Two-output Secure Computation With
Malicious Adversaries

abhi shelat and Chih-hao Shen

University of Virginia, Charlottesville, VA 22904
{shelat, shench}@virginia.edu

Abstract. We present a method to compile Yao’s two-player garbled

circuit protocol into one that is secure against malicious adversaries that

relies on witness indistinguishability. Our approach can enjoy lower com-

munication and computation overhead than methods based on cut-and-

choose [13] and lower overhead than methods based on zero-knowledge

proofs [8] (or X-protocols [14]). To do so, we develop and analyze new

solutions to issues arising with this transformation:

— How to guarantee the generator’s input consistency

— How to support different outputs for each player without adding extra
gates to the circuit of the function f being computed

— How the evaluator can retrieve input keys but avoid selective failure
attacks

— Challenging 3/5 of the circuits is near optimal for cut-and-choose
(and better than challenging 1/2)

Our protocols require the existence of secure-OT and claw-free functions

that have a weak malleability property. We discuss an experimental im-

plementation of our protocol to validate our efficiency claims.

Keywords: Witness indistiguishability, Yao garbled circuits, signature schemes

1 Introduction

Yao [23] proposed a method that allows two honest-but-curious players—a gen-
erator (denoted by P;) with secret input x, and an evaluator (denoted by P»)
with secret input y—to jointly compute a function f(z,y) such that P; receives
nothing and P, receives f(x,y)." In this paper, we propose an approach for
transforming Yao’s garbled circuit protocol for honest-but-curious players into a
protocol that is secure against malicious players. Our main goal is to improve the
efficiency of this transformation and to do so using more general assumptions.
There are two well-known methods to achieve this transformation: the commit-
and-prove and cut-and-choose. The commit-and-prove method suggested by Gol-
dreich, Micali, and Widgerson [6] only requires the weak general assumption of
zero-knowledge proofs of knowledge. However, this approach requires costly NP-
reductions, which have never been implemented. On the other hand, an efficient

! A thorough description of this protocol can be found in Lindell and Pinkas [13].

transformation based on the cut-and-choose method was recently proposed by
Lindell and Pinkas [13] and implemented by Pinkas et al. [20]. The general idea in
cut-and-choose is for P; to prepare multiple copies of the circuit to be evaluated.
A randomly selected set of the circuits (called check-circuits) are then opened
to show if they were constructed correctly. Finally, the unopened circuits (called
evaluation-circuits) are evaluated by P, and the majority of the results is taken
as the final output. This approach has only constant round complexity, but the
replication incurs both communicational and computational overhead.

The starting point for our work is the cut-and-choose method. A natural
question we aim to study is to understand the fundamental limitations (in terms
of efficiency) of the cut-and-choose method. This method does not require NP-
reductions; however, it faces other efficiency problems stemming from the new
security problems introduced by evaluating e out of s copies of the circuit. In this
paper, we address several of these issues: (1) ensuring input consistency, (2) han-
dling two-output functions, (3) preventing selective failure attacks, and (4) de-
termining the optimal number of circuits to open versus evaluate. Moreover, we
identify weak and generic properties that admit efficient solutions to these issues.
In several of the cases, using witness indistinguishable protocols suffice. Thus, in
the case of input consistency, we are able to use an extremely efficient protocol as
long as claw-free functions with a minimal malleability property exist (they do
under the standard algebraic assumptions). We will later demonstrate the bene-
fits of our approach by both asymptotic analysis of complexity and experimental
results from an implementation. We now give an overview of our contributions.

1.1 Generator’s input consistency

According to the cut-and-choose method, P, needs to send e copies of her garbled
input to P». Since the circuits are garbled, P, could cheat by sending different
inputs for the e copies of the garbled circuit. For certain functions, there are sim-
ple ways for P; to extract information about Py’s input (§ 3 of [13]). Therefore,
the protocol must ensure that all e copies of P;’s input are consistent.

Related work Let n be P;’s and P»’s input size, and let s be a statistical security
parameter for the cut-and-choose method. Mohassel and Franklin [16] proposed
the equality-checker scheme, which has O(ns?) computation and communication
complexity. Woodruff [22] later suggested an expander-graph framework to give a
sharper bound to P;’s cheating probability. The asymptotic complexity is O(ns),
however, in practice, the constant needed to construct the expander graphs is
prohibitively large. Lindell and Pinkas [13] develop an elegant cut-and-choose
based construction that enjoys the simulation-based security against malicious
players. This approach requires O(ns?) commitments to be computed and ex-
changed between the participants. Although these commitments can be imple-
mented using lightweight primitives such as collision-resistant hash functions,
communication complexity is still an issue. Jarecki and Shmatikov [8] presented
an approach that is based on commit-and-prove method. Although only a single
circuit is constructed, their protocol requires hundreds of heavy cryptographic

operations per gate, whereas approaches based on the cut-and-choose method re-
quire only such expensive operations for the input gates. Nielsen and Orlandi [18]
proposed an approach with Lego-like garbled gates. Although it is also based on
the cut-and-choose method, via an alignment technique only a single copy of P;’s
input keys is needed for all the e copies of the garbled circuit. However, similar
to Jarecki and Shmatikov’s approach, each gate needs several group elements
as commitments resulting both computational and communicational overhead.
Lindell and Pinkas propose a Diffie-Hellman pseudorandom synthesizer tech-
nique in [14]; their approach relies on finding efficient zero-knowledge proofs for
specifically chosen complexity assumptions, which is of complexity O(ns).

Our approach to consistency We solve this problem not by explicitly using zero-
knowledge protocols (or X-protocols) but by communicating merely O(ns) group
elements. Our novel approach is to first observe that witness indistinguishable
proofs suffice for consistency, and to then use claw-free functions® that have a
weak malleability property to generate efficient instantiations of such proofs.
Intuitively, P;’s input is encoded using elements from the domain of the
claw-free collections which can later be used to prove their consistency among
circuits. The elements are hashed into random bit-strings which P; uses to con-
struct keys for garbled input gates. The rest of the gates in the circuit use
fast symmetric operations as per prior work. A concrete example is to instanti-
ate the claw-free functions under the Discrete Logarithm assumption by letting
fo(m) = g°h™ for some primes p and ¢ such that p = 2¢ + 1, and distinct group
elements g and h of Z; such that (g) = (h) = ¢. It is well-known that such
a pair of functions have efficient zero-knowledge proofs. An example instanti-
ation of our solution built on this pair of claw-free functions works as follows:
Py samples [mo1,...,mos] and [my1,...,my] from fy and fi’s domain Z,.
The range elements [A™01, ... h™o=] and [gh™1,...,gh™] are then used to
construct garbled circuits in the way that g®h™®4 is associated with P;’s input
bit value b in the j-th garbled circuit. The cut-and-choose method verifies that
the majority of the evaluation-circuits are correctly constructed. Let [f1,. .., je]
be the indices of these evaluation-circuits. At the onset of the evaluation phase,
Py, with input bit z reveals [g"h™=1, ..., g"h™=ic] to Py and then proves that
these range elements are the commitments of the same bit x. Intuitively, by the
identical range distribution property, P, with fy(ms;) at hand has no infor-
mation about x. Furthermore, after P; proves the knowledge of the pre-image
of [fz(mgj,),--., fa(ms ;)] under the same f,, by the claw-free property, P
proves the consistency of his input keys for all the evaluation-circuits.
Furthermore, in the course of developing our proof, we noticed that witness
indistinguishable proofs suffice in place of zero-knowledge proofs. Even more
generally, when the claw-free collection has a very weak malleability property

2 Loosely speaking, a pair of functions (fo, f1) are said to be claw-free if they are
(1) easy to evaluate, (2) identically distributed over the same range, and (3) hard to
find a claw. A claw is a pair of elements, one from fy’s domain and the other from
f1’s domain, that are mapped to the same range element.

