
Universal One-Way Hash Functions via
Inaccessible Entropy

Iftach Haitner1, Thomas Holenstein2, Omer Reingold3?,
Salil Vadhan4??, and Hoeteck Wee5? ? ?

1 Microsoft Research - New England, iftach@microsoft.com
2 Department of Computer Science, ETH Zurich, thomas.holenstein@inf.ethz.ch

3 Microsoft Research - Silicon Valley and Weizmann Institute of Science,
omreing@microsoft.com

4 School of Engineering & Applied Sci. and Center for Research on Computation & Society,
Harvard University, salil@seas.harvard.edu

5 Queens College, CUNY, hoeteck@cs.qc.cuny.edu

Abstract. This paper revisits the construction of Universal One-Way Hash
Functions (UOWHFs) from any one-way function due to Rompel (STOC 1990).
We give a simpler construction of UOWHFs, which also obtains better efficiency
and security. The construction exploits a strong connection to the recently
introduced notion of inaccessible entropy (Haitner et al. STOC 2009). With this
perspective, we observe that a small tweak of any one-way function f is already
a weak form of a UOWHF: Consider F (x, i) that outputs the i-bit long prefix of
f(x). If F were a UOWHF then given a random x and i it would be hard to come
up with x′ 6= x such that F (x, i) = F (x′, i). While this may not be the case, we
show (rather easily) that it is hard to sample x′ with almost full entropy among
all the possible such values of x′. The rest of our construction simply amplifies
and exploits this basic property.
With this and other recent works, we have that the constructions of three
fundamental cryptographic primitives (Pseudorandom Generators, Statistically
Hiding Commitments and UOWHFs) out of one-way functions are to a large
extent unified. In particular, all three constructions rely on and manipulate
computational notions of entropy in similar ways. Pseudorandom Generators rely
on the well-established notion of pseudoentropy, whereas Statistically Hiding
Commitments and UOWHFs rely on the newer notion of inaccessible entropy.
Keywords: computational complexity, cryptography, hashing, target collision-
resistance, one-way functions

1 Introduction

Universal one-way hash functions (UOWHFs), as introduced by Naor and Yung [10],
are a weaker form of collision-resistant hash functions. The standard notion of collision
resistance requires that given a randomly chosen function f R←F from the hash family,
it is infeasible to find any pair of distinct inputs x, x′ such that f(x) = f(x′). UOWHFs
only require target collision resistance, where the adversary must specify one of the
inputs x before seeing the description of the function f . Formally:
? Supported by US-Israel BSF grant 2006060.

?? Supported by NSF grant CNS-0831289 and US-Israel BSF grant 2006060.
? ? ? Supported in part by PSC-CUNY Award #6014939 40.



Definition 1. A family of functions Fk = {Fz : {0, 1}n(k) → {0, 1}m(k)}z∈{0,1}k is a
family of universal one-way hash functions (UOWHFs) if it satisfies:

1. Efficiency: Given z ∈ {0, 1}k and x ∈ {0, 1}n(k), Fz(x) can be evaluated in time
poly(n(k), k).

2. Shrinking: m(k) < n(k).
3. Target Collision Resistance: For every probabilistic polynomial-time adversary A,

the probability that A succeeds in the following game is negligible in k:
(a) Let (x, state)← A(1k) ∈ {0, 1}n(k) × {0, 1}∗.
(b) Choose z R←{0, 1}k.
(c) Let x′ R←A(state, z) ∈ {0, 1}n(k).
(d) A succeeds if x 6= x′ and Fz(x) = Fz(x

′).

It turns out that this weaker security property suffices for many applications. The
most immediate application given in [10] is secure fingerprinting, whereby the pair
(f, f(x)) can taken as a compact “fingerprint” of a large file x, such that it is infeasible
for an adversary, seeing the fingerprint, to change the file x to x′ without being detected.
More dramatically, Naor and Yung [10] also showed that UOWHFs can be used to
construct secure digital signature schemes, whereas all previous constructions (with
proofs of security in the standard model) were based on trapdoor functions (as might
have been expected to be necessary due to the public-key nature of signature schemes).
More recently, UOWHFs have been used in the Cramer–Shoup encryption scheme [3]
and in the construction of statistically hiding commitment schemes from one-way
functions [4, 5].

Naor and Yung [10] gave a simple and elegant construction of UOWHFs from
any one-way permutation. Subsequently, Rompel [11] gave a much more involved
construction to prove that UOWHFs can be constructed from an arbitrary one-way
function, thereby resolving the complexity of UOWHFs (as one-way functions are
the minimal complexity assumption for complexity-based cryptography, and are easily
implied by UOWHFs).6 While complications may be expected for constructions from
arbitrary one-way functions (due to their lack of structure), Rompel’s analysis also
feels quite ad hoc. In contrast, the construction of pseudorandom generators from one-
way functions of [7], while also somewhat complex, involves natural abstractions (e.g.,
pseudoentropy) that allow for modularity and measure for what is being achieved at
each stage of the construction.

In this paper, we give simpler constructions of UOWHFs from one-way functions,
based on (a variant of) the recently introduced notion of inaccessible entropy [5]. In
addition, one of the constructions obtains slightly better efficiency and security.

1.1 Inaccessible Entropy

For describing our construction, it will be cleaner to work with a variant of UOWHFs
where there is a single shrinking function F : {0, 1}n → {0, 1}m (for each setting of
the security parameter k) such that it is infeasible to find collisions with random inputs.

6 More details of Rompel’s proof are worked out, with some corrections, in [12, 9].



That is, an adversary A is given a uniformly random x
R← {0, 1}n, outputs an x′ such

that F (x′) = F (x), and succeeds if x′ 6= x.7 Note that we can assume without loss of
generality that x′ = A(x) is always a preimage of F (x) (A has the option of outputting
x in case it does not find a different preimage); we refer to an algorithm A with this
property as an F -collision finder.

Our construction is based on an entropy-theoretic view of UOWHFs. The fact that
F is shrinking implies that there are many preimages x′ available to A. Indeed, if we
consider an (inefficient) adversary A(x) that outputs x′ R← F−1(F (x)) and let X be a
random variable uniformly distributed on {0, 1}n, then

H(A(X)|X) = H(X|F (X)) ≥ n−m,

where H(·|·) denotes conditional Shannon entropy. (See Section 2 for more definitional
details.) We refer to the quantity H(X|F (X)) as the real entropy of F−1.

On the other hand, the target collision resistance means that effectively only one
of the preimages is accessible to A. That is for every probabilistic polynomial-time F -
collision finder A, we have Pr[A(X) 6= X] = neg(n), which is equivalent to requiring
that:

H(A(X)|X) = neg(n)

for all probabilistic polynomial-time F -collision findersA. (IfA can find a collisionX ′

with nonnegligible probability, then it can achieve nonnnegligible conditional entropy
by outputting X ′ with probability 1/2 and outputting X with probability 1/2.) We refer
to the maximum of H(A(X)|X) over all efficient F -collision finders as the accessible
entropy of F−1. We stress that accessible entropy refers to an upper bound on a form
of computational entropy, in contrast to the Håstad et al.’s notion of pseudoentropy [7].

Thus, a natural weakening of the UOWHF property is to simply require a noticeable
gap between the real and accessible entropies of F−1. That is, for every probabilistic
polynomial-time F -collision finder A, we have H(A(X)|X) < H(X|F (X)) −∆, for
some noticeable ∆, which we refer to as the inaccessible entropy of F .

1.2 Our Constructions

Our constructions of UOWHFs have two parts. First, we show how to obtain a function
with noticeable inaccessible entropy from any one-way function. Second, we show how
to build a UOWHF from any function with inaccessible entropy.

