
A Simple BGN-type Cryptosystem from LWE

Craig Gentry1, Shai Halevi1, and Vinod Vaikuntanathan1

IBM Research

Abstract. We construct a simple public-key encryption scheme that
supports polynomially many additions and one multiplication, similar to
the cryptosystem of Boneh, Goh, and Nissim (BGN). Security is based
on the hardness of the learning with errors (LWE) problem, which is
known to be as hard as certain worst-case lattice problems.
Some features of our cryptosystem include support for large message
space, an easy way of achieving formula-privacy, a better message-to-
ciphertext expansion ratio than BGN, and an easy way of multiplying two
encrypted polynomials. Also, the scheme can be made identity-based and
leakage-resilient (at the cost of a higher message-to-ciphertext expansion
ratio).

1 Introduction

In this work we describe an encryption scheme which is additively homomorphic,
and in addition also supports one multiplication. Our scheme is based on the
trapdoor function proposed by Gentry, Peikert and Vaikuntanathan [10] (hence-
forth referred to as the GPV trapdoor function). Recall that the “public key”
in the GPV trapdoor function is a matrix A ∈ Zm×nq (for parameters p and
m > n), and the corresponding trapdoor is a full rank integer matrix with small
entries T ∈ Zm×m such that TA = 0 (mod q). The public and secret keys in
our cryptosystem are exactly the same as in the GPV trapdoor function. We
encrypt a square binary matrix B ∈ Zm×m2 by setting

C = AS + 2X + B mod q

where S is a random “coefficient matrix” S ∈ Zn×mq and X is a “noise matrix”
with small entries X ∈ Zm×m.

Ciphertext matrices can be added, and a single matrix multiplication C′ =
C1 ·Ct

2 mod q is also supported. (Ct is the transpose of C.) To decrypt, we set

B = T−1 · (TCTt mod q) · (Tt)−1 mod 2

The security of our scheme is equivalent to the hardness of learning with er-
rors (LWE). This problem, which is related to the well-known “learning parity
with noise”, has become standard in the study of lattice-based cryptography.
The problem was first proposed by Regev [14], and shown by Regev [14] and
Peikert [13] to be as hard as worst-case instances of various problems in integer
lattices.

1.1 An Abridged History of Homomorphic Encryption

Encryption schemes that support operations on encrypted data (aka homomor-
phic encryption) are very useful for secure computation. Many public-key cryp-
tosystems supports either addition or multiplication of encrypted data, but ob-
taining both at the same time seems harder.

It is known that computing arbitrary functions on encrypted data can be
implemented, e.g., using Yao’s “garbled circuit” technique [16, 12], but the size
of the ciphertext and complexity of decryption grow at least linearly with the
number of gates in the circuit being computed. Also, Sander, Young and Yung
[15] described a technique that permits evaluation of arbitrary circuits, but the
ciphertext size grows exponentially with the circuit depth. Both of these meth-
ods can be implemented using only “general hardness assumptions” (e.g., the
existence of two-flow Oblivious-Transfer protocols etc.)

Boneh, Goh, and Nissim described a cryptosystem that permitted arbitrary
number of additions and one multiplication, without growing the ciphertext size
[5]. Below we refer to this scheme as the BGN cryptosystem. Security of the
BGN cryptosystem is based on the subgroup-membership problem in composite-
order groups that admit bilinear maps. This cryptosystem immediately implies
an efficient protocol for evaluating 2DNF formula (or more generally bilinear
forms). Boneh et al. also described applications of the BGN cryptosystem to
improving the efficiency of private information retrieval schemes (PIR) and for
a voting protocol.

More recently, Aguilar Melchor, Gaborit, and Herranz described in [2] a “tem-
plate” for converting additively homomorphic encryption into a cryptosystem
that permits both additions and multiplications. They show how to use this
template to combine the BGN cryptosystem with the cryptosystem of Kawachi
et al. [11], thus obtaining a cryptosystem that supports two multiplications and
arbitrary additions, based on the hardness of both the subgroup membership
problem and the unique-shortest vector problem in lattices. They also show how
to use this template with the cryptosystem of Aguilar Melchor et al. [1] in or-
der to obtain unlimited multiplication depth, where the ciphertext size grows
exponentially with the multiplication depth but additions are supported with-
out increasing the size. (Security of this last realization is based on a relatively
unstudied hardness assumption, called the “Differential Knapsack Vector Prob-
lem.”)

Very recently, Gentry described a fully homomorphic cryptosystem [9], sup-
porting polynomially many additions and multiplications without increasing the
ciphertext size, with security based on the hardness of finding short vectors in
ideal lattices [8].

1.2 Our Contributions

Even given the great advances in homomorphic encryption over the last year, our
scheme still offers some advantages over prior schemes in the literature. Below we
list some of these advantages, mostly in comparison to the BGN cryptosystem.

Perhaps the main difference between our scheme and previous work is the
underlying hardness assumption. In particular, ours is the first reported cryp-
tosystem based on LWE that has more than just additive homomorphism. Also,
our scheme is very efficient: it can encrypt a matrix of m2 elements in time
Õ(m3), and decryption takes comparable time.

