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Abstract. We study the following two related questions:
– What are the minimal computational resources required for general

secure multiparty computation in the presence of an honest major-
ity?

– What are the minimal resources required for two-party primitives
such as zero-knowledge proofs and general secure two-party compu-
tation?

We obtain a nearly tight answer to the first question by presenting a per-
fectly secure protocol which allows n players to evaluate an arithmetic
circuit of size s by performing a total of O(s log s log2 n) arithmetic op-
erations, plus an additive term which depends (polynomially) on n and
the circuit depth, but only logarithmically on s. Thus, for typical large-
scale computations whose circuit width is much bigger than their depth
and the number of players, the amortized overhead is just polylogarith-
mic in n and s. The protocol provides perfect security with guaranteed
output delivery in the presence of an active, adaptive adversary cor-
rupting a (1/3 − ε) fraction of the players, for an arbitrary constant
ε > 0 and sufficiently large n. The best previous protocols in this setting
could only offer computational security with a computational overhead
of poly(k, logn, log s), where k is a computational security parameter, or
perfect security with a computational overhead of O(n logn).
We then apply the above result towards making progress on the second
question. Concretely, under standard cryptographic assumptions, we ob-
tain zero-knowledge proofs for circuit satisfiability with 2−k soundness
error in which the amortized computational overhead per gate is only
polylogarithmic in k, improving over the ω(k) overhead of the best pre-
vious protocols. Under stronger cryptographic assumptions, we obtain
similar results for general secure two-party computation.

1 Introduction

This work studies two different but closely related questions: the complexity
of secure multiparty computation (MPC) in the presence of an honest majority,
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and the complexity of two-party cryptographic primitives such as zero-knowledge
proofs and secure two-party computation.

1.1 The Complexity of MPC

We consider the question of MPC over secure point-to-point channels in the
presence of an active (malicious) adversary, who may corrupt up to some constant
fraction δ of the n players. In this work we focus on the case of an honest
majority, where δ < 1/2. Unlike the case of MPC with no honest majority, in
this case it is possible to guarantee output delivery and provide unconditional
security. Following the initial feasibility results of [17, 3, 8, 27], a long sequence
of works, initiated by [14, 15, 19, 10], attempted to minimize the communication
and computation resources required for general MPC in this setting.

To make the question cleaner and less sensitive to variations in the model,
we adopt the following standard conventions. First, to measure the growth of
complexity with the number of players, we consider n as a parameter which tends
to infinity. A large value of n captures not only computations which combine
inputs from many players, but also “cloud computing” scenarios in which a large
number n of untrusted or unreliable servers are used to distribute computations
on inputs that originate from a small number of clients or even from just a
single client. Second, to eliminate from consideration an additive overhead which
depends (polynomially) on n and a security parameter4 but does not grow with
the complexity of the functionality f , we assume the circuit complexity of f
to be much bigger than n. This is in line with most typical MPC application
scenarios, and may capture both complex computations on small inputs and
simple computations on massive inputs.

More concretely, we consider the task of securely evaluating a function f
represented by a boolean circuit C whose inputs and outputs are arbitrarily
partitioned between the n players. We let k denote a security parameter, such
that the simulation error of the protocol is bounded by 2−k. (This should hold
for computationally unbounded adversaries in the case of statistical security and
for 2k-bounded adversaries in the case of computational security; the parameter
k can be ignored in the case of perfect security.) We say that a general MPC
protocol has computational overhead c(n, k, s) if for all positive integers n, k, s,
and circuit C of size s, the total number of bit operations5 performed by all
n players together is at most s · c(n, k, s) + poly(n, k, log s). The computational
overhead can be thought of as the amortized multiplicative price for achieving
security: the ratio between the cost of securely distributing an expensive task
between n players and the cost of a centralized (insecure) solution for the same
task.

4 Such an overhead is very sensitive to the underlying network and MPC model, and
is required in our settings even for performing the simple MPC task of broadcasting
a single bit.

5 Our count of bit operations includes both local computations and point-to-point
communication.



Note that the computational overhead of a protocol implies a similar bound
on its communication overhead with respect to the circuit size. However, in light
of Gentry’s recent candidate for a fully homomorphic encryption scheme [16], the
circuit size should no longer be generally seen as a barrier for the communication
complexity of MPC. This notion still looks meaningful in the setting of uncon-
ditional security or for circuits whose input or output length are comparable to
their size. See Section 8 for further discussion.