(which holds for all known concrete instantiations), sending a simple function of
the witness itself suffices. We will get into more details in §2.1.

It is noteworthy that both the committed-input scheme in [16] and Diffie-
Hellman pseudorandom synthesizer technique in [14] are special cases of our ap-
proach, and thus, have similar complexity. However, the committed-input scheme
is not known to enjoy simulation-based security, and the pseudorandom synthe-
sizer technique requires zero-knowledge proofs that are unnecessary in our case,
which means that our approach is faster by a constant factor in practice.

1.2 Two-output Functions

It is not uncommon that both P; and P, need to receive outputs from a secure
computation, that is, the goal function is f(z,y) = (f1, f2) such that P; with
input x gets output fi, and P, with input y gets f».? In this case, the security
requires that both the input and output are hidden from the other player. When
both players are honest-but-curious, a straightforward solution is to let P; choose
a random number ¢ as an extra input, convert f(z,y) = (f1, f2) into a new
function f*((z,¢),y) = (A, (f1De, f2)), run the original Yao protocol for f*, and
instruct P; to pass the encrypted output fi ®c back to Py, who can then retrieve
her real output f; with the secret input ¢ chosen in the first place. However,
the situation gets complicated when either of the players could potentially be
malicious. Note that the two-output protocols we consider are not fair since P,
may always learn its own output and refuse to send P;’s output. However, they
can satisfy the notion that if P; accepts output, it will be correctly computed.

Related work One straightforward solution is for the players to run the single-
output protocol twice with roles reversed. Care must be taken to ensure that
the same inputs are used in both executions. Also, this approach doubles the
computation and communication cost. Other simple methods to handle two-
output functions also have subtle problems. Suppose, for example, P; encrypts
all copies of her output and has P, send these s random strings (or encryptions)
in the last message. In a cut-and-choose framework, however, a cheating P; can
use these random strings to send back information about the internal state of
the computation and thereby violate P,’s privacy. As an example, the cheating
P; can make one bad circuit in which P;’s output bit is equal to P»’s first input
bit. If P, sends all copies of P;’s output bit back to P;, then with noticeable
probability, the cheating P; can learn Py’s first input bit. The problem remains
if instead of sending back all bits, only a randomly chosen output bit is sent.
Besides, P; should not be convinced by a cheating P, with an arbitrary output.

As described in [13], the two-output case can be reduced to the single-output
case as follows: (1) P; randomly samples a, b, c € {0,1}" as extra input; (2) the
original function is converted into f*((x,a,b,c),y) = (A, (o, 3, f2)) where o =
f1 ® c is an encryption of f; and 8 = a - a + b is the Message Authentication
code (MAC) of a, and (3) P, sends (a,) back to P;, who can then check the

3 Here f1 and fo are abbreviations of fi(z,y) and f2(z,y) for simplicity purpose.

authenticity of the output a = f; @ c. However, this transformation increases the
size of P;’s input from n bits to 4n bits. As a result, the complexity of P;’s input
consistency check is also increased. A second drawback is that the circuit must
also be modified to include extra gates for computing the encryption and MAC
function. Although a recent technique [12] can be used to implement XOR gates
“for free,” the MAC function a - o + b still requires approximately O(n?) extra
gates added to the circuit. Since all s copies of the circuit have to be modified,
this results in additional communication of O(sn?) encrypted gates. Indeed, for
simple functions, the size of this overhead exceeds the size of the original circuit.

Kiraz and Schoenmakers [11] present a fair two-party computation protocol
in which a similar issue for two-output functions arises. In their approach, P
commits to P;’s garbled output. Then P; reveals the two output keys for each of
her output wires, and P, finds one circuit GC,. which agrees with “the majority
output for P;.” The index r is then revealed to P,. However, informing P; the
index of the majority circuit could possibly leak information about Py’s input. As
an anonymous reviewer has brought to our attention an unpublished follow-up
work from Kiraz [9], which elaborated this issue (in § 6.6 of [9]) and further fixed
the problem without affecting the overall performance. Particularly, in the new
solution, the dominant computational overhead is an OR~proof of size O(s), and
the dominant communicational overhead is the commitments to P; output keys,
where the number of such commmitments is of order O(ns). Their techniques
favorably compare to our approach, but we do not have experimental data to
make accurate comparisons with our implementation.

Our approach to two-output functions We present a method to evaluate two-
output function f without adding non-XOR gates to the original circuit for f.
In order for P, to choose one output that agrees with the majority, similar
to Kiraz and Schoenmakers’ approach in [11], we add extra bits to P;’s input as
a one-time pad encryption key by changing the function from f(x,y) = (f1, f2)
to f*((c,z),y) = (A, (f1 D e, f2)), where z,¢,y, f1, f2 € {0,1}"*. With this extra
random input ¢ from P;, P is able to do the majority function on the evaluation
output fi & ¢ without knowing P;’s real output f1. Next, P, needs to prove the
authenticity of the evaluation output f; & ¢ that she has given to P;. Here, our
idea is that P;’s i-th output gate in the j-th garbled circuit is modified to output
0||osk(0,4,7) or 1||osx(1,4,7) instead of 0 or 1, where o4 (b,4,7) is a signature
of the message (b,14,7) signed by P; under the signing key sk. In other words,
the garbled gate outputs P;’s output bit b and a signature of b, bit index 4, and
circuit index j. Therefore, after the circuit evaluation, P, hands f; ® ¢ to P;
and proves the knowledge of the signature of each bit under the condition that
the j-index for all signatures are the same and valid (among the indices of the
evaluation-circuits). Naively, this proof would have been a proof of O(ns) group
elements. However, we will show that a witness indistinguishable proof suffices,
which reduces the complexity by a constant factor. Furthermore, by using the
technique of Camenisch, Chaabouni, and Shelat for efficient set membership
proof [4], we are able to reduce the complexity to O(n + s) group elements.