One important difference between our scheme and the BGN cryptosystem
is that the BGN cryptosystem can only encrypt messages from a small space
(since on decryption one only recovers a group element gm, and then need to
search for the message m). In our scheme, we can replace the binary matrices
by matrices over Zp for any p, as long as the ciphertext is defined over Zq
where q is sufficiently larger than p. A related advantage is that by choosing a
large modulus p, our scheme can be made to have ciphertext expansion of O(1)
(whereas the BGN cryptosystem expands O(log n) bits of plaintext to O(n)
ciphertext bits.)1

We also note that the modulus p that defines the message space in our scheme
can be chosen dynamically by the encryptor: the same public/secret key pair can
be used to encrypt/decrypt messages modulo many different fields (or rings). Our
scheme also support ciphertext blinding (a given ciphertext is converted into a
random ciphertext that encrypts the same thing), and also the stronger property
of modular blinding: Given a ciphertext that encrypts a matrix B ∈ Zm×np , and
given some divisor p′ of p, we can produce a random ciphertext that encrypts
B mod p′. For example, if the original plaintext matrix had numbers in Z2n , we
can blind the ciphertext so as to erase all but the least-significant bits of the
entries in B.

One consequence of the (standard) blinding property and the flexibility of
choosing the message space is that our system provide a very simple procedure
for formula-private secure computation. Namely, it is very easy to compute a
2DNF formulas (or a general bilinear form) on ciphertexts, while at the same
time hiding from the holder of the secret key everything about the formula itself
(other than the result of applying it on the given inputs).

Finally, our scheme inherits much of the flexibility that comes with LWE-
based cryptosystems. In particular, it can be made identity-based (in the random-
oracle model) using the construction of Gentry et al. [10], and it can be made
leakage resilient using a recent result of Dodis et al. [6]. Both of these applica-
tions follow from the observation that the “dual Regev cryptosystem” from [10]
can be described as a special case of our cryptosystem.

Relation to the AMGH transformation. It turns out that our cryptosystem fits
“right out of the box” in the template of Aguilar Melchor et al. [2]. Their trans-
formation apply to any additively homomorphic cryptosystem for which you
can embed the ciphertexts back into the plaintext space while maintaining the

1 To achieve such bandwidth efficient encryption, an application would have to encode
its input as a matrix. Although this can always be done, it is not clear that such
encoding will maintain the semantics of multiplication that the application needs.
See some examples of this point in Section 5.

semantics of addition, which is easy in our case. See the appendix for a brief
description of their transformation and how it applies to our cryptosystem.

Combining our cryptosystem with the AMGH transformation yields a ho-
momorphic encryption scheme for circuits of logarithmic multiplication depth
(with arbitrary additions), whose security is based on the hardness of LWE.2

We point out that even in this context, using our native multiplication opera-
tion will be advantageous, since it does not increase the ciphertext size (or the
decryption time). Thus we can get either one more multiplication level for a
given complexity bound, or a more efficient scheme for the same circuit depth.

Applications. Clearly, our scheme can be used as a drop-in replacement in the
applications to voting and PIR that were discussed in the paper of Boneh et
al. [5]. In addition, since out scheme encrypts matrices natively, it is a good
match for applications that can benefit from batching, or when efficient linear
algebra is important. Some examples of batching include applications that need
to multiply polynomials (whose coefficients are to be encoded in the entries of
the plaintext matrix) or large integers (whose bit representation is to be encoded
in the entries of the plaintext matrix). In Section 5.3 we describe how these can
be encoded in a matrix so that a single multiplication of m×m matrices can be
used to multiply two degree-(m−1) polynomials (or two m-bit integers), so that
the result does not leak anything about the inputs other than their product.

2 Preliminaries

Notations. We denote scalars by lower-case letters (a, b, . . .), vectors by lower-
case bold letters (a,b, . . .), and matrices by upper-case bold letters (A,B, . . .).
We denote the Euclidean norm of a vector v by ‖v‖, and the largest entry in
a vector or a matrix is denoted ‖v‖∞ or ‖M‖∞, respectively. We consider the
operation (a mod q) as mapping the integer a into the interval (−q/2,+q/2].

2.1 Learning with errors (LWE)

The LWE problem was introduced by Regev [14] as a generalization of “learning
parity with noise”. For positive integers n and q ≥ 2, a vector s ∈ Znq , and
a probability distribution χ on Zq, let As,χ be the distribution obtained by
choosing a vector a ∈ Znq uniformly at random and a noise term x ← χ, and
outputting (a, 〈a, s〉+ x) ∈ Znq × Zq.

Definition 1 (LWE). For an integer q = q(n) and an error distribution χ =
χ(n) over Zq, the learning with errors problem LWEn,m,q,χ is defined as follows:

2 We comment that the AMGH transformation appears to be inherently “non private”,
in that the holder of the secret key can deduce the multiplication structure of the
circuit that was used to generate a given ciphertext. This can be addressed using
generic techniques such as Yao’s garbled circuits.

Given m independent samples from As,χ (for some s ∈ Znq), output s with no-
ticeable probability.

The decision variant of the LWE problem, denoted distLWEn,m,q,χ, is to dis-
tinguish (with non-negligible advantage) m samples chosen according to As,χ (for
uniformly random s ∈R Znq), from m samples chosen according to the uniform
distribution over Znq × Zq.

For cryptographic applications we are primarily interested in the decision
problem distLWE. Regev [14] showed that for a prime modulus q, distLWE can
be reduced to worst-case LWE, with a loss of up to a q · poly(n) factor in the
parameter m.

At times, we find it convenient to describe the LWE problem LWEn,m,q,χ using
a compact matrix notation: given (A,As + x) where A ← Zm×nq is uniformly
random, s ← Znq is the LWE secret, and x ← χm, find s. We also use similar
matrix notation for the decision version distLWE.

