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Abstract. In Crypto’95, Kurosawa, Obana and Ogata proposed a k-
out-of-n secret sharing scheme capable of identifying up to t cheaters
with probability 1 − ϵ under the condition t ≤ ⌊(k − 1)/3⌋. The size of
share |Vi| of the scheme satisfies |Vi| = |S|/ϵt+2, which was the most
efficient scheme known so far. In this paper, we propose new k-out-of-
n secret sharing schemes capable of identifying cheaters. The proposed
scheme possesses the same security parameters t, ϵ as those of Kurosawa
et al.. The scheme is surprisingly simple and its size of share is |Vi| =
|S|/ϵ, which is much smaller than that of Kurosawa et al. and is almost
optimum with respect to the size of share; that is, the size of share is only
one bit longer than the existing bound. Further, this is the first scheme
which can identify cheaters, and whose size of share is independent of
any of n, k and t. We also present schemes which can identify up to ⌊(k−
2)/2⌋, and ⌊(k−1)/2⌋ cheaters whose sizes of share can be approximately
written by |Vi| ≈ (n · (t+1) ·23t−1 · |S|)/ϵ and |Vi| ≈ ((n · t ·23t)2 · |S|)/ϵ2,
respectively. The number of cheaters that the latter two schemes can
identify meet the theoretical upper bound.

Keywords: Secret Sharing, Cheater Identification, Reed-Solomon Code, Univer-
sal Hash.

1 Introduction

Secret sharing scheme is a cryptographic primitive in which a secret is divided
into shares and distributed among participants in such a way that only a qualified
set of participants can recover the secret. It is a fundamental building block for
many cryptographic protocols and is often used in the general composition of
secure multiparty computations. Because of their importance in cryptography it
has been studied actively for more than three decades since the seminal papers
by Shamir [23] and Blakley [3].

Cheating prevention is one of the main topics in secret sharing schemes.
Tompa and Woll first considered a secret sharing scheme capable of detecting
the presence of cheating when invalid shares are submitted in the secret recon-
struction phase [25]. For the problem of detecting cheating, the upper bound of
the size of share and efficient constructions have been actively studied so far [1,
2, 6, 9, 16, 19].



Secret sharing schemes that not only detect the presence of cheating but also
identify cheaters who submit invalid shares are also a hot topic in this area. Rabin
and Ben-Or proposed a k-out-of-n secret sharing scheme capable of identifying
cheaters [21]. The size of share |Vi| of their scheme is |Vi| = |S|3n−2 where
|S| denotes the size of secret1. In [12], Kurosawa, Obana and Ogata showed
that when the number of cheater t satisfies t ≤ ⌊(k − 1)/3⌋ the share size is
greatly reduced compared to that of [21]. The size of share of their scheme is
|Vi| = |S|/ϵt+2, which until now has been the most efficient scheme, despite the
fact that the bit length of their scheme is still linear to the number of cheaters.
The lower bound of share size is given by Kurosawa et al. as follows [12]:

|Vi| ≥
|S| − 1

ϵ
+ 1 (1)

where ϵ denotes the successful cheating probability of cheaters. Though, the sizes
of shares of all the existing schemes are far from the above bound.

In this paper, we first present efficient k-out-of-n threshold secret sharing
schemes capable of identifying up to t cheaters under the condition t ≤ ⌊(k −
1)/3⌋. While this condition is the same as that of Kurosawa et al. [12], the share
size is dramatically reduced compared to [12]. Namely, the share size of the
first scheme satisfies |Vi| = |S|/ϵ and is only one bit longer than the bound of
eq. (1). We also present a scheme with the desired property that the successful
cheating probability of cheaters can be determined without regard to the size
of the secret, which is not the case in the first scheme. Further, we present
k-out-of-n threshold schemes capable of detecting up to t cheaters such that
t ≤ ⌊(k− 2)/2⌋ and t ≤ ⌊(k− 1)/2⌋, respectively. The numbers of cheaters these
two schemes can identify reach the theoretical limit when k is even and for any
k, respectively. The sizes of share of the schemes can be approximately written
by |Vi| ≈ (n · t · 23t−1 · |S|)/ϵ and |Vi| ≈ ((n · t · 23t)2 · |S|)/ϵ2, respectively, which
are also much smaller than that of Kurosawa et al. despite the difference of their
cheater identifiabilities.

We note that secret sharing schemes against cheating are strongly related
to secure message transmission schemes as mentioned in [11, 13]. Therefore, we
believe that ideas used to construct proposed schemes will help to construct
secure message transmission schemes.

The rest of the paper is organized as follows. In Section 2, we briefly re-
view models of secret sharing schemes capable of identifying cheaters, and we
discuss related work. In Section 3, we present almost optimum schemes which
can identify up to ⌊(k − 1)/3⌋ cheaters. In Sections 4 and 5, we give efficient
schemes which can identify up to ⌊(k− 2)/2⌋ cheaters and ⌊(k− 1)/2⌋ cheaters,
respectively. In Section 6, we summarize our work.

1 Throughout the paper, we use notations |X | and X to denote the cardinality of a set
X and a random variable over X , respectively.



2 Preliminaries

2.1 Secret Sharing Schemes

In the model of secret sharing schemes, there are n participants P = {P1, . . . , Pn}
and a dealerD. The model consists of two algorithms: ShareGen and Reconst. The
share generation algorithm ShareGen takes a secret s ∈ S as input and outputs a
list (v1, v2, . . . , vn). Each vi ∈ Vi is called a share and is given to a participant Pi.
In a usual setting, ShareGen is invoked by the dealer. The secret reconstruction
algorithm Reconst takes a list of shares and outputs a secret s ∈ S.

The set of participants who are allowed to reconstruct the secret is char-
acterized by an access structure Γ ⊆ 2P ; that is, participants Pi1 , . . . , Pik are
allowed to reconstruct the secret if and only if {Pi1 , . . . , Pik} ∈ Γ (for instance,
the access structure of a k-out-of-n threshold secret sharing scheme is defined
by Γ = {A | A ⊆ 2P , |A| ≥ k}.) A secret sharing scheme is called perfect if the
following two conditions are satisfied for the output (v1, . . . , vn) of ShareGen(ŝ)
where the probabilities are taken over the random tape of ShareGen.

1. if {Pi1 , . . . , Pik} ∈ Γ then Pr[Reconst(vi1 , . . . , vik) = ŝ] = 1,
2. if {Pi1 , . . . , Pik} ̸∈ Γ then Pr[S = s | Vi1 = vi1 , . . . , Vik = vik ] = Pr[S = s] for

any s ∈ S.

We note that only perfect secret sharing schemes are dealt with in this paper.

2.2 t-Cheater Identifiable Secret Sharing Schemes

A secret sharing scheme capable of identifying cheaters was first presented by
Rabin and Ben-Or [21]. They considered the scenario in which cheaters who do
not belong to the access structure submit forged shares in the secret reconstruc-
tion phase. Such cheaters will succeed if they cannot be identified as cheaters in
reconstructing the secret.