1.3 The problem of Selective Failure

Another problem with compiling garbled circuits occurs during the Oblivious
Transfer (OT) phase, when P» retrieves input keys for the garbled circuits. A
malicious P; can attack the protocol with selective failure, where the keys used
to construct the garbled circuit might not be the ones used in the OT so that
Py’s input can be inferred according to her reaction after OT. For example, a
cheating P; could use (Kj, K1) to construct a garbled circuit but use (Ko, K7)
instead in the corresponding OT, where K; # K. As a result, if P5’s input bit
is 1, she will get K7 after OT and cannot evaluate the garbled circuit properly.
In contrast, if her input bit is 0, P will get Ky from OT and complete the
evaluation without complaints. P; can therefore infer P»’s input. This issue is
identified by both Mohassel and Franklin [16] and Kiraz and Schoenmakers [10].

Related work Lindell and Pinkas [13] replace each of Py’s input bits with s addi-
tional input bits. These s new bits are XOR’ed together, and the result is used
as the input to the original circuit. Such an approach makes the probability that
P, must abort due to selective failure independent of her input. This approach,
however, increases the number of input bits for P, from n to ns. Woodruff later
pointed out that the use of clever coding system can reduce the overhead to
max(4n, 8s). To be sure, Lindell, Pinkas, and Smart [15] implement the method
described in [13] and empirically confirm the extra overhead from this step. In
particular, a 16-bit comparison circuit that originally needs fifteen 3-to-1 gates
and one 2-to-1 gate will be inflated to a circuit of several thousand gates af-
ter increasing the number of inputs. Since the number of inputs determines the
number of OT operations, an approach that keeps the number of extra inputs
small is preferable. In fact, we show that increasing the number of inputs and
number of gates in the circuit for this problem is unnecessary.

Independent of our work, Lindell and Pinkas [14] propose to solve this prob-
lem by cut-and-choose OT. This new solution indeed provides a great improve-
ment over [13] and shares roughly the same complexity with our solution. Fur-
thermore, both the cut-and-choose OT and our solution can be built upon the
efficient OT proposed by Naor and Pinkas [17] or Peikert, Vaikuntanathan, and
Waters [19]. However, the particular use the latter OT in [14] needs two inde-
pendently chosen common reference strings, while our solution needs only one.

Our approach to selective failure Inspired by the idea of committing Oblivious
Transfer proposed by Kiraz and Schoenmakers [10], we solve the problem of
selective failure by having the sender (P; in Yao protocol) of the OT post-facto
prove that she ran the OT correctly by revealing the randomness used in the OT.
Normally, this would break the sender-security of the OT. However, in a cut-
and-choose framework, the sender is already opening many circuits, so the keys
used as inputs for the OT are no longer secret. Thus, the idea is that the sender
can prove that he executed the OT correctly for all circuits that are opened by
simply sending the random coins used in the OT protocol for those instances.
We stress that not every OT can be used here. Intuitively, a committing OT

is the OT with the binding property so that it is hard for a cheating sender to
produce random coins different from what she really used.

A critical point with this approach is that in order to simulate a malicious
P5, we need to use a coin-flipping protocol to pick which circuits to open. Con-
sequently, P; cannot open the circuits to P, until the coin-flipping is over; yet
the OT must be done before the coin-flipping in order to guarantee a proper
cut. So the order of operations of the protocol is critical to security. An efficient
committing OT based on Decisional Diffie-Hellman problem is presented in §2.3.

1.4 Optimal Cut-and-Choose Strategy

We find that most cut-and-choose protocols open s/2 out of the s copies of the
garbled circuit to reduce the probability that P succeeds in cheating. We show
that opening 3s/5-out-of-s is a better choice than s/2-out-of-s. In particular,
when s circuits are used, our strategy results in security level 279325 in contrast
to 27°/17 from [13] and 27°-31% from [14]. Although the difference with the latter
work is only 1% less, we show the optimal parameters for the cut-and-choose
method in Appendix A, thereby establishing a close characterization of the limits
of the cut-and-choose method.

1.5 Comparison of Communication Complexity

We attempt to compare communication efficiency between protocols that use a
mix of light cryptographic primitives (such as commitments instantiated with
collision-resistant hash functions) and heavy ones (such as group operations that
rely on algebraic assumptions like discrete logarithm). To meaningfully do so,
we consider asymptotic security under reasonable assumptions about the growth
of various primitives with respect to the security parameter k. We assume that:

1. light cryptographic primitives have size O(k);

2. heavy cryptographic operations that can be instantiated with elliptic curves
or bilinear groups take size 6(k?).

3. heavy cryptographic operations that require RSA or prime order groups over
7 take size 6(k3).

The size assumption we make is quite conservative. It is based on the ob-
servation that in certain elliptic curve groups, known methods for computing
discrete logarithms of size n run in time L, (1,1/2). Thus, to achieve security
of 2% it suffices to use operands of size 6(k?) by which we mean a value that
is asymptotically smaller than k? by factors of log(k). The computation bound
follows from the running time analysis of point multiplication (or exponentia-
tion in the case of Z;’;) algorithms. As we discuss below, for reasonable security
parameters, however, the hidden constants in this notation make the difference
much smaller. Let k be a security parameter for cryptographic operations, let
s be a statistical security parameter, and let |C| be the number of gates in the
base circuit computing f : {0,1}" x {0,1}" — {0,1}" x {0,1}".

— Jarecki and Shmatikov [8]: For each gate, the number of the communicated
group elements is at least 100, including the commitments of the garbled
values for input wires, the commitments of the doubly-encrypted entries,
and the ZK proof for the correctness of the gate. Moreover, for each input
or output wires, a ZK proof for conjunction/disjunction is required. Each
of the ZK proofs needs constant number of group elements. Finally, this
protocol assumes the decisional composite residuosity problem in an RSA
group; thus, each group element is of size 6(k?).

— Kiraz [9]: This approach uses an equality-checker framework that requires
O(ns?) commitments for checking P;’s input consistency. They solve the
selective failure attack with committing OT as we do. Moreover, to deal with
two-output functions, they add n extra bits to P;’s input, commit to all of
Py’s output keys, which include 2ns commitments and 2ns decommitments,
and a zero-knowledge OR-proof of size O(s).

— Lindell and Pinkas [13]: Each of the garbled gates requires 4k space for
four doubly-encrypted entries. Thus, for this approach, the communication
analysis is as follows: (1) s copies of the base circuit itself require s|C| gates;
(2) each of P;’s n input bits requires s? light commitments for the consistency
check; (3) P2’s n input bits require max(4n, 8s) OT’s. Also, the MAC-based
two-output function computation add additional O(n?) gates to each of the
s copies of the circuit and additional 3n bits to P;’s input. Thus, the overall
communication cost to handle two-output function is O(n?sk + ns%k).

COMMUNICATION
Base circuit P;’s input P>’s input Two-output
JS [8] IC|-6(k%) n-6(k%) n OT’s n-o(k®)
K [9] o(C|-sk) O(ns’k) n OT’s O(nsk) + O(s) - 6(k?)
LP07 [13] O(|C|-sk) O(ns’k) max(4n,8s) OT’s O(n?sk + ns’k)
LP10 [14] O(|C|-sk) O(ns)-6(k*) n OT’s O(n?sk +ns’k)
Our work O(|C|-sk) O(ns)-6(k*) n OT’s O(ns) - 6(k?)