Gaussian error distributions Ψβ. We are primarily interested in the LWE and
distLWE problems where the error distribution χ over Zq is derived from a Gaus-
sian. For any β > 0, the density function of a Gaussian distribution over the
reals is give by Dβ(x) = 1/β ·exp(−π(x/β)2). For an integer q ≥ 2, define Ψβ(q)
to be the distribution on Zq obtained by drawing y ← Dβ and outputting bq · ye
(mod q). We write LWEn,m,q,β as an abbreviation for LWEn,m,q,Ψβ(q).

Here we state some basic facts about Gaussians (tailored to the error dis-
tribution Ψβ); see, e.g. [7]. (In what follows overwhelming probability means
probability 1− δ for δ which is negligible in n.)

Fact 1 Let β > 0 and q ∈ Z, and let the vector x be chosen as x← Ψβ(q)n. Also
let y ∈ Zn be an arbitrary vector and let g = ω(

√
log n). Then with overwhelming

probability |〈x,y〉| ≤ βq · g · ‖y‖.

Fact 2 Let y ∈ R be arbitrary. The statistical distance between the distributions
Ψβ and Ψβ + y is at most |y|/(βq).

Evidence for the hardness of LWEn,m,q,β follows from results of Regev [14],
who gave a quantum reduction from approximating certain problems on n-
dimensional lattices in the worst case to within Õ(n/β) factors to solving LWEn,m,q,β
for any desired m = poly(n), when β · q ≥ 2

√
n. Recently, Peikert [13] also gave

a related classical reduction for some other problems with similar parameters.

2.2 Trapdoor sampling

The basis of our encryption scheme is a trapdoor sampling algorithm first con-
structed by Ajtai [3], and later improved by Alwen and Peikert [4]. The trapdoor
sampling procedure generates an (almost) uniformly random matrix A ∈ Zm×nq ,
together with a matrix T ∈ Zm×m such that (a) T ·A = 0 (mod q), (b) T is
invertible, and (c) the entries of T are small (say, of size O(n log q)).

The trapdoor T can be used to solve the LWE problem relative to A, i.e.,
given y = As + x where x is any “sufficiently short” vector, it can be used to
recover s. This is done as follows: compute

Ty = T(As + x) = TAs + Tx = Tx (mod q)

where the last equality follows since the rows of T belong to lattice Λ⊥(A). Now,
since both T and x contain small entries, each entry of the vector Tx is smaller
than q, and thus Tx mod q is Tx itself! Finally, multiplying by T−1 (which is
well-defined since T is a basis and therefore has full rank) gives us x. The LWE
secret s can then be recovered by Gaussian elimination. We state the result of
Alwen and Peikert [4] below.

Lemma 1 ([3, 4]). There is a probabilistic polynomial-time algorithm TrapSamp
that, on input 1n, a positive integer q ≥ 2, and a poly(n)-bounded positive integer
m ≥ 8n log q, outputs matrices A ∈ Zm×nq and T ∈ Zm×m such that:

– A is statistically close to uniform over Zm×nq ,

– the rows of T form a basis of the lattice Λ⊥(A) def= {w ∈ Zm : w ·A = 0
(mod q)},

– the Euclidean norm of all the rows is T (and therefore also ‖T‖∞) is bounded
by O(n log q). (Alwen and Peikert assert that the constant hidden in the O(·)
is no more than 20.)

We note that since the rows of T span the lattice Λ⊥(A), it follows that det(T) =
qn, hence for odd q we know that T is invertible mod 2.

3 The Encryption Scheme

For ease of presentation, we focus below on the case of encrypting binary matri-
ces. The extension for encrypting matrices mod p for p > 2 is straightforward,
and is discussed in Section 5.1.

Below we let n denote the security parameter. Other parameters of the system
are two numbers m, q = poly(n) (with q an odd prime), and a Gaussian error
parameter β = 1/poly(n). (See Section 3.2 for concrete instantiations of these
parameters.) For these parameters, the message space is the set of binary m-by-
m matrices, i.e., B ∈ Zm×m2 . Public keys are matrices A ∈ Zm×nq , secret key are
matrices T ∈ Zm×mq , and ciphertexts are matrices C ∈ Zm×mq .

KeyGen(1n): Run the trapdoor sampling algorithm TrapSamp of Lemma 1 to
obtain a matrix A ∈ Zm×nq together with the trapdoor matrix T ∈ Zm×m,
(A,T)← TrapSamp(1n, q,m). The public key is A and the secret key is T.

Enc(A,B ∈ {0, 1}m×m): Choose a uniformly random matrix S $← Zn×mq and

an “error matrix” X $← Ψβ(q)m×m. Output the ciphertext

C← AS + 2X + B (mod q)

(Here, 2X means multiplying each entry of the matrix X by 2.)

Dec(T,C): Set E← TCTt mod q, and then output B← T−1E(Tt)−1 mod 2.

To see that decryption works, recall that T ·A = 0 (mod q) and therefore
TCTt = T(2X+B)Tt (mod q). If in addition all the entries of T(2X+B)Tt are
smaller than q then we also have the equality over the integers E = (TCTt mod
q) = T(2X + B)Tt, and hence T−1E(Tt)−1 = B (mod 2). This means that we
have correct decryption as long as we set the parameter β small enough so that
with high probability all the entries of T(2X + B)Tt are smaller than q/2.