OWFs ⇒ Inaccessible Entropy. Given a one-way function f : {0, 1}n → {0, 1}m,
we show that a random truncation of f has inaccessible entropy. Specifically, we define
F (x, i) to be the first i bits of f(x).

To see that this works, suppose for contradiction that F does not have noticeable
inaccessible entropy. That is, we have an efficient adversary A that on input (x, i)
can sample from the set S(x, i) = {x′ : f(x′)1...i = f(x)1...i} with almost-
maximal entropy, which is equivalent to sampling according to a distribution that is

7 It is easy to convert any such function F into a standard UOWHF family by defining Fz(x) =
F (z + x).



statistically close to the uniform distribution on S(x, i). We can now use A to construct
an inverter Inv for f that works as follows on input y: choose x0

R← {0, 1}n, and then
for i = 1, . . . , n generate a random xi

R← A(xi−1, i − 1) subject to the constraint
that f(xi)1,··· ,i = y1,··· ,i. The latter step is feasible, since we are guaranteed that
f(xi)1,...,i−1 = y1,··· ,i−1 by the fact that A is an F -collision finder, and the expected
number of trials needed get agreement with yi is at most 2 (since yi ∈ {0, 1}, and y
and f(xi) are statistically close). It is not difficult to show that when run on a random
output Y of f , Inv produces an almost-uniform preimage of Y . This contradicts the
one-wayness of f . Indeed, we only need f to be a distributional one-way function [8],
whereby it is infeasible to generate almost-uniform preimages under f .

Inaccessible Entropy ⇒ UOWHFs. Once we have a non-negligible amount
of inaccessible entropy, we can construct a UOWHF via a series of standard
transformations.

1. Repetition: By evaluating F on many inputs, we can increase the amount
of inaccessible entropy from 1/ poly(n) to poly(n). Specifically, we take
F t(x1, . . . , xt) = (F (x1), . . . , F (xt)) where t = poly(n). This transformation
also has the useful effect of converting the real entropy of F−1 to min-entropy.

2. Hashing Inputs: By hashing the input to F (namely taking F ′(x, g) = (F (x), g(x))
for a universal hash function g), we can reduce both the real (min-)entropy and the
accessible entropy so that (F ′)−1 still has a significant amount of real entropy, but
has (weak) target collision resistance (on random inputs).

3. Hashing Outputs: By hashing the output to F (namely taking F ′(x, g) = g(F (x))),
we can reduce the output length of F to obtain a shrinking function that still has
(weak) target collision resistance.

There are two technicalities that occur in the above steps. First, hashing the inputs
only yields weak target collision resistance; this is due to the fact that accessible
Shannon entropy is an average-case measure and thus allows for the possibility that the
adversary can achieve high accessible entropy most of the time. Fortunately, this weak
form of target collision resistance can be amplified to full target collision resistance
using another application of repetition and hashing (similar to [1]).

Second, the hashing steps require having a fairly accurate estimate of the real
entropy. This can be handled similarly to [7, 11], by trying all (polynomially many)
possibilities and concatenating the resulting UOWHFs, at least one of which will be
target collision resistant.

A More Efficient Construction. We obtain a more efficient construction of UOWHFs
by hashing the output of the one-way function f before truncating. That is, we
define F (x, g, i) = (g, g(f(x))1···i). This function is in the spirit of the function that
Rompel [11] uses as a first step, but our function uses three-wise independent hash
function instead of n-wise independent one, and enjoys a much simpler structure.8 Our
analysis of this function is significantly simpler than Rompel’s and can be viewed as

8 Rompel started with the function f ′(z, g1, g2) := (g2(f0(g1(z))), g1, g2), where g1 and g2
are n-wise independent hash-functions, and f0 is defined as f0(x, y, i) = (f(x), yn−i, 0i).



providing a clean abstraction of what it achieves (namely, inaccessible entropy) that
makes the subsequent transformation to a UOWHF much easier.

We obtain improved UOWHF parameters over our first construction for two reasons.
First, we obtain a larger amount of inaccessible entropy: (log n)/n bits instead of
roughly 1/n4 bits. Second, we obtain a bound on a stronger form of accessible entropy,
which enables us to get full target collision resistance when we hash the inputs, avoiding
the second amplification step.

This construction yields better parameters than Rompel’s original construction.
A one-way function of input length n yields a UOWHF with output length Õ(n7),
improving Rompel’s bound of Õ(n8). Additionally, we are able to reduce the key
length needed: Rompel’s original construction uses a key of length Õ(n12), whereas
our construction only needs a key of length Õ(n7). If we allow the construction to
utilize some nonuniform information (namely an estimate of the real entropy of F−1),
then we obtain output length Õ(n5), improving Rompel’s bound of Õ(n6). For the
key length, the improvement in this case is from Õ(n7) to Õ(n5). Of course, these
bounds are still far from practical, but they illustrate the utility of inaccessible entropy
in reasoning about UOWHFs, which may prove useful in future constructions (whether
based on one-way functions or other building blocks).

1.3 Perspective

The idea of inaccessible entropy was introduced in [5] for the purpose of constructing
statistically hiding commitment schemes from one-way functions and from zero-
knowledge proofs. There, the nature of statistically hiding commitments necessitated
more involved notions of inaccessible entropy than we present here — inaccessible
entropy was defined in [5] for interactive protocols and for “generators” that output
many blocks, where one considers adversaries that try to generate next-messages or
next-blocks of high entropy. In such a setting, it is necessary to have the adversary
privately “justify” that it is behaving consistently with the honest party, and to
appropriately discount the entropy in case the adversary outputs an invalid justification.

Here, we are able to work with a much simpler form of inaccessible entropy. The
simplicity comes from the noninteractive nature of UOWHFs (so we only need to
measure the entropy of a single string output by the adversary), and the fact that we
can assume without loss of generality that the adversary behaves consistently with the
honest party. Thus, the definitions here can serve as a gentler introduction to the concept
of inaccessible entropy. On the other hand, the many-round notions from [5] allow for
a useful “entropy equalization” transformation that avoids the need to try all possible
guesses for the entropy. We do not know an analogous transformation for constructing
UOWHFs. We also note that our simple construction of a function with inaccessible
entropy by randomly truncating a one-way function (and its analysis) is inspired by the
the construction of an “inaccessible entropy generator” from a one-way function in [5].

Finally, with our constructions, the proof that one-way functions imply UOWHFs
now parallels those of pseudorandom generators [7, 6] and statistically hiding
commitments [4, 5], with UOWHFs and statistically hiding commitments using dual
notions of entropy (high real entropy, low accessible entropy) to pseudorandom
generators (low real entropy, high pseudoentropy).



2 Inaccessible Entropy for Inversion Problems

We will refer to several measures of entropy in this work (proofs are omitted due to
the lack of space). For a random variable X and x ∈ Supp(X), we define the sample-
entropy of x with respect to X to be the quantity

HX(x) := log(1/Pr[X = x]).

Using this notion, we can define the Shannon entropy H(X) and min-entropy H∞(X)
as follows:

H(X) := E
x

R←X
[HX(x)] and H∞(X) := minx∈Supp(X) HX(x)

We will also discuss the max-entropy H0(X) := log(1/|Supp(X)|). It can be shown
that H∞(X) ≤ H(X) ≤ H0(X) with equality if and only if X is flat.

As discussed in the introduction, for a function F , we define the real entropy of
F−1 to be the amount of entropy left in the input after revealing the output.

Definition 2. Let n be a security parameter, and F : {0, 1}n → {0, 1}m a function.
We say that F−1 has real Shannon entropy k if

H(X|F (X)) = k,

where X is uniformly distributed on {0, 1}n. We say that F−1 has real min-entropy at
least k if there is a negligible function ε = ε(n) such that

Pr
x

R←X

[
HX|F (X)(x|F (x)) ≥ k

]
≥ 1− ε(n).