As with ordinary secret sharing schemes, this model consists of ShareGen
and Reconst. The share generation algorithm ShareGen is the same as that in the
ordinary secret sharing schemes. Two types of secret reconstruction algorithms
have been defined so far depending on whether identification of the cheater is

done privately or publicly. We will use Reconst(pri) and Reconst(pub) to denote
secret reconstruction algorithms which identify cheaters privately and publicly,

respectively. A secret reconstruction algorithm Reconst(pri) takes a share called
a base share and a list of shares as input and outputs a pair of a secret and a

set of cheaters; that is, if no cheater is identified Reconst(pri) outputs a pair (s, ∅)
where s is a secret reconstructed. If Reconst(pri) finds cheaters and the secret s
can be reconstructed from valid shares submitted, it outputs (s, L) (where s ∈ S
and L ̸= ∅ is a set of cheaters submit invalid shares,) otherwise (i.e. if a secret
cannot be reconstructed from valid shares,) it outputs (⊥, L) where ⊥(̸∈ S) is
a special symbol indicating that cheating was detected and, again, L is a set of

cheaters. In Reconst(pri), the base share becomes a basis for deciding whether a

participant submitting a share to Reconst(pri) is a cheater. On the other hand,



Reconst(pub) identifies cheaters without a trusted share: it takes a list of shares
as input and outputs a pair of a secret and a set of cheaters. We require that
the algorithms ShareGen and Reconst satisfy the following correctness condition:

Pr[(v1, . . . , vn)← ShareGen(s); (ŝ, L)← Reconst(vi1 , . . . , vim) : s = ŝ ∧ L = ∅] = 1

for any s ∈ S, for any i1, . . . , im such that m ≥ k.
The security of the model can be formalized by the following simple game

defined for any k-out-of-n threshold secret sharing scheme SS = (ShareGen,
Reconst) and for any (not necessarily polynomially bounded) Turing machine

A(t) = (A
(t)
1 ,A

(t)
2 ), where A(t) represents t cheaters Pi1 , . . . , Pit who try to cheat

honest participants Pit+1 , . . . , Pim where m ≥ k.

Game(SS,A(t))
s← S; // according to the probability distribution over S.
(v1, . . . , vn)← ShareGen(s);

(i1, . . . , it)← A
(t)
1 ();

(v′i1 , . . . , v
′
it
, it+1, . . . , im)← A

(t)
2 (vi1 , . . . , vit);

Cheaters Pij succeeds in cheating if Reconst fails to identify Pij as a cheater
when a secret reconstructed is not identical to the original one. In the public

model, we will denote successful cheating probability of Pij against SS(pub) by

ϵ(SS(pub),A(t), Pij ) where ϵ(SS
(pub),A(t), Pij ) is define as follows:

ϵ(SS(pub),A(t), Pij ) = Pr[(s′, L)← Reconst(pub)(v′i1 , . . . , v
′
it , vit+1 , . . . , vik) : ij ̸∈ L].

On the other hand, in the private model, successful cheating probability of
Pij is defined for each Pℓ submitting base share. Therefore, we will define such

probability ϵ(SS(pri),A(t), Pij , Piℓ) by

ϵ(SS(pri),A(t), Pij , Piℓ)

= Pr[(s′, L)← Reconst(pri)(viℓ , (v
′
i1 , . . . , v

′
it , vit+1 ,

viℓ
∨. . ., vik)) : ij ̸∈ L]

where the first argument viℓ of Reconst(pri) denotes a base share. The probabili-
ties are taken over the distribution of S, and over the random tapes of ShareGen
and A(t). Note that the above game implicitly assumes simultaneous secret re-
construction; that is, all the participants submit their shares simultaneously to
secret reconstruction algorithm in reconstructing the secret. Therefore, so-called
“rushing adversary” who tries to forge its share after observing shares of honest
participants is not allowed in this model.

Cheaters in this model can be classified into two classes: non-critical cheaters
and critical cheaters. Non-critical cheaters only disclose their information to
other cheaters or forge their shares in such a way that their forgeries do not
cause the secret reconstruction algorithm to reconstruct a different secret from
the original one. On the other hand, critical cheaters submit forged shares which
cause the secret reconstruction algorithm to reconstruct a different secret from



the original one. In this paper we focus on identifying only critical cheaters since
the goal of the cheaters in the models considered is to make other participants
reconstruct an invalid secret. The formal definition of a critical cheater for public
cheater identification models are given as follows:

Definition 1. Let (v1, . . . , vn) be output of ShareGen(pub)(s). A participants Pj
who submit v′j to Reconst(pub) is called a critical cheater if and only if there exist
i1, i2, . . . , ik−1 such that

Pr[(s′, L)← Reconst(pub)(vi1 , . . . , vik−1
, v′j) : s

′ ̸= s ∧ s′ ∈ S] ̸= 0 .

In the case of private cheater identification model, a critical cheater may vary
according to a participant who submit base share.

Definition 2. Let (v1, . . . , vn) be output of ShareGen(pri)(s). A participants Pj
who submit v′j to Reconst(pri) is called a critical cheater against Pℓ if and only if
there exist i1, i2, . . . , ik−2 such that

Pr[(s′, L)← Reconst(pri)(vℓ, (vi1 , . . . , vik−2
, v′j)) : s

′ ̸= s ∧ s′ ∈ S] ̸= 0 .

Based on the above definition, we define the security of secret sharing schemes
capable of identifying cheaters for both public and private models as follows:

Definition 3. A (k, n) threshold secret sharing scheme SS(pub) = (ShareGen(pub),

Reconst(pub)) is called a (t, ϵ) cheater identifiable secret sharing scheme with pub-

lic cheater identification if ϵ(SS(pub),A(t), Pj) ≤ ϵ for any A(t) representing set
of t or less cheaters P, for any critical cheater Pj ∈ P.

Definition 4. A (k, n) threshold secret sharing scheme SS(pri) = (ShareGen(pri),

Reconst(pri)) is called a (t, ϵ) cheater identifiable secret sharing scheme with pri-

vate cheater identification if ϵ(SS(pri), A(t), Pj , Pℓ) ≤ ϵ for any A(t) representing
set of t or less cheaters P, for any critical cheater Pi ∈ P and for any honest
participant Pℓ.

We note that (t, ϵ) publicly cheater identifiable schemes for ϵ < 1 exist only if
t ≤ ⌊(k−1)/2⌋ whereas (k−1, ϵ) cheater identifiable scheme with private cheater
identification can be constructed. This is because cheaters can easily generate
arbitrary number of consistent shares by invoking ShareGen with forged secret s′

as input and distribute them among the cheaters in publicly cheater identifiable
schemes. In this case, it is impossible to identify cheaters unless we can determine
cheaters on a majority basis.

We also note that the model of (t, ϵ) cheater identifiable secret sharing scheme
is different from that of the verifiable secret sharing (VSS for short) in the sense
that the dealer is honest in the (t, ϵ) cheater identifiable secret sharing whereas
the dealer may cheat in the VSS.



2.3 Related Work

In this subsection, we briefly review a known bound and constructions of (t, ϵ)
cheater identifiable secret sharing schemes and related topics.

The capability to identify cheaters in secret sharing schemes was first pointed
out by McEliece and Sarwate [15]. Namely, they observed that a list of shares of
Shamir’s (k, n) threshold secret sharing scheme constitutes a codeword of Reed-
Solomon code. Therefore, if k + 2t + 1 shares containing up to t invalid shares
are submitted in reconstructing a secret, the secret reconstruction algorithm
can identify all cheaters with probability 1. However, this observation does not
directly lead to constructing (t, ϵ) cheater identifiable secret sharing schemes
since k + 1 or more shares are required to identify cheaters.

