hallenge, and response),and ch is uniformly hosen from some set Cx (the hallenge spae) that may onlydepend on the statement x. Furthermore, the veri�er deides whether to aeptor not by a deterministi polynomial-time omputation on x, com , ch, resp. (Weall (com , ch, resp) an aepting onversation for x if the veri�er would aeptit.) We also require that it is possible in polynomial time to sample uniformlyfrom Cx, and that membership in Cx should be deidable in polynomial time.De�nition 4 (Speial soundness). We say a Σ-protool (P,V) for a relation
R has speial soundness if there is a deterministi polynomial-time algorithm
K0 (the speial extrator) suh that the following holds: For any two aeptingonversations (com , ch, resp) and (com , ch ′, resp′) for x suh that ch 6= ch

′ and
ch, ch ′ ∈ Cx, we have that w := K0(x, com , ch, resp, ch

′, resp′) satis�es (x,w) ∈
R.De�nition 5 (Strit soundness).We say a Σ-protool (P,V) has strit sound-ness if for any two aepting onversations (com, ch, resp) and (com , ch, resp′)for x, we have that resp = resp′.Canonial extrator. Let (P,V) be a Σ-protool with speial soundness andstrit soundness. Let K0 be the speial extrator for that protool. We de�nethe anonial extrator K for (P,V). K will use measurements, even though ourde�nition of quantum orale algorithms only allows for unitary operations. Thisis only for the sake of presentation; by purifying K one an derive a unitaryalgorithm with the same properties. Given a maliious prover P∗, KP

∗(x,|Φ〉)(x)operates on two quantum registers N,SP∗ . N is used for ommuniation with
P∗, and SP∗ is used for the state of P∗. The registers N,SP∗ are initialized with
|0〉, |Φ〉. Let P∗

x denote the unitary transformation desribing a single ativationof P. First, K applies P∗
x to N,SP∗ . (This an be done using the speial gate �.)This orresponds to running the �rst step of P∗; in partiular, N should nowontain the ommitment. Then K measures N in the omputational basis; allthe result com . Then K initializes N with |0〉. Then K hooses uniformly randomvalues ch, ch ′ ∈ Cx. Let Uch denote the unitary transformation operating on

N suh that Uch |x〉 = |x ⊕ ch〉. Then K applies P∗
xUch . (Now N is expeted toontain the response for hallenge ch.) Then K measures N in the omputationalbasis; all the result resp. Then K applies (P∗

xUch)
† (we rewind the prover). Then

P∗
xUch′ is applied. (Now N is expeted to ontain the response for hallenge ch ′.)Then N is measured in the omputational basis; all the result resp′. Then

(P∗
xUch′)† is applied. Finally, K outputs w := K0(x, com , ch, resp, ch

′, resp′).Analysis of the anonial extrator. In order to analyze the anonial ex-trator (Theorem 8 below), we �rst need a lemma that bounds the probabilitythat two onseutive binary measurements Pch and Pch′ with random ch 6= ch′



sueed in terms of the probability that a single suh measurement sueeds. Ina lassial setting (or in the ase of ommuting measurements), the answer issimple: the outomes of the measurements are independent; thus the probabilitythat two measurements sueed is the square of the probability that a singlemeasurement sueeds. In the quantum ase, however, the �rst measurementmay disturb the state; this makes the analysis onsiderably more involved. We�rst prove some inequalities needed in the proof:Lemma 6. Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projetorson a Hilbert spae H. Let |Φ〉 ∈ H be a unit vetor. Let V :=
∑

i∈C
1
c
‖Pi|Φ〉‖2and F :=

∑

i,j∈C
1
c2
‖PiPj |Φ〉‖2. Then F ≥ V 3.Proof. To prove the lemma, we �rst show two simple fats:Claim. For any positive operator A on H and any unit vetor |Φ〉 ∈ H, we havethat (〈Φ|A|Φ〉)3 ≤ 〈Φ|A3|Φ〉.Sine A is positive, it is diagonalizable. Thus we an assume without loss ofgenerality that A is diagonal (by applying a suitable basis transform to A and

|Φ〉). Let ai be the i-th diagonal element of A, and let fi be the i-th omponentof |Φ〉. Then
(〈Φ|A|Φ〉)3 =

