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Abstract. In this paper we construct several tools for manipulating pools of bi-
ases in the analysis of RC4. Then, we show that optimized strategies can break
WEP based on 4000 packets by assuming that the first bytes of plaintext are
known for each packet. We describe similar attacks for WPA. Firstly, we de-
scribe a distinguisher for WPA of complexity 243 and advantage 0.5 which uses
240 packets. Then, based on several partial temporary key recovery attacks, we
recover the full 128-bit temporary key by using 238 packets. It works within a
complexity of 296. So far, this is the best attack against WPA. We believe that our
analysis brings further insights on the security of RC4.

1 Introduction

RC4 was designed by Rivest in 1987. It used to be a trade secret until it was anony-
mously posted in 1994. Nowadays, RC4 is widely used in SSL/TLS and Wi-Fi 802.11
wireless communications. 802.11 [1] used to be protected by WEP (Wired Equivalent
Privacy) which is now being replaced by WPA (Wi-Fi Protected Access) due to security
weaknesses.

WEP uses RC4 with a pre-shared key. Each packet is encrypted by a XOR to a
keystream generated by RC4. The RC4 key is the pre-shared key prepended with a 3-
byte nonce IV. The IV is sent in clear for self-synchronization. There have been several
attempts to break the full RC4 algorithm but it has only been devastating so far in this
scenario. Indeed, the adversary knows that the key is constant except the IV, which is
known. An active adversary can even alter the IV. Nowadays, WEP is considered as
being terribly weak since passive attacks can recover the full key easily by assuming
that the first bytes of every plaintext frames are known. This happens to be the case due
to protocol specifications.

In order to fix this problem, the Wi-Fi Alliance has replaced WEP by WPA [1]. Peer
authentication is based on IEEE 802.1X which accommodates a simple authentication
mode based on a pre-shared key (WPA-PSK). Authentication creates a Temporary Key
(TK). The TK then goes through the temporary key integrity protocol (TKIP) to derive
per-packet keys (PPK). The idea is that TK is derived into a TTAK key to be used for a
number of frames limited to 216. Each frame applies a simple transformation to TTAK
and a counter TSC to derive the RC4 per-packet key PPK. Again, the 3 first bytes of
the RC4 key are known (they actually depend on the counter).



In addition to the key derivation, WPA provides a packet integrity protection scheme
which prevents from replaying or altering the IV. Thus, only passive key recovery at-
tacks can be considered.

Our contribution. In this paper, we construct tools for manipulating pools of biases.
With our theory, we then analyze several statistical strategies for partial key recovery.
We apply it to recover the 8 weak bits of the WPA key TK by using 238 to 240 packets.
Incidentally, we apply our analysis to WEP and show that the best attacks so far can
still be improved. We then transform our partial key recovery attack into a practical
distinguisher for WPA. Finally, we build a full session key recovery with complexity
296 and 238 packets.

Related Work. We mention three approaches for the cryptanalysis of RC4: attacks based
on the weaknesses of the Key Scheduling Algorithm (KSA) and attacks based on the
weaknesses of the Pseudorandom Generator Algorithm (PRGA), and blackbox analysis.

As for the KSA, one of the first weaknesses published on RC4 was discovered by
Roos [32] in 1995. This correlation binds the secret key bytes to the initial state S′0.
Roos [32] and Wagner [38] identified classes of weak keys which reveal the secret key
if the first key bytes are known. This property has been largely exploited to break WEP
(see [5,9,13,18,19,33,34,35,37]). Another class of result concerns the inversion problem
of KSA: given the final state of the KSA, the problem is to recover the secret key [4,28].

Regarding PRGA, the analysis has been largely motivated by distinguishing at-
tacks [8,11,22,24] or initial state reconstruction from the keystream bytes [10,17,25,36]
with complexity of 2241 for the best state recovery attack. Relevant studies of the PRGA
reveal biases in the keystream output bytes in [23,29]. Mironov recommends in [26] that
the first 512 initial keystream bytes must be discarded to avoid these weaknesses.

Jenkins published in 1996 on his website [14] two biases in the PRGA of RC4.
These biases have been generalized by Mantin in his Master Thesis [21]. Paul, Rathi
and Maitra [30] discovered in 2008 a biased output index of the first keystream word
generated by the PRGA. Another bias on the PRGA has been experimentally discovered
by Maitra and Paul [20]. Finally, Sepehrdad, Vaudenay and Vuagnoux [33] discovered
48 new correlations in PRGA and 9 new correlations between the key bits and the key
stream. This led to the fastest attack on WEP at the moment.

In practice, key recovery attacks on RC4 must bind KSA and PRGA weaknesses to
correlate secret key words to keystream words. Some biases on the PRGA [16,30,20]
have been successfully bound to the Roos correlation [32] to provide known plaintext
attacks. Another approach is blackbox analysis, which does not require any binding.
This was exploited in [33].

In 2004, Moen, Raddum and Hole [27] discovered that the recovery of at least two
RC4 packet keys in WPA leads to a full recovery of the temporal key and the message
integrity check key. Once from the same segment of 216 consecutive packets, two keys
are successfully recovered, the Moen, Raddum and Hole attack can be applied. This
leads to a TK key recovery attack on WPA with complexity 2103 using 2 packets. Al-
most all known and new key recovery attacks on WEP could have been applied to WPA
if there were several packets using the same RC4 key. Indeed, only the Fluhrer, Mantin
and Shamir attack [9] is filtered. However, WPA uses a different secret key for every

2



encrypted packet. In 2009, Tews and Beck [34] found a practical attack on WPA-PSK
to inject data in encrypted communication. Note that this attack does not recover the en-
cryption key and need some additional quality of services features (described by IEEE
802.11e) which are not activated by default.

Structure of the paper. We first present in Section 2 RC4, WEP, and WPA, known
biases in RC4 and some tools to be able to manipulate a pool of biases for target key
bytes. Then, we study key recovery attacks to be able to recover some “weak bits” of
the temporary key in Section 3. We show applications to WEP in Section 4, then present
a distinguisher for WPA and a full temporary key recovery for WPA in Section 5.