The computation and communication overhead of the first general MPC pro-
tocols [17, 3, 8] were large polynomials in n, k (e.g., O(n8) for a naive implemen-
tation of the perfectly secure BGW protocol over a point-to-point network [3,
19]). Following a long sequence of works (see [13] for a survey) the current state
of the art can be summarized as follows. For simplicity, we do not state the
resilience level of each protocol. Using a general protocol composition technique
from [6, 18, 13], all protocols can be made nearly optimally resilient with the
same asymptotic overhead.

In the setting of computational security, an overhead of c(n, k, s) = poly(k,
log n, log s) was achieved in [13]. This protocol can be realized with a constant
number of rounds under standard cryptographic assumptions.

In the case of unconditional security, all efficient MPC protocols from the
literature require the round complexity to grow with the circuit depth d. Since
all players in these protocols are active in each round, we redefine computational
overhead for the unconditional case to allow an additive term of poly(n, k, d, log s)
(the exponent of d should be extremely low here, or the term can become dom-
inant). The computational overhead of the best perfectly secure protocol prior
to this work [2] was n · polylog(n). This protocol has a similar communication
overhead. In the case of statistical security and protocols which take inputs from
and deliver outputs to only a constant number of clients (but still distribute
the computation among n servers) a variant of the protocol from [11] based on
algebraic geometric secret-sharing [9] (see [20, 22]) has computation overhead of
k · polylog(n) and communication overhead of O(1).

This state of the art leaves open several natural questions:

– Can the computational overhead be simultaneously sublinear in both n and
k in any MPC model? This question turns out to be relevant for the appli-
cations discussed in Section 1.3 below.

– Can the computational overhead be sublinear in n with perfect security, or
alternatively with statistical security even when inputs can originate from
all players (as opposed to a constant number of clients as in [11, 22])? These
questions are open even for the easier case of communication overhead.

1.2 Our Results

We present a perfectly secure general MPC protocol whose computational over-
head is polylogarithmic in n, answering the above questions affirmatively.



More concretely, the protocol can tolerate an active, adaptive adversary
corrupting up to a 1/3 − ε fraction6 of the players, for an arbitrary constant
ε > 0 and all sufficiently large n. The computational (and communication) com-
plexity required for evaluating a boolean circuit C of size s and depth d is
polylog(n) log s · s+ d2 · poly(n, log s). If C is an arithmetic circuit over a finite
field of size bigger than n, the total computational work involves O(log2 n log s ·
s) + d2 · poly(n, log s) arithmetic operations and the communication includes
O(log n log s · s) + d2 · poly(n, log s) field elements.

Alternatively, in the case where d2 is too large, we provide an option to
increase the circuit size by a factor log d while decreasing the d2 factor to d log d.
The intuition is that the first factor on the second term is dX, where X is
defined as follows. Dividing the circuit into layers in the natural way, we define
the numberX to be the maximal number of layers reachable by one wire from any
given layer. In general, X = O(d) and so the factor is d2. With our alternative
approach, X = O(log d) and so the factor is d log d. The real calculation is a bit
more involved, but this is the basic idea.

Thus, with the above alternative, the computational complexity for an arith-
metic circuit becomes O(log2 n log s log d·s)+d log d·poly(n, log s), and similarly
for the other complexities.

Since the modification of the circuit increases its size by a factor log d, it is not
always the best solution. Only for circuits with a large depth is the alternative a
good choice. Furthermore, the d2 factor is the result of a somewhat pessimistic
worst-case analysis, and for most typical circuits the additive term grows only
linearly with d.

As a final remark about our protocol, it seems “lean” enough to be imple-
mented in practice. This should be contrasted with the previous best protocol
from [13], which involves a distributed evaluation of a pseudorandom function
for every gate in the circuit.

Techniques. Our protocol employs several techniques that were used in previous
works along this line, including the share-packing technique from [14], allowing
to secret-share a block of secrets with a low amortize cost, and the efficient ver-
ifiable secret sharing protocol from [2, 13]. The main technical challenge is to
perform “non-homogenous” computations on pairs of blocks, i.e., ones that are
different from coordinate-wise addition or multiplication of blocks. We address
this challenge by embedding the computation in a special form of a universal cir-
cuit based on the so-called Beneš network [5, 29]. The high level idea is that the
structure of the circuit reduces the computation in a given layer of the circuit
to an arbitrary permutation between blocks (which can be done locally), ho-
mogenous operations, and a logarithmic number of distinct permutations within
blocks. We propose an efficient procedure for the latter. See Section 4 for a more
detailed technical overview.