We say that F−1 has real max-entropy at most k if there is a negligible function ε =
ε(n) such that

Pr
x

R←X

[
HX|F (X)(x|F (x)) ≤ k

]
≥ 1− ε(n).

Note that more concrete formulas for the entropies above are:

HX|F (X)(x|F (x)) = log |F−1(F (x))| and H(X|F (X)) = E
[
log |F−1(F (X))|

]
.

As our goal is to construct UOWHFs that are shrinking, achieving high real entropy
is a natural intermediate step. Indeed, the amount by which F shrinks is a lower bound
on the real entropy of F−1:

Proposition 1. If F : {0, 1}n → {0, 1}m, then the real Shannon entropy of F−1 is at
least n−m, and the real min-entropy of F−1 is at least n−m−s for any s = ω(log n).

To motivate the definition of accessible entropy, we now present an alternative
formulation of real entropy in terms of the entropy that computationally unbounded
“collision-finding” adversaries can generate.

Definition 3. For a function F : {0, 1}n → {0, 1}m, an F -collision-finder is a
randomized algorithm A such that for every x ∈ {0, 1}n and coin tosses r for A,
we have A(x; r) ∈ F−1(F (x)).



Note that A is required to always produce an input x′ ∈ {0, 1}n such that F (x) =
F (x′). This is a reasonable constraint becauseA has the option of outputting x′ = x if it
does not find a true collision. We consider A’s goal to be maximizing the entropy of its
output x′ = A(x), given a random input x. If we let A be computationally unbounded,
then the optimum turns out to equal exactly the real entropy:

Proposition 2. Let F : {0, 1}n → {0, 1}m. Then the real Shannon entropy of F−1

equals the maximum of H(A(X;R)|X) over all (computationally unbounded) F -
collision finders A, where the random variable X is uniformly distributed in {0, 1}n
and R is uniformly random coin tosses for A. That is,

H(X|F (X)) = max
A

H(A(X;R)|X),

where the maximum is taken over all F -collision finders A.

The notion of accessible entropy simply restricts the above to efficient adversaries,
e.g. those that run in probabilistic polynomial time (PPT for short):

Definition 4. Let n be a security parameter and F : {0, 1}n → {0, 1}m a function. We
say that F−1 has accessible Shannon entropy at most k if for every PPT F -collision-
finder A, we have

H(A(X;R)|X) ≤ k

for all sufficiently large n, where the random variable X is uniformly distributed on
{0, 1}n and R is uniformly random coin tosses for A.

As usual, it is often useful to have an upper bound not only on Shannon entropy, but
on the max-entropy (up to some negligible statistical distance). Recall that a random
variable Z has max-entropy at most k iff the support of Z is contained in a set of size
2k. Thus, we require that A(X;R) is contained in a set L(X) of size at most 2k, except
with negligible probability:

Definition 5. Let n be a security parameter and F : {0, 1}n → {0, 1}m a function.
For p = p(n) ∈ [0, 1], we say that F−1 has p-accessible max-entropy at most k if for
every PPT F -collision-finder A, there exists a family of sets {L(x)}x∈Supp(X) each of
size at most 2k such that x ∈ L(x) for all x ∈ Supp(X) and

Pr [A(X;R) ∈ L(X)] ≥ 1− p

for all sufficiently large n, where random variableX is uniformly distributed on {0, 1}n
and R is uniformly random coin tosses for A. In addition, if p = ε(n) for some
negligible function ε(·), then we simply say that F−1 has accessible max-entropy at
most k.

The reason that having an upper bound on accessible entropy is useful as an
intermediate step towards constructing UOWHFs is that accessible max-entropy 0 is
equivalent to target collision resistance (on random inputs):



Definition 6. Let F : {0, 1}n → {0, 1}m be a function. For q = q(n) ∈ [0, 1], we say
that F is q-collision-resistant on random inputs if for every PPT F -collision-finder A,

Pr[A(X;R) = X] ≥ q,

for all sufficiently large n, where random variableX is uniformly distributed on {0, 1}n
and R is uniformly random coin tosses for A. In addition, if q = 1 − ε(n) for some
negligible function ε(·), we say that F is collision-resistant on random inputs.

Lemma 1. Let n be a security parameter and F : {0, 1}n → {0, 1}m be a function.
Then, for any p = p(n) ∈ (0, 1), the following statements are equivalent:

(1) F−1 has p-accessible max-entropy 0.
(2) F is (1− p)-collision-resistant on random inputs.

In particular, F−1 has accessible max-entropy 0 iff F is collision-resistant on random
inputs.

While bounding p-accessible max-entropy with negligible p is our ultimate goal,
one of our constructions will work by first giving a bound on accessible Shannon
entropy, and then deducing a bound on p-accessible max-entropy for a value of p < 1
using the following lemma:

Lemma 2. Let n be a security parameter and F : {0, 1}n → {0, 1}m be a function. If
F−1 has accessible Shannon entropy at most k, then F−1 has p-accessible max-entropy
at most k/p+O(2−k/p) for any p = p(n) ∈ (0, 1).

Once we have a bound on p-accessible max-entropy for some p < 1, we need to apply
several transformations to obtain a function with a good bound on neg(n)-accessible
max-entropy.

Our second construction (which achieves better parameters), starts with a bound on
a different average-case form of accessible entropy, which is stronger than bounding the
accessible Shannon entropy. The benefit of this notion it that it can be converted more
efficiently to neg(n)-accessible max-entropy, by simply taking repetitions.

To motivate the definition, recall that a bound on accessible Shannon entropy means
that the sample entropy HA(X;R)|X(x′|x) is small on average over x R← X and x′ R←
A(x;R). This sample entropy may depend on both the input x and the x′ output by the
adversary (which in turn may depend on its coin tosses). A stronger requirement is to
say that we have upper bounds k(x) on the sample entropy that depend only on x. The
following definition captures this idea, thinking of k(x) = log |L(x)|. (We work with
sets rather than sample entropy to avoid paying a log(1/ε) loss.)

Definition 7. Let n be a security parameter and F : {0, 1}n → {0, 1}m a function.
We say that F−1 has accessible average max-entropy at most k if for every PPT F -
collision-finder A, there exists a family of sets {L(x)}x∈Supp(X) and a negligible
function ε = ε(n) such that x ∈ L(x) for all x ∈ Supp(X), E[log |L(X)|] ≤ k
and

Pr [A(X;R) ∈ L(X)] ≥ 1− ε(n),
for all sufficiently large n, where random variableX is uniformly distributed on {0, 1}n
and R is uniformly random coin tosses for A.



We observe that bounding accessible average max-entropy is indeed stronger than
bounding accessible Shannon entropy:

Proposition 3. If F−1 has accessible average max-entropy at most k, then for every
constant c, F−1 has accessible Shannon entropy at most k + 1/nc.

3 Inaccessible Entropy from One-way Functions

In Section 3.1 we show that any one-way function can be very slightly altered into a
function with inaccessible entropy. In Section 3.2 we show that an additional hashing
step implies a stronger form of inaccessible entropy (which we can then use for a
more efficient construction of UOWHF). Still, we find the more direct construction
of Section 3.1 and its analysis to be striking in its simplicity.