(

∑

i

|fi|2ai
)3 (∗)

≤
∑

i

|fi|2a3i = 〈Φ|A3|Φ〉.Here (∗) uses Jensen's inequality [13℄ and the fats that ai ≥ 0, that ai 7→ a3i is aonvex funtion on nonnegative numbers, and that ∑i|fi|2 = 1. This onludesthe proof of Lemma 3.Claim. For vetors |Ψ1〉, . . . , |Ψc〉 ∈ H, it holds that ‖ 1c ∑i|Ψi〉‖2 ≤ 1
c

∑

i‖|Ψi〉‖2.To show the laim, let |Ψ̄〉 := ∑

i
1
c
|Ψi〉. Then

∑

i

(

‖|Ψi〉‖2 − ‖|Ψ̄〉‖2
)

=
∑

i

(

‖|Ψi〉‖ − ‖|Ψ̄〉‖
)(

‖|Ψi〉‖ − ‖|Ψ̄〉‖+ 2‖|Ψ̄〉‖
)

=
∑

i

(

‖|Ψi〉‖ − ‖|Ψ̄〉‖
)2

+ 2‖|Ψ̄〉‖
∑

i

(

‖|Ψi〉‖ − ‖|Ψ̄〉‖
)

≥ 2‖|Ψ̄〉‖
∑

i

(

‖|Ψi〉‖ − ‖|Ψ̄〉‖
)

= 2‖|Ψ̄〉‖
(

∑

i

‖|Ψi〉‖ − ‖n|Ψ̄〉‖
) (1)

= 2‖|Ψ̄〉‖
(

∑

i

‖|Ψi〉‖ −
∥

∥

∥

∑

i

|Ψi〉
∥

∥

∥

) (2)From the triangle inequality, it follows that ∑

i‖|Ψi〉‖ ≥ ‖
∑

i|Ψi〉‖, hene with(2), we have ∑

i

(

‖|Ψi〉‖2 − ‖|Ψ̄〉‖2
)

≥ 0. Sine 1
c

∑

i‖|Ψi〉‖2 − ‖ 1c
∑

i|Ψi〉‖2 =

1
c

∑

i

(

‖|Ψi〉‖2 − ‖|Ψ̄〉‖2
)

≥ 0, Lemma 3 follows.



We proeed to prove Lemma 6. Let A :=
∑

i
1
c
Pi, let |Ψij〉 := PjPi|Φ〉. Then

A is positive. Furthermore,
V 3 =

(

∑

i

1
c
〈Φ|Pi|Φ〉

)3

=
(

〈Φ|A|Φ〉
)3 (∗)

≤ 〈Φ|A3|Φ〉 =
∑

i,j,k

1
c3
〈Φ|PiPjPk|Φ〉

=
∑

i,j,k

1
c3
〈Ψij |Ψkj〉 =

∑

j

1
c

(

∑

i

1
c
〈Ψij |

)(

∑

k

1
c
|Ψkj〉

)

=
∑

j

1
c

∥

∥

∥

∑

i

1
c
|Ψij〉

∥

∥

∥

2

(∗∗)

≤
∑

j

1
c

∑

i

1
c
‖|Ψij〉‖2 = F.Here (∗) uses Lemma 3 and (∗∗) uses Lemma 3. Thus we have F ≥ V 3 andLemma 6 follows.Lemma 7. Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projetorson a Hilbert spae H. Let |Φ〉 ∈ H be a unit vetor. Let V :=

