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Abstract. We devise the first identity-based encryption (IBE) that re-
mains secure even when the adversary is equipped with auxiliary input
(STOC ’09) – any computationally uninvertible function of the master
secret key and the identity-based secret key. In particular, this is more
general than the tolerance of Chow et al.’s IBE schemes (CCS ’10) and
Lewko et al.’s IBE schemes (TCC ’11), in which the leakage is bounded
by a pre-defined number of bits; yet our construction is also fully secure
in the standard model based on only static assumptions, and can be
easily extended to give the first hierarchical IBE with auxiliary input.

Furthermore, we propose the model of continual auxiliary leakage (CAL)
that can capture both memory leakage and continual leakage. The CAL
model is particularly appealing since it not only gives a clean definition
when there are multiple secret keys (the master secret key, the identity-
based secret keys, and their refreshed versions), but also gives a gener-
alized definition that does not assume secure erasure of secret keys after
each key update. This is different from previous definitions of continual
leakage (FOCS ’10, TCC ’11) in which the length-bounded leakage is
only the secret key in the current time period. Finally, we devise an IBE
scheme which is secure in this model. A major tool we use is the modi-
fied Goldreich-Levin theorem (TCC ’10), which until now has only been
applied in traditional public-key encryption with a single private key.

1 Introduction

In cryptography, security guarantees are usually proven under the assumption
that the secret key must be kept safely and other internal (random) state is
not leaked to the adversary. Even if a single bit of these secrets is leaked, the
protection guaranteed by the proof is lost. In practice, however, it is difficult to
avoid all possible kinds of leakage, such as side-channel attacks that exploit the
physical nature of cryptographic operations (e.g., timing, power, radiation, cold
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boot attacks, etc.) or the reuse of the secret key and/or the randomness in a
number of applications.

Leakage-resilient cryptography was introduced to provide formal security guar-
antees even when the leakage of the secret keying material is allowed. In this
paper, we focus on public key encryption that is secure against memory leak-
age. More precisely, the adversary is allowed to specify an efficiently computable
leakage function f and obtain the output of f applied to the secret key and
other internal state. This function f aims to model the possible leakage that the
adversary can learn in practice.

In recent years, we have seen a number of leakage models that impose different
restriction on f . Recall the major (open) problem in leakage-resilient cryptogra-
phy [10]:

“allowing for continual (overall unbounded) leakage, without additionally
restricting its type.”

An ongoing line of research is on loosening the restriction of leakage types. The
relative leakage model [1] restricts the function f to output at most l bits, where
l is smaller than the secret key size. This restriction is later relaxed by allow-
ing f to lower the entropy of the secret key by at most l bits [15]. To sum up
these two models, l is defined as a fraction of the key (either in terms of the
bit size or the entropy). The bounded retrieval model (e.g., see [2, 8]), on the
other hand, treats the leakage l as a system parameter. The size of the secret
key can be increased to allow l bits of leakage, without affecting the public key
size, communication and computation efficiency. To further relax the restriction,
Dodis et al. [9] considered auxiliary inputs, which allow any f that no polyno-
mial time adversary can invert (i.e., to output the secret key being leaked) with
non-negligible probability. For example, any (computationally) one-way permu-
tation can be used by the adversary as its auxiliary input, but is not allowed in
the relative (leakage/entropy) model (as a permutation information-theoretically
reveals the entire key). Therefore, auxiliary inputs allow us to consider a larger
class of leakage functions.

The above line of research bounds the leakage throughout the entire lifetime
of the secret key. Another paradigm considers a key update algorithm that con-
tinually refreshes the secret key, while bounding the leakage between updates.
It addresses the first part of the aforementioned major problem. This model is
known as the continual leakage model. There are signature, identification [10]
and public key encryption schemes [6] secure in this model. Lewko et al. [12] re-
cently proposed signature and encryption schemes that allow a constant fraction
leakage of the secret key and the randomness during updates. In these papers,
the leakage bound between updates is either based on the relative leakage or the
bounded retrieval model. Therefore, the number of bits leaked between updates
is still restricted.

IBE with Auxiliary Inputs. Dodis et al. [9] only considered public key en-
cryption and there is no known identity-based encryption (IBE) scheme that is
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secure with auxiliary input, even though there are a number of (bounded) leakage-
resilient IBE schemes [1, 2, 8, 6, 13]. A distinctive feature of IBE is that any string
can be used as a public key and potentially an exponential number of identi-
ties can be supported. This feature has many applications (e.g., see [2, 3, 5, 8]),
and furthermore makes the auxiliary input model appealing to IBE for various
reasons. First, the auxiliary input model is useful in the context of composition.
One may use the encryption public key (and corresponding secret key) in other
applications (e.g., digital signatures and identification), and their composition
remains secure as long as these other schemes were proved secure in the stan-
dard (no leakage) sense [9]. With the versatility of identity-based (ID-based) keys
this guarantee appears to be more desirable. Second, the auxiliary input model
not only tolerates a wider class of leakage, but also gives a “clean” definition
of the necessary restriction on leakage. The model is free from numeric bounds
(e.g., number of bits leaked from the master secret key, or number of bits leaked
from the ID-based secret key of the target user) which are necessary in bounded
retrieval model.

Continual Auxiliary Leakages. Recall that the key idea to achieve continual
memory leakage (CML) resilience is to refresh the secret key in each time pe-
riod. Previous CML models for IBE [6, 13] only consider leakage of the current
secret key for a given time. In other words, after a user has computed a new
secret key for the next period, the old secret key should be securely erased from
memory (so the leakage via the key-update query is the “last chance” for the
adversary)4. This greatly diminishes the benefits offered by the formal leakage-
resilience guarantee since with frequent secure erasures it is less disastrous to
have memory leakage.