Table 1: Asymptotic Analysis of various two-party secure computation.

The recent work of [14] also considers a more efficient way to implement two-
party computation based on cut-and-choose OT and specific security assump-
tions. They report 13sn exponentiations and communication of 5sn + 14k + Tn
group elements. (Note we count bits above to compare commitments versus other
primitives.) Concretely, these parameters are similar to our parameters but rely
on more specific assumptions, and do not consider two-party outputs.

2 Building Blocks

For clarity purpose, the standard checks that are required for security have been
omitted. For example, in many cases, it is necessary to verify that an element
that has been sent is indeed a member of the right group. In some cases, it is
implicit that if a player detectably cheats in a sub-protocol, then the other player
would immediately abort execution of the entire protocol.

2.1 Consistency Check for the Generator’s Input

The cut-and-choose approach to compiling Yao circuits ensures that P, submits
consistent input values for each copy of the evaluation-circuits. Recall that there
are e copies of the circuit which must be evaluated. Thus, for each input wire,
P; must send e keys corresponding to an input bit 0 or 1. It has been well-
documented [16,10,22,13] that in some circumstances, P; can gain information
about P,’s input if P; is able to submit different input values for the e copies
of this input wire. The main idea of our solution is inspired by the claw-free
collections* defined as follows:

Definition 1 (Claw-Free Collections in [7]). A three-tuple of algorithms
(G,D, F) is called a claw-free collection if the following conditions hold

1. Easy to evaluate: Both the index selecting algorithm G and the domain
sampling algorithm D are probabilistic polynomial-time, while the evaluating
algorithm F is a deterministic polynomial-time.

2. Identical range distribution: Let f2(x) denote the output of F on input
(b,I,x). For any I in the range of G, the random variable f?(D(0,1)) and
fH(D(1,1)) are identically distributed.

3. Hard to form claws: For every non-uniform probabilistic polynomial-time
algorithm A, every polynomial p(-), and every sufficiently large n’s, it is true
that Pr{I — G(1"); (a,y) — A() : £2(x) = F}(y)] < 1/p(n).

With the claw-free collections, our idea works as follows: P, first generates
I by invoking the index generating algorithm G(1%), where k is a security pa-
rameter. For each of her input bits, P, invokes sampling algorithms D(I,0) and
D(1,1) to pick [mo,1,...,mos) and [mq1,...,my 5], respectively. P; then con-
structs s copies of garbled circuit with range elements [fY(mq.1),..., f2(mos)]
and [f}(m11),..., fi(m1s)] by associating f?(my, ;) with Py’s input wire of bit
value b in the j-th garbled circuit. Let [j1, .. ., j.] denote the indices of the garbled
circuits not checked in the cut-and-choose (evaluation-circuits). During the eval-
uation, P; reveals [f2(mp.j,),- .., f(myp ;)] to P2 and proves in zero-knowledge
that P; gets f}’(m?l) and f}’(mi) via the same function f?, for 2 <i <e.

However, in the course of developing our solution, we noticed that witness
indistinguishable proofs suffice in place of zero-knowledge proofs. For example,

4 Tt is well known that claw-free collections exist under either the Discrete Logarithm
assumption or Integer Factorization assumption [7].

consider the claw-free collection instantiated from the Discrete Logarithm as-
sumption, that is, let f2(m) = g®h™, where I = (g, h,p,q) includes two primes
p and ¢ such that p = 2¢ + 1, and distinct generators g and h of Z;, such that
(g) = (h) = q. After revealing [g°h™b41 ... g°h™bie] to Py, it is a natural so-
lution that P; proves in zero-knowledge to P, the knowledge of (my, j, — my.j,)
given common input gPh™bdi (gPh™ea1) Tt = pmeaimea for 2 < 4 < e. The
key insight here is that it is unnecessary for P; to hide (mj ;, — mp j,) from P,
since [my,j,, ..., Mp ;.| are new random variables introduced by P, and b is the
only secret needed to be hidden from P,. Simply sending (my, j, — msp 4,) to Po
will suffice a proof of checking P;’s input consistency without compromising P;’s
privacy. In other words, given [g0h™vi1, ..., g®h™vie mly. ... m.], if Py confirms
that g®h™vi1 = gPh™vii - hmi for 2 < i < e, then either P;’s input is consistent
so that m} = My, — My, j,, or Py is able to come up with a claw.

Note that extra work is only done for the input gates—and moreover, only
those of P;. All of the remaining gates in the circuit are generated as usual, that
is, they do not incur extra commitments. So, unlike solutions with committed
OT such as [8], asymmetric cryptography is only used for the input gates rather
than the entire circuit. To generalize the idea, we introduce the following notion.

Definition 2 (Malleable Claw-Free Collections). A four-tuple of algorithms
(G, D, F, R) is a malleable claw-free collection if the following conditions hold.

1. A subset of claw-free collections: (G, D, F) is a claw-free collection, and
the range of D and F' are groups, denoted by (G1,x) and (Gg, <) respectively.
2. Uniform domain sampling: For any I in the range of G, random variable
D(0,1) and D(1,I) are uniform over Gy, and denoted by D(I) for simplicity.
3. Malleability: R : Gy — Go runs in polynomial time, and for b € {0,1}, any
I in the range of G, and any m1,ms € G, fe(mixmz) = f2(m1)o Rr(ma).

Consider the claw-free collection constructed above under the Discrete Log-
arithm assumption, we know that it can become a malleable claw-free collection
simply by letting G1 = Zy, Gz = Zy, and Rj(m) = h™ for any m € G;.

2.2 Two-Output Functions

To handle two-output functions, we want to satisfy the notion that it might
be unfair in the sense that P, could abort prematurely after circuit evaluation
and she gets her output. However, if P; accepts the output given from P, our
approach guarantees that this output is genuine. Namely, P> cannot provide an
arbitrary value to be P;’s output. In particular, P> cannot learn P;’s output
more than those deduced from P,’s own input and output.

Recall that it is a well-accepted solution to convert the garbled circuit com-
puting f(xay) = (flvfz) into the one Computing g((xapvavb)ay) = ((aaﬂ)mf?)a
where o« = f; 4+ p as a ciphertext of f; and 5 = a-a + b as a MAC for the
ciphertext. Since P, only gets the ciphertext of P;’s output, she does not learn
anything from the ciphertext. Also, given (a,), Pi can easily verify the au-
thenticity of her output. However, we are not satisfied with the additional O(s?)

gates computing the MAC (s is the statistical security parameter) to each of
the s copies of the garbled circuit, which results in O(s?) extra garbled gates in
total. Indeed, the number of extra gates can easily exceed the size of the origi-
nal circuit when f is a simple function. Hence, we propose another approach to
authenticate P;’s output without the extra gates computing the MAC function.