∑

i∈C
1
c
‖Pi|Φ〉‖2and E :=

∑

i,j∈C,i6=j
1
c2
‖PiPj |Φ〉‖2. Then, if V ≥ 1√

c
, E ≥ V (V 2 − 1

c
).Proof. Let F be as in Lemma 6. Then

E =
∑

i,j∈C
i6=j

1

c2
‖PiPj |Φ〉‖2 =

∑

i,j∈C

1

c2
‖PiPj |Φ〉‖2 −

∑

i∈C

1

c2
‖PiPi|Φ〉‖2

(∗)
=

∑

i,j∈C

1

c2
‖PiPj |Φ〉‖2 −

∑

i∈C

1

c2
‖Pi|Φ〉‖2 = F − V

c

(∗∗)

≥ V 3 − V

c
= V (V 2 − 1

c
)Here (∗) uses that Pi = PiPi sine Pi is a projetion, and (∗∗) uses Lemma 6. ⊓⊔Theorem 8. A Σ-protool (P,V) for a relation R with speial and strit sound-ness and hallenge spae Cx is extratable with knowledge error 1√

#Cx

.Proof. To show that (P,V) is extratable, we will use the anonial extrator K.Fix a maliious prover P∗, a statement x, and an auxiliary input |Φ〉. Let PrVdenote the probability that the veri�er aepts when interating with P∗. Let
PrK denote the probability that KP

∗(x,|Φ〉)(x) outputs some w with (x,w) ∈ R.We will show that PrK ≥ PrV · (Pr2V − 1
#Cx

). For PrV ≥ 1√
#Cx

, we have that
PrV(Pr

2
V
− 1

#Cx

) ≥ (PrV− 1√
#Cx

)3. Sine furthermore K is polynomial-time, thisimplies that (P,V) is extratable with knowledge error 1√
#Cx

.In order to show PrK ≥ PrV · (Pr2V − 1
#Cx

), we will use a short sequene ofgames. Eah game will ontain an event Succ, and in the �rst game, we willhave Pr[Succ : Game 1] = PrK. For any two onseutive games, we will have
Pr[Succ : Game i] ≥ Pr[Succ : Game i+ 1], and for the �nal game, we willhave Pr[Succ : Game 7] ≥ PrV · (Pr2V − 1

#Cx

). This will then onlude the proof.The desription of eah game will only ontain the hanges with respet to thepreeding game.



Game 1. An exeution of KP
∗(x,|Φ〉)(x). Succ denotes the event that K outputsa witness for x. By de�nition, PrK = Pr[Succ : Game 1].Game 2. Succ denotes the event that (com , ch, resp) and (com , ch ′, resp′) areaepting onversations for x and ch 6= ch

′. (The variables (com , ch, resp) and
(com , ch ′, resp′) are as in the de�nition of the anonial extrator.) Sine (P,V)has speial soundness, if Succ ours, K outputs a witness. Thus Pr[Succ :Game 1] ≥ Pr[Succ : Game 2].Game 3. Before K measures resp, it �rst measures whether measuring
resp would yield an aepting onversation. More preisely, it measures Nwith the orthogonal projetor Pch projeting onto Vch := span{|resp〉 :
(com , ch, resp) is aepting}. Analogously for the measurement of resp′ (usingthe projetor Pch′ .) Sine a omplete measurement (of resp and resp′, respe-tively) is performed on N after applying the measurement Pch and Pch′ , in-troduing the additional measurements does not hange the outomes resp and
resp′ of these omplete measurements, nor their post-measurement state. Thus
Pr[Succ : Game 2] = Pr[Succ : Game 3].Game 4. Succ denotes the event that ch 6= ch′ and both measurements Pch and
Pch′ sueed. By de�nition of these measurements, this happens i� (com , ch, resp)and (com , ch ′, resp′) are aepting onversations. Thus Pr[Succ : Game 3] =
Pr[Succ : Game 4].Game 5. We do not exeute K0, i.e., we stop after applying (P∗

