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Abstract. We study the problem of unconditionally secure Secret Key

Establishment (SKE) when Alice and Bob are connected by two noisy

channels that are eavesdropped by Eve. We consider the case that Alice

and Bob do not have any sources of initial randomness at their disposal.

We start by discussing special cases of interest where SKE is impossible

and then provide a simple SKE construction over binary symmetric chan-

nels that achieves some rates of secret key. We next focus on the Secret

Key (SK) capacity and provide lower and upper bounds on this capac-

ity. We prove the lower bound by proposing a multi-round SKE protocol,

called the main protocol. The main protocol consists of an initialization

round and the repetition of a two-round SKE sub-protocol, called the

basic protocol. We show that the two bounds coincide when channels do

not leak information to the adversary. We apply the results to the case

that communicants are connected by binary symmetric channels.

1 Introduction

In cryptography, it is commonly assumed that parties have access to sources

of randomness for their randomized protocols. It is also common to assume

that this randomness is perfect, represented as a sequence of independently and

uniformly random bits. Noting that, in many scenarios, the distribution of the

random source is either biased or unknown, Dodis and Spencer [10] initiated the

study of building cryptographic primitives using imperfect random sources. They

focussed on symmetric-key encryption and message authentication and showed

that in both cases the corresponding sources do not require perfect randomness.

In practice, generating randomness with high entropy needs specialized hard-

ware and/or software as well as access to complex processes that could be hard

to obtain, e.g., when devices with low computational resources are considered.

A natural question is then whether the need for a separate random source can

be eliminated from a particular cryptographic task. Obviously, cryptography is

not possible without randomness. For devices with communication capability

however, channel noise is an attractive resource for providing randomness.



Physical communication channels are noisy and can be viewed as potential re-

sources to produce randomness. Wyner’s pioneering work [18] showed that chan-

nel noise can be used to provide perfect security in message transmission. This

work started a long line of research that relies on channel noise for constructing

cryptographic primitives and shares the vision of Crépeau and Kilian [7] that,

“Noise, on the other hand, breeds disorder, uncertainty, and confusion. Thus, it

is the cryptographer’s natural ally.”

Wyner’s work and, to our knowledge, all cryptographic systems that use

noisy channels as a resource also assume access to sources of initial randomness.

In this paper, we initiate the study of cryptographic systems without making

this assumption. We consider the case that the algorithms have hardwired and

public constant strings, such as IDs, and the only resource for randomness is

channel noise. One may ask whether, in such a setting, a particular cryptographic

primitive exists and, if it does, whether it is sufficiently efficient to be of practical

interest. We focus on the basic task of Secret Key Establishment (SKE) in the

presence of a passive adversary and pose the following question:

Question 1. Can Alice and Bob establish a shared secret key, without having

access to initial randomness, by communicating over noisy channels that leak

information to an eavesdropping adversary, Eve? In the case of a positive answer,

are there efficient constructions to generate secret keys in practice?

To the best of our knowledge, this paper is the first work to consider SKE

with no initial randomness.

1.1 Our work

We focus on Question 1 and study SKE over a pair of independent Discrete

Memoryless Broadcast Channels (DMBCs). We refer to this setup as 2DMBC.

SKE in this setup has been studied in [2]; however, again, it was assumed that

Alice and Bob have access to initial randomness. We assume Alice and Bob have

fixed strings, a and b, respectively. We also assume a full-duplex model of com-

munication where, in each communication round, Alice and Bob send sequences

of the same length. This communication model is used to simplify the presen-

tation of our results; the results can be easily adapted to half duplex-channels

where, in each communication round, either Alice or Bob sends a sequence.

Impossibility results: Beyond doubt, SKE without initial randomness is im-

possible if the channels between the parties are noise free. In Section 3, we

discuss special cases of 2DMBC where SKE is impossible despite the existence

of noise in the system. These special cases include (1) one-way communication,



(2) when one DMBC is completely noise free, and (3) when one DMBC is noisy

but returns two identical outputs. We note that the possibility of SKE in the

above cases has been already proved [8, 9, 12] with the assumption that initial

randomness is available to the parties.

SKE Construction: We give a positive answer to Question 1 by considering an

example scenario where each DMBC consists of two independent Binary Sym-

metric Channels (BSCs). We propose a two-round SKE construction that uses

three simple primitives, a von Neumann randomness extractor, a binary error-

correcting code, and a universal hash function. The protocol works as follows.

In round 1, Alice sends a constant (all-zero) sequence to Bob; Bob receives a

noisy string and uses the von Neumann extractor to derive a uniformly random

binary sequence from it. In round 2, Bob splits the uniform sequence into two

sub-sequences, encodes them separately, and sends the codewords to Alice. Alice

decodes her received sequence to find the two sub-sequences. Finally, Alice and

Bob apply universal hashing to the sub-sequences to derive a secure secret key.

Bounds on the SK capacity: We formalize the 2DMBC model and focus on

the general description of a SKE protocol over a 2DMBC. We define the Secret

Key (SK) capacity of a 2DMBC as the highest SK rate that all possible SKE

protocols can achieve. This leads to the following question:

Question 2. What is the SK capacity of a given 2DMBC?

Towards answering Question 2, we provide lower and upper bounds on the SK

capacity of a 2DMBC. We prove the lower bound by showing that there exists

a SKE construction to achieve it. We describe a multi-round SKE protocol,

referred to as the main protocol, that consists of an initialization round, followed

by repeated use of a two-round protocol, which we call the basic protocol.

The initialization round bootstraps the main protocol by providing Alice and

Bob with some pieces of “independent randomness”. By independent random-

ness, we mean a random variable that is independent of all variables collected by

other parties. The randomness is derived from channel noise and is required for

executing one iteration of the basic protocol. Each iteration of the basic protocol

uses the fresh randomness derived in the previous iteration, and simultaneously

serves two purposes: it (1) derives new pieces of independent randomness for

Alice and Bob (for the next iteration), and (2) derives a part of the secret key.