(t, ϵ) cheater identifiable (k, n) secret sharing scheme with private cheater
identification are presented in various literature. Here, we will briefly review
previous results. In [21, 22], Rabin and Ben-Or presented a scheme on which they
constructed a verifiable secret sharing scheme. The property of their scheme can
be summarized by the following proposition:

Proposition 1. [21, 22] There exists (k−1, ϵ) cheater identifiable (k, n) thresh-
old secret sharing scheme with private cheater identification with parameter
|S| = p, ϵ = 1/p, and |Vi| = p3n−2 where p is a prime power.

Carpentieri proposed a scheme in which the size of share is reduced compared
to [21, 22]:

Proposition 2. [5] There exists (k − 1, ϵ) cheater identifiable (k, n) threshold
secret sharing scheme with private cheater identification with parameter |S| = p,
ϵ = 1/p, and |Vi| = pk+2(n−1) where p is a prime power.

Ogata and Kurosawa proposed an elegant scheme in which the size of share is
independent of n:

Proposition 3. [18] There exists (k− 1, ϵ) cheater identifiable (k, n) threshold
secret sharing scheme with private cheater identification with parameter |S| = p,
ϵ = (k − 1)/(p− 1), and |Vi| = p2k+1 where p is a prime power.

We note that the schemes in [21, 22] (Proposition 1) and [5] (Proposition 2) are
secure even when cheater knows shares of n−1 participants whereas the scheme
in [18] (Proposition 3) ensures security against cheaters who know at most k− 1
shares.

With respect to a scheme with public cheater identification, Kurosawa, Obana
and Ogata presented an efficient scheme whose share size only depends on the
maximum number of cheaters [12]. The properties of their scheme can be sum-
marized as follows:

Proposition 4. [12] If t ≤ ⌊(k − 1)/3⌋, there exists (t, ϵ) cheater identifiable
(k, n) threshold secret sharing scheme with public cheater identification with pa-
rameter |S| = p, ϵ = 1/q and |Vi| = p·qt+2 where p, q are prime powers satisfying
q ≥ n · p− t .2
2 though this limitation is not addressed in [12], it follows directly from Bush bound
on orthogonal array of strength t+ 1.



In [12], Kurosawa et al. also showed a lower bound of share size for (t, ϵ) cheater
identifiable secret sharing schemes with both publicly and privately cheater iden-
tification as follows:

Proposition 5. [12]The size of share for (t, ϵ) cheater identifiable (k, n) thresh-

old secret sharing schemes is lower bounded by |Vi| ≥
|S| − 1

ϵ
+ 1 .

However, share sizes of existing schemes are far from the above bound. Therefore,
it was not clear whether the above bound is tight.

3 Publicly Cheater Identifiable Schemes for t ≤ ⌊k−1
3

⌋

In this section, we present two efficient (t, ϵ) cheater identifiable (k, n) threshold
secret sharing schemes with public cheater identification under the condition
t ≤ ⌊(k − 1)/3⌋. The first scheme is almost optimum with respect to the share
size; that is, the bit length of shares of the scheme is only one bit longer than the
lower bound of Proposition 5. The second scheme, even though the share size
is slightly larger than the first scheme, possesses a particular merit in that the
successful cheating probability of cheaters can be chosen without regard to the
size of the secret, which is the case neither in the first scheme nor in the scheme
of [12].

As with the scheme in [12], the proposed scheme uses Reed-Solomon code
to identify cheaters. The major difference between the scheme in [12] and the
proposed scheme is as follows. In [12], a share of each participant consists of (1)
a share of Shamir’s (k, n) secret sharing for a secret, (2) a share of Shamir’s (t, n)
secret sharing scheme for a key of strongly universal hash functions of strength
t + 1 (please refer to [24] for the definition,) and (3) a hash value of (1) under
the key (2). Here, Reed-Solomon code is used in (2) to make cheaters impossible
to alter the value of the key, which is used to examine the validity of shares
(as pointed out in [15], (t, n) secret sharing scheme is equivalent to codeword of
generalized Reed-Solomon code). Since the size of key of the strongly universal
hash function of strength t+ 1 is as large as 1/ϵt+1 the share size of the scheme
in [12] grows linear with the number of cheaters. On the other hand, a share of
the proposed scheme only consists of (1) a share of Shamir’s (k, n) secret sharing
for a secret, and (2) a hash value of (1) computed by a strongly universal hash
function of strength t+1. Interestingly, the key used to compute hash values is not
explicitly shared among the participants but is recovered from the hash values
in the secret reconstruction phase by utilizing the error correction capability
of Reed-Solomon code. This is made possible by choosing a strongly universal
hash family based on polynomials over a finite field. Since the size of hash value
is equal to 1/ϵ in the proposed scheme, we see that the share size |Vi| of the
proposed scheme satisfies |Vi| = |S|/ϵ, which is independent of any of k, n and
t. The detailed description of the first scheme is given in the next subsection.



3.1 An Almost Optimum Scheme

The share generation algorithm ShareGen and the secret reconstruction algorithm
Reconst of the first scheme are described as follows where p and q are prime
powers such that q ≥ n · p and ψ : GF(p) × {1, . . . , n} → GF(q) is an injective
function (e.g. ψ(x, y) = (y − 1) · p+ x for prime numbers p, q.)

Share Generation: On input a secret s ∈ GF(p), the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ GF(p)[X] of degree k − 1 such that
fs(0) = s.

2. Generate a random polynomial C(x) ∈ GF(q)[X] of degree t.

3. Compute vi = (fs(i), C(ψ(fs(i), i))) and output (v1, . . . , vn).

Secret Reconstruction and Cheater Identification: On input a list of m (≥ k)
shares ((vs,i1 , vC,i1), . . . , (vs,im , vC,im)), the secret reconstruction algorithm
Reconst output a secret or a list of identities of cheaters as follows.

1. Reconstruct Ĉ(x) from (vC,i1 , . . . , vC,im) using an error correction algorithm
of generalized Reed-Solomon Code (e.g. Berlekamp algorithm.)

2. Check if vC,ij = Ĉ(ψ(vs,ij , ij)) holds (for 1 ≤ j ≤ m.) If vC,ij ̸= Ĉ(ψ(vs,ij , ij))
then ij is added to the list of cheaters L.

3. If |L| ≤ m− k then reconstruct fs(x) from (k or more) shares vij such that
ij ̸∈ L using Lagrange interpolation, and output (fs(0), L) if deg(fs) ≤ k−1,
otherwise Reconst output (⊥, L). Reconst also output (⊥, L) if |L| > m − k
holds.

Security of the proposed scheme can be summarized by the following theorem.

Theorem 1. If t ≤ ⌊(k − 1)/3⌋ then the proposed scheme is a (t, ϵ) cheater
identifiable secret sharing scheme with public cheater identification such that

|S| = p, ϵ = 1/q, q ≥ n · p, |Vi| = p · q (= |S|/ϵ) .

Proof. First, we show that the scheme is perfect. It is well known that vs,i1 , . . . ,
vs,ik do not reveal any information about the secret since each vs,i is a share
of Shamir’s k-out-of-n secret sharing scheme. Further, it is easy to see that the
knowledge about vC,i does not leak any information about the secret since the
polynomial C(x) is completely independent of the secret s.