Combining the concept of auxiliary inputs with CML brings the possibility of
new leakage-resilience guarantees. Our continual auxiliary leakage (CAL) model
allows continual leakage, and the leakage between updates has minimal restric-
tion: no polynomial time algorithm can use the leaked information to output
a valid secret key. The CAL model still inherits the simplicity of the standard
(non-continual) auxiliary input/leakage model. In particular, we do not need to
keep track of the “version number” of keys.

Our Contributions. We tackle the problem of allowing continual (overall un-
bounded) leakage, without additionally restricting its type, for IBE. Brakerski
et al.’s CML-resilient IBE [6] does not tolerate leakage from the master secret
key and is only selective-secure. Lewko et al. [13] proposed a fully-secure CML-
resilient IBE, but the leakage size during updates is limited to logarithmic. It
is fair to say there is no complete solution for this major problem in leakage-
resilient cryptography. To achieve our goal, we propose the continual auxiliary
leakage (CAL) model and construct an IBE scheme secure in this strong model.

4 We do not claim to have discovered any attack against the schemes in the respective
papers exploiting this more general form of leakage. We are merely pointing out that
the stronger attack is not covered by the current proofs.
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We begin by constructing the first IBE scheme that is secure in the presence
of auxiliary inputs. Our construction in §3.3 preserves the nice features of recent
leakage-resilient IBE schemes [8, 13]: adaptive security in the standard model and
based on static assumptions, and moderate increases the size of the ciphertext
and computational complexity.

Our work combines a number of techniques in the literature. We use the dual
system encryption [14] for both adaptive security regarding the ID-based keys,
and for the leakage-resilience via the proof technique [13] which allows the leakage
of the master secret key and the ID-based secret keys. For leakage in the form
of auxiliary input (or “auxiliary leakage”), we use the modified Goldreich-Levin
theorem [9]. We overcome a number of technical difficulties when combining
these techniques. Firstly, we cannot directly use the modified Goldreich-Levin
theorem as it restricts the blinding factor of the semi-functional key (an artifact
in the security reduction for allowing bounded leakage, which is created using a
blinding factor from Zmp2 where m ∈ N and p2 is a large prime of size 2λ; see [13,
Lemmata 6.2, 6.7]) to be a λ-bit number. Therefore, we need to construct the
semi-functional key subject to this design constraint. It is also interesting to note
that the λ-bit number is used as a real secret key of the public key encryption
with auxiliary input [9], but in our case it just appears in the “imaginary” semi-
functional secret key in the simulation. Secondly, Lewko et al.’s IBE [13] does
not allow any leakage during setup. We twist their idea of using multiple tags
(instead of a single tag in [8]) and do the “replication” in another level. (Thus we
retain the same order of complexity for performance.) Although this technique
by itself (see §3.3) does not allow leakage during setup, this structure leads us
to construct an IBE scheme (in §4.4) which can be proven secure in the CAL
model (i.e., leakage is allowed during setup). Furthermore, our scheme in §3.3
can be extended to give the first hierarchical IBE with auxiliary inputs.

In §4, we present the CAL model and propose the first IBE scheme secure in
this strengthened model. There are a few problems that arise when we tried to
borrow the construction technique from the (Diffie-Hellman-based) BHHO en-
cryption in [9] to extend our IBE scheme in §3.3. Firstly, the modified Goldreich-
Levin theorem [9] states that if the master secret keys αi belongs to a subgroupH
of Zp1 , then there exists an inverter with running time poly(|H|). If H = Zp1 and
p1 is a λ-bit prime, the running time of the inverter is poly(2λ), which is undesir-
able. Secondly, if we simply change the scheme such that αi belongs to a subgroup
H = {0, 1}, then the master public key becomes yi = ê(g1, vi)

0 or ê(g1, vi)
1.

Then any adversary can determine αi by brute-force. The same attack applies if
|H| � p1. We then try to construct the public key as in the BHHO encryption in
[9], and the master public key becomes y =

∏n
i=1 ê(g1, vi)

αi . The master secret
key msk becomes vαii for i ∈ [1, n]. (It seems one may set msk be

∏n
i=1 v

αi
i , but we

want to split it into n pieces in order to apply the modified Goldreich-Levin the-
orem.) That means leakage will be in the form of f(vα1

1 , . . . , vαnn ). Intuitively, to
simulate all possible uninvertible function f , the knowledge vαii is needed, which
implies the knowledge of αi since the brute-force attack is easy on αi. This leads
to a contradiction since the αi’s is the solution of the underlying intractability
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problem. To resolve these issues, we change the structure of msk to
∏m
j=1 v

αj
i,j .

We use a random (n×m) matrix V = {vi,j}i∈[1,n],j∈[1,m] and m random num-
bers (α1, . . . , αm) to obtain n master secret keys and public keys. Similar to
(the semi-functional key in) our IBE in §3.3, this V is a conceptual building
block for leakage-resilience and the knowledge of these group elements is not
required anywhere else including key-update, encryption and decryption. This
new msk does not reveal αi under some intractability assumptions. Interestingly,
these assumptions are required for a variant of Gentry-Peikert-Vaikuntanathan’s
(GPV) encryption scheme [11] based on learning with error (LWE) [9], which
gives some evidence that our construction is not a trivial extension from the
IBE in §3.3. Using lattice-based assumptions to help constructing pairing-based
cryptosystems seems to be interesting on its own right. We leave it as an open
problem to build a CAL-resilient IBE scheme without these assumptions.

2 Background

Composite Order Bilinear Groups [4]. Let G be a group generator, that
takes a security parameter 1λ as input where λ ∈ N, outputs a description of
bilinear group (N = p1p2p3,G,GT , ê), where p1, p2, p3 are distinct λ-bit primes,
G and GT are cyclic groups of order N , and ê : G×G → GT is a bilinear map
such that ∀g, h ∈ G and a, b ∈ ZN , ê(ga, hb) = ê(g, h)ab; ê(g, g) generates GT if g
is a generator of G. We denote Gpi as the subgroup of order pi in G (i = 1, 2, 3).
Let gi be the generator of the subgroup Gpi . For all hi ∈ Gpi and hj ∈ Gpj , if
i 6= j, ê(hi, hj) = 1. We denote Gp1p2 as the subgroup of order p1p2 in G. For all
T ∈ Gp1p2 , T can be written uniquely as the product of an element of Gp1 and
an element of Gp2 . We refer to these elements as the “Gp1 part of T” and the
“Gp2 part of T” respectively. We also define Gp1p3 and G = Gp1p2p3 similarly.