2 Preliminaries

2.1 Description of RC4 and Notations

The stream cipher RC4 consists of two algorithms: the Key Scheduling Algorithm
(KSA) and the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has
a state defined by two registers (words) i and j and one array (of N words) S defining a
permutation over ZN . The KSA generates an initial state for the PRGA from a random
key K of L words as described on Fig. 1. It starts with an array {0,1, . . . ,N−1}, where
N = 28 and swaps N pairs, depending on the value of the secret key K. At the end, we
obtain the initial state S′0 = SN−1.

KSA PRGA

1: for i = 0 to N−1 do
2: S[i]← i
3: end for
4: j← 0
5: for i = 0 to N−1 do
6: j← j+S[i]+K[i mod L]
7: swap(S[i],S[ j])
8: end for

1: i← 0
2: j← 0
3: loop
4: i← i+1
5: j← j+S[i]
6: swap(S[i],S[ j])
7: output zi = S[S[i]+S[ j]]
8: end loop

Fig. 1. RC4 KSA and PRGA Algorithms

Once the initial state S′0 is created, it is used by the second algorithm of RC4, the
PRGA. Its role is to generate a keystream of words of log2 N bits, which will be XORed
with the plaintext to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA
each time a new keystream word zi is needed, according to the algorithm on Fig. 1. Note
that each time a word of the keystream is generated the internal state of RC4 is updated.
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Notations. In this paper, we define all the operators such as addition, subtraction and
multiplication in the group ZN where N = 256 (i.e. words are bytes). Thus, x+y should
be read as (x+ y) mod N.

Let Si[k] (resp. S′i[k]) denote the value of the permutation defined by array S at index
k, after round i in KSA (resp. PRGA). We also denote SN−1 = S′0. Let ji (resp. j′i) be
the value of j after round i of KSA (resp. PRGA) where the rounds are indexed with
respect to i. Thus, the KSA has rounds 0,1, . . . ,N−1 and the PRGA has rounds 1,2, . . ..
The KSA and PRGA are defined by

KSA PRGA
j−1 = 0 j′0 = 0

ji = ji−1 +Si−1[i]+K[i mod L] j′i = j′i−1 +S′i−1[i]
S−1[k] = k S′0[k] = SN−1[k]

Si[k] =

Si−1[ ji] if k = i
Si−1[i] if k = ji
Si−1[k] otherwise

S′i[k] =

S′i−1[ j
′
i] if k = i

S′i−1[i] if k = j′i
S′i−1[k] otherwise

zi = S′i[S
′
i[i]+S′i[ j

′
i]]

2.2 Description of WEP

WEP [2] uses a 3-byte IV concatenated to a secret key of 40 or 104 bits (5 or 13 bytes)
as an RC4 key. Thus, the RC4 key size is either 64 or 128 bits. In this paper, we do not
consider the 40-bit key variant. So, L = 16. We have

K = K[0]∥K[1]∥K[2]∥K[3]∥· · ·∥K[15] = IV0∥IV1∥IV2∥K[3]∥· · ·∥K[15]

where IVi represents the (i+ 1)th byte of the IV and K[3]∥...∥K[15] the fixed secret
part of the key. In theory, the value of the IV should be random but in practice, it is a
counter, mostly in little-endian, and incremented by one each time a new 802.11b frame
is encrypted. Sometimes, some particular values of IV are skipped to thwart specific
attacks based on “weak IVs”. Thus, each packet uses a slightly different key. RC4 then
produces a keystream which is XORed to the plaintext to obtain the ciphertext.

It is well known [31] that a relevant portion of the plaintext is practically constant
and that some other bytes can be predicted. They correspond to the LLC header and
the SNAP header and some bytes of the TCP/IP encapsulated frame. For example, by
XORing the first byte of the ciphertext with the constant value 0xAA, we obtain the first
byte of the keystream. Thus, even if these attacks are called known plaintext attacks,
they are ciphertext only in practice.

2.3 Description of WPA

WPA includes a key hash function [12] to defend against the Fluhrer-Mantin-Shamir
attack [9], a Message Integrity Code (MIC) [7] and a key management scheme based
on 802.1X [3] to avoid key reuse and to ease the key distribution.

The 128-bit Temporal Key (TK) is a per-session key. It is derived from the key
management scheme during the authentication and is given as an input to the phase1
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key hash function (key mixing algorithm) together with the 48-bit Transmitter Address
(TA) and a 48-bit TKIP Sequence Counter (TSC) which is sometimes called IV. We
will avoid this latter name to avoid confusion with the first 3 bytes of the RC4 key
(which indeed only depend on TSC but are not equal).

TK can be used to encrypt up to 248 packets. Every packet has a 48-bit index TSC
which is split into IV32 and IV16. The IV32 counter is incremented every 216 packets.
The packet is encrypted using a 128-bit RC4KEY which is derived from TK, TSC,
and some other parameters (e.g. device addresses) which can be assumed constant and
known by the adversary for our purpose. As for WEP, the first three bytes of RC4KEY
only depend on TSC so they are not secret. The derivation works in two phases. The
first phase does not depend on IV16 and is done once every 216 packets for efficiency
reasons. It derives a 80-bit key TTAK, called TKIP-mixed Transmit Address and Key
(TTAK) in the standard (but denoted P1K in the reference code).

TTAK= phase1(TK,TA, IV32)

The second phase uses TK and IV16 to derive a 96-bit key PPK which is then turned
into RC4KEY:

RC4KEY = phase2(TK,TTAK, IV16)

The key derivation of WPA based on a pre-shared key is depicted on Fig. 2 (without
protocol parameters such as TA).

PSK - Authentication
WPA-PSK

- TK -

TSC
6IV16

?

IV32

-
phase1 -TTAK

phase2 - RC4KEY

802.1X WPA RC4

Fig. 2. WPA Key Derivation based on Pre-Shared Key Authentication Method

The RC4KEY is simply defined from PPK, TK, and IV16 by

RC4KEY[0] = high8(IV16) RC4KEY[1] = (high8(IV16) or 0x20) and 0x7f
RC4KEY[2] = low8(IV16) RC4KEY[3] = low8((PPK[5]⊕ (TK[1]∥TK[0]))≫ 1)
RC4KEY[4] = low8(PPK[0]) RC4KEY[5] = high8(PPK[0])
RC4KEY[6] = low8(PPK[1]) RC4KEY[7] = high8(PPK[1])

...
...