xUch′)†. Sineat that point, Succ has already been determined, Pr[Succ : Game 4] = Pr[Succ :Game 5].Game 6. We remove the measurements of resp and resp′. Note that the out-omes of these measurements are not used any more. Sine (P,V) has stritsoundness, Vch = span{|resp0 〉} for a single value resp0 (depending on com and
ch, of ourse). Thus if the measurement Pch sueeds, the post-measurementstate in N is |resp0〉. That is, the state in N is lassial at this point. Thus,measuring N in the omputational basis does not hange the state. Hene, themeasurement of resp does not hange the state. Analogously for the measurementof resp′. It follows that Pr[Succ : Game 5] = Pr[Succ : Game 6].Game 7. First, N and SP∗ are initialized with |0〉 and |Φ〉. Then the unitarytransformation P∗

x is applied. Then com is measured (omplete measurementon N), and N is initialized to |0〉. Random ch, ch′ ∈ Cx are hosen. Then
P∗
xUch is applied. Then the measurement Pch is performed. Then (P∗

xUch)
† isapplied. Then P∗

xUch′ is applied. Then the measurement Pch′ is performed. Then
(P∗
xUch′)† is applied. The event Succ holds if ch 6= ch′ and both measurementssueed. Games 6 and 7 are idential; we have just reapitulated the game forlarity. Thus, Pr[Succ : Game 6] = Pr[Succ : Game 7].In Game 7, for some value d , let pd denote the probability that com = dis measured. Let |Φd〉 denote the state of N,SP∗ after measuring com = d andinitializing N with |0〉. (I.e., the state diretly before applying P∗

xUch .) Let Kddenote the probability that starting from state |Φd〉, both measurements Pch and



Pch′ sueed. Let c := #Cx. Then we have that Pr[Succ : Game 7] = ∑

d pdKdand
Kd =

∑

ch,ch′∈Cx

ch 6=ch
′

1

c2
‖(P∗

xUch′)†Pch′(P∗
xUch′)(P∗

xUch)
†Pch(P

∗
xUch)|Φd〉‖2

=
∑

ch,ch′∈Cx

ch 6=ch
′

1

c2
‖P ∗

ch′P ∗
ch |Φd〉‖2where P ∗

ch
:= (P∗

xUch)
†Pch (P

∗
xUch). Sine Pch is an orthogonal projetor and

P∗
xUch is unitary, P ∗

ch
is an orthogonal projetor. Let ϕ(v) := v(v2 − 1

c
) for

v ∈ [ 1√
c
, 1] and ϕ(v) := 0 for v ∈ [0, 1√

c
]. Then, by Lemma 7, Kd ≥ ϕ(Vd) for

Vd :=
∑

ch∈Cx

1
c
‖P ∗

ch
|Φd〉‖2.Furthermore, by onstrution of the honest veri�er V, we have that

PrV =
∑

d

pd
∑

ch∈Cx

1
c
‖PchP

∗
xUch |Φd〉‖2

(∗)
=

∑

d

pd
∑

ch∈Cx

1
c
‖(P∗

xUch)
†Pch(P

∗
xUch)|Φd〉‖2 =

∑

d

pdVdwhere (∗) uses that (P∗
xUch)

† is unitary. Finally, we have
PrK = Pr[Succ : Game 1] ≥ Pr[Succ : Game 7]

=
∑

d

pdKd ≥
∑

d

pdϕ(Vd)
(∗)

≥ ϕ(PrV).Here (∗) uses Jensen's inequality [13℄ and the fat that ϕ is onvex on [0, 1]. Asdisussed in the beginning of the proof, PrK ≥ ϕ(PrV) = PrV · (Pr2V − 1
c
) for

PrV ≥ 1√
c
implies that (P,V) is a QPoK with knowledge error 1/√#Cx.4 QPoKs for all languages in NPIn the preeding setion, we have seen that omplete proof systems with stritand speial soundness are QPoKs. The question that remains to be asked is: dosuh proof systems, with the additional property of being zero-knowledge, existfor interesting languages? In this setion, we will show that for any languagein NP (more preisely, for any NP-relation), there is a zero-knowledge QPoK.(Assuming the existene of quantum 1-1 one-way funtions.) Here and in thefollowing, by zero-knowledge we mean quantum omputational zero-knowledge.The starting point for our onstrution will be the Blum's zero-knowledgePoK for Hamiltonian yles [4℄. In this Σ-protool, the prover's ommits to theverties of a graph using a perfetly binding ommitment sheme. In the prover'sresponse, some of these ommitments are opened. That is, the response ontainsthe opening information for some of the ommitments. The problem is thatstandard de�nitions of ommitment shemes do not guarantee that the opening