Decisional problems [14]. For a group generator G, the following experiments
define subgroup decision problem for Gp1 and Gp1p2 , subgroup decision problem
for Gp1p3 and G, and subgroup decisional bilinear Diffie-Hellman problem.

Experiment Exp
(1)
G,A1,β

(1λ)

(N = p1p2p3,G,GT , ê)
R← G(1λ), g,X1

R← Gp1 , X2
R← Gp2 , X3

R← Gp3
T0

R← Gp1p2 , T1
R← Gp1 .

Return β′ ← A1(N,G,GT , ê, g,X1X2, X3, Tβ).

Experiment Exp
(2)
G,A2,β

(1λ)

(N = p1p2p3,G,GT , ê)
R← G(1λ), g,X1, Z1

R← Gp1 , Xi, Yi, Zi
R← Gpi(i = 2, 3),

T0 = Z1Z3, T1 = Z1Z2Z3.

Return β′ ← A2(N,G,GT , ê, g,X1X2, X3, Y2Y3, Tβ).
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Experiment Exp
(3)
G,A3,β

(1λ)

(N = p1p2p3,G,GT , ê)
R← G(1λ), g

R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 ,

α, s
R← ZN , T0 = ê(g, g)αs, T1

R← GT .
Return β′ ← A3(N,G,GT , ê, g, gαX2, g

sY2, Z2, X3, Tβ).

For i = 1, 2, 3, we define the advantage of an algorithm Ai in breaking As-

sumption i to be Adv
(i)
G,Ai(λ) :=∣∣∣Pr[Exp

(i)
G,Ai,1(1λ) = 1]− Pr[Exp

(i)
G,Ai,0(1λ) = 1]

∣∣∣ .
Definition 1. For i = 1, 2, 3, we say that G satisfies Assumption i if Adv

(i)
G,Ai(λ)

is a negligible function of λ for any polynomial time algorithm Ai.

Goldreich-Levin Theorem for Large Fields. Dodis et al. [9] proved the
following theorem – Goldreich-Levin theorem over any field GF (q) for prime q.

Theorem 2 ([9]). Let q be a prime, and let H be an arbitrary subset of GF (q).
Let f : Hm → {0, 1}∗ be any function. s← Hm, y ← f(s), r← GF (q)m. If there
is a distinguisher D that runs in time t such that∣∣∣∣∣Pr[D(y, r, 〈r, s〉) = 1]− Pr[u← GF (q) : D(y, r, u) = 1]

∣∣∣∣∣ = ε,

then there is an inverter A that runs in time t′ = t · poly(m, |H|, 1/ε) such that

Pr[s← Hm, y ← f(s) : A(y) = s] ≥ ε3

512 ·m · q2
.

Modular Lattices. Here we review some theorems for modular lattices. The
first is a lemma on additive groups simplified from the lemma in [16].

Lemma 3 ([11]). Let q be prime and let m ≥ 2n log q. For all but an at most
qn fraction of A ∈ Zn×mq , the subset-sums of the columns of A generate Znq ; i.e.,
for every u ∈ Znq there exists e ∈ {0, 1}m such that Ae = u.

We give the definition of the average-case problem of inhomogeneous small
integer solution problem (ISIS), which is related to the shortest independent
vectors problem and decision shortest vector problem [11].

Definition 4 (ISISq,m,β). Given an integer q, a uniformly random matrix A ∈
Zn×mq , a random u ∈ Zqn, and a real β, find an integer vector e ∈ Zm such that
Ae = u mod q and ||e||2 ≤ β, where ||e||2 is the Euclidean `2 norm. We say
that the ISISq,m,β assumption holds if no polynomial time algorithm can output
e with a non-negligible probability.
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3 Identity-Based Encryption with Auxiliary Inputs

An IBE scheme consists of four probabilistic polynomial-time (PPT) algorithms:

1. Setup: On input a security parameter 1λ, it generates a master public key
mpk and a master secret key msk.

2. Ext: On input msk and an identity ID from an identity space I, it outputs
an identity-based secret key skID.

3. Enc: On input mpk, ID and a message M from a message spaceM, it outputs
a ciphertext C.

4. Dec: On input skID, and C, it outputs a message M or ⊥ symbolizing the
failure of decryption.

∀M ∈ M and ∀ID ∈ I, M ← Dec(skID, Enc(mpk, ID,M)), where (mpk,msk) ←
Setup(1λ), skID ← Ext(msk, ID).

We denote the space of the master secret key and that of ID-based secret
keys by MK and SK respectively.

3.1 Auxiliary Input Model for Confidentiality

We consider the following indistinguishability based game against adaptive cho-
sen identity and chosen plaintext attacks (IND-ID-CPA) for semantic security
with leakage in the form of auxiliary inputs. Denote a polynomial-time (in λ)
computable function family F . We define the attack game as follows.

1. Setup. The challenger runs (mpk,msk) ← Setup(1λ) and gives mpk to the
adversary A. The challenger also constructs an initially empty list LID.

2. Query 1. The following oracles can be queried by A:
– Extraction Oracle KEO(ID, i): On input ID ∈ I, i ∈ N+, it first checks

the list LID for the tuple in the form of (skID, ID, j). If there is no such
tuple, j̄ is set to 1, then it runs skID ← Ext(msk, ID) and puts (skID, ID, j̄)
in the list LID. Otherwise, the maximum j is retrieved. If i ≤ j, then skID
from the tuple (skID, ID, i) in the list LID is returned.