To accomplish these two purposes, the basic protocol uses two new deterministic

primitives, which we refer to as secure block code and secure equipartition, re-

spectively. Each iteration of the basic protocol achieves a fixed key rate. During

the initialization round however, no secret key bit is derived. Since the channel



uses in the initialization round can be amortized over the number of the consecu-

tive invocations of the basic protocol, the SK rate tends towards that of a single

basic protocol execution. Compared to other possible ways of key establishment

(see Section 1.2 for an example), the protocol described in this paper achieves

the highest rate, hence resulting in a tighter lower bound on the SK capacity.

The lower bound shows that positive SK rates are achievable when both

DMBCs are in favor of the legitimate parties. More interestingly, it shows that

this condition, although sufficient, is not necessary and there are cases where

both DMBCs are in favor of Eve, yet it is possible to establish secure shared key.

We also provide an upper bound on the SK capacity and show that the

lower and the upper bounds coincide in the case that the channels do not leak

any information to the adversary. This corresponds to the problem of common

randomness generation over independent noisy channels, studied in [15], where

the common randomness capacity was derived.

Discussion: The communication scenario considered in this paper naturally oc-

curs in real life. All physical channels are noisy and in most cases, esp., in wireless

communication, they are easy to eavesdrop. Assuming no initial randomness is

also natural when communicating nodes, e.g., mobile devices, do not have ac-

cess to specialized hardware and complex processes. Our results show that, in

the absence of initial randomness, nodes can start with constant strings such as

their pre-stored IDs and “distill” randomness from channel noise.

Our work initiates a new direction of research: existence and construction

of cryptographic primitives when the only resource for randomness is channel

noise. We note that converting a cryptographic primitive that uses noisy channel

as a resource and allows Alice and Bob to have sources of initial randomness, to

the case that they do not have such a source is not straightforward.

The lower bound proof given in this paper uses an existential argument. How-

ever, attempts to design efficient while optimal primitives for secure equipartition

and secure block code can be directly applied to the main SKE protocol design

to achieve SK rates close to the lower bound. This is an interesting direction for

future research similar to the work in [5] that attempts to apply theoretical SKE

results in [12, 18] in practice.

It is remarkable that the SKE construction given for binary symmetric chan-

nels can be viewed as a relaxed version of the main protocol where a simplified

one-round basic protocol is used only once. The von Neumann extractor plays

the role of (secure) equipartition in deriving independent randomness while the

combination of coding and universal hashing is to replace the secure block code.

Of course, using these efficient but non-optimal primitives does not let SK rates



reach close enough to the lower bound. We discuss this more clearly by compar-

ing the construction SK rates with the lower bound results.

1.2 Related work

The problem considered in this paper has relations to a part of prior work, in

particular, secure message transmission and key agreement over noisy channels,

key agreement using correlated randomness, and common randomness generation

over noisy channels. In the following, we briefly clarify these relations.

Exploiting channel noise to provide security functionalities is pioneered by

Wyner [18] who proposed an alternative to Shannon’s model of secure commu-

nication [14]. Wyner’s work initiated a long line of research on utilizing channel

noise to construct information theoretically secure cryptographic primitives in-

cluding SKE [1, 8, 11–13], Oblivious Transfer (OT) [7], and Bit Commitment

(BC) schemes [4]. In all these works however, access to initial randomness is

assumed and removing this assumption will require revisiting the results and

examining the existence of the primitives.

Maurer [12], concurrently with Ahlswede and Csiszár [1], studied the problem

of key agreement over a public discussion channel when Alice and Bob have

initial correlated randomness, where they derived lower and upper bounds on

the SK capacity. Key agreement using correlated randomness and a one-way

noisy channel has been discussed in [11, 13].

The following two works are closely related to the setting in this paper, while

neither can provide a solution to the problem. Venkatesan and Anantharam [15]

considered shared randomness generation over a pair of independent channels

and acquired the common randomness capacity. The authors noted that their

results could not be applied to the case where the channels are eavesdropped by

Eve – the setting that is considered in this paper. In [2], we considered SKE in

the 2DMBC setup and provided bounds on the SK capacity. That work, how-

ever, assumed the availability of free independent randomness without which the

proofs will not be valid. Assuming no initial randomness, one may of course use

the results in [2] to design a protocol as follows. Alice and Bob first execute an

initialization round to derive the required amount of independent randomness.

Next, they run the protocol in [2] to establish a secret key. Compared to this, our

main protocol potentially increases the SK rate up to two times, through itera-

tion. The particular novelty of the basic protocol compared is that it combines

the dual tasks of secure key derivation and randomness generation.



1.3 Notation

We use calligraphic letters (X ), uppercase letters (X), and lowercase letters

(x) to denote finite alphabets, Random variables (RVs), and their realizations

over sets, respectively. Xn is the set of all sequences of length n (so called n-

sequences) with elements from X . Xn = (X1, X2, . . . , Xn) ∈ Xn denotes a ran-

dom n-sequence in Xn. In case there is no confusion about the length, we use

X to denote a random sequence and x to denote a realization in Xn. While

describing a multiple round protocol, we may use Xn:r (or X:r) to indicate a

random n-sequence that is sent, received, or obtained in round r. ‘||’ denotes the

concatenation of two sequences. For a value x, we use (x)+ to show max{0, x}

and, for an integer N , we use [N ] to show the set of integers {1, 2, . . . , N}. All

logarithms are in base 2 and, for 0 ≤ p ≤ 1, h(x) = −p log p− (1− p) log(1− p)

denotes the binary entropy function.

1.4 Paper organization

Section 2 describes SKE over 2DMBCs and delivers the security definitions. In

Section 3, we provide the impossibility results and the simple SKE construction

over BSCs. Section 4 summarizes our main results on the SK capacity. In Section

5, we describe the main protocol that achieves the lower bound. Section 6 studies

the SKE results for the case of BSCs and Section 7 concludes the paper.