Next we show that the scheme is (t, ϵ) cheater identifiable. The following two
facts are key to prove (t, ϵ) cheater identifiability of the scheme:

1. (C(x1), C(x2), . . . , C(xk)) is a codeword of the Reed-Solomon Code with
minimum distance k − t. Therefore, if k − t > 2t (i.e. t ≤ ⌊(k − 1)/3⌋) then
C(x) can be reconstructed even when t points are forged.



2. A family of functions {C(x) | C(x) ∈ GF(q)[X], deg(C(x)) ≤ t} is a strong
class of universal hash functions GF(q) → GF(q) with strength t + 1; that
is, the following equality holds for any distinct x1, . . . , xt, xt+1 ∈ GF(q) and
for any y1, . . . , yt, yt+1 ∈ GF(q).

Pr[C(xt+1) = yt+1 | C(x1) = y1, . . . , C(xt) = yt] = 1/q . (2)

Without loss of generality, we can assume P1, . . . , Pt are cheaters who coopera-
tively try to fool the other participants by forging (part of) their shares. Suppose
that P1 is a critical cheater who is told the values v2, . . . , vt (i.e. the shares of
P2, . . . , Pt) and submits invalid share v′1 = (v′s,1, v

′
C,1) such that v′s,1 ̸= vs,1. P1 is

not identified as a cheater only if he submits v′C,1 such that v′C,1 = C(ψ(v′s,1, 1))
since Reconst can recover the original C(x) even when t shares are forged. Fur-
ther, since {C(x) | C(x) ∈ GF(q)[X], deg(C(x)) ≤ t} is a strong class of universal
hash functions and ψ(v′s,1, 1) is different from any of ψ(vs,i, i) (1 ≤ i ≤ t,) the
following equation holds:

Pr[C(ψ(v′s,1, 1)) = v′C,1 | C(ψ(vs,i, i)) = vC,i (for 1 ≤ i ≤ t)] = 1/q

where the probability is taken over the random choice of C(x). Since the above
discussion holds for any critical cheater Pi (1 ≤ i ≤ t,) we see that no critical
cheater can succeed in cheating without being identified with probability better
than 1/q. ⊓⊔

It should be noted that the size of share of the proposed scheme is independent
of any of n, k and t, though, there is an implicit limitation on the parameter that
ϵ < 1/(n · |S|) must holds. This is similar limitation of Shamir’s secret sharing
scheme which implicitly requires |S| > n.

3.2 A Scheme with Flexible Parameter Choice

As we noted in the previous section, there is such a limitation in the first scheme
that the successful cheating probability of cheaters must be smaller than 1

n·|S| .

This limitation is not desirable, especially when we want to share a secret with
large size. Consider the situation in which we want to share a 1M bit secret
(i.e. |S| = 22

20

,) with the first scheme. In this case, the share size becomes as

large as 2M bit with a security level of ϵ < 1/22
20

whereas ϵ = 1/2128 will
be sufficient in real life. The second scheme is useful in such a situation since
the successful cheating probability of cheaters can be chosen without regard to
the size of the secret and the share size can be made reasonable in the second
scheme. For example, when we share a 1M bit secret with the second scheme
with ϵ = 1/2128, the share size is only (1M+282) bit.

The basic idea of the second scheme is same as the first scheme. We introduce
the following trick to the first scheme so that we can determine |S| and ϵ flexibly.
In the first scheme, the random polynomial C(x) must be chosen from GF(q)[X]
such that q ≥ n · |S| in order to ensure ψ(vi, i) ̸= ψ(vj , j) for any distinct
(i, vi) and (j, vj), which causes ϵ ≤ 1

n·|S| . In the second scheme, we introduce



almost universal hash function (e.g. [24]) ϕe : S → GF(p) (where S = GF(pN ))
and modify the input of C(x) (Cs(x) in the second scheme) to ψ(ϕe(vi), i) where
ψ : GF(p)×{1 . . . , n} is an injective function. The use of ϕe allows ψ(ϕe(vi), i) =
ψ(ϕe(v

′
i), i) with small probability, though, the limitation of ϵ < 1

n·|S| can be

eliminated since the range of ϕe is chosen flexibly by choosing the parameter
p,N and introduce a universal hash family ϕe(x0, . . . , xN−1) =

∑N−1
i=0 xi · ei

defined overGF(p). The share generation algorithm and the secret reconstruction
algorithm of the second scheme are described as follows:

Share Generation: On input a secret (s0, . . . , sN−1) ∈ GF(pN ), the share gener-
ation algorithm ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ GF(pN )[X] of degree k−1 such that
fs(0) = s.

2. Generate e ∈ GF(p) randomly and construct a random polynomial Ce(x) ∈
GF(p)[X] of degree t such that Ce(0) = e.

3. Generate random polynomials Cs(x) ∈ GF(q)[X] of degree t such that q ≥
n · p.

4. Compute vs,i = (vs,i,0, . . . , vs,i,N−1) = fs(i) where vs,i,j ∈ GF(p) (for 0 ≤
j ≤ N − 1), vCe,i = Ce(i) and vCs,i = Cs(ψ(

∑N−1
j=0 vs,i,j · ej , i)).

5. Compute vi = (vs,i, vCe,i, vCs,i) and output (v1, . . . , vn).

Secret Reconstruction and Cheater Identification: On input a list of m (m ≥ k)
shares ((vs,i1 , vCe,i1 , vCs,i1), . . . , (vs,im , vCe,im , vCs,im)) the secret reconstruction
algorithm Reconst outputs a secret or a list of identities of cheaters as follows.

1. Reconstruct Ĉs(x) and Ĉe(x) from (vCs,i1 , . . . , vCs,im) and (vCe,i1 , . . . , vCe,im),
respectively using an error correction algorithm of Reed-Solomon code.

2. Check if vCe,ij = Ĉe(ij) (for 1 ≤ j ≤ m.) If vCe,ij ̸= Ĉe(ij) then ij is added
to the list of cheaters L.

3. Compute ê = Ĉe(0).

4. Check if vCs,ij = Ĉs(ψ(
∑N−1
ℓ=0 vs,ij ,ℓ · êℓ, ij)) holds (for 1 ≤ j ≤ m.) ij is

added to the list of cheaters L if this is not the case.
5. If |L| ≤ m− k then reconstruct fs(x) from (k or more) shares vij such that
ij ̸∈ L using Lagrange interpolation, and output (fs(0), L) if deg(fs) ≤ k−1,
otherwise Reconst output (⊥, L). Reconst also output (⊥, L) if |L| > m − k
holds.

Security of the proposed scheme can be summarized by the following theorem.
Note that the successful cheating probability ϵ can be chosen without regard to
|S| by selecting the value of p appropriately.

Theorem 2. If t ≤ ⌊(k − 1)/3⌋ then the proposed scheme is a (t, ϵ) cheater
identifiable secret sharing scheme with public cheater identification such that

|S| = pN , ϵ = (N − 1)/p+ 1/q ≤ N/p, q ≥ n · p, |Vi| = pN+1 · q .