– Leakage Oracle LO(f, ID): On input f ∈ F , it returns f(msk,LID,mpk, ID).
– UpdateUSK Oracle USO(ID): This oracle is useful for schemes with

probabilistic ID-based secret key generation, where a user of identity
ID may request for another ID-based secret key after obtained the first
copy. It first checks the list LID for the tuple in the form of (skID, ID, j)
where j is a positive integer. If there is no such tuple, j̄ is set to 1. Oth-
erwise, the maximum j is retrieved and j̄ is set to (j + 1). Then, it runs
s̄kID ← Ext(msk, ID). It puts (s̄kID, ID, j̄) in the list LID and returns j̄.

KEO, USO and LO can be queried for at most qe, qu and q` times throughout
this game respectively.

3. Challenge. A sends two messages M0,M1 ∈ M and an identity ID∗ ∈ I to
the challenger. The challenger picks a random bit b′ and computes C∗ ←
Enc(mpk, ID∗,Mb′). The challenger sends C∗ to A.

4. Query 2. A is allowed to query the Extraction Oracle adaptively.
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5. Output. A returns a guess b∗ of b′.

A wins the game if b′ = b∗ and there was no query in the form of KEO(ID∗, ·).
The advantage of A is

∣∣Pr[A wins]− 1
2

∣∣. An IBE scheme is IND-ID-CPA secure
w.r.t. auxiliary inputs from F if there is no PPT A with non-negligible advantage
in the game above.

It remains to define a class of function families F . For convenience, we will
parametrize these families by the min-entropy ku of the ID-based secret key
respectively, as opposed to the security parameter 1λ. (In our schemes the secret
keys will be random, so ku is simply the length of the ID-based secret key.)

Let S∗ denote a set of all possible valid identity-based secret keys with respect
to ID∗5. Let S denote a set of qe identity-based secret keys such that S∗ ∩ S =
∅. Finally, let F id−ow(gu(ku)) be the class of all polynomial-time computable
functions f ; such that for all i ∈ [1, q`], given

mpk, ID∗, S, and {fi(msk,LID,mpk, IDi)}i∈[1,q`],

(for (msk,mpk, {skIDi}i∈[1,q`],S,LID) that is randomly generated, and {ID∗} ∪
{IDi}i∈[1,q`] ⊆ I), no PPT algorithm can find a valid secret key skID∗ of ID∗ with

probability greater than gu(ku), where gu(ku) ≥ 2−ku is the hardness parameter.
Our goal is to make gu(ku) as large (i.e., as close to negl(ku)) as possible.

Definition 5. An identity-based encryption is said to be (gu(ku))-AI-CPA (aux-
iliary input CPA) secure if it is IND-ID-CPA secure w.r.t. family F id−ow(gu(ku)).

Discussions. Our model for IBE with auxiliary inputs bears some differences
from the existing model of public key encryption (PKE) with auxiliary input [9]
and IBE with length-bounded leakage [13].

– For PKE, the public key itself leaks some information about the secret key.
Therefore, in [9], they define the family Fpk−ow such that, given f(msk,mpk)
and mpk (where f ∈ Fpk−ow), it is difficult to output msk. For IBE, the
master public key leaks some information about the master secret key, which
may be exploited to compromise the security since ID-based secret key can
be computed from the master secret. Therefore, we define the family F id−ow
such that given the above information, it is difficult to output skID∗ .

– The CPA security for PKE only has one single oracle which is for leakage, so
adaptive leakage can be modeled by a single oracle query [9]. On the other
hand, for IBE (e.g., the bounded retrieval model in [13]), the adversary can
either query the leakage of msk or skID, or unlock all bits of skID. Thus we
need to model the leakage via multiple queries for adaptive adversary.

– We combine the two separate leakage oracles in [13], for modeling the case
that the adversary may obtain leakage from msk and skID at the same time,
and they may share the same internal randomness.

5 A valid ID-based secret key for ID∗ can decrypt all ciphertext encrypted to ID∗,
hence every ID-based secret key for ID∗ from Ext are in the set S∗.
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– Same as [13], multiple keys are allowed for each identity. For leakage oracle,
we allow leakage of all these keys. Moreover, we do not need to store the
amount of leakage for the master secret key and the identity-based secret
keys, therefore we do not need to create a set which stores the handles of
secret keys. For extraction, we could just return a new key upon each query
(and store them for later leakage), but we chose to allow the adversary to
supply a handle to specify which particular key to be extracted. The gener-
ality here may be useful for other higher applications of IBE, for example,
those assigning keys for the same identity to different users.

3.2 Intuition

The Scheme. This construction is a parallel repetition of the Lewko-Waters
IBE [14]. The key generation centre (KGC) splits the master secret key msk into
m pieces {αi}. This idea can be found in many leakage-resilient schemes, e.g. [9].
The ID-based secret keys contain n components, each of which is created from a
share of msk. The ciphertext also contains n components. Pairing the secret key
and the ciphertext component-wise recovers a encapsulated key corresponding
to αi. Their product is the padding for hiding the actual message.

Like Lewko-Waters IBE [14] (and the underlying IBE [3]), an identity ID ∈
ZN is mapped to a group element uIDh, where u, h ∈ Gp1 . To allow leakage of the
master secret key, instead of keeping αi ∈ ZN , we store msk in a form similar to
the structure of an ID-based secret key [14]. Recall that a “basic” [3] ID-based
secret key contains (gαi1 · (uIDh)ri , vrii ) (the second term embeds ri for cancelling
the (uIDh)ri part in decryption), one can store (gαi1 · hri , uri , v

ri
i ) as the master

secret for “undetermined” ID.