In what follows, we denote K[i] = RC4KEY[i mod 16] and IV= K[0]∥K[1]∥K[2] to use
the same notations as in WEP. By convention, TTAK and PPK are considered as vectors
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or 16-bit words. TK and RC4KEY are considered as vectors or 8-bit words. Vectors are
numbered starting from 0.

Note that a filter avoids the use of some weak IV classes. Actually, only the weak
IV class discovered by Fluhrer, Mantin, and Shamir [9].

2.4 Biases in RC4

Throughout this paper, we denote K̄[i] =K[0]+ · · ·+K[i]. We let z denote the keystream
derived from K using RC4. The first bytes of a plaintext frame are often known (see
[37]), as well as IV, the first 3 bytes of K. That is, we assume that the adversary can use
z and IV in a known plaintext attack.

We let I0 be a set of integers, which represent the key byte indices which are already
known. We call an I0-clue a value clue for all K̄ bytes whose index are in I0. To begin
with, we have I0 = {0,1,2} and clue= IV.

Given a set of indices I0 and an index i, we assume that we have a list rowRC4
i|I0 of

pairs ( f̄ j, p j) in which f̄ j is a function such that for any I0-clue clue, we have

Pr
[
K̄[i] = f̄ j(z,clue)

]
= p j

For simplicity, we assume that for i, z, and clue given, all f̄ j(z,clue) are pairwise dif-
ferent. We further assume that the events K̄[i] = f̄ j(z,clue) with different i’s are in-
dependent. We will also assume that f̄ j is of form f̄ j(z,clue) = f j(h(z,clue)) where
µ = h(z,clue) lies in a domain of size Nµ. h is just a function compressing data to the
minimum necessary.

Table 1. Classes of Biases in RC4.

I0 is the set of K̄ indices which are already known, PMP, PKI, P008, and P009 are defined in
Appendix, t is the largest integer such that 0,1, . . . , t ∈ I0, and

σi =
t

∑
j=0

S j−1[ j]+
i

∑
j=t+1

St [ j]

(e.g. σi =
i(i+1)

2 and t =−1 when 0 /∈ I0).

row reference f̄ p comment
i ̸= 1 MaitraPaul(i, I0) K̄[i] = zi+1−σi PMP(i, t) see [20]

i KleinImproved(i, I0) K̄[i] = −zi + i−σi PKI(i, t) see [37]
1 SVV bb 000 K̄[1] = z1−1 1.04237/N see [33]
2 SVV bb 003 K̄[2] = z2−3 0.65300/N see [33]

i = 16i′ SVV 008(i, I0) K̄[i] = zi− i−σi P008(i, t) see [33]
i = 16i′ SVV 009(i, I0) K̄[i] = −zi− i−σi P009(i, t) see [33]

We use a list of classes of biases from Table 1 (see [33]). More specifically, we use
the rows rowRC4

i|I0 in Table 2 taken from [33]. This table applies to RC4 in general but
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Table 2. Table of Unconditional Biases in RC4 from known Key Bytes I0

i biases
0 MaitraPaul(i, I0)
1 KleinImproved(i, I0) SVV bb 000
2 KleinImproved(i, I0) MaitraPaul(i, I0) SVV bb 003
3 KleinImproved(i, I0) MaitraPaul(i, I0)
...

...
...

15 KleinImproved(i, I0) MaitraPaul(i, I0)
16 KleinImproved(i, I0) MaitraPaul(i, I0) SVV 008(i, I0) SVV 009(i, I0)
17 KleinImproved(i, I0) MaitraPaul(i, I0)
...

...
...

31 KleinImproved(i, I0) MaitraPaul(i, I0)
32 KleinImproved(i, I0) SVV 008(i, I0) SVV 009(i, I0)
33 KleinImproved(i, I0)
...

...
47 KleinImproved(i, I0)

can be transformed for the WEP or WPA context due to L = 16. Indeed, we have K̄[i+
16 j] = K̄[i]+ jK̄[15] for 0≤ i≤ 15 and j = 0,1,2. We define deduce(I) to be the set of
all i’s such that we can compute K̄[i] using this property, based on the values of K̄ with
indices in I. For instance, deduce(0,1,2,5) = {0,1,2,5} and deduce(0,1,2,5,15) =
{0,1,2,5,15,16,17,18,21,31,32,33,34,37, . . .}. Next, we transform the above table
by removing some rows for keys which can be deduced and by merging rows leading to
the same key byte. Namely, we define rowi|I0 as follows: if i ∈ deduce(I0), the row has
a single “bias” f̄1(z,clue) = K̄[i] with probability p1 = 1 since K̄[i] can be computed
from clue. Otherwise, the row is the concatenation of all rowRC4

i′|I0 for i′ in deduce(I0 ∪
{i})−deduce(I0). For instance, row2|{0,1,2} has a single bias, row5|{0,1,2} = rowRC4

5|{0,1,2},
and

row5|{0,1,2,15} = rowRC4
5|{0,1,2,15}∥row

RC4
21|{0,1,2,15}∥row

RC4
37|{0,1,2,15}

Given two lists of byte indices I0 and I = (i1, . . . , i#I), we construct a new table
Π(I|I0) in which the list of rows is rowi1|I0 , rowi2|I0,i1 , ..., rowi#I |I0,i1,i2,...,i#I−1 . For in-
stance, I0 = {0,1,2} and I is a list of key byte indices which are sequentially obtained
using biases. We assume that I0 is a minimal set in the sense that there is no strictly
smaller set with same deduce(I0). We further assume that I is a minimal set in the
sense that there is no strictly smaller set with same I ∩ I0 and deduce(I ∪ I0). For in-
stance, I = (2,3,13,14,15) is minimal for I0 = {0,1,2}, but I = (2,3,13,14,15,16) is
not. We define ν = (K̄[i])i∈I which belongs to a set of size Nν(I) = N#I . Given i ∈ I,
we let dΠ(I|I0)

i be the length of row for K̄[i] in Π(I|I0). Given a tuple ( ji)i∈I such that
1 ≤ ji ≤ dΠ(I|I0)

i for all i ∈ I, by collecting together the jith bias of row i, we obtain
an agglomerated bias to compute ν from z and an I0-clue clue. Note that for technical
reasons, we may have to keep elements of I0 in I. This is why we may have rows for
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i ∈ I0 in Π(I|I0) with a single bias of probability 1. We let

k(I|I0) = ∏
i∈I

dΠ(I|I0)
i

be the number of possible agglomerated biases. For convenience, we number the ag-
glomerated biases with an index ℓ from 1 to k(I|I0) and each number defines a tuple
( ji)i∈I . So, the ℓth bias is defined by ν = fℓ(z,clue) with probability

pΠ(I|I0)
ℓ = ∏

i∈I
pΠ(I|I0)

i, ji

where pΠ(I|I0)
i, j is the probability of the jth bias in the row corresponding to K̄[i] in