Proof. As in the proof of Theorem 1, we can assume P1, . . . , Pt are cheaters
who cooperatively try to fool the other participants by forging (part of) their
shares. Suppose that P1 is a critical cheater who submits invalid share v′1 =
(v′s,1, v

′
Ce,1

, v′Cs,1
) such that v′s,1 ̸= vs,1. Since (vCe,i1 , . . . , vCe,im) is a codeword

of Reed-Solomon Code capable of correcting up to t errors, t cheaters cannot al-
ter the value of e. Therefore, P1 is not identified as a cheater only if he submits
(v′s,1, v

′
Ce
, v′Cs,1

) such that v′Cs,1
= Cs(ψ(

∑N−1
ℓ=0 v′s,i,ℓ ·eℓ, 1)) where e is uniformly

and randomly distributed over GF(p). There are two cases to consider in com-
puting such probability. In the first case suppose that P1 forged its share in a
way that v′Cs,1

̸= vCs,1. In this case, successful cheating probability ϵ1 of P1 who

knows that vCs,i = Cs(ψ(
∑N−1
ℓ=0 vs,i,ℓ · eℓ, i)) hold for 1 ≤ i ≤ t is computed as

follows (for simplicity we will denote
∑N−1
ℓ=0 vs,i,ℓ · eℓ by ϕe(vs,i).)

ϵ1 = Pr[v′Cs,1 = Cs(ψ(ϕe(v
′
s,1), 1)) | vCs,i = Cs(ψ(ϕe(vs,i), i)) (for 1 ≤ i ≤ t)]

= Pr[ϕe(vs,i) ̸= ϕe(v
′
s,i)]

·Pr

[
v′Cs,1 = Cs(ψ(ϕe(v

′
s,1), 1))

∣∣∣∣∣vCs,i = Cs(ψ(ϕe(vs,i), i)) (for 1 ≤ i ≤ t),
ϕe(vs,i) ̸= ϕe(v′s,i)

]
≤ 1/q

where the last inequality directly follows from the fact that {Cs} is a family of
a strong class of strongly universal hash function with strength t + 1 (see the
proof of Theorem 1 for details.)

Next we consider the second case in which P1 forged its share in a way that
v′Cs,1

= vCs,1 holds. In this case ϵ1 is computed as follows.

ϵ1 = Pr[v′Cs,1 = Cs(ψ(ϕe(v
′
s,1), 1)) | vCs,i = Cs(ψ(ϕe(vs,i), i)) (for 1 ≤ i ≤ t)]

= Pr[ϕe(vs,i) = ϕe(v
′
s,i)] + Pr[ϕe(vs,i) ̸= ϕe(v

′
s,i)]

·Pr

[
v′Cs,1 = Cs(ψ(ϕe(v

′
s,1), 1))

∣∣∣∣∣vCs,i = Cs(ψ(ϕe(vs,i), i)) (for 1 ≤ i ≤ t),
ϕe(vs,i) ̸= ϕe(v′s,i)

]
≤ Pr[ϕe(vs,i) = ϕe(v

′
s,i)] + 1/q ≤ (N − 1)/p+ 1/q

where the last two inequalities follows from the property of a strong class of
universal hash functions and the well-known fact that a polynomial of degree
N − 1 (e.g. ϕe) has at most N − 1 roots. It is easy to see that the successful
cheating probability of any critical cheater is upper bounded by N/p since (N −
1)/p+ 1/q ≤ N/p holds. ⊓⊔

Note that the bit length of shares log |Vi| is approximately log |S|+2 log(1/ϵ)+
2 log log |S| in the above scheme. Therefore, we can determine size of the secret
and successful cheating probability flexibly only by paying log(1/ϵ)+2 log log |S|
additional bits compared to the bound.



4 A Publicly Cheater Identifiable Scheme for t ≤ ⌊k−2
2

⌋

In this section we show that we can construct a very efficient publicly cheater
identifiable scheme even when the number of cheaters t does not satisfy t ≤
⌊(k − 1)/3⌋. More precisely, we present a publicly cheater identifiable scheme
whose secret reconstruction algorithm can catch up to ⌊(k − 2)/2⌋ cheaters.
We note that the cheater identifiability of the scheme is nearly optimum since
t = ⌊(k − 1)/2⌋ is the theoretical upper bound for public cheater identification.
Furthermore, the size of share |Vi| of the proposed scheme is much smaller than
that of [12] despite the difference of their cheater identifiabilities.

The share generation algorithm of the proposed scheme is exactly the same
as the one presented in §3.1. To identify more than (k − 1)/3 cheaters, the
secret reconstruction algorithm examines the consistency of all the possible

(
k
t+2

)
subsets of k shares input to the algorithm. Here, the consistency of t+ 2 shares
(vs,ij , vC,ij ) (1 ≤ j ≤ t + 2) is examined by verifying whether t + 2 points
(ψ(vs,ij , ij), vC,ij ) (1 ≤ j ≤ t+ 2) lie on a polynomial of degree t. The intuition
behind the idea is as follows. Suppose t cheaters try to fool the reconstruction
algorithm by forging their shares. Since we assume t ≤ ⌊(k− 2)/2⌋, there are at
least t+ 2 unforged shares input to the reconstruction algorithm. Therefore, we
can guarantee that (1) there exists at least one subset of consistent shares of size
t+ 2 (i.e. shares which does not contain a forged share,) and (2) any subsets of
size t + 2 contain at least two unforged shares. We will make use of these facts
to catch cheaters since t+ 2 shares containing both forged and unforged shares
can be consistent only with very low probability. The detailed description of the
proposed reconstruction algorithm is described as follows.

Secret Reconstruction and Cheater Identification for t ≤ ⌊(k−2)/2⌋: On input a
list of m(≥ k) shares ((vs,i1 , vC,i1), . . . , (vs,im , vC,im)), the secret reconstruction
algorithm Reconst output a secret or a list of identities of cheaters as follows.

1. If t ≤ (m − 1)/3 holds, outputs (s, L) ← Reconst(3t+1)((vs,i1 , vC,i1), . . . ,

(vs,im , vC,im)), where Reconst(3t+1) denotes the secret reconstruction algo-
rithm for t ≤ ⌊(k − 1)/3⌋ (i.e. Reconst presented in §3.1.)

2. Otherwise, let L← {i1, . . . , im} and repeat the following steps 2a–2b for all
subsets I ⊆ {i1, . . . , im} such that |I| = t+ 2.

(a) Compute cI by cI =
∑
i∈I vC,i ·

∏
j∈I
j ̸=i

1
ψ(vs,i,i)−ψ(vs,j ,j) , where cI is the

coefficient of xt+1 of the polynomial C(x) constructed from the t + 2
points (ψ(vs,i, i), vC,i) (i ∈ I.)

(b) If cI = 0 holds, then L← L \ I (i.e. remove I from the list of cheaters.)
Note that cI = 0 holds if all of t+2 shares are unforged since we choose
random polynomial C(x) of degree t in the share generation algorithm.

3. If |L| ≤ m−k holds then reconstruct fs(x) from (k or more) shares vs,ij such
that ij ̸∈ L using Lagrange interpolation, and output (fs(0), L) if deg(fs) ≤
k − 1, otherwise Reconst output (⊥, L). Reconst also output (⊥, L) if |L| >
m− k holds.



Security of the proposed scheme can be summarized by the following theorem.