While our approach also converts the circuit to output the ciphertext of P;’s
output, that is, from f(z,y) = (f1, f2) to f*((c,z),y) = (A, (f1 D¢, f2)), we solve
the authentication problem by the use of the public-key signature scheme and its
corresponding witness-indistinguishable proof. Each bit value of the output of
Py’s output gates is tied together with a signature specifying the value and the
location of the bit. On one hand, P, can easily verify the signature during the
cut-and-choose phase (to confirm that the circuits are correctly constructed). On
the other hand, after the evaluation and giving P; the evaluation result (f1 & c),
P, can show the authenticity of each bit of the result by proving the knowledge
of its signature, that is, the signature of the given bit value from the right bit
location. Note that a bit location includes a bit index and a circuit index. In other
words, a bit location (¢,7) indicates P;’s i-th output bit from the j-th garbled
circuit. While the bit index is free to reveal (since P; and P, have to conduct the
proof bit by bit anyway), the circuit index needs to be hidden from P;; otherwise,
P, can gain information about P»’s input as we discussed above. We stress that
it is critical for P, to provide a signature from the right location. Since during
the cut-and-choose phase, many properly signed signatures are revealed from
the check-circuits, if those signatures do not contain location information, they
can be used to convince P; to accept arbitrary output.

Normally, an OR-proof will suffice the proof that the signature is from one of
the evaluation-circuits. Nevertheless, an OR proof of size O(s) for each bit of P;’s
n-bit output will result in a zero-knowledge proof of size O(ns). We therefore
adopt the technique from [4] in order to reduce the size of the proof to O(n+ s).
Let S = {ji,...,je} be the indices of all the evaluation-circuits. The idea is for P
to send a signature of every element in S, denoted by [6(j1), - .., d(je)]. By reusing
these signatures, P, is able to perform each OR proof in constant communication.
More specifically, after the evaluation, P, chooses one evaluation-circuit, say the
ji-th circuit, the result of which conforms with the majority of all the evaluation-
circuits. Let M = [My,...,M,] be P;’s output from the j;-th circuit. Recall that
P, has both M; and the signature to (M;, ¢, 5;), denoted by o(M;, 4, 7), due to the
way the garbled circuits were constructed. To prove the authenticity of M;, P
sends M; to Pp, blinds signature §(j;) and o(M;, 4, j;), and proves the knowledge
of “o(Mj;,1,7) for some j € S.” In other words, P> needs to prove the knowledge
of o(M;,4,j) and 6(5*) such that j = j* for ¢ = 1,...,n. The complete proof is
shown in Protocol 1. Due to the nonforgeability property of signature schemes,
P; proves the knowledge of the signature and thus the authenticity of M.

One particular implementation of our protocol can use the Boneh-Boyen
short signature scheme [2] which is briefly summarized here. The Boneh-Boyen

signature scheme requires the ¢-SDH (Strong Diffie-Hellman) assumption® and
bilinear maps®. Based on these two objects, the Boneh-Boyen signature scheme
includes a three-tuple of efficient algorithms (G, S, V') such that

1. G(1¥) generates key pair (sk, vk) such that sk = x € Zy and vk = (p, g,G1, X),
where 1 is a group of prime order p, g is a generator of G;, and X = ¢g*.

2. S(sk,m) signs the message m with the signing key sk by o(m) = g'/@+m),

3. V(vk, m, o) verifies the signature o with vk by calculating e(o, g™ X). If the
result equals e(g, g), V outputs valid; otherwise, V outputs invalid.

Protocol 1: Proof of P;’s output authenticity

Common Input: ciphertext of Pi’s output fi & ¢ = [Mi,...,My,], the indices
of the evaluation-circuits S = {ji,...,je} and the public
key (p,G,g,X,Y) of the Boneh-Boyen signature scheme. In
particular, X = g%, and Y = ¢".

Py Input: the corresponding private key (z,y) of the signature scheme.
P, Input: the signature vector [o(b1,1,71),...,0(bn,n,)] such that
o(b,i,5) = g/ =+w+i) and j, € S.

p, 200Glies p, Py picks another generator h of G and a random z € Zj.
Then P; sends [Z,6(j1),-..,0(je)] to P2 such that

Z =h* and §(j) = B/

Py UuUnsV Py Py picks ui, ..., Un,v € Zp and computes U; < o(b;, 1, ji)"
and V < 6(5;)". Then [Uy,...,Uy, V] is sent to Pi.

Py (21m9nb Py P opicks a, By ...y Bny Y € Zp and sends [as, . . ., an,b] to P,
where a; <+ e(U;, g)%e(g, 9)% and b < e(V, h)*e(h, h)".

P c P, P, picks c € Z, at random and sends it to P,.

P M P, Pssends zo ¢ a+cji, 25, < Bi—c-u;, and 2y < y—c-v back
to P1, who checks a; < e(Us, XMV - e(Us, g)* - e(g, g)*%
fori = 1,...,n and b = e(V, Z)° - e(V,h)* - e(h, h)™. P
aborts if any of the checks fails.

2.3 Committing Oblivious Transfer

The oblivious transfer (OT) primitive, introduced by Rabin [21], and extended
by Even, Goldreich, and Lempel [5] and Brassard, Crépeau and Robert [3] works

5 ¢-SDF assumption in a group G of prime order p states that given g, g*, gIQ, e ,gzq,
it is infeasible to output a pair (c, gl/(”C)) where ¢ € Z,.

5 Let G; and G be two groups of prime order p. A bilinear map is amap e : G; xG1 —
G2 with the following properties: (1) for any u,v € G, and a,b € Z, e(u®,v?) =
e(u,v)®; (2) for any generator g of G1, e(g,g) # 1; and (3) for any u,v € Gy, it is

easy to compute e(u,v).

as follows: there is a sender with messages [m1,...,my] and a receiver with a
selection value o € {1,...,n}. The receiver wishes to retrieve m, from the sender
in such a way that (1) the sender does not “learn” anything about the receiver’s
choice o and (2) the receiver “learns” only m, and nothing about any other
message m; for i # 0. Kiraz and Schoenmakers [10] introduced another notion
of OT called committing OT in which the receiver also receives a perfectly-hiding
and computationally-binding commitment to the sender’s input messages, and
the sender receives as output the values to open the commitment. Indeed, Kiraz
and Schoenmakers introduced this notion specifically for use in a Yao circuit
evaluation context. We adopt the idea behind their construction.

Formally, a one-out-of-two committing oblivious transfer OT? is a pair of
interactive probabilistic polynomial-time algorithms sender and receiver. Dur-
ing the protocol, the sender runs with input messages ((mq, 7o), (m1,71)), while
the receiver runs with input the index o € {0,1} of the message it wishes to
receive. At the end of the protocol, the receiver outputs the retrieved message
m, and two commitments comy(mg;rg),comy(mq;71), and the sender outputs
the openings (rg, r1) to these commitments. Correctness requires that m/ = m,
for all messages mg, m1, for all selections o € {0,1} and for all coin tosses of the
algorithms. Here, we use the standard notion of simulation security.

Theorem 1. [19] If the Decisional Diffie-Hellman assumption holds in group
G, there exists a protocol that securely computes the committing OT?.