Π(I|I0).
We let Nµ(Π(I)) be N raised to the power of the number of zi bytes and I0 bytes

appearing in any of the biased equations from Π(I). E.g., Nµ(Π(3,13,14|0,1,2)) = N8

since biases for K̄[3] are based on z3 and z4, and biases for K̄[13] and K̄[14] are based
on z13, z14, and z15. We further need IV to compute St . So, we have 8 bytes in total: zi
for i∈ {3,4,13,14,15} and IV. Given a key stream z, we define µ = hΠ(I)(z,clue) as the
vector of all zi and clue bytes which are useful. We define ν = f Π(I)

ℓ (µ).
For simplicity, we write Π, k, Nν, Nµ, pℓ, h, and fℓ when I and I0 will be made

clear from context. That is, the range of h has size Nµ, and fℓ goes from a domain of Nµ
elements to a range of Nν elements.

In the following, we use

se =
k

∑
ℓ=1

pe
ℓ = ∑

( ji)i∈I
1≤ ji≤di

∏
i∈I

pe
i, ji = ∏

i∈I

di

∑
j=1

pe
i, j

for an integer e, and

εe =

(
k

∑
ℓ=1

(
pℓ−

1
N ν

)e
) 1

e

=

(
e

∑
i=0

(e
i

)
se−i(−Nν)

−i

) 1
e

εe is called the cumulated bias of order e. The table below gives a few examples of
cumulated biases.

I0 I Nν k Nµ ε1 ε2 ε4
{0,1,2} (3,13,14) 224 23 N8 2−21.37 2−22.79 2−23.40

{0,1,2} (15,3,14) 224 28.81 N20 2−16.60 2−20.79 2−22.69

{0,1,2} (15,3,13,14) 232 211.13 N23 2−21.82 2−27.19 2−29.69

2.5 Conditional Biases in RC4

We extend the notion of bias to the notion of conditional bias. We now assume that for
each i we have di functions f̄i, j and corresponding predicates ḡi, j such that

Pr
[
K̄[i] = f̄ j(z,clue)|ḡ j(z,clue)

]
= p j
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for some probability p j ̸= 1
N . We further define

Pr [ḡ j(z,clue)] = q j

and call q j the density of the bias. For simplicity, we assume that for some given i,
z, and clue, all suggested f̄ j(z,clue) when ḡ j(z,clue) holds, are pairwise distinct. We
further assume that the events K̄[i] = f̄ j(z,clue) with different i’s are independent. We
will also assume that f̄ j and ḡ j are of form f̄ j(z,clue) = f j(h(z,clue)) and ḡ j(z,clue) =
g j(h(z,clue)) where µ = h(z,clue) lies in a domain of size Nµ.

We use the conditional biases in Table 5. All of them except SVV db were taken
from Korek [18] (they can be extracted from Aircrack, see [6,37]). We used some new
formulas to compute their probabilities which are given in Appendix.

Given two minimal sets of byte indices I0 and I as in the previous section, we also
make a table Π(I|I0) and collect a list of ℓ agglomerated biases in which probabilities
and densities are multiplied. We define

s̄e =
k

∑
ℓ=1

qℓpe
ℓ , s̄(Nx)

e =
k

∑
ℓ=1

qℓ
1− qℓ

Nx

pe
ℓ

and

ε̄e =
e

√√√√ k

∑
ℓ=1

qℓ

(
pℓ−

1
Nν

)e

= e

√
e

∑
i=0

(e
i

)
s̄e−i(−Nν)−i

ε̄(Nx)
e = e

√√√√ k

∑
ℓ=1

qℓ
1− qℓ

Nx

(
pℓ−

1
Nν

)e

= e

√
e

∑
i=0

(e
i

)
s̄(Nx)

e−i (−Nν)−i

s̄(Nx)
e resp. ε̄(Nx)

e is the regular s̄e resp. ε̄e with a special correcting factor depending on
some value Nx. This correction may look arbitrary. It will appear in the analysis of
Section 3. The s̄ values can be computed easily by

s̄e = ∑
( ji)i∈I

∏
i∈I

qi, ji p
e
i, ji = ∏

i∈I

di

∑
j=1

qi, j pe
i, j

In the sequel, when qℓ ̸= 1 we assume qℓ≪ 1 to approximate 1
1− qℓ

Nx
≈ 1+ 1

Nx−1 1qℓ=1. So,

we compute s̄(Nx)
e like for s̄e but add a fraction of the regular se term for unconditional

biases.

s̄(Nx)
e = ∑

( ji)i∈I

∏
i∈I

qi, ji

1− qi, ji
Nx

pe
i, ji ≈

se

Nx−1
+∏

i∈I

di

∑
j=1

qi, j pe
i, j

The approximation is very useful to estimate s̄(Nx)
e with low complexity. Namely, we can

compute all useful ε̄e’s in time O(ed) where d is the total number of biases, although
the number of agglomerated biases k is of order d#I which can be very large.
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2.6 More Definitions

We denote

φ(λ) =
1√
2π

∫ λ

−∞
e−

x2
2 dx =

1
2
erfc

(
− λ√

2

)
In particular, φ(−λ/

√
2) = 1

2erfc(
λ
2 ).

3 Attacking Weak Bits Based on Biases

There are 8 bits of TK that we call weak because they have a simple relation with bits in
PPK. These bits consists of the 7 most significant bits of TK[0] and the least significant
bit of TK[1]. We will define statistical attacks using the following mappings:

zm, IVm h−−−−−−→ µ
fℓ−−−−−−→

if gℓ(µ)
ν π−−−−−−→ x

Here, zm is the mth keystream using IVm, µ is a compressed information to compute ν,
some RC4 key bytes which are used to compute x, some information about TK which
we want to recover using statistics. We define Nx the number of possible values for x.