6 In our model we assume that only point-to-point channels are available, in which case
it is impossible to achieve unconditional security with guaranteed output delivery if
at least 1/3 of the players can be corrupted.



An independently interesting contribution is a new methodology for the se-
curity analysis of honest-majority MPC protocols. Similarly to most protocols
of this type, our protocol is composed from subprotocols that generate auxiliary
secret shared values to help in the computation, a subprotocol for sharing the
inputs, and finally a “layer-protocol” that performs secure computation corre-
sponding to one layer of the circuit, i.e., it starts with the shares of values going
into the layer, consumes some auxiliary shared values, and outputs shares of
values coming out of the layer. Our proof of security first proves all subprotocols
to be UC secure. We then define a functionality Fi that takes inputs from the
players and outputs shares of the values output by the i’th layer of the circuit
(where layer 0 just produces the inputs to the circuit). We then show that F0

can be implemented by calling the auxiliary subprotocols, and Fi for i > 0 can
be (UC-)implemented by calling Fi−1 and then executing the layer-protocol.

We believe this may be the first example of a general honest-majority MPC
protocol with a fully modularized proof of security. The main challenge is that
it is non-trivial to define functionalities for the subprotocols such that 1) the
subprotocol actually realizes the functionality and 2) the functionality provides
what is needed in the larger context. It is well known that even for a simple task
such as digital signatures, defining the “right” functionality is not easy.

In our case, the main idea turn out to be that a functionality that is supposed
to output shares of some secrets, should not simply choose those shares on its
own and send them to the players, although that may seem like the most natural
approach. Instead, our functionalities ask the adversary which shares it wants
the corrupted players to get, and the functionality then chooses shares for the
honest players conditioned on the shares obtained from the adversary and the
secret. In a sense, this models the fact that we do not care about the distribution
of shares the adversary sees, as long as the secret is safe.

1.3 The Computational Overhead of Cryptography

A somewhat unexpected motivation for this work comes from the recent appli-
cations of honest-majority MPC to two-party primitives such as zero-knowledge
proofs and general secure two-party computation [20, 22]. We note that these
general tasks can be used as building blocks for more specialized two-party tasks
such as identification or different flavors of signatures.

The computation and communication overhead of standard two-party cryp-
tographic primitives can be defined similarly to the overhead of MPC as defined
above, except that here n is viewed as a constant and s corresponds to work
required for an insecure implementation (e.g., length of message in case of en-
cryption, or size of witness verification circuit in the case of zero-knowledge).
For instance, typical implementations of encryption have a constant communi-
cation overhead, but a poly(k) computation overhead.7 In contrast, for typical

7 Since for the purpose of concreteness we consider attackers that run in time 2k, this
requires to assume that the underlying hardness assumption is 2nε

-strong for some
ε > 0.



implementations of zero-knowledge proofs or secure two-party computation pro-
tocols from the literature, both the communication and computation overhead
are poly(k).

In [21] it was shown that, under plausible assumptions, various primitives
including encryption, signatures, and secure two-party computation in the semi-
honest model can be implemented with a constant computational overhead. For
primitives such as encryption, commitment, hashing, and signatures, construc-
tions with polylog(k) overhead relying on lattice-based assumptions or error-
correcting codes were given in [26, 24, 1].

Obtaining similar results for zero-knowledge proofs and secure two-party
computation against malicious parties is one of the main questions left open
in [21]. Combining our main result with general transformations from [20, 22],
we can make progress on the this question. Concretely, under standard cryp-
tographic assumptions (e.g., assuming 2n

ε

-hardness of decoding random linear
codes [1]), our main result yields zero-knowledge proofs for circuit satisfiability
with 2−k soundness error and simulation error, in which the amortized com-
putational overhead per gate is only polylogarithmic in k, improving over the
ω(k) overhead of the best previous protocols under any assumptions. Under
stronger cryptographic assumptions, we obtain similar results for general secure
two-party computation with simulation error 2−k. Both types of protocols are
unconditionally secure when implemented in the natural hybrid model (i.e., us-
ing ideal commitments in the case of zero-knowledge, or oblivious transfer in the
case of secure computation). This implies that all “cryptographic” computations
can be done during a preprocessing stage, before the actual inputs are known.
See Section 7 for more details.