The Proof. Our proof uses the dual-system encryption technique [17, 14, 13].
The keys and the ciphertexts are masked by random group elements in Gp3
for adaptive security, and in the proof all these will be turned into their semi-
functional (SF) version by introducing random factors from Gp2 [17]. The basic
technique [14] ensures that the real key is indistinguishable to an SF key. For
leakage, an SF key is further classified into two types: truly SF and nominally
SF. The latter can still decrypt an SF ciphertext, but the former will make the
decryption fails. Thus, a truly SF key is used to simulate the leakage oracle,
which does not help the adversary.

If the adversary can distinguish between these two types of SF keys, we hope
to leverage this to break the underlying assumption. In our case, we want to
invert the leakage function which is supposed to be uninvertible. For Lewko-
Waters IBE, it was done by applying their Lemma 6.2 for bounded leakage [14].
However, we cannot directly replace it with Theorem 2 for auxiliary input as
it restricts the blinding factor of an SF key to be a λ-bit number. Therefore,
these SF structures have to be changed accordingly. Since they only appear in
the proof, the actual scheme is not affected.
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3.3 Concrete Construction

Setup(1λ): The KGC runs the bilinear group generator G(1λ) to get (N =
p1p2p3,G,GT , ê) as defined in §2. Suppose G also gives g1 and X3 which are
generators of the subgroups Gp1 and Gp3 respectively. Let 0 < ε < 1 and
m = (3λ)1/ε. The KGC randomly picks α1, . . . , αm ∈ ZN , u, h, v1, . . . , vm ∈ Gp1 .
The master public key is{

N,G,GT , ê, g1, u, h,X3, {vi, yi = ê(g1, vi)
αi}i∈[1,m]

}
.

The KGC also randomly picks ti ∈ ZN , and T1,i, T2,i, T3,i ∈ Gp3 for i ∈ [1,m].
The master secret key is {K1,i,K2,i,K3,i}i∈[1,m] where

K1,i = gαi1 · hti · T1,i, K2,i = uti · T2,i, K3,i = vtii · T3,i.

The message space M is GT and the identity space I is ZN .

Ext(msk, ID): For i ∈ [1,m], randomly picks ri ∈ ZN and R1,i, R2,i ∈ Gp3 , it
outputs the identity-based secret key skID = {D1, E1, . . . , Dm, Em} where

Di = K1,i ·K ID
2,i · (uIDh)ri ·R1,i, Ei = K3,i · vrii ·R2,i.

Enc(ID,M): For i ∈ [1,m], it randomly picks si ∈ ZN and outputs the ciphertext
C = {A, {Bi}i∈[1,m], {Ci}i∈[1,m]} where

A = M ·
m∏
i=1

ysii , Bi = vsii , Ci = (uIDh)si .

Dec(skID,C): Given a ciphertext C = {A, {Bi}i∈[1,m], {Ci}i∈[1,m]}, and a secret
key skID = {D1, E1, . . . , Dm, Em} for an identity ID, it outputs

M = A ·
∏m
i=1 ê(Ci, Ei)∏m
i=1 ê(Bi, Di)

.

Hierarchical Extension. Similar to existing HIBE schemes [3, 14], one can
extend the above IBE to n-level HIBE by extending the master public key. Due
to page limitation, we just outline the modifications and omit its security proof.
Specifically, mpk contains u1, . . . , un ∈ Gp1 instead of a single u. Accordingly, to
extract a key or encrypt a message for a vector of identity (ID1, . . . , IDn) instead
of just ID, (uIDh) in the computation of Di in Ext and in the computation of Ci
in Enc is replaced by (

∏n
j=1 u

IDj
j h). The Dec algorithm remains the same.

3.4 Security

Under the dual system encryption paradigm [17], we define the following three
semi-functional (SF) structures which are used in the security proofs only. These
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SF structures just like their normal version in the actual scheme, but “perturbed”
by a Gp2 generator, denoted by either ḡ2 or ĝ2 below.

An SF master-key {K ′1,i,K ′2,i,K ′3,i}i∈[1,m] is given by:

K ′1,i = K1,i · ḡθi2 , K ′2,i = K2,i · ḡτθi2 , K ′3,i = K3,i · ḡwi2 ,

where θ1, . . . , θm ∈ [0, λ], τ, w1, . . . , wm ∈ ZN and {K1,i,K2,i,K3,i} is a normal
master key.

An SF ID-based key (or just SF key) is in the form of

{D′i = Di · ḡγi2 , E′i = Ei · ḡzi2 }i∈[1,m],

where z1, . . . , zm, γ1, . . . , γm ∈ ZN and {Di, Ei}i∈[1,m] is a normal ID-based key.

An SF ciphertext is in the form of{
A′ = A, {B′i = Bi · ĝδi2 , C ′i = Ci · ĝxi2 }i∈[1,m]

}
,

where δ1, x1, . . . , δm, xm ∈ ZN and {A, {Bi, Ci}i∈[1,m]} is a normal ciphertext.
Decryption will succeed if an SF key is used to decrypt a normal ciphertext,

or a normal key is used to decrypt an SF ciphertext. However, decrypting an SF
ciphertext using an SF key will result in a message “blinded” by

ê(ḡ2, ĝ2)
∑m
i=1 zixi−

∑m
i=1 γiδi .

Furthermore, the ID-based secret key generated by applying Ext with an SF
master key is also semi-functional. If we use it to decrypt an SF ciphertext, result
will be shifted by a factor

ê(ḡ2, ĝ2)
∑m
i=1 wixi−

∑m
i=1(1+τ ID)θiδi .

In case that the exponents in these extra blinding factors are zeros, decryption
still works and this leads us to the notion of nominally semi-functional (NSF)
keys. An NSF ID-based key is a special kind of SF key which can be used to
decrypt SF ciphertext, that means

∑m
i=1 γiδi =

∑m
i=1 zixi. Similarly, an NSF

master-key is a special kind of SF master-key which can be used to decrypt SF
ciphertext, that means

∑m
i=1(1 + τ ID)θiδi =

∑m
i=1 wixi. If an SF identity-based

/ master key is not nominally semi-functional, then it is truly semi-functional.