3.1 First Attack: Recovering some Weak Bits of TK

We use I0 = {0,1,2} and I =(2,3,13,14). Given K̄[2], K̄[3], K̄[13], K̄[14], the adversary
can compute K[3] = K̄[3]− K̄[2] and K[14] = K̄[14]− K̄[13]. We have

PPK[5] = K[15]∥K[14]
K[3] = low8((PPK[5]⊕ (TK[1]∥TK[0]))≫ 1)

So, given ν = (K̄[2], K̄[3], K̄[13], K̄[14]) the adversary can compute x = high7(TK[0])
by

π(ν) = low7((K̄[3]− K̄[2])⊕ ((K̄[14]− K̄[13])≫ 1))

Nν = 232 is the total number of possible ν’s and Nx = 27 is the total number of possible
x’s. We have Nµ = 248, the total number of µ = h(z, IV).

We can recover the 7 weak bits as follows: for each candidate value x, each packet
m, and each ℓ = 1, . . . ,k (corresponding to a tuple ( j2, j3, j13, j14)), if agglomerated
condition gℓ(h(zm, IVm)) holds, we define ν = fℓ(h(zm, IVm)) the value of RC4 key
bytes suggested by bias ℓ on packet m, which is correct with probability pℓ. We let
x = π(ν) the suggested value of x computed as explained. We let Xx,m,ℓ be some magic
coefficient aℓ (to be optimized later) if π( fℓ(h(zm, IVm))) = x and 0 otherwise. We let
Yx = ∑n

m=1 ∑k
ℓ=1 Xx,m,ℓ where n is the total number of packets to be used. Clearly, the

correct value for ν is suggested with probability pℓ and others are obtained randomly.
We assume incorrect ones are suggested with the same probability 1−pℓ

Nν−1 .
If x is not the correct value, it is not suggested for sure when ν is correct. Since π is

balanced, this incorrect x has Nν
Nx

values ν belonging to the set of Nν−1 incorrect ones.
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So, x is suggested with with probability Nν
Nx
× 1−pℓ

Nν−1 . So, the Xx,m,ℓ for incorrect x’s are
random variables (r.v.) with expected values

aℓqℓNν
1− pℓ

Nx(Nν−1)

if x is not the correct value.
If x is the correct value, it is suggested with probability pℓ for the correct ν and when

ν is one of the Nν−Nx
Nx

(incorrect) preimages of x by π. That is, with overall probability

pℓ+ Nν−Nx
Nx
× 1−pℓ

Nν−1 . So, the Xx,m,ℓ for the correct x are r.v. with expected values

aℓqℓNν
1− pℓ

Nx(Nν−1)
+aℓqℓ

Nν pℓ−1
Nν−1

The difference between these two expected values is important but it is not the same
for the variance. Since every x is suggested with probability roughly qℓ

Nx
, we assume that

the variance of all Xx,m,ℓ can be approximated by qℓ
Nx

(
1− qℓ

Nx

)
a2
ℓ . Let ∆ be the operator

making the difference between distributions for a good x and a bad one. We have

E(Ybad) =
n

Nx

(
1− 1

Nν

)∑
ℓ

aℓqℓ(1− pℓ)

∆E(Y ) =
n

1− 1
Nν

∑
ℓ

aℓqℓ

(
pℓ−

1
Nν

)
V (Y ) ≈ n∑

ℓ

a2
ℓ

qℓ
Nx

(
1− qℓ

Nx

)
Where E(Ybad) denotes the expected value of an Yx variable for any bad x. Here, we
removed the subscript x of Yx in ∆E(Y ) and V (Y ) since these do not depend on a specific
value for x. Let λ be such that ∆E(Y ) = λ

√
V (Y ). The probability that the correct Yx is

lower than any wrong Yx is ρ = φ
(
− λ√

2

)
. That is, the expected number of wrong x’s

with larger Yx is

r = (Nx−1)φ
(
− λ√

2

)
(1)

So,

n = λ2
(

1− 1
Nν

)2 ∑ℓ a2
ℓ

qℓ
Nx

(
1− qℓ

Nx

)
(

∑ℓ aℓqℓ
(

pℓ− 1
Nν

))2

By derivating both terms of the fraction with respect to aℓ and equaling them, we obtain
that the optimal value is reached for

aℓ =
Nx

Nx−qℓ

(
pℓ−

1
Nν

)

11



This leads us to

E(Ybad) =
n

Ny

(
ε̄(Nx)

1 − 1
1− 1

Nν

(ε̄(Nx)
2 )2

)
∆E(Y ) =

n
1− 1

Nν

(ε̄(Nx)
2 )2

V (Y ) ≈ n
Nx

(ε̄(Nx)
2 )2

n =
λ2

Nx

(
ε̄(Nx)

2

)2

(
1− 1

Nν

)2

(2)

So we can see where the correction in ε̄(Nx)
2 appears.

The attack works as follows:
1: set I = (2,3,13,14) and I0 = {0,1,2}
2: initialize the Yx counters to 0
3: for m = 1 to n do
4: for ℓ= 1 to k do
5: if gℓ(h(zm, IVm)) holds then
6: compute ν = fℓ(h(zm, IVm)), the suggested (K̄[2], K̄[3], K̄[13], K̄[14])
7: compute x = π(ν)
8: increment Yx by aℓ = Nx

Nx−qℓ

(
pℓ− 1

Nν

)
9: end if

10: end for
11: end for
12: output x = argmaxx Yx

Clearly, the time complexity is nk. The complexity is measured in terms of number of
times the if structure is executed. This should have a complexity which is essentially
equivalent to executing the phase2 key derivation. The memory complexity has the
order of magnitude of Nx. Here is a variant:

1: set I = (2,3,13,14) and I0 = {0,1,2}
2: initialize a table yµ

x to 0
3: for ℓ= 1 to k do
4: for all possible µ such that gℓ(µ) holds do
5: compute x = π( fℓ(µ))

6: increment yµ
x by aℓ = Nx

Nx−qℓ

(
pℓ− 1

Nν

)
7: end for
8: end for
9: initialize the Yx counters to 0

10: for m = 1 to n do
11: for all x do
12: compute µ = h(zm, IVm)
13: increment Yx by yµ

x
14: end for

12



15: end for
16: output x = argmaxx Yx

Now, the time complexity is Nµk+Nxn and the memory complexity is NµNx. So, let say
that the complexity is

c = min(nk,Nµk+Nxn) (3)

The two complexity curves cross for n = Nµ
k

k−Nx
≈ Nµ when Nx≪ k.