3.1 A Direct Construction

Theorem 1 (Inaccessible Shannon entropy from one-way functions). Let
f : {0, 1}n 7→ {0, 1}n be a one-way function and define F over {0, 1}n × [n]
as F (x, i) = f(x)1,...,i. Then F−1 has accessible Shannon entropy at most
H(Z|F (Z)) − 1/(29 · n4 · log2 n), where Z = (X, I) is uniformly distributed over
{0, 1}n × [n].9

Proof. Suppose on the contrary that there exists a PPT F -collision-finder A such that

H(Z|F (Z))−H(A(Z;R)|Z) < ε = 1/(29 · n4 · log2 n)

for infinitely many n’s, and R is uniformly distributed over the random coins of A.
Since I is determined by F (Z), and since Z also determines the second part of A’s
output (since A is an F -collision-finder), it follows that

H(X|F (Z))−H(A′(Z;R)|Z) < ε

where A′ is the algorithm that on input (z; r) outputs the first component of A(z; r)’s
output. In the following use A′ to construct an efficient algorithm that inverts f with
constant probability. We do so in two steps: 1. Constructing such an inverter under the
assumption that we have access to an (inefficient) oracle Sam Ideal defined shortly, and
2. Showing how to efficiently approximate Sam Ideal using A′.

Algorithm 2 (Sam Ideal)

Input: x ∈ {0, 1}n, i ∈ [n] and b ∈ {0, 1}.
9 We believe that the actual gap between the real and accessible entropy of F−1 is Ω(1/n2), or

possibly even Ω(1/n), and not Ω(1/n4) as stated. Since even the optimistic Ω(1/n) bound
does not yield as efficient overall construction as the one resulting from Section 3.2, we defer
a tighter analysis to the final version of the paper.



Return a random x′ ∈ F−1(F (x, i − 1))1 such that f(x′)i = b (re-
turn an arbitrarily value if no such x′ exists), where F−1(F (x, j))1 =
{x′ ∈ {0, 1}n : F (x′, j) = F (x, j)}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

That is, Sam Ideal outputs uniformly at random x′ such that f(x′)1,...,i =
(f(x)1,...,i−1, b). We define an algorithm Inv with access to an oracle Sam . When
Sam = Sam Ideal, it will be easy to argue that Inv inverts f with probability one.

Algorithm 3 (InvSam )

Input: y ∈ {0, 1}n.
Oracle: Sam .

For i = 1 to n do:
let xi = Sam(xi−1, i, yi) (where x0 is chosen arbitrarily)

Output xn.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is immediate that InvSam Ideal inverts f with probability one. We now turn
to showing that A′ can be used to efficiently approximate Sam Ideal. The resulting
algorithm Samδ will be sufficiently similar to Sam Ideal and as a result InvSamδ will
still invert f with high probability. A property of Inv that will come handy is that, on a
uniform value y = f(x), the first coordinate of each individual query that the inverter
InvSam Ideal makes (i.e., xi) is uniform in {0, 1}n (the queries are correlated of course).

Recall that the output of A′ has high Shannon entropy - almost as high as the
uniform distribution over its set of prescribed outputs. Claim 3.1 (which is rather
standard), shows that this also implies that the distribution of A′’s output is statistically
close to this uniform distribution.

Definition 8. For δ ∈ [0, 1] letAδ be the family of efficient F -collision-finders with the
following guarantee: for every A′′ ∈ Aδ there exist infinitely many n’s such that
‖ (Z,A′′(Z;R)) − (Z, F−1(F (Z))1) ‖≤ δ, where R is uniformly distributed over the
random-coins of A′′ and F−1(F (x, i))1 is uniformly distributed over F−1(F (x, i))1.

Showing that the output of A′ is statistically close to uniform can therefore be
formalized by showing the following claim:

Claim. A′ ∈ A√ε.

Proof.

‖ (Z, F−1(F (Z))1)− (Z,A′(Z;R)) ‖ = E
z←Z

[
‖F−1(F (z))1 −A′(z;R))‖

]
≤ E
z←Z

[√
H(F−1(F (z))1)−H(A′(z;R))

]
≤
√

E
z←Z

[
H(F−1(F (z))1)−H(A′(z;R))

]
=
√

H(X|F (Z))−H(A′(Z;R))

≤
√
ε,



where the first inequality uses the fact that if W is a random variable whose support
is contained in a set S and U is the uniform distribution on S, then ‖U − W‖ ≤√
H(U)−H(W ). (See [2, Lemma 11.6.1].)

As we just shown thatA′ ∈ A√ε it is enough to show how to use an algorithmA′′ ∈ Aδ
to approximate Sam Ideal (with error which depends on δ). In order to keep notation
simple, we abuse notation and denote byAδ someA′′ ∈ Aδ . Fix δ ∈ [0, 1] and consider
the following efficient approximation of Sam Ideal:

Algorithm 4 (Samδ)

Input: x ∈ {0, 1}n, i ∈ [n] and b ∈ {0, 1}.
Oracle: Aδ .

Repeat 16n · log n times:

1. Let x′ = Aδ(x, i)
2. If f(x′)i = b, return x′.

Abort.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let Invδ denote InvSamδ and Inv Ideal denote InvSam Ideal . We will show that the
output of Invδ (on a random value f(x)) is statistically close to that of Inv Ideal. As
Inv Ideal inverts f with probability one, we will conclude that Invδ inverts f with high
probability as well. To analyze the statistical distance between the outputs of the two
inverters, we consider hybrid inverters that use the ideal Sam Ideal in the first queries and
use Samδ in the rest of the queries: For i ∈ [n + 1] let Inv iδ be the variant of Inv that
uses Sam Ideal in the first i − 1 queries and Samδ for the rest of the queries. The next
claim will allow us to easily bound the difference between the output distribution of any
two neighboring hybrid inverters:

Claim. Let i ∈ [n] and let δi =
∥∥(X,Aδ(X, i;R))− (X, F−1(F (X, i))1)

∥∥, then
‖(X,Sam Ideal(X, i, f(X)i))− (X,Samδ(X, i, f(X)i))‖ ≤ 1/2n+ 16 · n · log n · δi.

Proof. Samδ is imperfect for two reasons (which our analysis handles separately).
The first reason is that Samδ relies on the output of Aδ that returns an inverse that
is only close to uniform (rather than fully uniform). The error accumulated in each
query to Aδ is δi and there are only 16 · n · log n such queries, which altogether
contributes 16 ·n · log n · δi to the statistical distance bounded by the claim. The second
source of error is that after 16 · n · log n unsuccessful repetitions, Samδ aborts without
retrieving a correct inverse x′. As we now argue, such failure will only happen with
small probability (contributing 1

2n to the bound in the claim).
To separate our analysis of the two sources of error, we start by considering

the case that δi = 0. Note that in this case Aδ(x, i;R) = A0(x, i;R) is
identical to F−1(F (x, i))1. For x ∈ {0, 1}n, i ∈ [m] and b ∈ {0, 1}, let
α(x, i, b) := Pr

y
R←f(X)

[yi = b | y1,...,i−1 = f(x)1,...,i−1]. Note that for every i,

Pr[α(X, i, f(X)i)) < β] < β for every β > 0. We also note that Samδ(x, i, f(x)i)
aborts with probability at most (1− 1

4n )
16n·logn < 1

4n in the case that α(x, i, f(x)i) ≥



1
4n , and that in case it does not abort, (since we assume that δi = 0) it returns the same
distribution as Sam Ideal(x, i, b) does. Hence, for the case that δi = 0 we have that

‖(X,Sam Ideal(X, i, f(X)i))− (X,Samδ(X, i, f(X)i))‖

≤ Pr[α(X, i, f(X)i) <
1

4n
] + Pr[Samδ(X, i, f(X)i) aborts | α(X, i, f(X)i) ≥

1

4n
]

<
1

4n
+

1

4n

≤ 1

2n
.