Theorem 6. Our IBE scheme is (2−m
ε

)-AI-ID-CPA secure under Assumptions
1, 2 and 3.

Proof. We prove by a hybrid argument using a sequence of games. The first game
Gamereal is the real AI-ID-CPA game and we denote the challenge identity as
ID∗. The second game Gamerestricted is the same as Gamereal except that the
adversary cannot ask for the secret key of identity ID where ID ≡ ID∗ mod p2.
This restriction will be retained throughout the subsequent games. After that,
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we denote q := qe + qu + q` as the number of extraction oracle, UpdateUSK
oracle and leakage oracle queries. For k = 0 to q, we define Gamek as follows.

Gamek: It is the same as Gamereal, except that both the challenge ciphertext
and the keys used to answer first k-th distinct oracle queries6 are semi-functional.
The keys for the rest of the queries are normal. So, for the first k-th queries:

1. If it is for extraction oracle, it returns the semi-functional key sk′ID.

2. If it is for leakage oracle, it returns f(msk′,LID,mpk, ID) where msk′ is semi-
functional and for the last entry (sk′ID, ID, ·) ∈ LID, sk′ID is semi-functional.

3. If it is for UpdateUSK oracle, it puts a semi-functional key sk′ID into LID.

As a result, all keys are normal and the challenge ciphertext is semi-functional
in Game0. In Gameq, all keys and the challenge ciphertext are semi-functional.

The last game is Gamefinal, which is the same as Gameq except that the
challenge ciphertext is a semi-functional encryption of a random message, instead
of one of the two challenge messages.

We will prove the indistinguishability between these games.

Lemma 7. If there exists an adversary A such that AdvA(Gamereal) - AdvA
(Gamerestricted) = ε, then we can construct an algorithm B with non-negligible
advantage in breaking Assumption 2.

Lemma 8. If there exists an adversary A such that AdvA(Gamerestricted) -
AdvA(Game0) = ε, then we can construct an algorithm B with advantage ε in
breaking Assumption 1.

Lemma 9. If there exists an adversary A such that AdvA(Game`−1) - AdvA
(Game`) = ε, then we can construct an algorithm B with advantage ε in breaking
Assumption 2.

Lemma 10. If there exists an adversary A such that AdvA(Gameq) - AdvA
(Gamefinal) = ε, then we can construct an algorithm B with advantage ε in
breaking Assumption 3.

The proofs of lemma 7, 8, 9 and 10 are given in the the full version.

Finally in Gamefinal, the value of b is information theoretically hidden from
A. Hence A has no advantage in winning Gamefinal. If Assumptions 1, 2 and
3 hold, Gamereal is indistinguishable from Gamefinal. Hence the attacker has
negligible advantage in winning Gamereal. Therefore, our scheme is (2−m

ε

)-AI-
ID-CPA secure. ut
6 We consider the following parameters to determine if two queries are the same, i.e.,
not distinct. For leakage queries, we consider the function f and its argument. In
particular, when they are the same, the same version of the secret key for the same
ID is leaked in the same way. For extraction, we consider ID and the counter i.
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4 IBE with Continual Auxiliary Inputs

4.1 Continual Auxiliary Leakage Model

We propose the continual auxiliary leakage model for IBE. First, we separate the
setup algorithm into two, one for common reference string (CRS) generation and
another for master key pair generation. This separation has been done previously
[7] for specific security goals. It is necessary in our case since leakage is only
allowed from the later part. We also introduce two additional update algorithms.

– CRSGen: On input a security parameter 1λ, it generates a CRS param.
– Setup: On input a CRS param, it generates a master public key mpk and a

master secret key msk. Denote the randomness used (msk,mpk) as rs.
– UpdateMSK: On input a master key pair (msk,mpk), it outputs a re-randomized

master secret key m̄sk. Denote the randomness used as rm.
– UpdateUSK: On input an identity-based secret key skID for the identity ID

and mpk, it outputs a re-randomized identity-based secret key s̄kID. Denote
the randomness used as ru.

After running both UpdateMSK and UpdateUSK algorithms, the corresponding
public keys remain unchanged after the re-randomization; and the size of the
secret keys also remain unchanged.

Denote the master secret key’s, identity-based secret keys’, messages’ and
identities’ spaces asMK, SK,M and I respectively. Denote a polynomial-time
computable function family F . The security of IBE in the continual auxiliary
leakage model is defined via the following game.

1. Setup. The challenger firstly runs param ← CRSGen(1λ) and (mpk,msk) ←
Setup(param). Denote the randomness used in Setup as rs. The adversary
specifies a function f0 ∈ F . Denote ε as an empty string. The challenger
gives param, mpk and f0(rs, ε, ε, ε, ε, ε, ε) to the adversary A. The challenger
constructs the list Lmsk, which stores the tuples (msk, ·)7, and the lists Le

and LID, which are initially empty.
2. Phase 1. The following oracles can be queried by A adaptively:

– Extraction Oracle KEO(ID): On input an identity ID ∈ I, it looks for
the last (ID, skID) entry from the list Le. If such entry does not exist, it
runs skID ← Ext(msk, ID) and stores (ID, skID) in the list Le. Finally, it
returns the identity-based secret key skID.

– Leakage Oracle LO(f): On input a polynomial-time computable function
f ∈ F , it returns f(ε,Lmsk, ε,msk, ε,mpk, ε).

– UpdateMSK Oracle UMO: It runs m̄sk← UpdateMSK(msk). Denote the
randomness used as rm. It puts (msk, rm) in the list Lmsk. After that, it
sets msk← m̄sk and outputs msk.

Denote qe, q`, qm as the number of oracle queries to the KEO, LO and UMO
respectively in this game.

7 An alternative definition is to include rs in the list Lmsk, which is part of the input
for the leakage queries in the later phase.
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3. Challenge Identity. A sends a challenge identity ID∗ ∈ I to the challenger.
The challenger runs skID∗ ← Ext(msk, ID∗).