For I = (2,3,13,14), we have Nν = 232, Nµ = 248, and Nx = 27. The complexities
with and without using conditional biases are summarized in Table 3. As we can see,
when ignoring the conditional biases, we need about 30% more packets but the com-
plexity is much lower because k is smaller. So, conditional biases do not seem useful in
this case.

3.2 Second Attack

Let I0 = {0,1,2}, I = (15,2,3,14), and x = low1(TK[1]) be the last weak bit. Given IV
and ν = (K̄[2], K̄[3], K̄[14], K̄[15]), we deduce x = π(ν) by

π(ν) = high1((K̄[3]− K̄[2])⊕ (K̄[15]− K̄[14]))

So, we apply the first attack with this I and Nx = 2. Since 15 ∈ I we have more biases.
We have r, n, and c from Eq. (1), Eq. (2) and Eq. (3).

For I = (15,2,3,14), we have Nν = 232, Nµ = 248, and Nx = 2. The complexities are
summarized in Table 3. Again, conditional biases are not very useful. We can also see
that this choice of I leads to a much better attack than the one from Section 3.1 in terms
of n but the complexity is slightly higher. This is due to a larger k.

3.3 Merging Attacks

Given two attacks with sets I1 resp. I2 for recovering independent x1 resp. x2 leading to
characteristics Y 1

x resp. Y 2
x , c1 resp. c2, n1 resp. n2, λ1 resp. λ2, one problem is to merge

the sorted lists of x1 and x2. One can follow the approach by Junod-Vaudenay [15]. We
sort pairs following their likelihood ratio, which is obtained by multiplying the likeli-
hood ratio of both terms. We assume that all Y i

x are independent, normally distributed
with variance V (Y i), and expected value either E(Y i

bad) or E(Y i
bad)+∆E(Y i). Given xi,

the ratio for xi being the correct value based on the observation Y i
xi is

Pr[Y i
xi |xi good]

Pr[Y i
xi |xi wrong]

=

1√
2πV (Y i)

e
−

(
Y i

xi−E(Y i
bad)−∆E(Y i)

)2

2V (Y i)

1√
2πV (Y i)

e
−

(
Y i

xi−E(Y i
bad)

)2

2V (Y i)

= e
Y i

xi
∆E(Y i)
V (Y i)

+
∆E(Y i)
2V (Y i)

(∆E(Y i)−E(Y i
bad))
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So, when multiplying some terms of this form for pairs of values, sorting them by
decreasing product is equivalent to sorting them by decreasing value of

Yx1,x2 = Y 1
x1

∆E(Y 1)

V (Y 1)
+Y 2

x2
∆E(Y 2)

V (Y 2)

With same assumptions as in [15], we are back in the situation where Yx1,x2 is normally
distributed. We have

∆E(Y ) =V (Y ) =
(∆E(Y 1))2

V (Y 1)
+

(∆E(Y 2))2

V (Y 2)
= (λ1)2 +(λ2)2

So, λ =
√
(λ1)2 +(λ2)2, and the average number of wrong (x1,x2) pair with higher

score than the good one is r = (N1
x N2

x −1)φ(− λ√
2
). Overall, we can use

n =
λ2

Nx1

(
ε̄
(N

x1)
2 (1)
1− 1

N1
ν

)2

+Nx2

(
ε̄
(N

x2)
2 (2)
1− 1

N2
ν

)2

and c = c1 +c2 by using Eq. (3) for c1 and c2. We can use these merging rules to merge
the two previous attacks. We obtain the results from Table 3.

Table 3 shows the complexity when merging the previous attacks to recover the 8
weak bits of TK. We compare it with the attack using a merged set I directly. As we can
see, merging attacks with small I’s is much better.

Table 3. Complexities of several attacks to recover log2 Nx bits from TK. We compare them when
including conditional biases and without. We provide the number of packets n, the running time
complexity c, the expected number r of better wrong values, as well as parameters k, ε = ε̄(Nx)

2 ,
λ, and Nν. Except when Nx = 2 for which it would not make any sense, we target r = 1

2 (that is,
the correct value has the higher score in half of the cases, roughly). We used I0 = {0,1,2}.

reference I n c r Nx k ε λ Nν Nµ cond. biases
1u Section 3.1 (2,3,13,14) 240.13 243.13 1

2 27 23.00 2−21.65 3.76 232 N8 without
1c Section 3.1 (2,3,13,14) 239.70 251.87 1

2 27 212.17 2−21.44 3.76 232 N10 with
2u Section 3.2 (15,2,3,14) 236.10 244.91 1

4 2 28.81 2−18.62 0.95 232 N20 without
2c Section 3.2 (15,2,3,14) 235.98 254.35 1

4 2 218.37 2−18.56 0.95 232 N22 with
3u merge 1u+2u 239.33 248.17 1

2 28 4.08 without
3c merge 1c+2c 239.05 257.43 1

2 28 4.08 with
4u (15,2,3,13,14) 247.67 258.81 1

2 28 211.14 2−25.81 4.08 240 N23 without
4c (15,2,3,13,14) 247.36 271.37 1

2 28 224.01 2−25.65 4.08 240 N25 with

We may think that we could get better results by using the entire vector Y instead of
Yx only to compute the likelihood ratio of x. By redoing the computations, we obtain

Pr[Y |xi good]

Pr[Y |xi wrong]
=

Pr[Y |xi good]
1

Ni
x−1 ∑x ̸=xi Pr[Y |x good]

=
Nx−1

∑x′ ̸=x e(Yx′−Yx)
∆E(Y )
V (Y )
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When x is good and x′ is bad, the exponential in the sum is of order e−λ. When x is bad
and x′ is good, it has order eλ. When both are bad, it has order e±

√
λ. So, we have to com-

pare one ratio of order eλ to others of order Nx−1
eλ+(Nx−2)e±

√
λ . We know that a wrong ratio

is higher than the good one with probability φ(−λ/
√

2). When multiplying the inde-
pendent likelihood ratios for x1 and x2, if we approximate ∑x′1 ̸=x1 F(x′1)∑x′2 ̸=x2 G(x′2)≈
∑(x′1,x

′
2 )̸=(x1,x2) F(x′1)G(x′2), we obtain a likelihood ratio of same form based on Yx1,x2 .