2 Problem Statement

The 2DMBC setup is shown in Fig. 1(a). There is a forward DMBC from Alice

to Bob and Eve, denoted by (Xf ,Yf ,Zf , PYf ,Zf |Xf
), and a backward DMBC

from Bob to Alice and Eve, denoted by (Xb,Yb,Zb, PYbZb|Xb
). The parties have

deterministic computation systems.

F dX YfForward

DMBC

Eve

Xf

BobAlice
Zf

f

Zb

XbBackward

DMBC
Yb

(a) General 2DMBC

Xf
Yf

1p
BSC

2p
BSC

Eve BobAlice

Xb

Zf

Yb

Zb

2p
BSC

1p
BSC

1p

(b) Independent BSCs

Fig. 1. The 2DMBC setup (a) in general and (b) in the case of independent BSCs



To establish a secret key, Alice and Bob follow a SKE protocol with t commu-

nication rounds where, in round r, each channel is used nr times. The protocol

is defined by a sequence of deterministic function pairs, (fr, gr)
t−1
r=1, and a pair

of (deterministic) key derivation functions (φA, φB) such that

fr : Y
σr−1

f → Xnr

f , φA : Yn
f → S ∪ {⊥}, (1)

gr : Y
σr−1

b → Xnr

b , φB : Yn
b → S ∪ {⊥}, (2)

where σj =
∑j

i=0 ni, ⊥ indicates the error symbol, and n = σt−1 is the total

number of channel uses. The protocol takes as input a pair, (a,b) ∈ Xn0

f ×Xn0

b , of

constant and publicly known sequences. In a communication round r, Alice and

Bob send the nr-sequences X
:r
f and X:r

b and receive Y:r
b and Y:r

f , respectively.

Eve receives (Z:r
f ,Z

:r
b ). The input sequences are calculated as

X:r
f =







a, r = 0

fr(V
:r−1
A ) 1 ≤ r ≤ t− 1

, X:r
b =







b, r = 0

gr(V
:r−1
B ) 1 ≤ r ≤ t− 1

. (3)

V :r−1
A , V :r−1

B , and V :r−1
E are, respectively, the views of Alice, Bob and Eve, at

the end of round r − 1, i.e.,

V :r−1
A = (Y:i

b )
r−1
i=1 , V :r−1

B = (Y:i
f )

r−1
i=1 , and V :r−1

E = (Z:i
f ,Z

:i
b )

r−1
i=1 . (4)

We have not included constants and deterministic functions that are applied

to the variables in the views, since they do not contain any information (ran-

domness). When the t rounds of communication are completed, Alice and Bob

calculate their secret keys respectively as

SA = φA(V
:t−1
A ), and SB = φB(V

:t−1
B ). (5)

Let V iewE = V :t−1
E be Eve’s view at the end of the protocol.

Definition 1. For Rsk ≥ 0 and 0 ≤ δ ≤ 1, the SKE protocol Π is (Rsk, δ)-

secure if there exists a random variable S ∈ S such that the following require-

ments are satisfied:

Randomness:
H(S)

n
≥ Rsk − δ, (6a)

Reliability: Pr(SA = SB = S) ≥ 1− δ, (6b)

Secrecy:
H(S|V iewE)

H(S)
≥ 1− δ. (6c)

Definition 2. The Secret-Key (SK) capacity Csk is defined as the largest Rsk ≥

0 such that, for any arbitrarily small δ > 0, there exists an (Rsk, δ)-secure SKE

protocol.



3 SKE in special cases of 2DMBC

3.1 Impossibility results for special cases

We revisit a number of well-studied SKE scenarios that can be viewed as special

cases of 2DMBC. We argue that, without initial randomness available to parties,

SKE is impossible in these cases irrespective of the channel specification.

One-way communication: Consider a case that one of the DMBCs, say the

backward DMBC, always returns constant values at its outputs. This implies

one-way communication over the forward channel. Irrespective of the protocol,

Alice will never have a single bit of randomness in her view and, without ran-

domness, she cannot have a secret key. Note that this special case is essentially

the one-way DMBC setting of Csiszár and Körner [8], with the difference that

no initial randomness is provided to the parties.

One channel is noiseless and public: Without loss of generality, assume

that the backward DMBC has this property. For any SKE protocol as described

in Section 2, we have X:r
b = Y:r

b = Z:r
b for each round r. This suggests that,

overall, Eve’s view includes Alice’s view (see (4)). Eve can simply use Alice’s

key derivation function φA on her view to calculate SA. This setting is proved

to allow positive SK rates when parties have access to initial randomness [12].

One channel is noisy but returns two identical outputs: Assume that

this property holds for the backward DMBC. In this case, X:r
b may be different

from the outputs and we only have Y:r
b = Z:r

b . This is sufficient to argue that

the views of Alice and Bob are identical; hence, the impossibility of SKE.

3.2 An SKE protocol for binary symmetric channels

Assume that the 2DMBC consists of four independent binary symmetric chan-

nels (BSCs) as illustrated in Fig. 1(b). The main channels have bit error proba-

bility p1, while both Eve’s channels have bit error probability p2. We describe a

two-round SKE construction that uses the primitives described below.

The von Neumann randomness extractor [16]: This extractor takes a

binary sequence of even length and output a variable length sequence that has

uniform distribution. For an input Bernoulli sequence Y = (Y1Y2, Y3Y4, . . . ,

Ym−1Ym) of even length m, where P (Yi = 1) = p, the von Neumann extractor

divides the sequence into m/2 pairs of bits and uses the following mapping on

each pair

00 → Λ, 01 → 0, 10 → 1, 11 → Λ,



where Λ represents no output. The output sequence is the concatenation of the

mapped bits. It is easy to observe that the extractor is computationally efficient

and the output bits are independently and uniformly distributed.