Protocol 2 constructively proves Theorem 1. This protocol is a simple modifi-
cation of the OT protocols designed by Peikert, Vaikuntanathan, and Waters [19]
and later Lindell and Pinkas [14]. We simply add a ZK proof of knowledge in
intermediate steps. Intuitively, the receiver-security is achieved due to the Deci-
sional Diffie-Hellman assumption and the fact that the ZK proof of knowledge
is independent of the receiver’s input. On the other hand, the sender security
comes from the uniform distributions of X; ; and Y; ; over G given that r; ; and
s;,; are uniformly chosen and that the ZK proof has an ideal-world simulator
for the verifier (or the receiver in the OT). As described in [15], it is possible
to batch the oblivious transfer operations so that all n input keys (one for each
bit) to s copies of the garbled circuit are transferred in one execution.

3 Main Protocol

Here we put all the pieces together to form the complete protocol. Note that
comy(K;t) denotes a perfectly-hiding commitment to K with opening ¢, and
comy(K;t) denotes a perfectly-binding commitment to K with opening ¢.

Common input: a security parameters k, a statistical security parameter
s, a malleable claw-free collection (Geiw, Doww, Forw, Remw), @ signature scheme
(Gsi; Ssic, Vaie), a two-universal hash function H : {0,1}* — {0,1}*, and the
description of a boolean circuit C' computing f(z,y) = (f1, f2), where |z| = 2n
(including the extra n-bit random input) and |y| = |f1] = | f2| = n.

Protocol 2: Oblivious transfer for retrieving Py’s input keys [14]

Common:

P Input:
P> Input:
P Output:
P> Output:

Py Qogiht P,
Pl ZK PoK P2
Py L P
P {Xi,5:Yi,5} P,

A statistical security parameter s, a group G of prime order p,
and G’s generator go

Two s-tuples [Ko,1,...,Kos] and [K1,1,..., K1,s].

o e{0,1}

Commitment openings {Kj j, i, Si,j fic{o,1},1<j<s

(Ko, Ko o] and {comu(Ki,j;7i 5, 8i) bicqo,1},1<i<s

P, picks y,a € Z, and sends (g1, ho, h1) < (98,98, 9%™") to Pi.
P, proves that (ho, g1, h1) satisfies (ho = g§) A (% = g1).

P, picks r € Z;, and sends g < g, and h < h to Py.

For i € {0,1},1 < j <'s, Pi picks 7y j,8;; € Zp and sends X ;
and Y; ; to Py, where X; ; = g; " h,"7 and Y;; = g hi9 - K, ;.
Py gets comu(K; j5755,8:,5) = (Xij,Ys,;) and computes key
Ko',j — Ycr’j . XU_’;‘

Private input: P; has the original input x; ...x, and the extra random input
T = Tpy1-.-Ton, while Py has input y = y192 ... Yn.
Private output: P; receives output fi(x,y), while P, receives output fo(z,y).

1. P, runs the index selecting algorithm I < Gy (1¥) and sends I to P;.
2. Committing OT for P,’s input: Forevery 1l <i<nandeveryl <j <s,

P picks a random pair of k-bit strings (K7 ;, K7 ;), which is associated with
P5’s i-th input wire in the j-th circuit. Both parties then conduct n instances

of committing OT in parallel. In the i-th instance,

(a) Pyusesinput ([KP,...,K?], [K},,..., K}]), whereas P; uses input y;.
(b) Py gets the openings ([O) [t s -0t]) to both commitment

' Y1,8 ? 7,8
vectors, whereas P gets the vector of her choice (K[, K] and the
commitments to both vectors, ie., [comy (KD ;1)), .. .,comH(K?s,t?S)]
and [comy (K} 5t), ... ,comH(Kz stig)l

. Garbled circuit construction: P; runs the key generating algorithm G (
to generate a signature key pair (ski,pki) and the domain sampling algo-
rithm Deyw (I) to generate domain element m? ;, for b € {0,1}, 1 <4 < 2n,
1 < j < s. Next, P, constructs s independent copies of garbled version of
C, denoted by GCf4,...,GC;. In addition to Yao’s construction, circuit GC)
also satisfies the following:

(a) Jib)j is associated with value b to P;’s i-th input wire, where Jib)j is ex-

tracted from group element Few (b, I, mb) ie. Jb = H(Feow(b, I, mb))

(b) K? ; chosen in Step 2 is associated w1th value b to Py’s i-th input wire.
(c) b |Sg1c(5k1, (b,i,7)) is associated with bit value b to P;’s i-th output wire.

. Forbe{0,1},1<i<2n,1 < j < s, Py sends circuits GC4, ..., GCs and the
commitments to Feyy (b, I, m? ;), denoted by comy (Fopw (b, 1, mb), ”) to Ps.

1%)

5. Cut-and-choose: P, and P» conduct the coin flipping protocol to generate a
random tape, by which they agree on a set of check-circuits. Let T be the re-
sulting set, that is, T' C {1,..., s} and |T'| = 3s/5. For every j € T, P; sends
to P, Pis of garbled circuit GCj, including [KY ..., Kb], [th ... 5],
[m} ;,...,mb, 1, [rh .- 75, 4], for b € {0,1}, and the random keys asso-
ciated with each wire of GC;. P> check the following:

(a) The commitment from Step 2 is revealed to Kﬁ ; with tfvj.
(b) The commitment from Step 4 is revealed to Fepw(b, I, mZ ;) with T?vj.
(c) GC; is a garbled version of C* that is correctly built. In particular,
— H(Fouw (b, I, mi?’j)) is associated with value b to P;’s i-th input wire;
— Kﬁ ; 1s associated with bit value b to P»’s i-th input wire;
— Vie(pki, (b,4,7),0(b,1,7)) = valid, where o(b,4,7j) is the signature
comes along with bit value b from P;’s i-th output wire;
— the truth table of each boolean gate is correctly converted to the
doubly-encrypted entries of the corresponding garbled gate.
If any of the above checks fails, P, aborts.

6. Consistency check for P;’s inputs: Let e = 2s/5 and {ji,...,J.} be

the indices of evaluation-circuits. P; then decommits to her input keys for

the evaluation-circuits by sending ([r7"; ..., 75" |, [rT) ..., 7527) to
Py Let [Mi ..., Monj,],..., [Mij,,..., Moy ;| be the resulting decom-

mitments. Next, P, proves the consistency of her i-th input bit by sending
[mis, * (mgs) 7h o mis o« (i)™ to Py, who then checks if

M; j, = M; j, © Rewe(I,m{, + (mi%) 71), for il =2,... e
P, aborts if any of the checks fails. Otherwise, let J;"; = H(M; ;).

7. Circuit evaluation: For every j € {j1,...,jc}, P> now has key vectors
[T, J32m] (from Step 6) representing Py’s input = and [KYY, ..., K]
(from Step 2) representing P»’s input y. So P; is able to do the evaluation on
circuit GC; and get Pi’s output [My j||o(M15),...,Mp j|lo(M, ;)] and Py’s
output [Nqj,...,Np], where M; ;,N; ; € {0,1}. Let M; = [Myj,..., My j]
and Nj = [Ny ,,...,N, ;] be the n-bit outputs for P; and P,, respectively.
P, then chooses index j; such that M, and N, appear more than e/2 times
in vectors [Mj,,..., M,] and [Nj,,..., N,], respectively. P, sends M,, to
Py and takes N, as her final output. If no such j; exists, P, aborts.