We now want to analyze the general case where δi may be larger than zero. The
statistical distance between the output distribution of Samδ(X, i, f(X)i) in the case
δi = 0 and in the general case is at most the maximal number of calls to Aδ made by
Samδ times ‖(X,Aδ(X, i))− (X,A0(X, i))‖, we therefore have that

‖(X,Sam Ideal(X, i, f(X)i)− (X,Samδ(X, i, f(X)i)))‖

≤ 1

2n
+ 16n · log n · ‖(X,Aδ(X, i)− (X,A0(X, i)‖

=
1

2n
+ 16n · log n ·

∥∥(X,Aδ(X, i)− (X, F−1(F (X, i))1))
∥∥

=
1

2n
+ 16 · n · log n · δi.

Now note that the i’th query of Inv iδ(f(X)) (a query to Samδ) and the i’th query
of Inv i+1

δ (f(X)) (a query to Sam Ideal) are both distributed as (X, i, f(X)i). Therefore
Claim 3.1 yields that for every i ∈ [n],

∥∥Inv i+1
δ (f(X))− Inv iδ

∥∥ ≤ 1

2n
+ 16 · n · log n · δi.

Hence,

Pr[Invδ(f(X)) ∈ f−1(f(X))]

≥ 1−
n∑
i=1

∥∥Inv i+1
δ (f(X))− Inv iδ(f(X))

∥∥
≥ 1−

n∑
i=1

1

2n
+ 16 · n · log n · ‖(X,Sam Ideal(X, i, f(X)i)− (X,Samδ(X, i, f(X)i)‖

≥ 1

2
− 16 · n2 · log n · δ.

Let Inv be the instantiation of Invδ obtained when we implement Samδ using
A′. Claim 3.1 yields that Pr[Inv(f(X)) ∈ f−1(f(X))] ≥ Pr[Inv√ε(f(X)) ∈
f−1(f(X))] ≥ 1/2− 16 · n2 · log n ·

√
ε > 1/4.



3.2 A More Efficient Construction

The following theorem shows that a simplified variant of the first step of [11]
(which is also the first step of [9]) yields inaccessible entropy with much stronger
guarantees than those obtained in Section 3.1. The function we construct is F (x, g, i) =
(g(f(x))1,...,i, g), where g : {0, 1}n → {0, 1}n is a three-wise independent function.
Since the composition of g and f is still a one-way function then Theorem 1 already
implies that F−1 has inaccessible entropy. The benefits of the additional hashing step
are that 1. we get more inaccessible entropy (Θ̃(1/n) bits rather than Θ̃(1/n4) bits), and
2. we get a bound on accessible average max-entropy rather than accessible Shannon
entropy. These allow for a simpler and more efficient transformation of F into a
UOWHF.

Theorem 5 (Inaccessible average max-entropy from one-way functions). Let
f : {0, 1}n 7→ {0, 1}n be a one-way function and let G = {g : {0, 1}n → {0, 1}n}
be a family of constructible,10three-wise independent hash functions. Define F with
domain Dom(F ) := {0, 1}n × G × [n] by

F (x, g, i) = (g(f(x))1,...,i, g).

Then, for every constant d, F−1 has accessible average max-entropy at most
H(Z|F (Z)) − (d log n)/n for every d > 0, where Z = (X,G, I) is uniformly
distributed over Dom(F ).

Proof. Let c be a sufficiently large constant (whose value we determine later, depending
on the constant d in the theorem statement) and define for every y ∈ {0, 1}n and i ∈ [n]:

L(y, i) =
{
y′ ∈ {0, 1}n : Hf(X)(y

′) ≥ (i+ c · log n) ∨ y′ = y
}
.

(Recall that the sample entropy is defined as Hf(X)(y) = log(1/Pr[f(X) = y]) = n−
log
∣∣f−1(y)∣∣ , so the “heavy” images, where f−1(y) is large, have low sample entropy.)

Namely, L(y, i) consists, in addition to y itself, of “i-light” images with respect to f .
We later show that the sets L′(x, g, i) = f−1(L(f(x), i)) × {(g, i)} satisfy the

properties required to show that the accessible max-entropy of F−1 is as stated in the
theorem.11 Towards this goal, we first show that the only accessible inputs of F come
from preimages of L(y, i).

Claim. For every PPT F -collision-finder A and every constant c > 0, it holds that

Pr[A1(X,G, I;R) /∈ f−1(L(f(X), I))] ≤ neg(n),

where (X,G, I) is uniformly distributed over Dom(F ),R is uniformly distributed over
the random coins of A, and A1 denotes the first component of A’s output.
10 G is constructible if given the description of a function g ∈ G and x ∈ {0, 1}n, g(x) can be

computed in time poly(n), and there is a probabilistic polynomial-time algorithm that given
x ∈ {0, 1}n, and y ∈ {0, 1}n, outputs a random g

R←G such that g(x) = y.
11 We are working with the set L, and not with L′, as it significantly simplifies notations. Note

that the sets L′ are independent of the adversary, even though the definition of accessible
average max-entropy allows the sets to depend on the adversary. Further, note that the sets L
are independent of G.



Note that the above immediately yields that Pr[A(X,G, I;R) /∈ L′(X,G, I)] ≤
neg(n), since the other two output components of A are required to equal (g, i), due to
the fact that F (x, g, i) determines (g, i).

Proof. Suppose on the contrary that there exist an efficient F -collision-finder A,
c > 0 and a non-negligible function ε = ε(n) such that Pr[A1(X,G, I;R) /∈
f−1(L(f(X), I))] ≥ ε. Fix a triple (x, i, r) and let

εx,i,r = Pr[A1(x,G; r) /∈ f−1(L(f(x), i))].

Define A′(g) = A1(x, g; r). We will show how to use any such A′ to invert f with
probability at least εx,i,r/nc. By picking (x, i, r) at random, we will invert f with
probability at least Ex,i,r[εx,i,r/nc] = ε/nc, which contradicts the one-wayness of
f . Our inverter works as follows, on input y ∈ {0, 1}n.

Inv(y): choose g uniformly at random from G subject to the constraint g(y)1···i =
g(f(x))1···i,12 and output A′(g).

To analyze the success probability Inv , we first rewrite the success probability of
A′ as follows:

εx,i,r ≤ Pr[A′(G) /∈ f−1(L(f(x), i))

=
∑

y/∈L(f(x),i)

Pr[A′(G) ∈ f−1(y)]

=
∑

y/∈L(f(x),i)

Pr[G(y)1···i = G(f(x))1···i]

·Pr[A′(G) ∈ f−1(y)|G(y)1···i = G(f(x))1···i]

= 2−i ·
∑

y/∈L(f(x),i)

Pr[A′(G) ∈ f−1(y)|G(y)1···i = G(f(x))1···i].

Above the second equality follows becauseA is an F -collision finder (so it is always the
case that x′ = A′(g) = A(x, g, i)1 has the property that g(f(x′))1···i = g(f(x))1···i),
and the third inequality follows by the two-wise independence of G (y /∈ L(f(x), i)
implies that y 6= f(x)). Now, we can bound the success probability of Inv in finding a
preimage of Y = f(X) by:

Pr[Inv(Y ) ∈ f−1(Y )]

=
∑
y

Pr[Y = y] · Pr[A′(G) ∈ f−1(y)|G(y)1···i = f(x)1···i]

≥
∑

y/∈L(f(x),i)

Pr[Y = y] · Pr[A′(G) ∈ f−1(y)|G(y)1···i = f(x)1···i]

≥ 1

2i+c logn
·

∑
y/∈L(f(x),i)

Pr[A′(G) ∈ f−1(y)|G(y)1···i = f(x)1···i]

≥ εx,i,r/nc,
12 This can be done by first choosing z R← {0, 1}n−i and then using the constructibility of G to

generate a random g such that g(y) = (g(f(x))1···i, z).



where the penultimate inequality holds because every y /∈ L(f(x), i) satisfies
Hf(X)(y) < (i+ c · log n).