2 The Model

We consider the standard setting of perfectly UC-secure MPC [7], with guaran-
teed output delivery, over a synchronous network of secure point-to-point chan-
nels. Our protocols also employ a broadcast primitive, but since the number
of broadcasts will be small they can be simulated over point-to-point channels
without affecting the amortized overhead.

The players in our protocol are divided into three categories: input clients who
contribute inputs, output clients who receive outputs, and n servers who help
distribute the computation. To simplify the asymptotic complexity expressions,
the number of clients is assumed to be O(n). Note that a player in the protocol
is permitted to have one or more roles, and therefore this client-server model
generalizes the usual model where every player has all three roles. The adversary
is unbounded, active and adaptive, may corrupt up to t servers and any number
of clients, where t is some constant fraction of n. (Concretely, one can use t = n/8
in the basic version of our protocol.)

We assume that the functionality f computed by the protocol is described
by an arithmetic circuit C over a finite field Zp, where p > 2n. (In the case of
boolean circuits, we can use the least p which satisfies this requirement. This



results in an additional logarithmic communication overhead and polylogarith-
mic computation overhead.) The inputs and outputs of C may be arbitrarily
partitioned between the input clients and the outputs clients, respectively.

It will be convenient to partition the gates into layers, such that each layer
gets its input only from the previous layers and provides output to subsequent
layers. This can be done by partitioning the gates according to the length of a
longest path from an input. The size of the circuit C is written as |C|, and it
is defined to be the number of gates plus the number of wires. Its depth is the
length of the longest path from an input to an output, which is equal to the
number of layers in the case of layered circuits.

Finally, since our efficiency goals are impossible to meet if each server needs
to read an entire description of C, we separate the protocol compilation from the
protocol execution. The protocol compiler takes a description of an arithmetic
circuit C (whose inputs and outputs are partitioned between the clients) and
a number of servers n and generates the “code” of each player in the proto-
col. When analyzing the complexity of the protocol we count only the cost of
the protocol execution (combined over all players), but note that the protocol
compilation can be performed with the same asymptotic computational cost as
executing the protocol.

3 Packed Secret-Sharing

We will use the packed secret-sharing technique introduced by Franklin and
Yung [14]. This is similar to standard Shamir secret-sharing [28] over Zp, but
where a block of l different values (x1, .., xl) are shared at once using a poly-
nomial that evaluates to x1, ..., xl in l distinct points. For privacy if t players
are corrupted, the polynomial must be random of degree at most d = t+ l − 1.
We need that, from a set of n shares, one from each player, where at most t
are incorrect, the correct block of secrets can be efficiently determined, even if
the polynomial has degree up to 2d. This will be the case if we set t = n/8 and
l = n/4. Also, to have enough distinct evaluation points, we need that p > 2n.
This is the same variant of packed secret sharing as was used in [13], which we
refer to for further details.

Denote by [x]d a packed secret-sharing of the block x using a polynomial of
degree at most d. Any vector of shares {s1, . . . , sn} among n servers is called
d-consistent if the shares correctly match a degree at most d polynomial in the
n first points and therefore uniquely defines a block of secrets.

Throughout the paper we will need many different protocols dealing with
block sharings. Most notably we need verifiable secret-sharing for the input and
reconstruction with error correction for the output. In Section 5 on page 9 we
describe the known protocols that we will use.



4 Overview of the Protocol

Using packed secret sharing, it is straightforward to do secure addition or mul-
tiplication on l values in parallel, at the price of what a single operation would
cost using normal secret sharing. This was already observed in [14] and can be
used to compute the circuit C securely and efficiently if we arrange it such that
every layer contains only one type of gates, and if we can produce sets of shared
blocks S1, S2, .. such that blocks in Si contain the i’th input bit to the gates in a
given layer, in some fixed order. We will call this a correct line-up for the given
layer.