This validates the above rule of the thumb for sorting pairs following their Yx1,x2 score.

4 Attack on WEP

We apply the first attack with x = ν: we only want to recover key bytes which are the
same for all packets. This attack produces a ranking of possible x’s in a form of a list L
by decreasing order of likelihood.

We use the following attack:
1: compute the ranking L15 for I = (15) and I0 = {0,1,2}
2: for each k̄15 in L15 do
3: run recursive attack on input k̄15
4: end for
5: stop: attack failed
recursive attack with input (k̄15, k̄3, . . . , k̄i−1):
6: if i≤ imax then
7: compute the ranking Li for I = (i) and I0 = {0, . . . , i−1,15}
8: truncate Li to its first ρi terms
9: for each k̄i in Li do

10: run recursive attack on input (k̄15, k̄3, . . . , k̄i−1, k̄i)
11: end for
12: else
13: for each k̄imax+1, . . . , k̄14 do
14: test key (k̄3, . . . , k̄14, k̄15) and stop if correct
15: end for
16: end if

Let εi = ε̄(Nx)
2 (i|0, . . . , i−1,15) for i = 3, . . . , imax and ε15 = ε̄(Nx)

2 (15|0,1,2) be the ε
used by the attack on K̄[i]. Similarly, let Nx =Nν =N, and ri, ki, λi, ci be their parameters
following Eq. (1,2,3). Let Ri be the rank of the correct k̄i value in Li. We know that
E(Ri) = ri. We can easily see that V (Ri) = ri

(
1− ri

Nx−1

)
. By using the law of large

numbers, the probability that Ri is lower than ρi is ui = φ

(
ρi−ri√

ri(1− ri
Nx−1 )

)
so the success

probability is ∏imax
i=3 ui and the complexity is

c = c15 + r15
(
c3 +ρ3

(
c4 +ρ4

(
· · ·cimax +ρimaxN14−imax · · ·

)))
To approximate the optimal choice of ρ’s, we set ρi = ri +α

√
ri

(
1− ri

Nx−1

)
for

some α. The success probability is φ(α)imax−2. We can adjust α = φ−1(2−
1

imax−2 ) so
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that this becomes 50% and we obtain c in terms of n. Computation shows that figures
are better for imax = 14. For this, we have α≈ 1.588. We plotted log2 c in terms of n on
Fig. 3.
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Fig. 3. Logarithmic complexity in terms of data complexity for breaking WEP

Note that this computation assumes real values for the ρ’s. Since they must be inte-
ger, the real complexity may be slightly higher. For instance, with n = 4000, the plotted
complexity is 224.02. With integral values, we can try with ρi = 5 for i = 3,5,6 and
ρi = 4 for i = 4,7,8, . . . ,14. We obtain c = 224.35 and a success rate of 51%.

Note that without the conditional biases, the same analysis with 4000 gives a com-
plexity of 266. So, these biases make a huge difference in this case.

5 Attack on WPA

5.1 Distinguishing WPA

The first attack can be turned into a distinguisher as follows. The expected value and
variance of the correct Yx are roughly E(Ybad)+λ

√
V (Y ) and V (Y ). The random vari-

able Yx is larger than T = E(Ybad)+λ′
√

V (Y ) with probability φ(λ−λ′). Now, if we re-
place the WPA packets by some random sequences, the counters all have expected value
E(Ybad) and variance approximately V (Y ). The probability that a given counter exceeds
T is φ(−λ′). The probability that any counter exceeds this is lower than Nxφ(−λ′). So,
the condition maxx Yx > T makes a distinguisher of same n and c as in the first attack,
and with advantage larger than φ(λ−λ′)−Nxφ(−λ′). We find the optimal λ′= λ

2 +
lnNx

λ .
So, Adv ≥ β with

β = φ
(

λ
2
− lnNx

λ

)
−Nxφ

(
−λ

2
− lnNx

λ

)
(4)
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We use the same values as before and target Adv ≥ 1
2 . We use Eq. (2) for n, Eq. (3)

for c, and Eq. (4) for a lower bound β of the advantage. The performances of the dis-
tinguishers are summarized on Table 4. Again, the attack based on I = (15,2,3,14) is
better in terms of number of packets but not in terms of complexity. It works using 238

packets and complexity 247. The one based on I = (2,3,13,14) works with 30% more
packets (240) with no conditional biases but with a much better complexity 243.

Table 4. Complexities of several distinguishers for WPA. We compare them when including
conditional biases and without. We provide the number of packets n, the running time complexity
c, the bound on the advantage β, as well as parameters k, ε = ε̄(Nx)

2 or ε2, λ, and Nν. We target
β = 1

2 . We used I0 = {0,1,2}.

I n c β Nx k ε λ Nν Nµ cond. biases
1u I = (2,3,13,14) 239.85 242.85 0.5 27 23.00 2−21.65 3.41 232 N8 without
1c I = (2,3,13,14) 239.42 251.59 0.5 27 212.17 2−21.44 3.41 232 N10 with
2u I = (15,2,3,14) 237.94 246.76 0.5 2 28.81 2−18.62 1.81 232 N20 without
2c I = (15,2,3,14) 237.82 256.19 0.5 2 218.37 2−18.56 1.81 232 N22 with

5.2 Temporary Key Recovery

The results from [27] lead to an “easy” attack on WPA: guess the 96-bit PPK and the
8 weak bits of TK within an average complexity of 2103 until it generates the correct
keystream. Then, guess the 96-bit PPK of another packet in the same segment (with the
weak bits already known). Then, apply the method of [27] to recover TK. We improve
this attack by recovering the weak bits of TK separately: we know from Table 3 that we
can recover the weak bits of TK by using 238 packets. After having recovered the weak
bits, we note that the 96-bit PPK is now enough to recalculate RC4KEY. So, we can do
an exhaustive search on PPK for a given packet until we find the correct one generating
the packet. This works with complexity 295 on average. We do it twice to recover the
PPK of two packets in the same segment. Given these two PPK sharing the same IV32,
we recover TK by using the method of [27]. Therefore, we can recover the temporary
key TK and decrypt all packets with complexity 296. The number of packets needed to
recover the weak bits is 238.