Theorem 3. If t ≤ ⌊(k − 2)/2⌋ then the proposed scheme is a (t, ϵ) cheater
identifiable secret sharing scheme with public cheater identification such that

|S| = p, ϵ =
(t+ 1) · 23t−1

p
, q ≥ n · p, |Vi| = p · q (≈ n·(t+1)·23t−1·|S|

ϵ ) .

Proof. As in the proof of Theorem 1, we can assume P1, . . . , Pt are cheaters who
cooperatively try to fool the other participants Pt+1, . . . , Pm by forging (part
of) their shares. Suppose that P1 is a critical cheater who submits invalid share
v′1 = (v′s,1, v

′
C,1) such that v′s,1 ̸= vs,1. We will show that the probability that the

successful cheating probability of P1 is upper bounded by ϵ (= (t+1)·23t−1

p ).

From the proof of Theorem 1, it is easy to see that, if t ≤ (m − 1)/3 holds,
the successful cheating probability of P1 is upper bounded by q(< ϵ) since we
can apply error correction algorithm of the generalized Reed-Solomon codes to
(v′C,1, . . . , v

′
C,t, vC,t+1, . . . , vC,m).

Now we will show the proposed reconstruction algorithm can catch cheaters
with probability better than 1− ϵ even against t > (k− 1)/3 cheaters. It suffices
to show that the probability that there exists at least one subset I ⊆ {1, . . . ,m}
such that (1) 1 ∈ I, (2) |I| = t+ 2, and (3) cI = 0, is lower bounded by ϵ.

Toward showing the above, we will first show that the probability ϵ(I) that
cI = 0 holds for given I is lower bounded by (t+1)/p for any I such that 1 ∈ I
and |I| = t+2. Without loss of generality, we can assume I = {ℓ1, ℓ2, . . . , ℓt+2}
and Pℓ1 . . . , Pℓt′ (t′ ≤ t) are cheaters.

To evaluate ϵ(I), we will analyze the structure of cI . Here, we will use the
notation ψi to denote ψ(vs,i, i) and the notation X ′ to indicate the variable X
is owned and controlled by the cheaters.

cI =
∑
ℓi∈I

vC,ℓi ·
∏
ℓj∈I
j ̸=i

1

ψℓi − ψℓj

=
t′∑

i=1

v′C,ℓi ·
t′∏

j=1
j ̸=i

1

ψ′
ℓi
− ψ′

ℓj

t+2∏
j=t′+1

1

ψ′
ℓi
− ψℓj

+

t+2∑
j=t′+1

vC,ℓj ·
t′∏

i=1

1

ψℓj − ψ′
ℓi

t+2∏
i=t′+1

i̸=j

1

ψℓj − ψℓi

We will rewrite v′C,ℓi ·
∏t′

j=1,j ̸=i
1

ψ′
ℓi
−ψ′

ℓj

by Ai where each Ai is determined by

the shares submitted by the cheaters and is known to the cheaters. Furthermore,
to make the proof clearer, we replace vC,i by C(ψi) where C(x) is a polynomial
chosen by the dealer in the share generation phase.

cI =
t′∑

i=1

Ai ·
t+2∏

j=t′+1

1

ψ′
ℓi
− ψℓj

+

t+2∑
j=t′+1

C(ψℓj ) ·
t′∏

i=1

1

ψℓj − ψ′
ℓi

t+2∏
i=t′+1

i ̸=j

1

ψℓj − ψℓi

(3)

With the knowledge about shares owned by the cheaters, the number of possible
candidates for (ψℓt′+1

, . . . , ψℓt+2 , C) becomes pt−t
′+2× qt−t′+1 since (1) ψℓi (t

′+



1 ≤ i ≤ t + 2) look randomly, uniformly and independently distributed over
the set Ψℓi = {ψ(vs,ℓi , ℓi) | vs,ℓi ∈ GF(p)} even with the knowledge of cheaters,
and (2) (ψℓt′+1

, vC,ℓt′+1
), . . . , (ψℓt+1 , vC,ℓt+1) uniquely determines the polynomial

C(x).
Now, we will estimate the upper bound of the number of (ψℓt′+1

, . . . , ψℓt+2 , C)

with which cI = 0. For any fixed (ψℓt′+1
, . . . , ψℓt+1 , C) = (ψ̂ℓt′+1

, . . . , ψ̂ℓt+1 , Ĉ),
eq (3) is rewritten as follows:

cI =

t′∑
i=1

Âi
ψ′
ℓi
− ψℓt+2

+

t+1∑
j=t′+1

B̂j

ψ̂ℓj − ψℓt+2

+Ĉ(ψt+2) ·
t′∏
i=1

1

ψℓt+2 − ψ′
ℓi

t+1∏
i=t′+1

1

ψℓt+2 − ψ̂ℓi

where Âi = Ai ·
∏t+1
j=t′+1

1
ψ′

ℓi
−ψ̂ℓj

, B̂j = Ĉ(ψ̂ℓj ) ·
∏t′

i=1
1

ψ̂ℓj
−ψ′

ℓi

·
∏t+1
i=t′+1

1
ψ̂ℓj

−ψ̂ℓi

are constant once ψ′
ℓi

(1 ≤ i ≤ t′), ψ̂ℓj (t′ + 1 ≤ j ≤ t + 1), and Ĉ are fixed. It
is easy to see that there are at most t + 1 values of ψℓt+2 with which cI = 0.
Therefore, the upper bound of the number of zeros of eq. (3) can be evaluated
as follows:

|{(ψℓt′+1
, . . . , ψℓt+2 , C) | cI = 0 holds}|

≤ |{(ψℓt′+1
, . . . , ψℓt+1) | ψℓi ∈ Ψℓi (t′ + 1 ≤ i ≤ t+ 1)}|

×|{C(x) | C(ψℓi) = vC,ℓi (1 ≤ i ≤ t′)}| × (t+ 1) = pt−t
′+1 · qt−t

′+1 · (t+ 1)

Therefore, the lower bound of ϵ(I) is given as follows: ϵ(I) ≤ pt−t′+1·qt−t′+1·(t+1)

pt−t′+2·qt−t′+1 =

(t+ 1)/p.
From the above inequality and the fact that the number of subsets I of

{1, . . . , 3t} such that 1 ∈ I and |I| = t + 2 is equal to
(
3t−1
t+1

)
, the successful

cheating probability ϵ is given as follows:

ϵ = Pr[there exists I such that cI = 0, 1 ∈ I, |I| = t+ 2]

≤
∑

{
I
∣∣∣ 1∈I,
|I|=t+2

} ϵ(I) =

∣∣∣∣{I ∣∣∣∣ 1 ∈ I,
|I| = t+ 2

}∣∣∣∣ · ϵ(I) ≤
(
3t− 1

t+ 1

)
· t+ 1

p
≤ (t+ 1) · 23t−1

p

The size of share satisfies |Vi| = p · q and is approximately written by |Vi| ≈
n·(t+1)·23t−1|S|

ϵ since q ≈ n · p and p ≤ (t+1)·23t−1

ϵ . ⊓⊔

Though size of share grows exponentially with the number of cheaters, the size
of share is much smaller compared to Kurosawa et al. [12] whose size of share is
as large as |S|/ϵt+2 (note that 1

ϵ ≫ 2.) Even compared to the theoretical lower
bound of eq. (1), the bit length of the proposed scheme is only 3t+ log t+ log n
bit longer. On the other hand, the drawback of the proposed reconstruction
algorithm is its computational inefficiency. In fact the reconstruction algorithm



requires to compute Lagrange interpolation
(

3t
t+2

)
times to identify cheaters.