While the von Neumann extractor does not return a fixed-length output, it

can be used to design a function Ext : {0, 1}m → {0, 1}l ∪ {⊥} that derives a

l-bit uniform string from an m-bit Bernoulli sequence. The Ext function runs

the von Neumann extractor on the m-bit sequence Y. If the output length is less

l, it returns ⊥; otherwise, it returns the first l bits of the output. The probability

that, for an m-bit Bernoulli sequence with P (Yi) = p, Ext returns ⊥ equals

Pr(Errext) =

l−1
∑

i=0

(

m
2

i

)

(2p(1− p))
i
(1− 2p(1− p))

m
2
−i
. (7)

An (n, k) binary error correcting channel code: We denote the encoding

and the decoding functions by Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n →

{0, 1}k, respectively. There are efficient (n, k) error correcting codes that can

correct nearly up to t = (n − k)/2 bits of error. When used over a BSC with

error probability p, the decoding error probability of such codes equals

Pr(nerr > t) =
n
∑

i=t+1

(

n

i

)

pi (1 − p)n−i. (8)

Universal class of hash functions: A class H of (hash) functions h : A → B

is universal [6], if for any distinct x1, x2 ∈ A, the equality h(x1) = h(x2) happens

with probability at most 1/|B|, provided that h is uniformly at random selected

from H. For the purpose of our SKE construction design, we use the following

universal class of hash function proposed in [17].

H = {hc : GF (2
k) → {0, 1}s, c ∈ GF (2k)},

where hc returns the first s bits of c.x, and the product is in the polynomial rep-

resentation of GF (2k). The hashing function is efficient in time and in memory.

Protocol description: Using the above primitives, the SKE protocol proceeds

as follows. Alice sends her constant sequence Xf = a = (0)m over the forward

DMBC. Bob and Eve receive the m-sequences Yf and Zf (m is even). Bob

views this as an m-bit Bernoulli sequence, Yf = (Yf,1, . . . , Yf,m), with P (Yf,i =

1) = p1 and finds U = Ext(Yf ). If U = ⊥, the error Errext occurs; otherwise,

Bob splits the l-bit U into two independent and uniform k-bit sequences U1



and U2, where k = l/2. He calculates the n-bit codewords X1b = Enc(U1) and

X2b = Enc(U2) and sends them over the backward DMBC where Alice and Eve

receive (Y1b,Y2b) and (Z1b,Z2b), respectively. Alice calculates the k-sequences

Û1 = Dec(Y1b) and Û2 = Dec(Y2b). The error event Errenc1 (resp. Errenc2)

occurs when Û1 6= U1 (resp. Û2 6= U2). Next, Alice and Bob use universal

hashing for privacy amplification, i.e., to derive keys that are secure against

Eve. The secret key is S = hC(U1) where C = U2. Bob calculates SB = S and

Alice calculates SA = h
Ĉ
(Û1) where Ĉ = Û2.

The above protocol provides Alice and Bob with s uniformly random bits

of key. The rate of key establishment is calculated as the number of the key

bits divided by the number of channel uses, i.e., Rsk = s
m+2n . Due to lack of

space, we omit the argument on reliability and secrecy of the construction. For

a detailed analysis, we refer to the full version in [3].

Table 1 shows the construction parameters for SKE over BSCs with p1 = 0.1

and p2 = 0.2 when the secret key length is s = 100 and the security parameter

δ has different values. According to this table, the achievable SK rate by this

construction is about Rsk = 0.015 bits per channel use.

δ n k l m Rsk

10−1 404 300 600 5230 0.0166

10−2 458 330 660 5430 0.0158

10−3 508 358 716 5590 0.0151

10−4 560 388 776 5730 0.0146

Table 1. The SKE parameters with respect to δ values for s = 100.

Remark 1. Assuming the full-duplex communication model allows Alice and

Bob to run, in parallel, another execution of the protocol in the reverse direction.

This will double the SK rate achieved by this construction, i.e., Rsk = 0.03.

Remark 2. This construction is give to show the feasibility of efficient SKE with

no initial randomness. Using more optimal primitives, one may achieve higher

secret key rates.

4 Results on the SK capacity

We provide lower and upper bounds on the SK capacity as defined in Section 2.

Let the RVs Xf , Yf , Zf and Xb, Yb, Zb denote the channel probability distribu-

tions PYf ,Zf |Xf
and PYb,Zb|Xb

, respectively.



Theorem 1. The SK capacity is lower bounded as

C2DMBC
sk ≥ max

µ≥0,PXf
,PXb

{LboundA + LboundB}, (9)

where

LboundA =
1

1 + µ
(µ(I(Yb;Xb)− I(Yb;Zb)) + γ1(I(Xf ;Yf )− I(Xf ;Zf ))+) , (10)

LboundB =
1

1 + µ
(µ(I(Yf ;Xf )− I(Yf ;Zf )) + γ2(I(Xb;Yb)− I(Xb;Zb))+) , (11)

γ1 = min{1,
H(Yb|Xb, Zb) + µ(H(Yb|Xb)−H(Xf ))

I(Xf ;Yf )
}, (12)

γ2 = min{1,
H(Yf |Xf , Zf ) + µ(H(Yf |Xf )−H(Xb))

I(Xb;Yb)
}, (13)

such that

H(Yb|Xb, Zb) > µH(Xf ), I(Xf ;Yf ) > µH(Yb|Xb), (14)

H(Yf |Xf , Zf ) > µH(Xb), I(Xb;Yb) > µH(Yf |Xf ). (15)

Proof. See Section 5 and [3, Appendix A].

The lower bound (9) is achieved by the so-called main protocol, which consists

of an initialization round followed by iteration of the so-called basic protocol.

The full duplex channel allows Alice and Bob to run two instances of the basic

protocol in parallel. These two instances achieve the key rates LboundA and

LboundB, respectively. The key rate achieved in the second round of the basic

protocol depends on the DMBC parameters (i.e., I(Xf ;Yf ) − I(Xf ;Zf ) and

I(Xb;Yb) − I(Xb;Zb)), while that of the first round depends on the “inverse”

DMBC parameters (i.e., I(Yf ;Xf ) − I(Yf ;Zf ) and I(Yb;Xb) − I(Yb;Zb)). The

real value µ is the ratio between the number of channel uses in the first and the

second rounds. The real values γ1 and γ2 are to restrict the amount of achievable

key rate as a function of the randomness obtained from channel noise.