Remark 1. Note that the right-multiplication by Tt and (Tt)−1 on decryption
are redundant here, we can instead just compute B← T−1(TC mod q) mod 2.
The right-multiplication is needed to decrypt product ciphertexts, as described
below. As opposed to the BGN cryptosystem, in our scheme the “normal cipher-
texts” and “product ciphertexts” live in the same space, and we can use the
same decryption procedure to decrypt both.

Also, we can optimize away the need to multiply by T−1 and (Tt)−1 by using
the modified trapdoor T′ = (T−1 mod 2) ·T (product over the integers). Clearly
we have T′A = 0 (mod q), and the entries of T′ are not much larger than those
of T (since (T−1 mod 2) is a 0-1 matrix).

3.1 Homomorphic operations

Addition. Given two ciphertexts C1,C2 that decrypt to B1,B2, respectively,
it is easy to see that the matrix C = C1 + C2 mod q would be decrypted to
B1 + B2 mod 2, as long as there is no “overflow” in any entry. Specifically, if we
have C1 = AS1 + 2X1 + B1 and C1 = AS2 + 2X2 + B2 then

C = C1 + C2 = A(S1 + S2) + 2(X1 + X2) + (B1 + B2)

which would be decrypted as B1 + B2 as long as all the entries in T(2(X1 +
X2)+B1+B2)Tt are smaller than q/2. See Section 3.2 for the exact parameters.

Multiplication. Given two ciphertexts C1,C2 that encrypt B1,B2, respectively,
we compute the product ciphertext as C = C1 · Ct

2 mod q. If we have C1 =
AS1 + 2X1 + B1 and C2 = AS2 + 2X2 + B2 then

C = C1 ·Ct
2 = (AS1 + 2X1 + B1)(AS2 + 2X2 + B2)t

= A · (S1Ct
2)︸ ︷︷ ︸

S

+2 (X1(2X2 + B2) + B1Xt
2)︸ ︷︷ ︸

X

+ B1Bt
2︸ ︷︷ ︸

B

+ (2X1 + B1)St2︸ ︷︷ ︸
S′

·At (mod q).

Hence the product ciphertext has the form AS + 2X + B + S′At.
As before, we see that TCTt = T(2X + B)Tt (mod q), and if all the entries

of T(2X + B)Tt are smaller than q/2 then we have E = (TCTt mod q) =
T(2X+B)Tt over the integers, and therefore T−1E(Tt)−1 = B (mod 2). Below
we establish the parameters that we need for this to work.

Remark 2. We remark that the AS + 2X + B format for ciphertexts, which is
borrowed from [9], seem particularly conducive for homomorphic encryption.
When applied in a commutative ring as in [9], it supports a large number of
additions and multiplications on ciphertexts. In our case we use it in the ring of
matrices, which is not commutative, but multiplying by the transpose offers a
partial workaround, supporting one level of multiplication.

3.2 Setting the parameters

Theorem 1. Fix the security parameter n and any c = c(n) > 0. Let q,m, β be
set as

q > 220(c+ 4)3n3c+4 log5 n, q is a prime
m = b8n log qc

β =
1

27n1+(3c/2) log n log q
√
qm

Then the encryption scheme from above with parameters n,m, q, β supports nc

additions and one multiplication (in any order) over the matrix ring Zm×m2 .

Remark 3. Note that in Theorem 1 we can allow nc additions for a non-constant c.
The reason that this may be needed is for taking linear combinations of ci-
phertexts with large coefficients. Specifically, if we have ciphertext matrices
C1,C2, . . ., we can homomorphically compute

∑
αiCi as long as |

∑
αi| < nc.

Proof. First, let C be a matrix that was obtained by adding ` ≤ nc ciphertexts,
C =

∑`
i=1(ASi + 2Xi + Bi). Denote X =

∑`
i=1 Xi, and B =

∑`
i=1 Bi, and we

analyze the size of the entries in the matrix T(2X + B). Recall from Lemma 1
that every row of T has Euclidean norm at most 20n log q. Applying Fact 1
(with g = log n−1), with overwhelming probability every entry of TXi is at most
20βq(log n−1)n log q, hence every entry of TX is at most 20`βq(log n−1)n log q.
At the same time, all the Bi’s are binary so each entry of TB is at most 20`n log q.
Hence the absolute value of each entry in T(2X + B) is bounded by

20`n log q · (2βq(log n− 1) + 1) < 20`n log q · 2βq log n

=
40` · n log n · q log q

27n1+(3c/2) log n · log q
√
qm

=
40`
√
q

27n3c/2
√
m

(?)
�

√
q/m

where inequality (?) uses the fact that ` ≤ nc. This in particular means that each
entry in T(2X+B)Tt is bounded by m·20n log q ·

√
q/m = 20n log q

√
qm� q/2.

Since TA = 0 (mod q) then TCTt = T(2X + B)Tt (mod q), and as all the
entries in T(2X+B) are less than q/2 in absolute value, we have the equality over
the integers (TCTt mod q) = T(2X+B)Tt, hence T−1(TCTt mod q)(Tt)−1 =
B (mod 2).