We have seen that sets f−1(L(y, i)) capture the accessible inputs of F ; now it
remains to show that the expected logarithm of their size is sufficiently smaller than
the real entropy H(Z|F (Z)) = E[log |F−1(F (Z))|] (again, this property immediately
propagates to L′).

Claim. For every constant c > 8, it holds that

E
[
log
∣∣f−1(L(f(X), I))

∣∣] ≤ E
[
log
∣∣F−1(F (Z))∣∣]−Ω(c log n

n

)
,

where Z = (X,G, I) is uniformly distributed in Dom(F ).

Proof. We assume for simplicity that n is a power of 2 (otherwise, we “pad” f ) and that
c is a power of 2, and let c′ = c/2. For ease of notation, we will work in entropy units
of c′ log n. Namely, for i ∈ {0, · · · ,m = n/(c′ log n)} and y ∈ {0, 1}n, let y{1},...,{i}
be the first i · c′ log n bits of y, define

Hf (y) :=
Hf(X)(y)

c′ log n
.

and let
qi = Pr[Hf (f(X)) ∈ [i, i+ 1)].

Recall that (X,G, I) is uniformly distributed in Dom(F ). We define additional
random variables that categorize the “non trivial collisions” induced by F into two
separate categories:

Light := |{x′ ∈ {0, 1}n : f(x′) 6= f(X) ∧G(f(x′)){1},...,{I} = G(f(X)){1},··· ,{I}

∧Hf (f(x
′)) ≥ I + 2}|.

Namely, Light consists of the preimages that collide with f(X), different from f(X),
and “light” — have few preimages. Similarly, let

Heavy := |{x′ ∈ {0, 1}n : f(x′) 6= f(X) ∧G(f(x′)){1},...,{I} = G(f(X)){1},··· ,{I}

∧Hf (f(x
′)) < I + 2}|.

Namely, Heavy consists of the preimages that collide with f(X), different from f(X),
and “heavy” — have many preimages. Note that∣∣F−1(F (Z))∣∣ = Light + Heavy + |f−1(f(X))|

(recall that the all elements F−1(F (x, g, i)) are of the form (x′, g, i)) and∣∣f−1(L(f(X), I))
∣∣ ≤ Light + |f−1(f(X))|.



Thus, we have

E[log
∣∣F−1(F (Z))∣∣]− E[log

∣∣f−1(L(f(X), I))
∣∣] (1)

≥ E

[
log

Light + Heavy + |f−1(f(X))|
Light + |f−1(f(X))|

]
We manipulate this as follows:

E

[
log

Light + Heavy + |f−1(f(X))|
|f−1(f(X))|+ Light

]
(2)

≥ E

[
log

(
1 +

Heavy

|f−1(f(X))|+ Light + Heavy

)]
≥ E

[
Heavy

|f−1(f(X))|+ Light + Heavy

]
,

where the last inequality uses the fact that log(1 + α) ≥ α for α ≤ 1. The proof
of Claim 3.2 easily follows from the next claim, which yields that with constant
probability, Heavy is a significant term in (|f−1(f(X))|+ Light + Heavy).

Claim. Let α ≥ 1, i ∈ {0, . . . ,m− 1} and x ∈ {0, 1}n. Condition on I = i and
X = x, and define the following events (over the random variable G):

E1
i : (Light + Heavy) ≤ 3 · 2n−i·(c

′ logn)

E2
i : Heavy ≥ (qi+1 − α ·

√
1/nc′) · 2n−i·c

′ logn−1

Then Pr[E1
i ] ≥ 2/3, and Pr[E2

i ] ≥ 1− 4/α2.

Proof. For E1
i , we note that E[Light + Heavy] ≤ 2n−i·(c

′ logn) by two-universality of
G, and apply Markov’s Inequality.

For E2
i , let

S := {x′ ∈ {0, 1}n : f(x′) 6= f(x) ∧Hf (f(x
′)) ∈ [i+ 1, i+ 2)} .

Note that |S| ≥ (qi+1 − neg(n)) · 2n, where we subtract neg(n) for not taking into
account the preimages of f(x). For g ∈ G, let

Sg := {x′ ∈ {0, 1}n : f(x′) 6= f(x) ∧Hf (f(x
′)) ∈ [i+ 1, i+ 2)

∧ g(f(x′)){1},...,{i} = g(f(x)){1},··· ,{i}},

note that (conditioned on I = i and X = x) Heavy ≥ |SG|. We write
|Sg| =

∑
y∈f(S) 1g,y · |f−1(y)|, where 1g,y is the indicator for g(y){1},...,{i} =

g(f(x)){1},··· ,{i}. By the three-wise independence of G, the 1G,y’s are pairwise
independent Bernoulli random variables, each with expectation 2−i·c

′ logn. Thus,
E[|SG|] ≥ (qi+1−neg(n)) ·2n−i·c′ logn. Assuming that qi+1 > α ·

√
1/nc′ ≥

√
1/nc′

(as otherwise the claim about E2
i holds trivially), it follows that

E[|SG|] > qi+1 · 2n−i·c
′ logn−1



By the pairwise independence of 1G,y’s, we also have

Var[|SG|] =
∑

y∈f(S)

Var[1G,y · |f−1(y)|]

≤ 2−i·c
′ logn ·

∑
y∈f(S)

∣∣f−1(y)∣∣2
≤ 2−i·c

′ logn · |S| · max
y∈f(S)

|f−1(y)| ≤ 2−i·c
′ logn · 2n · 2n−(i+1)·c′ logn

=

(
2√
nc′
· 2n−i·c

′ logn−1
)2

,

and thus by Chebyshev inequality

Pr[E2
i ] ≥ Pr

[
|SG| ≥ (qi+1 − α ·

√
1/nc′) · 2n−i·c

′ logn−1
]

≥ 1− Pr
[∣∣|SG| − E[|SG|]

∣∣ ≥ α

2
·
√
Var[|SG|]

]
≥ 1− 4

α2
.

Noting that Hf (f(X)) ≥ i means |f−1(f(X))| ≤ 2n−i·(c
′ logn), and applying

Claim 3.2 with α = 4, we have

E[log |F−1(F (Z))|]− E[log
∣∣f−1(L(Y, I))∣∣]

≥ E

[
Heavy

|f−1(f(X))|+ Light + Heavy

]
≥ 1

m
·
m−1∑
i=0

Pr[Hf (f(X)) ≥ i] · Pr[E1
i ∧ E2

i | Hf (f(X)) ≥ i]

·

(
qi+1 − 4

nc′/2

)
· 2n−i·c′ logn−1

2n+2−i·(c′ logn)

≥ 1

m
·
m−1∑
i=0

(qi+1 + · · ·+ qm) ·
(
1− 1

3
− 1

4

)
·

(
qi+1 − 4/nc

′/2

8

)

≥ 1

48m
·

 ∑
j,i∈{0,...,m}

qi · qj

−O( m

nc′/2

)

≥ 1

48m
−O

(
m

nc′/2

)
,

where the first inequality is by Equation 2, and the third inequality holds since q0 = 0
for every one-way function, which implies that

∑
1≤i≤j≤m qi·qj =

∑
0≤i≤j≤m qi·qj ≥

1
2 ·
∑
j,i∈{0,...,m} qi · qj . Thus, Claim 3.2 holds with respect to any c = 2c′ ≥ 8.