4. Phase 2. The following oracles can be queried by A adaptively:
– Extraction Oracle KEO(ID): Same as that in Phase 1.
– Leakage Oracle LO(f): On input a polynomial-time computable function
f ∈ F , it returns f(ε,Lmsk,LID,msk, skID∗ ,mpk, ID∗).

– UpdateMSK Oracle UMO: Same as that in Phase 1.
– UpdateUSK Oracle USO: It runs s̄kID∗ ← UpdateUSK(skID∗). Denote the

randomness used as ru. It puts (skID∗ , ru) in LID and sets skID∗ = s̄kID∗ .
Denote qu as the number of oracle queries to the USO in this game.

5. Challenge. A sends two messages M0,M1 ∈ M to the challenger. The chal-
lenger picks a random bit b′ and computes C∗ ← Enc(mpk, ID∗,Mb′).

6. Phase 3. The challenger sends C∗ toA.A is allowed to query KEO adaptively.
7. Output. A returns a guess b∗ of b′. A wins the game if b′ = b∗ and there was

no KEO(ID∗) query.

The advantage of A is
∣∣Pr[A wins]− 1

2

∣∣. An IBE scheme is IND-ID-CPA secure
in the continual auxiliary leakage model for F (or CAL-CPA secure) if there is
no PPT A with non-negligible advantage in the game above.

Class of Auxiliary Functions. Let S∗ denote a set of all possible valid
identity-based secret keys with respect to ID∗. Let S denote a set of qe identity-
based secret keys such that S∗ ∩ S = ∅. Let F id−ow(gu(ku)) be the class of all
polynomial-time computable functions f ; such that given

mpk, ID∗, S, f0(rs, · · · ) and {fi(ε,Lmsk,LID,msk, skID∗ ,mpk, ID∗)}i∈[1,q`],

(for a randomly generated (msk,mpk, rs, skID∗ ,S,Lmsk,LID), and ID∗ ⊆ I)8, no
PPT algorithm can find a skID∗ ∈ S∗ with probability greater than gu(ku), where
gu(ku) ≥ 2−ku is the hardness parameter.

Definition 11. An IBE scheme is said to be (gu(ku))-CAL-CPA secure if it is
IND-ID-CPA secure w.r.t. family Fu

id−ow(gu(ku)).

4.2 Construction in the Continual Auxiliary Leakage Model

We can extend our basic IBE in §3.3 to give an IBE scheme secure in the continual
leakage model. The advantage is that it does not have much difference from our
basic IBE. However, the extended scheme does not allow leakage during the
setup phase. It implies that in the security model, the leakage f0 is not allowed.
Firstly, the common reference string is (N = p1p2p3,G,GT , ê) as generated by
the bilinear group generator, i.e. CRSGen(·) = G(). Then, the rest of Setup in
§3.3 constitutes our new Setup. Finally, we introduce the two algorithms below.

8 The msk here is the current value of msk when the leakage oracle query for f is
made. It may be changed by the UpdateMSK oracle, hence it is not a fixed value.
The same applies for other variables such as Lmsk and LID.
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UpdateMSK: Given {K1,i,K2,i,K3,i}, the KGC randomly picks t′i ∈ ZN and
T ′1,i, T

′
2,i, T

′
3,i ∈ Gp3 , for i ∈ [1,m]. The new master secret key is defined by:

K ′1,i = K1,i · ht
′
i · T ′1,i, K ′2,i = K2,i · ut

′
i · T ′2,i, K ′3,i = K3,i · v

t′i
i · T

′
3,i.

UpdateUSK: Given skID = {D1, E1, . . . , Dm, Em} for the identity ID, it randomly
picks r′i ∈ ZN and R′1,i, R

′
2,i ∈ Gp3 for i ∈ [1,m], then the new key is given by:

D′i = Di · (uIDh)r
′
i ·R′1,i, E′i = Ei · vr

′
i ·R′2,i.

Theorem 12. Our IBE scheme is (2−m
ε

)-CAL-CPA secure if Assumption 1,
Assumption 2 and Assumption 3 hold.

Compared with our basic IBE, we have to additionally simulate the oracles
for updating and leak the randomness used. These updates all used random
elements in Gp3 , which which has no impact to the previous proof. So the proof
is similar to that of our basic IBE and hence is omitted.

4.3 Further Discussions on the Continual Auxiliary Input Model

Our continual auxiliary input model extends the traditional continual mem-
ory leakage model in two dimensions. Previous definitions consider only length-
bounded leakage with the requirement of secure erasure. For length-bounded
leakage, continual leakage is obviously stronger than non-continual leakage since
it allows more bits to be leaked, or, there cannot be arbitrarily large leakage on
the same copy of the (static) secret key in the non-continual model.

Here, we consider “continual leakage without erasure” for an even stronger
attack model – for example, an adversary may decide to leak more bits of the old
secret key after seeing some bits of its refreshed version. But that seems to bring
us back to the original non-continual scenario. If the old keys are not erased,
the adversary can always choose to keep leaking the old keys even in the later
“epochs” when the secret keys are refreshed. One may consider a model which
allows “fine-grained” leakage, say, only allowing a particular query to leak a cer-
tain number of bits of an old key and keeping track of the number of bits leaked
from the refreshed key via the same leakage function. But it might be difficult to
have a clean definition for that. On the other hand, in the auxiliary input model,
we can capture this stronger attack model by a simple uninvertibility condition.

Indeed, the basic auxiliary input model seems to be so “powerful” that any
scheme that is secure in the basic model for a certain function family F is also
secure in the continual auxiliary leakage model for another family F ′. However, it
does not mean that the additional key-refreshing algorithms we just introduced
have no significance. Instead, a careful design of these algorithms can enlarge the
size of the allowed function family, which means a more general form of leakage is
allowed. To see, consider an artificial scheme which “keeps state” across epochs
and puts one bit of the same identity-based secret key in each version of a certain
secret key. Eventually, this secret key can be recovered by leaking a single bit of
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each of these keys, so any set of queries containing these leakages is ruled out
by the uninvertibility condition, i.e., they are excluded from the function family.
On the other hand, our scheme could allow this set of leakage queries.