Next, consider a circuit with one `1-fan-in addition layer, followed by a mul-
tiplication layer of fan-in two, and another `2-fan-in layer of addition, where

`1 + `2 ≤ nc. We have shown above that when multiplying two matrices of the
form ASi+2Xi+Bi (i = 1, 2), the result is of the form AS+2X+B+S′At. Hence
all the matrices at the output of the multiplication layer are of this form, and
therefore so is the output ciphertext that results from adding them all together.
We now proceed to show that for that final ciphertext C = AS+2X+B+S′At,
it holds that every entry in T(2X + B)Tt is less that q/2 in absolute value.

Consider one particular ciphertext at the output of the multiplication layer,
this ciphertext is of the form Ci = AS + (2X1 + B1)(2Xt

2 + Bt
2) + S′At, and

the matrices (2Xi + Bi) were obtained from adding upto `1 encryptions. By the
analysis from above, each entry in T(2X1 + B1) is bounded by 40`1

√
q

27n3c/2
√
m

, and
the same bound apply also to each entry in (2Xt

2 + Bt
2)Tt. Hence each entry in

the product T(2X1 + B1)(2Xt
2 + Bt

2)Tt is bounded by

m ·
(

40`1
√
q

27n3c/2
√
m

)2

=
(

40
27

)2

· `
2
1

n3c
· q

Adding `2 ≤ nc − `1 such matrices, the entry in the result is bounded by(
40
27

)2

· `
2
1(nc − `1)
n3c

· q
(?)

≤
(

40
27

)2

· 2
9
· q < q/2

where the inequality (?) follows since the function f(x) = x2(a− x) obtains its
maximum at x = 2a/3, where f(x) = 2a3/9.

Once again, since each entry in T(2X+B)Tt is less than q/2 in absolute value,
and since TCTt = T(2X+B)Tt (mod q), we have the equality over the integers
(TCTt mod q) = T(2X+B)Tt, which means that T−1(TCTt mod q)(Tt)−1 =
B (mod 2).

4 Security

The CPA security of the encryption scheme follows directly from the hardness
of the decision LWE problem, as we now prove.

Theorem 2. Any distinguishing algorithm with advantage ε against the CPA
security of the scheme with parameters n,m, q, β, can be converted to a distin-
guisher against distLWEn,m,q,β with roughly the same running time and advan-
tage at least ε/2m.

Proof. Let A be a CPA-adversary that distinguishes between encryptions of
messages of its choice with advantage ε. We first construct a distinguisher D
with advantage at least ε/2 between the two distributions{

(A,AS + X) : A← Zm×nq ,S← Zn×mq ,X← Ψβ(q)m×m
}

and
{
Unif(Zm×nq × Zm×mq)

}
The distinguisher D takes as input a pair of matrices (A ∈ Zm×nq ,C ∈

Zm×mq), and runs the adversary A with A as the public key. Upon receiving

message B0,B1 from the adversary, D chooses at random i ∈R {0, 1}, returns
the challenge ciphertext 2C+Bi mod q, then outputs 1 if the adversaryA guesses
the right i, and 0 otherwise.

On the one hand, if C is a uniformly random matrix then the challenge
ciphertext is also uniformly random, regardless of the choice of i. Hence in this
case D outputs 1 with probability at most 1/2. On the other hand, if C =
AS+X mod q, then the challenge ciphertext is 2C+B = AS′+ 2X+B mod q,
where S′ = 2S mod q is uniformly distributed (since q and 2 are relatively prime).
This is identical to the output distribution of Enc(PK,Bi), hence by assumption
A will guess the right i with probability (1 + ε)/2, which means that D outputs
1 with the same probability. Hence D has advantage at least ε/2.

Finally, a standard hybrid argument can be used to convert the distinguisher
D from above to a distLWEn,m,q,β distinguisher with advantage ε/2m.

Worst-case Connection. Regev [14] showed that if there is a PPT algorithm that
solves distLWEn,m,q,β , then there is an O(q · m)-time quantum algorithm that
approximates various lattice problems on n-dimensional lattices in the worst
case to within Õ(n/β) factors, when β ·q ≥ 2

√
n. Recently, Peikert [13] also gave

a related classical reduction with similar parameters.
Observe that for n ≥ max{140, 10

√
c+ 4}, the conditions on q,m, β imply

that βq > 2
√
n. Plugging in our parameters m, q and β for the scheme that

supports nc additions, we get that breaking semantic security of the scheme
is at least as hard as solving worst-case lattice problems to within a factor of
Õ(n3c+7/2).

5 Extensions and Applications

5.1 Encrypting matrices over larger rings

As we said in the introduction, we can use the same scheme to encrypt matrices
over larger rings and still enjoy the same homomorphic properties, just by work-
ing with a larger modulus q. Specifically, we can encrypt matrices over Zp for
any p by setting q = ω(p2n3c+1 log5 n) while keeping all the other parameters
intact. We then encrypt a matrix B ∈ Zm×mp as C = AS+pX+B, and decrypt
it as T−1 · (TCTt mod q) · (Tt)−1 mod p. (We recall again that the determinant
of T is qn, so T is invertible mod p.) Using the above with p ≥ n3c+1 log5 n, we
have q ≤ p3 which means that our ciphertext expansion ratio is only three. (The
plaintext has m2 log p bits while the ciphertext has m2 log q bits.)

We comment that once we fix these larger parameters, the choice of the
underlying ring can be made adaptively by the encryptor. Namely, with the
same public key A and secret key T, the encryptor can choose the underlying
ring as Zr for any r ≤ p (thereby computing the ciphertext as C = AS+rX+B),
and the decryptor can decrypt accordingly.