When both DMBCs are in favor of Alice and Bob, i.e., I(Xf ;Yf )−I(Xf ;Zf )

and I(Xb;Yb)−I(Xb;Zb) are positive, LboundA and LboundB will be positive by

simply choosing µ = 0. This implies a positive SK capacity. When the channels

are in favor of Eve, the lower bound may remain positive if the inverse DMBCs

are in favor of Alice and Bob. The study of the lower bound for BSCs in Section

6 shows clearly the existence positive SK rates in the latter case (see Fig. 2).

Theorem 2. The SK capacity is upper bounded as

C2DMBC
sk ≤ max

PXf
,PXb

{UboundA + UboundB}, where (16)

UboundA = min{H(Yb|Xb, Zb), I(Xf ;Yf |Zf )}, and (17)

UboundB = min{H(Yf |Xf , Zf ), I(Xb;Yb|Zb)}. (18)



Proof. See [3, Appendix B].

Theorem 3 shows that the two bounds coincide when the two DMBCs do not

leak information. The resulting value matches the common randomness capacity

of a pair of independent Discrete Memoryless Channels (DMCs), given in [15].

Theorem 3. When the DMBCs do not leak information to Eve, the bounds

coincide and the SK capacity equals

C2DMBC
sk = max

PXf
,PXb

{min{H(Yb|Xb), I(Xf ;Yf )}+min{H(Yf |Xf ), I(Xb;Yb)}}. (19)

Proof. See [3, Appendix C].

5 The main SKE Protocol: Achieving the Lower Bound

We noted that the bound in Theorem 1 is achieved by the main protocol. The

main protocol contains 2t + 1 rounds and does not assume any initial random-

ness. The protocol starts with an initialization round (round 0) that provides

Alice and Bob with some amount of independent randomness. This round is

followed by t iterations of a two-round sub-protocol, called the basic protocol.

The basic protocol takes some independent randomness from Alice and Bob and

returns them a the secret key part and some new independent randomness. The

independent randomness that is produced in iteration 1 ≤ r ≤ t−1 (resp. round

0) will be used in iteration r + 1 (resp. iteration 1). The secret key parts are

finally concatenated to give the final secret key. The main protocol relies on

the existence of two primitives, referred to as secure equipartition and secure

block code. In the following, we provide definitions and theorems to support the

existence of these primitives, and then we describe the main protocol.

5.1 Preliminaries

Definition 3. For a probability distribution PX over the set X , a sequence xn ∈

Xn is called ǫ-typical if |− 1
n
logP (xn)−H(X)| < ǫ, where P (xn) =

∏n
i=1 P (xi).

Definition 4. An (n,M, ǫ)-block code for the DMC (X ,Y, PY |X) is a set

{(ci, Ci) : i ∈ [M ]} such that ci ∈ Xn, (Ci)
M
i=1 partitions Yn, and Pn

Y |X(Y n =

Ci|X
n = ci) ≥ 1− ǫ.

We define a secure block code for a DMBC as a composition of a block code and

a function that we refer to as a key derivation function, and is used to achieve

secure shared key between two parties in the presence of an adversary.



Definition 5. An (n,M,K, ǫ)-secure block code for the DMBC

(X ,Y,Z, PY Z|X) consists of an (n,M, ǫ)-block code for the DMC (X ,Y, PY |X)

as above, a partition of (ci)
M
i=1 into (Kj)

K
j=1, and a key derivation function φs :

(ci)
M
i=1 → [K] defined as φs(ci) = j iff ci ∈ Kj , such that if Xn is uniformly

selected from (ci)
M
i=1 and S = φs(X

n) then H(S|Zn)/ logK ≥ 1− ǫ.

Although the above definition of a secure block code as a primitive is new to

the literature, the work on secure message transmission or key agreement over

one-way DMBCs [8,18] implicitly studies the existence of such a primitive. The

results in [8, 18] let us conclude the following.

Lemma 1. For any PX , Rc < I(X ;Y ), Rsc < Rc − I(X ;Z), and large enough

n, there exists an (n,M,K, ǫ)-secure block code for the DMBC (X ,Y,Z, PY Z|X)

with ǫ-typical codewords ci such that M = ⌊2nRc⌋, K = ⌊2nRsc⌋, and

ǫ = max{2n(Rc−I(X;Y )), 2n(Rsc−(Rc−I(X;Z)))} → 0.

Proof. See [18, Theorem 2] and [8, Corrollary 1].

Lemma 1 indicates that, for the above DMBC, there exists a secure block code

that achieves key rates up to I(X ;Y )− I(X ;Z). In the following, we extend this

result by showing that the number of such secure block codes is such that any

Xn as input to the channel belongs to at least one of them.

Lemma 2. For any PX , Rc < I(X ;Y ), Rsc < Rc − I(X ;Z), large enough

R′ > H(X) − Rc, and large enough n, there exist N (not necessarily dis-

tinct) (n,M,K, ǫ)-secure block codes for the DMBC (X ,Y,Z, PY Z|X) with ǫ-

typical codewords, such that M = ⌊2nRc⌋, K = ⌊2nRsc⌋, N = ⌊2nR
′

⌋, and

ǫ = max{2n(Rc−I(X;Y )), 2n(Rsc−(Rc−I(X;Z)))} → 0; furthermore, the probability

that a randomly selected ǫ-typical sequence Xn ∈ Xn belongs to at least one of

the codes is at least 1− e−γ, where γ = 2n(R
′+Rc−H(X)−ǫ) → ∞.

Proof. See [3, Appendix D]

For a DMBC, a secure equipartition is a primitive to derive uniform randomness

that is independent of both input and Eve’s received sequence.