By Claims 3.2 and 3.2 and the fact that F (x, g, i) determines g and i, the sets
L′(x, g, i) = f−1(L(f(x), i)) × {(g, i)} satisfy the properties required to show that
the accessible max-entropy of F−1 is at most H(Z|F (Z)) − Ω(c(log n)/n). Taking c
to be a sufficiently large constant times d, completes the proof.



4 UOWHFs from Inaccessible Entropy

In this section we show how to construct a UOWHF from any efficiently computable
function with a noticeable gap between real Shannon entropy and either accessible
average max-entropy or accesssible Shannon entropy. Recall that the more efficient
construction from Section 3.2 satisfies the former, and the more direct construction
from Section 3.1 satisfies the latter. Combined with these constructions, we obtain two
new constructions of UOWHFs from any one-way function.

In both cases, we first transform the entropy gap into a noticeable gap between real
Shannon entropy and accessible max-entropy. We begin with the construction that starts
from a gap between real Shannon entropy and accessible average max-entropy because
the transformation involves fewer steps (and is also more efficient).

4.1 The More Efficient UOWHF

Starting with any one-way function f : {0, 1}n → {0, 1}n, the final UOWHF has
output length O(n7) and key length Õ(n7) (or O(n5) for both output and key lengths
for a non-uniform construction). Throughout, let s ∈ ω(log n) denote any super-
logarithmic function.

STEP 0 (basic construction): Let F0 denote the function from Section 3.2. That is, F0

is defined on domain {0, 1}n × G × [n] as F0(x, g, i) = (g(f(x))1,...,i, g), where
f : {0, 1}n 7→ {0, 1}n is a one-way function and G is a family of constructible,
3-wise independent hash functions over {0, 1}n.

– F0 : {0, 1}`IN
0 → {0, 1}`OUT

0 where `IN
0 = `IN

0 (n) = O(n) and `OUT
0 = `OUT

0 (n) =
O(n).

– Let kREAL denote the real Shannon entropy of F−10 . Theorem 5 yields that the
accessible average max-entropy of F−10 is bounded by kREAL − ∆ for ∆ =
(log n)/n.

STEP 1 (gap amplification): Let F1 be the t-fold direct product of F0. That is,
F1(x1, . . . , xt) = (F0(x1), . . . , F0(xt)) where t ∈ O(n2s/∆2). Specifically, we
require that

tkREAL − `IN
0 ·
√
st ≥ t · (kREAL −∆/2) + `IN

0 ·
√
st+ 3s.

This repetition increases both the real and accessible entropies of F1 by a factor
of t (comparing to F0). In addition, this repetition converts real Shannon entropy
to real min-entropy and accessible average max-entropy to accessible max-entropy
(up to additive terms that are sub-linear in t). More precisely:

– F1 : {0, 1}`IN
1 → {0, 1}`OUT

1 where `IN
1 (n) = t · `IN

0 = O(tn) and `OUT
1 (n) =

t · `OUT
0 = O(tn).

– F−11 has real min-entropy at least tkREAL − `OUT
0 ·

√
st, which by our choice of

t is at least t · (kREAL −∆/2) + `IN
0 ·
√
st+ 3s.

– F−11 has accessible max-entropy at most t · (kREAL −∆) + `IN
0 ·
√
st.

From the next step on, the construction is given an additional parameter k (a “good”
estimate of kREAL) such that k ∈ [kREAL, kREAL +∆/2]. This means that:



– F−11 has real min-entropy at least t · (k −∆) + `OUT
0 ·

√
st+ 3s.

– F−11 has accessible max-entropy at most t · (k −∆) + `OUT
0 ·

√
st.

That is, there is a gap of 3s between real min-entropy and accessible max-entropy,
and moreover, we “know” where the gap is (given k).

STEP 2 (entropy reduction): Apply entropy reduction to F1 to obtain F2. That is,
F2(x, g) = (F1(x), g, g(x)), where g : {0, 1}`IN

1 → {0, 1}` is selected from a
family of 2-universal hash functions, where ` = `(n, k) = t·(k−∆)+`IN

0 ·
√
st+s =

O(tn). This additional hashing reduces the real min-entropy and accessible max-
entropy by ` (up to an additive term of s). More precisely,

– F2 : {0, 1}`IN
2 → {0, 1}`OUT

2 where `IN
2 (n, k) = O(tn) and `OUT

2 (n, k) = O(tn).

– F−12 has real min-entropy at least s.

– F−12 has accessible max-entropy at most 0. Hence, F2 is collision-resistant on
random inputs (by Lemma 1).

STEP 3 (reducing the output length): First reduce the output length of F2 by hashing
the output to `IN

2 − log n bits. That is, F3(x, g) = (g, g(F3(x))) where g :
{0, 1}`OUT

2 → {0, 1}`IN
2−logn is selected from a family of pairwise-independent hash

functions.
– F3 : {0, 1}`IN

3 → {0, 1}`OUT
3 where `IN

3 (n, k) = O(tn) and `OUT
3 (n, k) = `IN

3 −
log n.

– F3 remains collision-resistant on random inputs.
Next, transform F3 into a family {Fy} of target collision-resistant hash functions
via a random shift. That is, Fy(x) = F3(y + x).

– This yields a non-uniform construction {Fy} with input length and key length
`IN
3 (n, k) = O(tn) = O(n · n2s/∆2) = O(n5), where the non-uniformity

corresponds to choice of the parameter k ∈ [kREAL, kREAL +∆/2].

STEP 4 (removing non-uniformity): To remove the non-uniform advice k, we “try all
possibilities” from 0 to `IN

0 (n) in steps of size ∆/2, similar to the approach used in
[11] (see also [9, Section 3.6]) :

i. First, we construct m = `IN
0 (n) · 2/∆ families of functions {F iy} for i =

1, 2, . . . ,m, where {F iy} is the family of functions obtained by instantiating
Steps 1 through 3 with the parameter k set to the value i∆/2. This m families
of functions satisfy the following properties:

– Each of F 1
y , . . . , F

m
y is length-decreasing; in particular, F iy has input

length `IN
3 (n, i∆/2) and output length `IN

3 (n, i∆/2) − log n. Note that
`IN
3 (n, i∆/2) ≤ `IN

3 (n, `
IN
0 (n)) for all i because `(n, k) increases as a

function of k. We may then assume that all m functions F 1
y , . . . , F

m
y

have the same input length `IN
3 (n, `

IN
0 (n)) and the same output length

`IN
3 (n, `

IN
0 (n))− log n by padding “extra part” of the input to the output.

– At least one of {F 1
y }, . . . , {Fmy } is target collision-resistant; this is because

kREAL ∈ [0, `IN
0 (n)] so there exists some i for which i∆/2 lies between

kREAL and kREAL +∆/2.



ii. Next, for each i = 1, 2, . . . ,m, we construct a family of functions {F̃ iỹ} from
{F iy} with input length m · `IN

3 (n, `
IN
0 (n)), key length O(`IN

3 (n, `
IN
0 (n)) · log n)

and output length `IN
3 (n, `

IN
0 (n))− log n, by following the construction given in

[13]. Again, at least one of {F̃ 1
ỹ1
}, . . . , {F̃mỹm} is target collision-resistant.

iii. Finally, we define a family of functions {Fỹ1,...,ỹm} to be the concatenation of
F̃ 1
ỹ1
, . . . , F̃mỹm on the same input. That is, Fỹ1,...,ỹm(x) = F̃ 1

ỹ1
(x)◦· · ·◦F̃mỹm(x).

– Note that F has input length m · `IN
3 (n, `

IN
0 (n)) and output length m ·

(`IN
3 (n, `

IN
0 (n))− log n), so F is length-decreasing.