4.4 Construction Supporting Leakage-Resilient Setup

Intuition. In the IBE scheme in [13], the KGC first picks an α ∈ ZN and uses
n random tags (and other elements) to blind it. The master secret key contains
multiple elements but α is enough for decryption of every ciphertexts. It seems
leaking a part of the randomness is sufficient to break the scheme. To allow aux-
iliary leakage in the setup, we resort to Theorem 2 again. Our scheme picks a
random n×mmatrix V and multiplies it with αi’s to obtainmmaster public keys
Y , where αi ∈ {0, 1} for i ∈ [1, n]. Similar method is used in (LWE-based) GPV
encryption in [9]. Denote the randomness α = (α1, . . . , αn) and the generator
g = (g1, . . . , gn). Roughly speaking, we set Y = ê(g,V α), where the pairing op-
eration is taken entry-wise. The master secret key is V α = {

∏m
j=1 v

αj
i,j}i∈[1,n]. In

the security proof, the simulator can use the uninvertible function F (α1, . . . , αn)
to output v

αj
i,j . It is difficult to invert if the ISIS assumption holds.

Construction.
CRSGen: On input the security parameter 1λ, the setup algorithm runs (N =
p1p2p3,G,GT , ê) ← G(1λ). We suppose the group generator G also gives the
generators (u, h) and X3 of the subgroups Gp1 and Gp3 respectively.

Setup: Let 0 < ε < 1, n = O(λ) and m = ((n + 4)λ)1/ε. The KGC randomly
picks α1, . . . , αm ∈ {0, 1}, a random matrix V ∈ Gn×mp1 and a random G ∈ Gnp1 :

V =


v1,1 v1,2 . . . v1,m

v2,1 v2,2 . . . v2,m

...
...

. . .
...

vn,1 vn,2 . . . vn,m

 , G =


g1

g2

...
gn

 .
Then we define qi =

∏m
j=1 v

αj
i,j for i ∈ [1, n], and

α =


α1

α2

...
αm

 , Y =


y1 = ê(g1, q1)
y2 = ê(g2, q2)

...
yn = ê(gn, qn)

 .
The system parameter param is {N,G,GT , ê, u, h,X3,G}. The master public
key mpk is Y. The KGC randomly picks ti ∈ ZN and T1,i, T2,i, T3,i ∈ Gp3 for
i ∈ [1, n]. The master secret key msk is

{
{K1,i,K2,i,K3,i}i∈[1,n]

}
where

K1,i = qi · hti · T1,i, K2,i = uti · T2,i, K3,i = gtii · T3,i.

The randomness used to generate msk are {αi, ti, T1,i, T2,i, T3,i} for i ∈ [1, n].
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Define the message spaceM as GT and the identity space I as a λ-bit integer.

Ext: Given the master secret key
{
{K1,i,K2,i,K3,i}i∈[1,n]

}
, and an identity ID,

it picks a random ri ∈ ZN and some random R1,i, R2,i ∈ Gp3 , then it calculates:

Di = K1,i ·K ID
2,i · (uIDh)riR1,i, Ei = K3,i · grii R2,i,

for i ∈ [1, n]. It is equivalent to Di =
∏m
j=1 v

αj
i,j · (uIDh)r̄i · R̄1,i and Ei = gr̄ii · R̄2,i,

for random r̄i ∈ ZN , R̄1,i, R̄2,i ∈ Gp3 . The output is skID = {D1, E1, . . . , Dn, En}.
Enc: To encrypt a message M ∈ GT for a user ID, for i ∈ [1, n], it randomly
picks si ∈ ZN and calculates the ciphertext is {A,B1, C1, . . . , Bn, Cn} as:

A = M ·
n∏
i=1

ysii , Bi = gsii , Ci = (uIDh)si .

Dec: Given C = {A,B1, C1, . . . , Bn, Cn}, and skID = {D1, E1, . . . , Dn, En}, the
message is recovered from the ciphertext C by:

M = A ·
∏n
i=1 ê(Ci, Ei)∏n
i=1 ê(Bi, Di)

.

UpdateMSK: Given
{
{K1,i,K2,i,K3,i}i∈[1,n]

}
, the KGC randomly picks t′i ∈ ZN

and T ′1,i, T
′
2,i, T

′
3,i ∈ Gp3 , for i ∈ [1, n], it sets the new master secret key as:

K ′1,i = K1,i · ht
′
i · T ′1,i, K ′2,i = K2,i · ut

′
i · T ′2,j , K ′3,i = K3,i · g

t′i
i · T

′
3,i.

UpdateUSK: Given skID = {D1, E1, . . . , Dn, En} for the identity ID, it picks some
random r′i ∈ ZN and some random R′1,i, R

′
2,i ∈ Gp3 for i ∈ [1, n], then it calcu-

lates the new identity-based secret key by:

D′i = Di · (uIDh)r
′
i ·R′1,i, E′i = Ei · vr

′
i ·R′2,i.

Theorem 13. Our IBE scheme is (2−m
ε

)-CAL-CPA secure if Assumptions 1,
2, 3 and the ISISp1,m,

√
m assumption hold.

The structure of the proof is similar to the proof of Theorem 6. We prove by
a hybrid argument using a sequence of games. The Gamerestricted and Gamek
are almost the same as the proof of Theorem 6. After that, a new Gameleaki is
defined as the same as Gameq, except that q1, . . . , qi in the mpk are replaced by
random elements in Gp1 . The Gamefinal is also defined as the previous proof:
the challenge ciphertext is changed to a semi-functional ciphertext encrypting a
random message. The details of the proof are given in the full version.
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