information is unique; only the atual ontent of the ommitment has to be deter-mined by the ommitment. This means that the prover's response is not unique.Thus, with a standard ommitment sheme we do not get strit soundness. In-stead we need a ommitment sheme suh that the sender of the ommitmentsheme is ommitted not only to the atual ontent of the ommitment, but alsoto the opening information.De�nition 9 (Strit binding). A ommitment sheme COM is a determinis-ti polynomial-time funtion taking two arguments a, y, the opening information
a and the message y. We say COM is stritly binding if for all a, y, a′, y′ with
(a, y) 6= (a′, y′), we have that COM(a, y) 6= COM(a′, y′).Furthermore, in order to get the zero-knowledge property, we will need thatour ommitment shemes are quantum omputationally onealing. We refer to[19℄ for a preise de�nition of this property. In [2℄, an unonditionally binding,quantum omputationally onealing ommitment sheme based on quantum 1-1one-way funtion is presented.5 Unfortunately, to the best of our knowledge, noandidates for quantum 1-1 funtions are known. Their de�nitions di�er some-what from those of [19℄, but as mentioned in [19℄, their proof arries over tothe de�nitions from [19℄. Furthermore, in the sheme from [2℄, the ommitmentontains the image of the opening information under a quantum 1-1 one-wayfuntion. Thus the strit binding property is trivially ful�lled. Thus stritly bind-ing, quantum omputationally onealing ommitment shemes exist under theassumption that quantum 1-1 one-way funtions exist.Given suh a ommitment sheme COM, we an onstrut the proof system
(P,V). This proof system di�ers from the original proof system for Hamiltonianyles [4℄ only in the following aspet: The prover does not only ommit tothe verties in the graph π(x), but also to the permutation π and the yle H .Without these additional ommitments, we would not get strit soundness; theremight be several permutations leading to the same graph, or the graph mightontain several Hamiltonian yles. The full desription of the protool is givenin Figure 1.Theorem 10. Let (x,w) ∈ R i� w is a Hamiltonian yle of the graph x. As-sume that COM is a stritly binding, quantum omputationally onealing om-mitment sheme. Then the proof system (P,V) is a zero-knowledge QPoK for Rwith knowledge error 1√

2
.The zero-knowledge property is proven using the tehniques from [19℄. Ex-tratability is shown by proving speial and strit soundness. The strit sound-ness follows from the fat that the prover is ommitted to all the informationsent in his response using a stritly binding ommitment.5 In [2℄, the result is stated for quantum one-way permutations f : {0, 1}n → {0, 1}n.(To the best of our knowledge, no andidates for quantum one-way permutationsare known.) Inspetion of their proof reveals, however, that the result also holds forfamilies of quantum 1-1 one-way funtions fi : {0, 1}n → D for arbitrary domain

D and e�iently samplable indies i, assuming that given an index i, it an bee�iently veri�ed that fi is injetive.



Inputs: A direted graph x (the statement) with verties W , and a Hamiltonianyle w in x (the witness).Protool:1. P piks a random permutation π on W . Let A be the adjaeny matrix of thegraph π(x). Let H := {(π(i), π(j)) : (i, j) ∈ w}. Using COM, P ommits to π, H ,and to eah entry Aij of A. P sends the resulting ommitments to V.2. V piks ch ∈ {0, 1} and sends ch to P.3. If ch = 0, P opens the ommitments to π and A. If ch = 1, P opens the ommit-ments to H and to all Aij with (i, j) ∈ H .4. If ch = 0, V heks that the ommitments are opened orretly, that π is a permu-tation, and that A is the adjaeny matrix of π(x). If ch = 1, V heks that theommitments are opened orretly, that H is a yle, that exatly the Aij with
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