– Moreover, since at least one of {F̃ 1
ỹ1
}, . . . , {F̃mỹm} is target collision-

resistant, {Fỹ1,...,ỹm} must also be target collision-resistant. This is
because a collision for Fỹ1,...,ỹm is a collision for each of F̃ 1

ỹ1
, . . . , F̃mỹm .

This yields a uniform construction of a UOWHF with output length lengthO(n/∆ ·
n · n2s/∆2) = O(n7). and key length Õ(n/∆ · n · n2s/∆2 · log n) = Õ(n7).

4.2 UOWHF via a Direct Construction

Here, the final construction has output length Õ(n36) (or Õ(n26) for a non-uniform
construction).

STEP 0 (basic construction): Let F0 denote the function from Section 3.1. That is,
F0 is defined over {0, 1}n × [n] as F0(x, i) = (f(x)1,...,i), where f : {0, 1}n 7→
{0, 1}n is a one-way function.

– F0 : {0, 1}`IN
0 → {0, 1}`OUT

0 where `IN
0 = `IN

0 (n) ≤ 2n and `OUT
0 = `OUT

0 (n) ≤
2n.

– Let kREAL denote the real Shannon entropy of F−10 . Theorem 1 yields that the
accessible Shannon entropy of F−10 is at most kREAL−∆, where∆ ∈ Ω(1/n4 ·
log2 n)

STEP 1 (gap amplification): Let F1 be the t-fold direct product of F0 for a sufficiently
large t to be determined later. That is, F1(x1, . . . , xt) = (F0(x1), . . . , F0(xt)).
This repetition increases both the real and accessible entropies of F1 by a factor of
t. In addition, the repetition converts real Shannon entropy to real min-entropy and
real max-entropy (up to an additive o(t) term). More precisely:

– F1 : {0, 1}`IN
1 → {0, 1}`OUT

1 where `IN
1 (n) = t · `IN

0 = O(tn) and `OUT
1 (n) =

t · `OUT
0 = O(tn).

– F−11 has real min-entropy at least t · kREAL − 2n
√
st and real max-entropy at

most t · kREAL + 2n
√
st.

– F−11 has accessible Shannon entropy at most t · kREAL − t∆.
From the next step on, the construction is given an additional parameter k (a “good”
estimate of kREAL) such that k ∈ [kREAL, kREAL +∆2/256n]. This means that:

– F−11 has accessible Shannon entropy at most tk − t∆. This means F−11 has
(1−∆/4k)-accessible max-entropy at most tk − t∆/2.



STEP 2 (entropy reduction): Apply entropy reduction to F1 with ` = `(n, k) = tk −
t∆/2 + s to obtain F2. That is, F2(x, g) = (F1(x), g, g(x)), where g : {0, 1}`IN

1 →
{0, 1}` is selected from a family of 2-universal hash functions.
This reduces the accessible max-entropy to 0, which allows us to deduce that F2 is
weakly collision-resistant on random inputs.

– F2 : {0, 1}`IN
2 → {0, 1}`OUT

2 where `IN
2 (n, k) = O(tn + `(n, k)) = O(tn) and

`OUT
2 (n, k) = O(tn+ `(n, k)) = O(tn).

– F−12 has real min-entropy at least t(kREAL − k +∆/2)− 2n
√
st− 2s and real

max-entropy at most t(kREAL − k +∆/2) + 2n
√
st.

– F−12 has (1−∆/4k + 2−Ω(s))-accessible max-entropy at most 0. Thus, F2 is
q-collision-resistant on random inputsfor q = ∆/4k − 2−Ω(s).

STEP 3 (gap amplification): F3 is t′-fold direct product of F2, where t′ = s/q =
O(ks/∆) = Õ(n5). That is, F3(x1, . . . , xt′) = (F2(x1), . . . , F2(xt′)).
This allows us to amplify the weak collision-resistance property of F2 to obtain a
gap between real min-entropy and accessible max-entropy in F3.

– F−13 has real min-entropy at least t′ ·
(
t(kREAL − k + ∆/2) − 2n

√
st − 2s

)
,

which is at least:

t′ ·
(
t(∆/2−∆2/256n)− 2n

√
st− 2s

)
.

– F−13 has accessible max-entropy at most t′ ·
(
(1− q/8)(t(kREAL − k+∆/2)+

2n
√
st) + 1

)
, which is at most:

t′ ·
(
t(∆/2−∆q/16) + 2n

√
st) + 1

)
.

Now, k ≤ `IN
0 (n) ≤ 2n, so q = ∆/4k−2−Ω(s) ≥ ∆/8n−2−Ω(s). This means

F−13 has accessible max-entropy at most:

t′ ·
(
t(∆/2−∆2/128n+ 2−Ω(s)) + 2n

√
st) + 1

)
.

Note that the gap is at least t′ ·
(
t ·∆2/256n− 2−Ω(s)− (4n

√
st+2s+1)

)
, which

is at least 3s as long as:

t ·∆2/256n ≥ 2−Ω(s) + 4n
√
st+ 2s+ 1 + 3s/t′

Since 3s/t′ = 3q ≤ 3∆, we can set t = O(n/∆ + ns/∆2 + n4s/∆4) = Õ(n20)
so that F−13 has a gap of 3s between real min-entropy and accessible max-entropy,
and moreover, we know where this gap is (given k).

STEPS 4/5/6: We follow steps 2, 3, and 4 in the previous construction, with the
following modifications in the parameters:

– We apply entropy reduction first, with

` = t′ ·
(
t(∆/2−∆q/16) + 2n

√
st) + 1

)
+ s.

– To remove the non-uniform advice k, we “try all possibilities” from 0 to
`IN
0 (n) ≤ 2n in steps of size ∆2/256n.

We then obtain a non-uniform construction of UOWHFs with output length O(n ·
t · t′) = Õ(n26) and a uniform construction with output length O(n/(∆2/n) · n ·
t · t′ · log n) = Õ(n36).



Acknowledgements

We are thankful to Ran Raz and Chiu-Yuen Koo for useful conversations.

References

[1] R. Canetti, R. L. Rivest, M. Sudan, L. Trevisan, S. P. Vadhan, and H. Wee. Amplifying
collision resistance: A complexity-theoretic treatment. In CRYPTO, pages 264–283, 2007.

[2] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience, New
York, NY, USA, second edition, 2006.

[3] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–
226 (electronic), 2003. ISSN 0097-5397.

[4] I. Haitner, M. Nguyen, S. J. Ong, O. Reingold, and S. Vadhan. Statistically hiding
commitments and statistical zero-knowledge arguments from any one-way function. SIAM
Journal on Computing, 39(3):1153–1218, 2009.

[5] I. Haitner, O. Reingold, S. Vadhan, and H. Wee. Inaccessible entropy. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing (STOC). ACM Press, 2009.

[6] I. Haitner, O. Reingold, and S. Vadhan. Efficiency improvements in constructions of
pseudorandom generators. In Proceedings of the 42th Annual ACM Symposium on Theory
of Computing (STOC). ACM Press, 2010.

[7] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999. Preliminary
versions in STOC’89 and STOC’90.

[8] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In Proceedings of the 30th Annual Symposium on Foundations of Computer
Science (FOCS), pages 230–235, 1989.

[9] J. Katz and C. Koo. On constructing universal one-way hash functions from arbitrary one-
way functions. Technical Report 2005/328, Cryptology ePrint Archive, 2005.

[10] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing
(STOC), pages 33–43. ACM Press, 1989.

[11] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC), pages
387–394, 1990.

[12] J. Rompel. Techniques for computing with low-independence
randomness. PhD thesis, Massachusetts Institute of Technology, 1990.
http://dspace.mit.edu/handle/1721.1/7582.

[13] V. Shoup. A composition theorem for universal one-way hash functions. In EUROCRYPT,
pages 445–452, 2000.