5.2 Formula Privacy

As described so far, the scheme does not ensure “formula privacy” against the
holder of the secret key. For example, given a ciphertext matrix C, the decryp-
tor may be able to distinguish the case where this ciphertext was obtained by
multiplying an encryption of the identity with an encryption of the zero matrix
from the case where it was obtained by multiplying two encryptions of the zero
matrix.

This deficiency can be remedied by standard techniques. We first need to
increase the size of the modulus somewhat: switching from q as specified in
Theorem 1 to q′ ≥ q · 2ω(logn). Then given a ciphertext matrix C∗, encrypting
some plaintext matrix mod p, we blind it by setting

C ← C∗ + AS1 + pX + St2A
t,

where S,S′ are uniform in Zn×mq′ and each entry of X∗ is chosen from Ψβ′(q) with
β′ super-polynomially larger than the parameter β that is used in the scheme.

Using Fact 2 we can then show that the noise in the added X∗ “drowns” all
traces of the origin of this ciphertext. Namely, the resulting ciphertext is of the
form C = AS′1 + pX′ + B + (S′2)tAt, where S′1,S

′
2 are uniformly random, B is

the corresponding plaintext, and the distribution of X′ is nearly independent of
the provenance of this ciphertext matrix.

We note that the same blinding technique can be used even if the encrypted
plaintext matrix was chosen in a larger ring Zp′ , as long as the parameter p that
is used in the blinding procedure divides the original p′.

5.3 Encrypting polynomials and large integers

To encrypt polynomials or large numbers, we need to encode them as matrices,
in a way that would let us exploit the matrix operations that are supported
natively by our scheme to do operations over the these polynomials or numbers.

We begin with polynomials: it is well known how to embed the coefficients
of two polynomials in two matrices, so that multiplying these matrices we get
all the coefficients of the resulting product polynomial. For example, for two
polynomials â(x) =

∑
aix

i and b̂(x) =
∑
bix

i, we can use

A =

a3 a2 a1

a3 a2

a3

B =

 b1 b2 b3
b1 b2
b1

 ⇒ ABt =

a1b3 + a2b2 + a3b1 a1b2 + a2b1 a1b1
a2b3 + a3b2 ? ?

a3b3 ? ?


Note that the product matrix above is not private, in that it reveals more than
just the coefficients of the product polynomial. This can be fixed easily by adding
an encryption of a matrix with zero first column and first row and random entries
everywhere else. Also, this simple embedding is “wasteful” in that it results in
ciphertext expansion ratio of O(m) (we encrypt degree-(m−1) polynomials using
m×m matrices). We do not know if more economical embeddings are possible.

Moving to integer multiplication, an obvious way of multiplying two m-bit
integers is to just set the plaintext space to Zp for some p ≥ 22m, but working
with such large plaintext space may be inconvenient. We thus seek a method for
implementing large integer multiplication with a small input space. One possi-
bility is to use the same technique as we did for polynomials, viewing the integer
with binary representation a =

∑
ai2i as a binary polynomial â(x) evaluated at

x = 2. Given two integers a, b, we encrypt the binary coefficients of the corre-
sponding polynomials â, b̂ over plaintext space Zp for some p ≥ m. Reading out
the coefficients of the product polynomial, we then compute a · b = (â · b̂)(2) over
the integers.

This solution is not private however, it leaks more information about a, b
than just their integer product. One approach for making it private is to add
random elements ri ∈ Zp to the first row and column of the product matrix such
that

∑
i 2iri = 0 (mod p). This will make it possible for the secret key holder to

recover a · b (mod p). Repeating it several times with different p’s, we can then
use Chinese remaindering to recover a · b completely.

5.4 Two-out-of-two decryption

We point out a peculiar property of our cryptosystem, which so far we were
not able to find applications for. Namely, if we have encryptions of two matrices
under two different public keys, we can multiply these two ciphertexts, thus
obtaining an “ciphertext” corresponding to the product of the two plaintext
matrices”. This “ciphertext” can then be decrypted by pulling together the two
secret keys.

In more details, suppose that we have two public keys A1,A2 and the cor-
responding two secret keys T1,T2, with both pairs defined modulo the same
prime number q. (We also assume for simplicity that both pairs use the same
parameters n and m, but this assumption is not really needed). Then, given two
ciphertexts

C1 = A1S1 + 2X1 + B1 and C2 = A2S2 + 2X2 + B2,

we can compute the “product ciphertext” C = C1Ct
2 (mod q), corresponding to

the plaintext B1Bt
2 (mod 2). This plaintext can be recovered if we know both

T1 and T2, by setting

B ← T−1
1 · (T1CTt

2 mod q) · (Tt
2)−1 mod 2

5.5 Identity-based and leakage-resilient BGN-type encryption

Next we show how to extend the one-multiplication homomorphism beyond
just standard public-key encryption, to get more “advanced features” such as
identity-based encryption and leakage-resilience. This follows from the simple
observations that the “dual Regev cryptosystem” from [10] (with a different in-
put encoding) can be viewed as a special case of our encryption scheme (for a

particular form of matrices), and hence it supports the same homomorphic op-
erations. IBE (in the random-oracle model) follows directly since Gentry et al.
showed in [10] how to derive dual Regev keys from a master key, and leakage-
resilience follows since Dodis et al. proved in [6] that the dual Regev cryptosystem
is leakage resilient.