However, in the usual setting, the cheater identification of the proposed scheme
is still feasible. Consider, for example, the situation where we want to catch up
to 10 cheaters (i.e. t = 10). The number of Lagrange interpolation we have to
invoke is

(
30
12

)
= 4, 118, 725, which is indeed feasible even by the current personal

computer.
We should note that the similar (brute force search) technique can be applied

to the scheme given in the section §3.2.

5 A Publicly Cheater Identifiable Scheme for t ≤ ⌊k−1
2

⌋

The scheme presented in Section 4 meets the theoretical upper bound t = ⌊(k−
1)/2⌋ on number of cheaters that a scheme can identify when the threshold k
is even. This is because ⌊(k − 2)/2⌋ = ⌊(k − 1)/2⌋ holds for even k. When k is
odd, on the other hands, the scheme will fail to catch ⌊(k−1)/2⌋(> ⌊(k−2)/2⌋)
cheaters. In this section we present a publicly cheater identifiable scheme which
can catch ⌊(k− 1)/2⌋ cheaters. The size of shares |Vi| of the proposed scheme is
not so small as the scheme for t ≤ ⌊(k − 2)/2⌋, though, the size of shares of the
scheme is still much smaller than that of [12].

Here, we will review the scheme presented in the previous section to explain
the idea behind the proposed scheme for t ≤ ⌊(k − 1)/2⌋. The reconstruction
algorithm of the scheme for t ≤ ⌊(k − 2)/2⌋ identifies cheaters by checking the
degree of the polynomial reconstructed from t+ 2 points. Using this technique,
it can be ensured that (1) t+ 2 points containing forged share cannot construct
a polynomial with degree less than or equal to t and, (2) t+2 points containing
no forged share construct a polynomial with degree less than or equal to t.
Unfortunately, we cannot apply this technique when t = ⌊(k − 1)/2⌋ since any
t + 2 shares contain at least one forged share and we cannot find set of honest
shares (and, therefore, cannot identify cheaters correctly.)

To make it possible to find honest shares by examining consistency of t + 1
shares, a share vi of the proposed scheme consists of vi = (vs,i, vC0,i, vC1,i) where
vs,i is a share of Shamir’s k-out-of-n scheme and vC0,i, vC1,i are the points on the

polynomials C0(x) =
∑t
i=0 a0,ix

i and C1(x) =
∑t
i=0 a1,ix

i such that a0,0 = a1,t.
Then we can verify the consistency of t + 1 shares by examining the equality
â0,t = â1,t where â0,0 and â1,t are coefficients of x0 and xt of polynomials Ĉ0

and Ĉ1, respectively, where Ĉ0 and Ĉ1 are polynomials reconstructed from t+1
shares. Since an additional element (i.e. vC1,i) is required in the proposed scheme,
the size of share is larger than that of the scheme for t ≤ ⌊(k − 2)/2⌋.

The share generation algorithm ShareGen and the secret reconstruction al-
gorithm Reconst of the proposed scheme are described as follows where p and q
are prime powers such that q ≥ n · p and ψ : GF(p)× {1, . . . , n} → GF(q) is an
injective function.

Share Generation: On input a secret s ∈ GF(p), the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:



1. Generate a random polynomial fs(x) ∈ GF(p)[X] of degree k − 1 such that
fs(0) = s.

2. Generate random polynomials C0(x) =
∑t
i=0 a0,ix

i, C1(x) =
∑t
i=0 a1,ix

i ∈
GF(q)[X] such that the a0,0 = a1,t.

3. Compute vi = (fs(i), C0(ψ(fs(i), i)), C1(ψ(fs(i), i))) and output (v1, . . . , vn).

Secret Reconstruction and Cheater Identification: On input a list of m (≥ k)
shares ((vs,i1 , vC0,i1 , vC1,i1), . . . , (vs,im , vC0,im , vC1,im)), the secret reconstruction
algorithm Reconst output a secret or a list of identities of cheaters as follows.

1. If t ≤ ⌊(m − 1)/3⌋ holds, outputs (s, L) ← Reconst(3t+1)((vs,i1 , vC0,i1), . . . ,

(vs,im , vC0,im)), where Reconst(3t+1) denotes the secret reconstruction algo-
rithm for t ≤ ⌊(k − 1)/3⌋ (i.e. Reconst presented in §3.1.)

2. Otherwise, let L← {i1, . . . , im} and repeat the following steps 2a–2b for all
subsets I ⊆ {i1, . . . , im} such that |I| = t+ 1.
(a) Compute aI,0 and aI,1 as follows:

aI,0 =
∑
ℓ∈I vC0,ℓ ·

∏
j∈I
j ̸=ℓ

−ψ(vs,j ,j)
ψ(vs,ℓ,ℓ)−ψ(vs,j ,j)

aI,1 =
∑
ℓ∈I vC1,ℓ ·

∏
j∈I
j ̸=ℓ

1
ψ(vs,ℓ,ℓ)−ψ(vs,j ,j)

where aI,0 and aI,1 are coefficients of x0 and xt of the polynomials C0(x)
and C1(x) constructed from the t+1 points (ψ(vs,i, i), vC0,i) (i ∈ I) and
(ψ(vs,i, i), vC1,i) (i ∈ I), respectively.

(b) If aI,0 = aI,1 holds then L ← L \ I (i.e. remove I from the list of
cheaters.)

3. If |L| ≤ m−k holds then reconstruct fs(x) from (k or more) shares vs,ij such
that ij ̸∈ L using Lagrange interpolation, and output (fs(0), L) if deg(fs) ≤
k − 1, otherwise Reconst output (⊥, L). Reconst also output (⊥, L) if |L| >
m− k holds.

Security of the proposed scheme can be summarized by the following theorem.

Theorem 4. If t ≤ ⌊(k − 1)/2⌋ then the proposed scheme is a (t, ϵ) cheater
identifiable secret sharing scheme with public cheater identification such that

|S| = p, ϵ =
t · 23t

p
, q ≥ n · p, |Vi| = p · q2 (≈ (n·t·23t)2·|S|

ϵ2 ) .

Proof. The proof is similar to that of Theorem 3 except that we pay attention
to the 0-th and the t-th degree coefficients of polynomials C0(x) and C1(x),
respectively, in analyzing the security of the proposed scheme.

As in the proof of Theorem 3, we can assume P1, . . . , Pt are cheaters who
cooperatively try to fool the other participants Pt+1, . . . , Pm by forging (part
of) their shares. Suppose that P1 is a critical cheater who submits invalid share
v′1 = (v′s,1, v

′
C0,1

, v′C1,1
) such that v′s,1 ̸= vs,1. We will show that the probability

that the successful cheating probability of P1 is upper bounded by ϵ (= t·23t
p ).



From the proof of Theorem 1, it is easy to see that, if t ≤ (m − 1)/3 holds,
the successful cheating probability of P1 is upper bounded by q(< ϵ).

Now we will show the proposed reconstruction algorithm can catch cheaters
with probability better than 1−ϵ even against t = ⌊(k−1)/2⌋ cheaters. It suffices
to show that the probability that there exists at least one subset I ⊆ {1, . . . ,m}
such that (1) 1 ∈ I, (2) |I| = t+ 1, and (3) aI,0 = aI,1, is lower bounded by ϵ.