Demanding correct line-up is a problem, however: It implies that the values
in the computation will have to be permuted between layers in arbitrary ways
that depend on the concrete circuit. This is not easy to implement efficiently
using packed secret sharing. We solve this problem by first constructing from
C a new circuit C ′ that computes the same function but is more well-behaved.
More precisely, we have

Lemma 1. Given an arithmetic circuit C that is at least l gates wide, there is
an efficient algorithm to transform it into another circuit C ′ with the following
properties:

1. C ′(x) = C(x) for all inputs x.
2. Every layer contains only one type of gate.
3. If all values are stored in blocks using packed secret sharing where the block

size l is a 2-power, the action between any two layers to achieve correct line-
up is to permute the blocks and then in some blocks permute the elements
within the block, where the same permutation applies to all blocks in the
layer8. In the entire circuit, only log l different permutations are needed to
handle permutations within blocks.

4. |C ′| = O(|C| log |C|+depth(C)2n log3 |C|), depth(C ′) = O(log2 |C|depth(C)).

The restriction on the width of the circuit is fairly insignificant, since n is
generally small compared to the circuit size. Some of the layers in C ′ will not
be a block wide, but since those layers also do not require a permutation, it will
cause no problems.

We show in the full version (available on ePrint) [12] how this construction
works in detail. The basic idea is to handle the arbitrary permutations needed in
C by inserting a small piece of circuitry that permutes the values as desired. This
subcircuit can be made very regular using permutation networks as described
by Waksman [29]. These are based on Beneš networks [5]. It follows from the
construction that C ′ only contains addition, multiplication and h-gates, where
h swaps two input values x, y or leaves them alone, depending on a control-bit
c: h(x, y, c) = (cx+ (1− c)y, cy + (1− c)x).

Now, given the input arithmetic circuit C, we first transform it into C ′ as
described in the lemma. We begin our actual computation by secret-sharing the

8 In some cases, it may additionally be necessary to discard some blocks.



input values in blocks of size l = Θ(n), where l is a 2-power, and we then go
through C ′ layer by layer, computing at each stage the output values from the
layer in packed secret-shared form. Once we have the output from the last layer,
shares of these are sent to the output clients for reconstruction.

Going into each layer we permute the shared blocks we have so far as needed
to get correct line-up for the layer, and then do the computation required. The
only non-trivial issue is how to permute the elements inside a shared block,
i.e., how to compute [π(x)]d from [x]d for a permutation π. The idea is to first
precompute pairs of the form [r]d, [π(r)]d for random blocks r. We show below
how to generate many such pairs using the same π at a small amortized cost per
pair. This is sufficient, since by the above lemma, we only need a small number
of different permutations. The idea then is to reveal x + r to a single server,
who then locally computes π(x+ r) and secret-shares it, proving in the process
that [π(x+ r)]d was correctly formed. This can be done efficiently if we do many
blocks in parallel. Then, given [π(x + r)]d = [π(x) + π(r)]d and [π(r)]d, players
subtract shares locally to get [π(x)]d.

5 Subprotocols

In the previous sections, we have covered how to evaluate a circuit C by trans-
forming it into C ′ and computing layer by layer. We begin this section by listing
known protocols that we will be using for this. Subsequently we cover new pro-
tocols we propose.

Known protocols. From [13] we borrow the following protocols:

– Share(D, d): A dealer D computes shares of a block of l secrets using a
degree d polynomial and sends a share to each player. Communication is
O(n) and computation is O(n log n).

– Reco(R, d): Assumes a block has been shared using a polynomial of degree
at most d. All players send their shares of the block to R, who uses standard
error correction techniques to reconstruct the block. Communication is O(n)
and computation is O(n log n).

– RobustShare(d): This protocol basically implements verifiable secret-sharing
for one or more dealers who want to secret-share Θ(n) blocks each using
polynomials of degree d. The functionality it implements, FRobustShare, is
shown in Figure 1 on the next page.

– RanDouSha(d): Generates a vector of random blocks and a degree d and a de-
gree 2d sharing of each block. More precisely, it implements the functionality
shown in Figure 2 on page 11.

– RobustReshare(d, d′): Takes as input a number of secret shared blocks. For
each input [x]d it outputs a new sharing [x]d′ . However, it does not keep x
secret.

– SemiRobustShare(d): Same as RobustShare(d), but the adversary can cause
some of the honest dealers to fail. However, during the entire global protocol,
he can only make up to t honest dealers fail.