Recall the “dual Regev cryptosystem” from [10]: The public key is a matrix
A ∈ Zm×nq , and the secret key is one short vector in the dual, namely a short
u ∈ Zmq such that uA = 0 (mod q). Moreover, the last entry in u is always −1.

In the cryptosystem as described in [10], a bit b is encrypted by choosing
a uniform vector s ∈ Znq and a small error vector x ∈ Zmq , and then encoding
the bit b in the “most significant bit” of one entry of the ciphertext vector,
namely c ← As + x + 〈0 . . . 0 1〉t · dq/2e mod q. But to get homomorphism,
we want to encode the input in the least significant bit, setting instead c ←
As + 2x + 〈0 . . . 0 b〉t mod q. With this input encoding, one can view the dual
Regev cryptosystem as a special case of our cryptosystem, where the public key
is the same matrix A, but the secret key is not a full rank matrix but instead a
rank-1 matrix. The matrices T,S,X,B are defined as

T =
(
−u−

0

)
, S = (0 s) , X = (0 x) , B =

(
0
b

)
.

(That is, all but the top row of T are zero, all but the rightmost columns of S,X
are zero, and all but the bottom-right element of B are zero.)

Although this choice does not follow our input distribution for these matrices,
it is nonetheless easy to show that semantic security follows from LWE. Since
the key is just the dual Regev key, then the same proof as in [6] shows that it
remains secure even in the face of partial leakage of the secret key. Also, it was
shown in [10] how this secret key can be computed from a master secret key in
an identity-based setting (in the random-oracle model).

With these choices, most of the “ciphertext matrix” is zero, so all we need to
output as the ciphertext is indeed the one vector c← As+2x+〈0 . . . 0 b〉t mod q,
which implicitly encodes the matrix C = (0 c) . The homomorphic operations
are then applied to the implicit matrices, namely addition is just element-wise
addition modulo q and multiplication of two vectors is an outer-product opera-
tion.

To decrypt a ciphertext matrix, we multiply if from left and right by the
secret key vector c, reducing the result first modulo q and then modulo 2. Due
to the special form of the plaintext matrix B, this is the same as multiplying by
T on the left and and Tt on the right, and then taking only the bottom right
element of the result.

Although the matrix T no longer has an inverse, we can still recover the
hidden bit b. This is done simply by setting b ← uCut mod q mod 2, without
needing to multiply by the inverse, since we have

(uCut mod q) = u

(
0
b

)
ut = b · u2

m (mod 2)

Recalling that um = −1 in the dual Regev cryptosystem, this procedure indeed
gives the right answer.

Acknowledgments. We thank the anonymous Eurocrypt 2010 reviewers for their
valuable comments.

References

1. C. Aguilar Melchor, G. Castagnos, and P. Gaborit. Lattice-based homomorphic
encryption of vector spaces. In IEEE International Symposium on Information
Theory, ISIT’2008, pages 1858–1862, 2008.

2. C. Aguilar Melchor, P. Gaborit, and H. Javier. Additive Homomorphic Encryption
with t-Operand Multiplications. Technical Report 2008/378, IACR ePrint archive,
2008. http://eprint.iacr.org/2008/378/.

3. M. Ajtai. Generating hard instances of the short basis problem. In ICALP, pages
1–9, 1999.

4. J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. In
STACS, pages 75–86, 2009.

5. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
pages 325–341, 2005.

6. Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-
key encryption schemes with auxiliary inputs. In TCC, pages 361–381, 2010.

7. W. Feller. An Introduction to Probability Theory and Its Applications, Volume 1.
Wiley, 1968.

8. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. http://crypto.stanford.edu/craig.

9. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09, pages
169–178. ACM, 2009.

10. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, pages 197–206, 2008.

11. A. Kawachi, K. Tanaka, and K. Xagawa. Multi-bit Cryptosystems Based on Lattice
Problems. In Public Key Cryptography (PKC’07), volume 4450 of Lecture Notes
in Computer Science, pages 315–329. Springer, 2007.

12. Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party
computation. J. Cryptology, 22(2), 2009.

13. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC’09, pages 333–342. ACM, 2009.

14. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009. Preliminiary version in STOC’05.

15. T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing for NC1.
In 40th Annual Symposium on Foundations of Computer Science, pages 554–567.
IEEE, 1999.

16. A. C. Yao. Protocols for secure computations (extended abstract). In 23rd An-
nual Symposium on Foundations of Computer Science – FOCS ’82, pages 160–164.
IEEE, 1982.

A The Aguilar Melchor-Gaborit-Herranz Transformation

Below is a brief description of the Aguilar Melchor-Gaborit-Herranz transfor-
mation [2] of an additively-homomorphic cryptosystem to one that supports
evaluation of d-degree polynomials with upto m terms (where d,m are parame-
ters). Here we only describe the basic approach, exemplified for the special case
of d = 3 (since indexing becomes unwieldy for larger d). Aguilar Melchor et al.
also describe in [2] some extensions and optimizations.

To evaluate d-degree binary polynomials with upto m terms, we need an
encryption scheme E = (KeyGen,Enc,Dec) with message space Zp for p ≥ m+1,
that satisfies the following properties:

– The ciphertext is a vector of integers in [0, q − 1] (for some parameter q),
which we denote by Greek letters, Enc(a) = 〈α[1], . . . , α[n]〉 ∈ Znq . (We
identify Zq with the set of integers in [0, q − 1].) Denote the bit-length of

the parameter q by t
def= dlog(q + 1)e, so the total size of the ciphertext

is nt bits. (Note that to support message space Zp for p > m, we need
nt ≥ Ω(κ+ logm) for security parameter κ.)