8. Verification to P;’s output: To convince P; the authenticity of M, with-
out revealing j;, P; generates another signature key pair (sks, pks). Then Py
signs the indices of all the evaluation-circuits and sends the results to Ps.
In particular, P; sends to P, the public key pks and a signature vector
[0(j1),-.-,0(je)], where 6(j) = Ssic(ske,). The signature is verified by Py
by checking Vi (pks, j, (7)) = valid, for every j € {j1,...,jc}. Next, Py
proves to P; in witness-indistinguishable sense the knowledge of o(M; j,, 4, j)
(a signature signed with ski) and §(j*) (a signature signed with sks) such
that j and j* are equivalent, for 1 < ¢ < n. P; aborts if the proof is not
valid; otherwise, Py takes M, ® (Zp+1, .- .,%2y) as her final output.

Theorem 2. Let f: {0,1}"x{0,1}"™ — {0,1}"x{0,1}" be any function. Given
a secure committing oblivious transfer protocol, a perfectly-hiding commitment
scheme, a perfectly-binding commitment scheme, a malleable claw-free family,
and a pseudo-random function family, the Main protocol securely computes f.

We have omitted the standard simulation-based definition of “securely computes
f7 for space. Roughly, this definition requires a simulator for the corrupted eval-
uator, and a simulator for the corrupted generator that is able to generate tran-
scripts given only oracle access to either the evaluator or generator (respectively)
that are indistinguishable from the transcripts produced in real interactions be-
tween the corrupted generator and honest evaluator or honest generator and
corrupted evaluator. (A simulator for when both parties are corrupted is also
required but trivial.) The proof of Theorem 2 is omitted for space.

4 Experimental Results

We produced an implementation of our protocol to demonstrate its practical
benefits. Our implementation takes the boolean circuit generated by Fairplay
compiler as input. The encryption function used to construct garbled gates is
defined as Encj i (m) = (m®SHA-256(J) @ SHA-256(K))1...k, where |J| = |K| =
|m| = k, and Sy, denotes the least significant k& bits of S. Here SHA-256 is
modeled as a pseudorandom function. The choice of SHA-256 is to make a fair
comparison as it is used in [20].

Gates Time (s) Totals

Base Overhead Non-XOR/|Precomp OT Calc|Time (s) KBytes
(f1, f2) 531 2,250 278 117 16 39 172 140,265
Ours (on slower)| 531 6 237 35 15 21 71 5,513
Ours (on fast) 531 6 237 27 11 15 53 5,513
(A, AES.(y)) 33,880 12,080 11,490 483 34 361| 878 406,010
Ours (on slower)| 33,880 0 11,286 138 58 69 265 190,122
Ours (on fast) |33,880 0 11,286 98 44 50 192 190,122

Table 2: The performance comparison with [20].

Following Pinkas et. al [20], we set the security level to 2740 and the security

parameter k (key length) to 128-bit. In the first experiment, P; and P hold a 32-
bit input = (z31230...%0)2 and ¥ = (Y31Y30 - - - Yo)2, respectively. They want
to compute f(z,y) = (f1, f2) such that after the secure computation, P; receives
fi= Z?io x; Dy;, and P, receives fo as the result of comparison between z and
y. The 6 gates of overhead we incur in the first experiment relate to our method
for two-output functions. In the second experiment, P, has a 128-bit message
block while P; has a 128-bit encryption key. They want to securely compute the
AES encryption, and only P, gets the ciphertext.

We ran our experiments on two machines: slower and fast, where slower
runs OS X 10.5 with Intel Core 2 Duo 2.8 GHz and 2GB RAM, and fast runs
CentOS with Intel Xeon Quad Core E5506 2.13 GHz and 8GB RAM. slower
is not as powerful as the machine used in [20] (Intel Core 2 Duo 3.0 GHz, 4GB
RAM), and fast is the next closest machine that we have.

Table 2 reports the best numbers from [20]. We note that [20] applies the
Garbled Row Reduction technique so that even non-XOR gates can save 25% of
the communication overhead. A future version of our protocol can also reap this
25% reduction since the technique is compatible with our protocol.

Our implementation involves a program for P; and one for P,. For the pur-
pose of timing, we wrote another program that encapsulates both of these pro-
grams and feeds the output of one as the input of the other and vice versa.
Timing routines are added around each major step of the protocol and tabu-
lated in Table 3. This timing method eliminates any overhead due to network
transmission, which we cannot reliably compare. The reported values are the
averages from 5 runs.

We implemented our solution with the PBC (Pairing Based Cryptography)
library [1] for testing. The components of our protocol, including the claw-free
collections, the generator’s input consistency check, and the generator’s output
validity check, are built on top of the elliptic curve y? = z3+3 over the field F, for
some 80-bit prime q. We have made systems-level modifications to the random
bit sampling function of the PBC library (essentially to cache file handles and
eliminate unnecessary systems calls).

In Table 4, we list the results of the MAC-based two-output function handling
and ours. The MAC approach introduces extra 16,384 (1282) non-XOR gates to
the AES circuit, whereas the original AES circuit has only 11,286 non-XOR
gates. Since the number of non-XOR gates is almost doubled in the MAC-based
approach, their circuit construction and evaluation need time about twice as
much as ours. Moreover, the MAC-based approach has twice as many input bits
as ours so that the time for P;’s input consistency has doubled.

f(I,y) = (f17f2) f(amy) = (AaAESE(y))

Py P, Sum (s) P P, Sum (s)
Precomp Time 35.4 0.0 35.4 137.7 0.0 137.7
OT Time 7.9 6.7 14.6 31.9 26.3 58.2
Cut-and-Choose 0.0 14.7 14.7 0.0 44.4 44.4
Input Check 0.0 3.0 3.0 0.0 10.0 10.0
Eval Time 0.0 3.4 3.4 0.0 14.1 14.1
Two-output 0.1 0.0 0.1 0.0 0.0 0.0
Total (s) 43.4 27.8 71.2 169.6 94.8 264.4

Table 3: The running time (in seconds) of two experiments on machine slower.

COMM. FOR EACH STAGE (KBYTES) SEMI-HONEST ADVERSARIES

Circuit construction 2,945 53.42% This work [20]
Oblivious transfer 675 12.25% No. of gates 531 531
Cut-and-choose 1,813 32.89% Comm. (KBytes) 23 22
Py’s input consistency 76 1.38%

Py’s output validity 3 0.01% MALICIOUS ADVERSARIES

- No. of gates 537 2,781
Total communication 5,513 100.00% Comm. (KBytes) 5 513 167.276

(a) (b)

Fig. 3: (a) Communication cost for Experiment 1 by stages for our solution given
statistical security parameter s = 125 and security parameter k = 128. (b) The
circuit size and communication cost comparison with [20] (which also ensures
the cheating probability is limited below 274°).