Definition 6. An (M, ǫ)-secure equipartition of C ⊆ Yn w.r.t. c ∈ Xn over the

DMBC (X ,Y,Z, PY Z|X) is an (M, ǫ)-equipartition of C over the DMC

(X ,Y, PY |X) and a randomness derivation function ψt : C → [M ]∪⊥ defined as

ψt(y
n) = j if yn ∈ C(j) and ψt(y

n) = ⊥ if yn ∈ C(e), such that if Xn = c and

T = ψt(Y
n), then H(T |Xn = c, Zn)/ logM ≥ 1− ǫ.



The following lemma shows the existence of a secure equipartition over the

DMBC that achieves randomness rates up to H(Y |XZ) bits per channel use.

Lemma 3. For any PX , typical c ∈ Xn, C ⊆ Yn of size less than 2nH(Y ),

Rse < H(Y |XZ), and large enough n, there exists an (M, ǫ)-secure equipartition

over the DMBC (X ,Y,Z, PY Z|X) such that M = ⌊2nRse⌋ and

ǫ =
3I(Y ;X,Z)h(ǫ′)

H(Y |XZ)− ǫ′
→ 0, where ǫ′ = 2n(Rse−H(Y |XZ)).

Proof. See [3, Appendix E].

To describe of the main protocol, we shall use the notion of an inverse DMBC

that implies a virtual channel defined as follows.

Definition 7. Given a given distribution PX , for a DMBC (X ,Y,Z, PY Z|X),

we define its corresponding inverse DMBC as (Y,X ,Z, PXZ|Y ) where PXZ|Y is

calculated from the joint distribution PXY Z .

5.2 Description of the main protocol

Let PXf
, PXb

, and µ be chosen such that the conditions (14) and (15) are

satisfied. The conditions can be rephrased as

n2H(Yb|Xb, Zb) ≥ n1(H(Xf ) + α), n2I(Xf ;Yf ) ≥ n1(H(Yb|Xb) + α), (20)

n2H(Yf |Xf , Zf ) ≥ n1(H(Xb) + α), n2I(Xb;Yb) ≥ n1(H(Yf |Xf ) + α), (21)

where α > 0 is a sufficiently small real constant, to be determined from δ,

and n1 and n2 are sufficiently large positive integers such that n1 = µn2, and

1/α = o(min{n1, n2}); in other words, 2−αmin{n1,n2} approaches zero. Define

R1f = H(Xf )− α, Rcf = I(Xf ;Yf )− α, Rscf = I(Xf ;Yf )− I(Xf ;Zf )− 2α,

Ref = H(Yf |Xf ), R+

ef = H(Yf |Xf ) + 2α, Rsef = H(Yf |Xf , Zf )− α,

Rscf−1 = I(Yf ;Xf ) −I(Yf ;Zf )− 2α.

(22)

R1b = H(Xb)− α, Rcb = I(Xb;Yb)− α, Rscb = I(Xb;Yb)− I(Xb;Zb)− 2α,

Reb = H(Yb|Xb), R+

eb = H(Yb|Xb) + 2α, Rseb = H(Yb|Xb, Zb)− α,

Rscb−1 = I(Yb;Xb) −I(Yb;Zb)− 2α.

(23)

Each iteration of the two-round basic protocol uses the 2DMBC channel n1

times in the first round and n2 times in the second round; i.e. in total n1 + n2.

In the second round, Alice (resp. Bob) sends two sequences of lengths n21A and

n22A (resp. n21B and n22B), where n21A + n22A (= n21B + n22B) = n2 and,

n21A =
1

Rcf

min{n2Rcf , n2Rseb + n1Reb − n1R1f}, (24)

n21B =
1

Rcb

min{n2Rcb, n2Rsef + n1Ref − n1R1b}. (25)



Using the above quantities, we define,

M1A = ⌊2n1Rcb⌋, M21A = ⌊2n21ARcf ⌋,

K1A = ⌊2n1Rscb−1 ⌋, K21A = ⌊2n21ARscf ⌋,

NA = ⌊2n1R
+

eb⌋,

L1A = ⌊2n1R1f ⌋, L2A = ⌊2n21ARcf−n1Reb⌋, LA = L1A.L2A,

Γ21A = min{LA, ⌊2
n21BRseb⌋}, Γ22A = ⌊2n22BRseb⌋, ΓA = Γ21A.Γ22A.

(26)

M1B = ⌊2n1Rcf ⌋, M21B = ⌊2n21BRcb⌋,

K1B = ⌊2
n1Rscf−1 ⌋, K21B = ⌊2n21BRscb⌋,

NB = ⌊2n1R
+

ef ⌋,

L1B = ⌊2n1R1b⌋, L2B = ⌊2n21BRcb−n1Ref ⌋, LB = L1B .L2B ,

Γ21B = min{LB , ⌊2
n21ARsef ⌋}, Γ22B = ⌊2n22ARsef ⌋, ΓB = Γ21B .Γ22B .

(27)

Using (22)-(26), one can observe that LA = ΓA and LB = ΓB in the above.

Let the set Xn1

f,ǫ = {xf,1, . . . ,xf,L1A
} be obtained by independently selecting L1A

sequences in Xn1

f . Similarly define Xn1

b,ǫ = {xb,1, . . . ,xb,L1B
} ⊆ Xn1

b . Let Alice

and Bob have two fixed public integers ua ∈ [Γ21A] and ub ∈ [Γ21B] as well as

two fixed public sequences a ∈ Xn22A

f and b ∈ Xn22B

b , respectively. Let uA,split :

[Γ21A] × [Γ22A] → [L1A] × [L2A] and uB,split : [Γ21B] × [Γ22B ] → [L1B] × [L2B]

be arbitrary bijective mappings.

Define the inverse forward DMBC (Yf ,Xf ,Zf , PXf ,Zf |Yf
) and the inverse

backward DMBC (Yb,Xb,Zb, PXb,Zb|Yb
) according to Definition 7. Letting ǫ =

2−min(n1,n21A,n21B)α → 0 and γ = 2n1(α−ǫ) → ∞, and using Lemmas 1, 2, and 3

we arrive at the following.