6 Conclusion

We deployed a framework to handle pools of biases for RC4 which can be used to break
WPA. In the case of the 8 weak bits of TK, we have shown a simple distinguisher and a
partial key recovery attack working with 238 packets and practical complexity. This can
be used to improve the attack by Moen-Raddum-Hole [27] to mount a full temporary
key recovery attack of complexity 296 using 238 packets. So far, this is the best temporal
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key recovery attack against WPA. In a future work we plan to study further key recovery
attacks to recover more pieces of TK with complexity lower than 296.

We have shown that conditional biases are not very helpful for breaking WPA but
they really are against WEP. Indeed, we recover keys with a success rate 50% by using
4000 packets and a complexity of 226.
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A Computation of Biases

Biases were computed using the following formulas:

PKI(i, t) = PJPC(i, t)+
1−PJ

N−1
(1−PC(i, t))

PMP(i, t) = PD(i)PB(i, t)P0

(
1− 1

N

)
+

1
N

P008(i, t) = P8PC(i, t)+
1−P8

N−1
(1−PC(i, t))

P009(i, t) = P9PC(i, t)+
1−P9

N−1
(1−PC(i, t))

Korbc(i, t) = rc(t)Pb
E(i, t)+

1− rc(t)
N−1

(
1−Pb

E(i, t)
)

PSVV10(i, t) = PdbPC(i, t)+
1−Pdb

N−1
(1−PC(i, t))

where PJ =
2
N , P0 =

(N−1
N

)N−2
, P8 =

1.05
N , P9 =

1.0338
N , Pdb = 0.038488,

Pb
A(i, t) =

(N−b
N

)i−t−1
r1(t) =

(N−1
N

)N−t

PB(i, t) = ∏i−t−1
k=1

N−k
N r2(t) =

(N−2
N

)N−t−1

PC(i, t) = P1
A(i, t)PB(i, t)P0

(
1− 1

N

)
+ 1

N r3(t) =
(N−2

N

)(N−3
N

)N−t−1

PD(i) =
(N−i−1)(N−i)

N3

(N−2
N

)N−3+i (N−1
N

)3
r4(t) =

(N−1
N

)(N−2
N

)N−t−1

Pb
E(i, t) = Pb

A(i, t)PB(i, t)
(
1− 1

N

)
+ 1

N r5(t) =
(N−4

N

)N−t

These formulas are new. Biases were originally provided with probabilities for t =−1.
Except for the Korek biases, we have checked that the probabilities match with an error
less than 4%. The accuracy of formulas for Korek biases are still unclear but orders
of magnitude are correct. They were inspired by [6]. Details on how we have got all
formulas are omitted due to lack of space.
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Table 5. Conditional Biases for RC4

If ḡi holds then K̄[i] = f̄i with probability pi. All biases except SVV db are from [18]. SVV db
is from [33].

row reference f̄ ḡ p
i A u15 2−σi z2 = 0, St [i] = 0 Kor01
i A s13 S−1

t [0]−σi St [1] = i, z1 = i Kor14
i A u13 1 S−1

t [z1]−σi St [1] = i, z1 = 1− i Kor12
i A u13 2 1−σi St [i] = i, St [1] = 0, z1 = i Kor02
i A u13 3 1−σi St [i] = i, St [1] = 1− i, z1 = St [1] Kor02
i A s5 1 S−1

t [z1]−σi St [1] < i, St [1] + St [St [1]] = i, z1 ̸= St [1],
z1 ̸= St [St [1]], St [1] ̸= 1

Kor13

i A s5 2 S−1
t [St [1]−St [2]]−σi St [1] > i, St [2] + St [1] = i, St [1] = z2,

S−1
t [St [1]−St [2]] ̸= 1, S−1

t [St [1]−St [2]] ̸= 2
Kor33

i A s5 3 S−1
t [2−St [2]]−σi St [1] > i, St [2] + St [1] = i, z2 = 2− St [2],

S−1
t [z2] ̸= 1,S−1

t [z2] ̸= 2
Kor23

i A u5 1 S−1
t [S−1

t [z1]− i]−σi St [1] = i, z1 ̸= i, S−1
t [z1]< i, S−1

t [S−1
t [z1]−

i] ̸= 1, z1 ̸= 1− i
Kor23

i A u5 2 1−σi S−1
t [z1] = 2, St [i] = 1 Kor02

i A u5 3 1−σi St [1] > −i, St [i] = i, St [1] = S−1
t [z1]− i,

S−1
t [z1] ̸= 1

Kor03

i > 4 A u5 4 S−1
t [z2]−σi St [1] = 2, St [4] + 2 = i, S−1

t [z2] ̸= 1,
S−1

t [z2] ̸= 4
Kor13

i A s3 S−1
t [z2]−σi St [1] ̸= 2, St [2] ̸= 0, St [2]+St [1]< i, St [2]+

St [St [2]+St [1]] = i, S−1
t [z2] ̸= 1, S−1

t [z2] ̸=
2, S−1

t [z2] ̸= St [1]+St [2]

Kor15

4 A 4 s13 S−1
t [0]−σ4 St [1] = 2, z2 = 0, St [4] ̸= 0 Kor12

4 A 4 u5 1 S−1
t [N−2]−σ4 St [1] = 2, z2 ̸= 0, S−1

t [z2] = 0 Kor13
4 A 4 u5 2 S−1

t [N−1]−σ4 St [1] = 2, z2 ̸= 0, S−1
t [z2] = 2, K[0]+K[1]+

S0[1] = 2
Kor13

i A neg 1a 1−σi St [2] = 0, St [1] = 2, z1 = 2 0
i A neg 1b 2−σi St [2] = 0, St [1] = 2, z1 = 2 0
i A neg 2 2−σi St [2] = 0, St [1] ̸= 2, z2 = 0 0
i A neg 3a 1−σi St [1] = 1, z1 = St [2] 0
i A neg 3b 2−σi St [1] = 1, z1 = St [2] 0
i A neg 4a −σi St [1] = 0, St [0] = 1, z1 = 1 0
i A neg 4b 1−σi St [1] = 0, St [0] = 1, z1 = 1 0

16 SVV db S−1
t [0]−σi zi =−16 PSVV10(i, t)
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