Toward showing the above, we will first show that the probability ϵ(I) that
aI,0 = aI,1 holds for given I is lower bounded by 2t/p for any I such that 1 ∈ I
and |I| = t+1. Without loss of generality, we can assume I = {ℓ1, ℓ2, . . . , ℓt+1}
and Pℓ1 . . . , Pℓt′ (t′ ≤ t) are cheaters.

To evaluate ϵ(I), we will analyze the structures of aI,0 and aI,1. As in the
proof of Theorem 3, we will use the notation ψi to denote ψ(vs,i, i) and the no-
tation X ′ to indicate the variable X is owned and controlled by the cheaters. By
the similar discussion to the proof of Theorem 3, aI,0 and aI,1 can be rewritten
as follows:

aI,0 =

t′∑
i=1

A0,i ·
t+1∏

j=t′+1

−ψℓj

ψ′
ℓi
− ψℓj

+

t+1∑
j=t′+1

C0(ψℓj ) ·
t′∏

i=1

−ψ′
ℓi

ψℓj − ψ′
ℓi

t+1∏
i=t′+1

i ̸=j

−ψℓi

ψℓj − ψℓi

(4)

aI,1 =

t′∑
i=1

A1,i ·
t+1∏

j=t′+1

1

ψ′
ℓi
− ψℓj

+

t+1∑
j=t′+1

C1(ψℓj ) ·
t′∏

i=1

1

ψℓj − ψ′
ℓi

t+1∏
i=t′+1

i ̸=j

1

ψℓj − ψℓi

(5)

With the knowledge about shares owned by the cheaters, the number of pos-
sible candidates for (ψℓt′+1

, . . . , ψℓt+1 , C0, C1) becomes pt−t
′+1 × q2(t−t′)+1 since

(1) ψℓi (t′ + 1 ≤ i ≤ t + 1) look randomly, uniformly and independently dis-
tributed over the set Ψℓi = {ψ(vs,ℓi , ℓi) | vs,ℓi ∈ GF(p)} even with the knowl-
edge of cheaters, and (2) (ψℓt′+1

, vC0,ℓt′+1
, vC1,ℓt′+1

) . . . (ψℓt , vC0,ℓt , vC1,ℓt) and
(ψℓt+1 , vC0,ℓt+1) uniquely determines the polynomials C0(x) and C1(x) such that
a0,t = a1,t holds.

Now, we will estimate the upper bound of the number of (ψℓt′+1
, . . . , ψℓt+1 , C0,

C1) with which aI,0 = aI,1. By the similar discussion to the proof of Theo-

rem 3, we can show that, for any fixed (ψℓt′+1
, . . . , ψℓt , C0, C1) = (ψ̂ℓt′+1

, . . . ,

ψ̂ℓt , Ĉ0, Ĉ1), eq. (4) and eq. (5) are rewritten as follows:

aI,0 =

t′∑
i=1

−Âi,0 · ψℓt+1

ψ′
ℓi
− ψℓt+1

+

t∑
j=t′+1

−B̂j,0 · ψℓt+1

ψ̂ℓj − ψℓt+1

+Ĉ0(ψt+1) ·
t′∏

i=1

−ψℓt+1

ψℓt+1 − ψ′
ℓi

t∏
i=t′+1

−ψℓt+1

ψℓt+1 − ψ̂ℓi

aI,1 =

t′∑
i=1

Âi,1

ψ′
ℓi
− ψℓt+1

+

t∑
j=t′+1

B̂j,1

ψ̂ℓj − ψℓt+1

+Ĉ1(ψt+1) ·
t′∏

i=1

1

ψℓt+1 − ψ′
ℓi

t∏
i=t′+1

1

ψℓt+1 − ψ̂ℓi



where Âi,0, B̂j,0, Âi,1 and B̂j,1 are constant once ψ′
ℓi

(1 ≤ i ≤ t′), ψ̂ℓj (t′ + 1 ≤
j ≤ t), Ĉ0, and Ĉ1 are fixed. We see that there are at most 2t values of ψℓt+1

with which aI,0 = aI,1 since solving ψℓt+1 such that aI,0(ψℓt+1) = aI,1(ψℓt+1) is
equivalent to solving the equation AI(ψℓt+1) = 0 for a polynomial AI of degree
2t where AI is uniquely determined from aI,0 and aI,1. Therefore, the upper
bound of the number of (ψℓt′+1

, . . . , ψℓt+1 , C0, C1) such that aI,0 = aI,1 can be
evaluated as follows:

|{(ψℓt′+1
, . . . , ψℓt+1 , C0, C1) | aI,0 = aI,1 holds}|

≤ |{(ψℓt′+1
, . . . , ψℓt) | ψℓi ∈ Ψℓi (t′ + 1 ≤ i ≤ t)}|

×
∣∣∣∣{(C0(x), C1(x))

∣∣∣∣C0(ψi) = vC0,i, C1(ψi) = vC1,i (1 ≤ i ≤ t′),
a0,0 = a1,t

}∣∣∣∣× 2t

= pt−t
′
· q2(t−t

′)+1 · 2t

Therefore, we see that ϵ(I) is lower bounded by ϵ(I) ≤ 2t/p since ϵ(I) ≤
pt−t′ ·q2(t−t′)+1·2t
pt−t′+1·q2(t−t′)+1 = 2t/p holds.

From the above inequality and the fact that the number of subsets I of
{1, . . . , 3t} such that 1 ∈ I and |I| = t + 1 is equal to

(
3t−1
t

)
, the successful

cheating probability ϵ is given as follows:

ϵ = Pr[there exists I such that ∆cI = 0, 1 ∈ I, |I| = t+ 1]

≤
∑

{I| 1∈I,
|I|=t+1 }

ϵ(I) =

∣∣∣∣{I ∣∣∣∣ 1 ∈ I,
|I| = t+ 1

}∣∣∣∣ · ϵ(I) ≤ (
3t− 1

t

)
· t
p
≤ t · 23t

p

The size of share satisfies |Vi| = p · q and is approximately written by |Vi| ≈
(n·t·23t)2|S|

ϵ2 since q ≈ n · p and p ≤ t·23t
ϵ . ⊓⊔

6 Conclusion

In this paper, we present efficient (t, ϵ) cheater identifiable (k, n) threshold secret
sharing schemes under the conditions t ≤ ⌊(k − 1)/3⌋, t ≤ ⌊(k − 2)/2⌋ and
t ≤ ⌊(k− 1)/2⌋, respectively. The schemes which can catch ⌊(k− 1)/3⌋ cheaters
are the first schemes whose share size is independent of any of n, k and t. Further,
in one of these schemes, the share size is almost optimum in the sense that the
bit length of the share is only one bit longer than the bound given in [12]. The
schemes which can catch t ≤ ⌊(k − 2)/2⌋ cheaters and t ≤ ⌊(k − 1)/2⌋ cheaters
are, though the bit length of shares grows linear to the number of cheaters,
shown to be much more efficient with respect to the size of share compared to
[12] and the other schemes with private cheater identification.

In our future work, we will focus on finding an efficient scheme under the
condition t ≤ ⌊(k − 1)/2⌋ such that the size of share is independent of any of
n, k and t, and the computational cost for identifying cheaters is small.
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