– For the inverse forward DMBC, there exist NB (n1,M1B ,K1B , ǫ)-secure block

codes {djf,i,D
j
f,i : 1 ≤ i ≤ M1B , 1 ≤ j ≤ NB} with the key derivation functions

φj
s,B , such that a randomly selected ǫ-typical sequence in Yn

f is in at least one of

the codes with probability at least 1− e−γ .

– For the inverse backward DMBC, there exist NA (n1,M1A,K1A, ǫ)-secure block

codes {djb,i,D
j
b,i : 1 ≤ i ≤ M1A, 1 ≤ j ≤ NA} with the key derivation functions

φj
s,A, such that a randomly selected ǫ-typical sequence in Yn

b is in at least one of

the codes with probability at least 1− e−γ .

– For the forward DMBC, there exists an (n21A,M21A, K21A, ǫ)-secure block code

{cf,i, Cf,i : 1 ≤ i ≤ M21A} with the key derivation function φs,A; furthermore, for

each (cf,i, Cf,i) there exists a (Γ21B , ǫ)-secure equipartition {Cf,i(e),Cf,i(1), . . . ,

Cf,i(Γ21B)} with the randomness derivation function ψi
B .

– For the backward DMBC, there exists an (n21B ,M21B ,K21B , ǫ)-secure block code

{cb,i, Cb,i : 1 ≤ i ≤ M2B} with the key derivation function φs,B ; furthermore, for

each (cb,i, Cb,i) there exists a (Γ21A, ǫ)-secure equipartition {Cb,i(e),Cb,i(1), . . . ,

Cb,i(Γ21A)} with the randomness derivation function ψi
A.



– For the forward DMBC, for (a,Yf ), there exists a (Γ22B , ǫ)-secure equipartition

{Yf (e),Yf (1), . . . ,Yf (Γ22B)} with the randomness derivation function ψB .

– For the backward DMBC, for (b,Yb), there exists a (Γ22A, ǫ)-secure equipartition

{Yb(e),Yb(1), . . . ,Yb(Γ22A)} with the randomness derivation function ψA.

The initialization round (round 0): Alice and Bob send the constant n2-

sequencesX:0
f = (cf,ua

||a) andX:0
b = (cb,ub

||b) over their channels and receive the

noisy versions Y:0
b = (Y1b||Y2b) and Y:0

f = (Y1f ||Y2f ), respectively. Eve also

receives Z:0
f and Z:0

b . In this round, no secret key is established; however, to derive

independent randomness, Alice and Bob calculate U :0
A = (ψub

A (Y1b)||ψA(Y2b))

and U :0
B = (ψua

B (Y1f )||ψB(Y2f )), respectively. They next calculate (U :0
1A, U

:0
2A) =

uA,split(U
:0
A ) and (U :0

1B, U
:0
2B) = uB,split(U

:0
B ), where the first and the second parts

are respectively used in the first and the second rounds of iteration 1.

The basic protocol (iteration 1 ≤ r ≤ t): There are two rounds, 2r − 1

and 2r, where the protocol uses the 2DMBC n1 and n2 times, respectively. In

round 2r−1, Alice and Bob send X:2r−1
f = xf,U :2r−2

1A
and X:2r−1

b = xb,U :2r−2

1B
, and

receive Y:2r−1
b and Y:2r−1

f , respectively. Eve also receives Z:2r−1
f and Z:2r−1

b .

Alice finds (IA, JA) such that Y:2r−1
b = dJA

b,IA
, i.e., the IA-th codeword in

the JA-th secure block code over the inverse backward DMBC; similarly, Bob

obtains (IB , JB) such that Y:2r−1
f = dJB

f,IB
. Round 2r−1 may also be interpreted

as follows. Alice and Bob have encoded IA ∈ [M1A] and IB ∈ [M1B] to the

codewords dJA

b,IA
and dJB

b,IB
; they have sent them over the inverse DMBCs but have

not mentioned which block code they belong to. Thus, round 2r is primarily used

for sending the block code labels, i.e., JA ∈ [NA] and JB ∈ [NB]. That round is

also used to send the pieces of randomness, U :2r−2
2A ∈ [L2A] and U

:2r−2
2B ∈ [L2B],

as well as the deterministic sequences, a and b.

In the beginning of round 2r, Alice and Bob respectively calculate QA ∈

[M21A] and QB ∈ [M21B] as (note that M21A = NA.L2A and M21B = NB.L2B)

QA = L2AJA + U :2r−2
2A , and QB = L2BJB + U :2r−2

2B . (28)

They next use the key derivation functions (in the secure block code) to calcu-

late key parts S:2r
A = φs,A(QA) and S:2r

B = φs,B(QB). In this round, Alice and

Bob send the n2-sequences X
:2r
f = (cf,QA

||a) and X:2r
b = (cb,QB

||b) and receive

Y:2r
b = (Y1b||Y2b) and Y:2r

f = (Y1f ||Y2f ), respectively. Eve also receives Z:2r
f

and Z:2r
b . Using the secure block code for the forward DMBC, Bob obtains Q̂A

such that Y1f ∈ C
f,Q̂A

and calculates Ŝ:2r
A = φs,A(Q̂A); similarly, Alice obtains

Q̂B such that Y1b ∈ Cb,Q̂B
and calculates Ŝ:2r

B = φs,B(Q̂B). To produce ran-

domness for the next iteration, Alice and Bob use their secure equipartitions to



calculate U :2r
A = (ψQ̂B

A (Y1b)||ψA(Y2b)) and U :2r
B = (ψQ̂A

B (Y1f )||ψB(Y2f )), re-

spectively. The randomness pieces are then split into (U :2r
1A , U

:2r
2B ) = uA,split(U

:2r
A )

and (U :2r
1B , U

:2r
2B ) = uB,split(U

:2r
B ). The above calculations are to derive indepen-

dent randomness and secret key parts from round 2r. The following is for deriving

a key part out of round 2r − 1. Firstly, the parties calculate

Û :2r−2

2A = Q̂A mod (L2A), ĴA = (Q̂A − Û :2r−2

2A )/L2A, (29)