– E is additively homomorphic, via mod-q addition of the ciphertext vectors.
Specifically, what we need is that for any m′ ≤ m plaintext bits a1, . . . , am′ ∈
{0, 1} and their encryption αj ← Enc(aj), the vector

α =
∑
j

αj mod q

whole elements are integers in [0, q − 1], is decrypted (with probability one)
to the integer

∑
j aj . (Note that since m < p and all the aj ’s are bits, then

the sum of the aj ’s is less than p, and hence addition modulo p is the same
as the sum over the integers.)

Consider now a vector ofm triples of plaintext bits 〈(a1, b1, c1), . . . , (am, bm, cm)〉 ∈
({0, 1}3)m, and their encryption αj ← Enc(aj), βj ← Enc(bj), γj ← Enc(cj). We
now show how to generate a “ciphertext” of size (nt)3 that can be decrypted to
the bit

∑m
j=1 ajbjcj mod 2. (More generally, for degree-d polynomials the size of

the ciphertext is at most (nt)d. If the underlying scheme has nt = O(κ+ logm)
then this would give ciphertext size of O(κd + logdm) for degree-d, m-term
polynomials with security parameter κ.)

PolyEval
(
〈(αj ,βj ,γj)〉j=1,...,m

)
:

For j = 1, . . . ,m, denote the integers in the ciphertext vectors βj , γj by

βj = 〈βj [1], . . . , βj [n]〉, γj = 〈γj [1], . . . , γj [n]〉

Recall that these are all non-negative t-bit integers, and we denote their bit
representations by

βj [i] =
t−1∑
k=0

2k · β(k)
j [i], γj [i′] =

t−1∑
k′=0

2k
′
· γ(k′)
j [i′] (integer addition)

where each β
(k)
j [i] and γ

(k′)
j [i′] is a bit. The “compound ciphertext” consists of

the (nt)2 vectors

δ(i,k,i′,k′) def=
m∑
j=1

αj︸︷︷︸
ctxt

·β(k)
j [i]︸ ︷︷ ︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

mod q (1)

In other words, each vector δ(i,k,i′,k′) is computed as a subset-sum (over Zq) of
the m ciphertext vectors αj . Since we have (nt)2 such vectors, the total size of
the compound ciphertext is (nt)3, as claimed.

Decrypt
({
δ(i,k,i′,k′) : k, k′ ∈ [0, t− 1], i, i′ ∈ [1, n]

})
:

1. For all k, k′, i, i′ decrypt δ(i,k,i′,k′) to get an integer λ(i,k,i′,k′) ← Dec
(
δ(i,k,i′,k′)

)
.

Due to the additive homomorphism of the underlying scheme, we have that

λ(i,k,i′,k′) =
∑
j

aj︸︷︷︸
bit

·β(k)
j [i]︸ ︷︷ ︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

(equality over the integers)

Note that this equality is over the integers since this is a sum of m bits, and
hence must be less than p.

2. For all k′, i, i′ compute the integer λ(i′,k′)[i]←
∑t−1
k=0 2k ·λ(i,k,i′,k′) mod q. By

construction we have λ(i′,k′)[i] ∈ Zq, and by changing the order of summation
we see that

λ(i′,k′)[i] =
t−1∑
k=0

2k ·
∑
j

aj · β(k)
j [i] · γ(k′)

j [i′] (2)

=
∑
j

aj · γ(k′)
j [i′] ·

t−1∑
k=0

2k · β(k)
j [i] =

∑
j

aj︸︷︷︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

· βj [i]︸︷︷︸
integer

(mod q)

3. For all k′, i′ denote

λ(i′,k′) def=
〈
λ(i′,k′)[1], . . . , λ(i′,k′)[n]

〉
=

∑
j

aj︸︷︷︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

· βj︸︷︷︸
ctxt

(mod q)

Again, each λ(i′,k′) is equal to a subset-sum over Zq of the βj ciphertext
vectors.

4. For all k′, i′ decrypt λ(i′,k′) to get an integer µ(i′,k′) ← Dec
(
λ(i′,k′)

)
. As

before, due to the additive homomorphism of the underlying scheme we
have that

µ(i′,k′) =
∑
j

aj︸︷︷︸
bit

· bj︸︷︷︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

(equality over the integers)

5. For all i′ compute the integer µ[i′] ←
∑t−1
k′=0 2k

′ · µ(i′,k′) mod q. Again, we
have µ[i′] ∈ Zq and by changing the order of summation we see that

µ[i′] =
t−1∑
k′=0

2k
′
·
∑
j

aj · bj · γ(k′)
j [i′] =

∑
j

aj · bj ·
t−1∑
k′=0

2k
′
· γ(k′)
j [i′] =

∑
j

aj︸︷︷︸
bit

· bj︸︷︷︸
bit

· γj [i′]︸ ︷︷ ︸
integer

6. Denote µ def= 〈µ[1], . . . , µ[n]〉 =
∑
j

aj︸︷︷︸
bit

· bj︸︷︷︸
bit

· γj︸︷︷︸
ctxt

7. Decrypt µ to get the integer ν ← Dec(µ), and once again due to the additive
homomorphism we have the equality ν =

∑
j ajbjcj holding over the integers.

Finally output (ν mod 2) as the decrypted bit.