SEMI-HONEST ADVERSARIES

COMM. FOR EACH STAGE (KBYTES)

Circuit construction 99,408 52.29% This work 201
Oblivious transfer 2,699 1.42% No. of gates 33,880 33,880
Cut-and-choose 87,585 46.16% Comm. (KBytes) 795 503

Py’s input consistency 256 0.13%
Py’s output validity 0 0.00%

MALICIOUS ADVERSARIES

No. of gates 33,880 45,960

Total communication 190,122 10000% Comm. (KBytes) 190. 122 406.010

@) (b)

Fig.4: (a) Communication cost for Experiment 2 by stages for our solution given
statistical security parameter s = 125 and security parameter k = 128.

References

1.
2.

3.

Pairing-Based Cryptography Library (2006), http://crypto.stanford.edu/pbc/
Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH
Assumption in Bilinear Groups. Journal of Cryptology 21, 149-177 (2008)
Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets. In:
Odlyzko, A. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234-238. Springer (1987)
Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership
and Range Proofs. In: Pieprzyk, J. (ed.) ASTACRYPT 2008. LNCS, vol. 5350, pp.
234-252. Springer (2008)

Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Communications of ACM 28, 637-647 (1985)

Goldreich, O., Micali, S., Wigderson, A.: How to Play ANY Mental Game. In: 19th
Annual ACM Symposium on Theory of Computing. pp. 218-229. ACM (1987)

. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge

Proof Systems for NP. Journal of Cryptology 9, 167-189 (1996)

http://crypto.stanford.edu/pbc/

MAC two-output approach Our two-output approach

P1 P2 Subtotal‘ P1 PQ Subtotal
Precomp Time 498.9 0.0 498.9| 294.1 0.0 294.1
OT Time 32.0 26.3 58.3 31.9 26.2 58.1
Cut-and-Choose 0.0 158.6 158.6 0.0 185.3 185.3
Input Check 0.0 40.4 40.4 0.0 19.8 19.8
Eval Time 0.0 50.6 50.6 0.0 24.4 24.4
Two-output 0.0 0.0 0.0 0.7 0.6 1.3
Total 530.9 275.9 806.8‘ 326.7 256.3 583.0

Table 4: Computation time (in seconds) of f(x,y) = (AES;(y), A) running on
machine slower under different two-output handling methods.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Commit-
ted Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97-114.
Springer (2007)

Kiraz, M.: Secure and Fair Two-Party Computation. Ph.D. thesis, Technische Uni-
versiteit Eindhoven (2008)

Kiraz, M., Schoenmakers, B.: A Protocol Issue for The Malicious Case of Yao’s
Garbled Circuit Construction. In: 27th Symposium on Information Theory in the
Benelux. pp. 283-290 (2006)

Kiraz, M., Schoenmakers, B.: An Efficient Protocol for Fair Secure Two-Party
Computation. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 88-105.
Springer (2008)

Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and Ap-
plications. In: Aceto, L., Damgard, I., Goldberg, L., Halld6rsson, M., Ingdlfsdéttir,
A., Walukiewicz, I. (eds.) ALP 2008. LNCS, vol. 5126, pp. 486-498. Springer (2008)
Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52-78. Springer (2007)

Lindell, Y., Pinkas, B.: Secure Two-Party Computation Via Cut-and-Choose Obliv-
ious Transfer. Crypto ePrint Archive (2010), http://eprint.iacr.org/2010/284
Lindell, Y., Pinkas, B., Smart, N.: Implementing Two-Party Computation Effi-
ciently with Security Against Malicious Adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008, LNCS, vol. 5229, pp. 2-20. Springer (2008)
Mohassel, P., Franklin, M.: Efficiency Tradeoffs for Malicious Two-Party Compu-
tation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 458-473. Springer (2006)

Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.)
CRYPTO 1999, LNCS, vol. 1666, pp. 791-791. Springer (1999)

Nielsen, J., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold,
0. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368-386. Springer (2009)

Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008, LNCS, vol. 5157,
pp. 554-571. Springer (2008)

Pinkas, B., Schneider, T., Smart, N., Williams, S.: Secure Two-Party Computation
Is Practical. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 250-267.
Springer (2009)

http://eprint.iacr.org/2010/284

21. Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Tech. Rep. TR-81,
Harvard Aiken Computation Laboratory (1981)

22. Woodruff, D.: Revisiting the Efficiency of Malicious Two-Party Computation. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79-96. Springer (2007)

23. Yao, A.: Protocols for Secure Computations. In: 23rd Annual Symposium on Foun-
dations of Computer Science. pp. 160-164. IEEE Computer Society (1982)

A Optimal Choice in Cut-and-Choose Strategy

According to the cut-and-choose strategy, P> chooses e copies of the garbled
circuits and asks P; to open the rest (s — e). After the verification, P, evaluates
the rest e copies of the circuits and takes the majority output as her output. A
natural question is: Under the assumption that Py ’s inputs are consistent, how
many circuits does Py evaluate in order to minimize the probability for Py ’s best
cheating strategy to succeed?

The assumption is valid due to the consistency check on P;’s input. Given
that s and e are fixed and known to P;, let b be the number of bad circuits
created by P;. A circuit is bad if either the circuit is wrongly constructed or Py’s
inputs are selectively failed via OT. The goal is to find e and b such that the
probability that P, cheats without getting caught (z:le’) /(,°,) is minimized.

We first claim that P;’s best cheating strategy is to produce b = |e/2] + 1
bad circuits. Indeed, if b < |e/2], P2’s output will not get affected since the
faulty outputs will be overwhelmed by majority good ones. Also, the more bad
circuits, the more likely that P; will get caught since (st(fgl)) > (§:Z) So the
best strategy for P; to succeed in cheating is to construct as few bad circuits
as possible while the majority of evaluation circuits are bad, which justifies the
choice of b.

Our next goal is to find the e that minimizes Pr(e) = (S_Sti_l)/(sfe). To
get rid of the troublesome floor function, we will consider the case when e is
even and odd separately. When e = 2k for some k € N such that k < 5, let
Preven(k) = (Ss_fz_kl)/(sfzk). Observer that P;,e;jv“cik(z)l) = Q’fﬁ,ﬂ?f;”. It is not
hard to solve the quadratic inequality and come to the result that

I reven(k 1) 1 def
- < = — — 2 _ —= 3
Proven (k) 1 when 0 <k < 15 (3 7++/(s=17) 40) «

In other words, Preven(k) > Preven(k + 1) when 0 < k < a; and Preyen(k) <

Preven(k + 1) when a < k < 3. Therefore, Preven is minimal when & = [a].

2k + 1, the probability Proga(k) = (S‘Q:Qkkill)/(#;cfl) is

Similarly, when e =
minimal when k =[], where 8 = (s — 7). In summary,

Preven(€) is minimal when e = 2[a/];
Proqa(e) is minimal when e = 2[8] + 1,

and Pr(e)’s minimum is one of them.

	Two-output Secure Computation With Malicious Adversaries