Û :2r−2

2B = Q̂B mod (L2B), ĴB = (Q̂B − Û :2r−2

2B )/L2B . (30)

The quantities ĴA ∈ [NA] and ĴB ∈ [NB] are used to find which secure block

codes need to be considered over the inverse DMBCs in round 2r − 1. More

precisely, Alice finds ÎB such that X:2r−1
f ∈ DĴB

f,ÎB
and Bob finds ÎA such that

X:2r−1
b ∈ DĴA

b,ÎA
. As for the establishment of the secret key part, Alice calculates

S:2r−1
A = φJA

s,A(d
JA

b,IA
) and Ŝ:2r−1

B = φĴB

s,B(d
ĴB

f,ÎB
), and Bob calculates Ŝ:2r−1

A =

φĴA

s,A(d
ĴA

b,ÎA
) and S:2r−1

B = φJB

s,B(d
JB

f,IB
). The total secret key part in iteration r

is
(

S:2r−1
A , S:2r

A , S:2r−1
B , S:2r

B

)

. Overall, the main protocol uses the 2DMBC n =

(2t+1)(n1+n2) times to establish S = (S:r
A , S

:r
B )2tr=1. By following this protocol,

Alice calculates SA = (S:r
A , Ŝ

:r
B )2tr=1 and Bob calculates SB = (Ŝ:r

A , S
:r
B )2tr=1. In [3,

Appendix A], we show that the main algorithm satisfies the three requirements

given in Definition 1 and achieves the lower bound in Theorem 1.

6 The SK Capacity for Binary Symmetric Channels

Consider the case that each DMBC consists of independent BSCs with error

probabilities p1 and p2, i.e., the special case discussed in Section 3.2 (see Fig.

1(b)). Following the lower bound expression (9) in Theorem 1, and letting Xf

and Xb to be uniform binary RVs, we conclude the following lower bound on the

SK capacity in the case of BSCs, CBSC
sk .

CBSC
sk ≥ 2maxµ≥0{Lbound}, such that (31)

Lbound = 1
1+µ

(µ(h(p1 + p2 − 2p1p2)− h(p1)) + γ(h(p2)− h(p1))+) , (32)

γ = min{1, h(p1)
1−h(p1)

− µ}, µ ≤ min{h(p1),
1−h(p1)
h(p1)

}. (33)

In general, µ ≥ 0 is a non-negative real number. However, we show in [3] that

only three selections of µ, that is µ ∈ {0,M1,M2} (with M1 and M2 defined in

(34)) can lead to the lower bound (31).

M1 =
h(p1)

1− h(p1)
− 1 and M2 = min{h(p1),

1− h(p1)

h(p1)
}, (34)



In other words, the lower bound in (31) is simplified to

CBSC
sk ≥ 2 max

µ∈{0,M1,M2}
{Lbound}. (35)

This makes it easy to calculate the lower bound. Following the upper bound (16)

in Theorem 2 for the above setting, we arrive at

CBSC
sk ≤ 2 max

PXf
,PXb

{UboundA, UboundB}, where (36)

UboundA = min{h(p1),H(Yf |Zf )− h(p1)}, and (37)

UboundB = min{h(p1),H(Yb|Zb)− h(p1)}. (38)

One can easily observe that, for uniform Xf and Xb, UboundA and UboundB

reach their highest values, respectively. The upper bound is simplified as

CBSC
sk ≤ 2min{h(p1), h(p1 + p2 − 2p1p2)− h(p1)}. (39)
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Fig. 2. The relationship between the two bounds with respect to p1 and p2

Fig. 2 graphs the two bounds, (35) and (39), for different probability values

p1 and p2. Fig. 2(a) illustrates the changes in the two bounds with respect to

0 ≤ p2 ≤ 0.5 when p1 = 0.1. The bounds coincide when p2 = 0 or when p2 = 0.5.

When p2 = 0 all information sent over the 2DMBC is seen by Eve and SKE is

impossible; so, both bounds equal zero. When p2 = .5, the setup does not leak

any information to Eve and, from Theorem 3, the two bounds are expected to

coincide. Fig. 2(b) graphs the changes of the two bounds when 0 ≤ p1 ≤ 0.5 and

p2 = 0.2. When the main channels are noiseless (p1 = 0) or completely noisy

(p1 = 0.5), the two bounds coincide at zero and so SKE is impossibility. In the

former case, no randomness exists in the system and, in the latter, there is no



chance of reliable communication. The graphs also show the possibility of SKE

even when both DMBCs are in favor of Eve. This can be observed in Fig. 2(a)

for values of 0 < p2 < 0.1 and in Fig. 2(b) for values of 0.2) < p1 < 0.5.

In Section 3.2, we have provided a simple SKE construction. For the values

p1 = 0.1 and p2 = 0.2, the construction achieves the SK rate 3%. As depicted

in Fig. 2, the two bounds on the SK capacity for these probability values are

about 45% and 72%, respectively. This reveals how the example construction of

Section 3.2 works far from optimal achievable rates. As noted earlier, one can

improve the performance of the protocol by using more suitable primitives.

7 Conclusion

This paper has raised the question of building cryptographic functionalities over

noisy channels when there is no initial randomness available to the parties of

a system. We focused on two-party secret key establishment (SKE) where the

communicants are connected by independent noisy broadcast channels that leak

information to an adversary. We formalized the problem and defined the secret

key capacity. We discussed some special cases where SKE is impossible, and then

provided a concrete construction for binary symmetric channels. We obtained

lower and upper bounds on the secret key capacity and showed that they coin-

cide when the channels do not leak information to Eve. For the case of binary

symmetric channels, we simplified the bounds and showed the gap between the

rate achieved by the concerted construction and the rate proved to be achiev-

able by optimal primitives. It would be interesting to design constructions with

higher SK rates. Our work also suggests the question of the existence of other

cryptographic primitives when channel noise is the only resource for randomness.
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