For every protocol above except for the first two, the communication com-
plexity is O(βn2), and the computational complexity is O(βn2 log n), for han-
dling β groups of Θ(n) blocks. In both cases we must additionally pay O(n2) per
complaint. Complaints are handled as in our protocol RandomPairs in Figure 4
on page 12. Since each complaint results in at least one corrupted player being
eliminated from the protocol, at most t complaints can occur in total.

Furthermore, there is a minimal cost for these protocols, since they are built
to handle groups of blocks and not just single blocks at a time. RobustShare
for example always costs at least as much as for β = n. For a protocol like
SemiRobustShare, it is possible to handle β = 1 efficiently, but then we need to
add O(n3) for n broadcasts. However, as we will show later, these cases make
no difference in our final complexity; for this we do not care about how well our
protocols handle a small number of elements, we care about how they scale.

In [13] there is a proof of perfect privacy and correctness for each of the
protocols above, but it was not proved there that RanDouSha and RobustShare

implement the corresponding functionalities. A proof of this follows quite easily
from correctness and privacy in the same way as in the proof for the protocol
RandomPairs, which we present in detail below.

We define functionalities only for some of the protocols above. The rest are
mentioned because we use them as parts of other protocols. The final UC proof
in the full version [12] only requires these parts to have perfect privacy and
correctness.

1. Receive from all honest players the identities of the dealers and the number of blocks they want
to share. Abort if the input is inconsistent. Receive also a set of input blocks to share from each
honest dealer.

2. Send “Shares?” to the adversary together with the identities of the dealers and the number of
blocks they want to share.

3. Receive from the adversary, for each block to be shared by an honest dealer, one share for each
corrupted player (this should be thought of as the shares the adversary wants the corrupted
players to receive). For each corrupt dealer, receive a polynomial of degree at most d.

4. For each block to be shared by an honest dealer, choose a random polynomial of degree at most
d that is consistent with the block and the shares the adversary chose for the corrupted players.
Compute and send the resulting shares to the honest players, and send the entire polynomial
to the dealer.

5. For each block to be shared by a corrupt dealer, if the adversary sent a polynomial of correct
degree, compute shares using this polynomial and send them to the players, otherwise tell all
players that the dealer failed.

Fig. 1: The functionality FRobustShare

5.1 Permuting Elements within a Block

The basic idea behind our protocols for permuting the set of elements within
each block for a vector of blocks was already explained in Section 4. To use this
idea, we need to be able to produce pairs of sharings [r]d, [π(r)]d for random r’s,
and a server needs to be able to secret-share blocks while showing that they were
correctly permuted. First we present the protocol RandomPairs for producing the



1. Each honest player sends a natural number r to Fdouble. If the honest players sent different
values for r, Fdouble halts and outputs abort. Otherwise, send r and message “Shares?” to the
adversary.

2. The adversary chooses 2r sets of shares for the corrupted players.
3. Fdouble chooses r random blocks (x1, . . . , xr) and creates random sharings ([x1]d, . . . , [xr]d)

and ([x1]2d, . . . , [xr]2d) such that they are consistent with the shares submitted by the adver-
sary.

4. Fdouble outputs the resulting shares to the players.

Fig. 2: The functionality Fdouble

required permuted pairs. The protocol for resharing and proving is simpler and
yet very similar, and for that case we provide only a sketch. The protocol makes
use of hyperinvertible matrices. A matrix is hyperinvertible if any intersection
between k rows and k columns of the matrix is invertible. In [2], it is described
how such a matrix can be constructed. We refer to [2] for the details, but it is
important to note, as was also done in [13], that we may use the O(n log n) FFT
algorithms to multiply our hyperinvertible matrices onto vectors.

Creating Permuted Pairs The functionality Fpairs shown in Figure 3 details
our requirements for the creation of permuted pairs. It works almost exactly like
Fdouble.

1. Each honest player sends a natural number r and a permutation π to Fpairs. If the honest
players sent different values for r or π, Fpairs halts and outputs abort. Otherwise, send r and
message “Shares?” to the adversary

2. The adversary chooses 2r sets of shares for the corrupted players.
3. Fpairs chooses r random blocks (x1, . . . , xr) and chooses random sharings ([x1], . . . , [xr]) and

([π(x1)], . . . , [π(xr)]) such that they are consistent with the shares submitted by the adversary.
4. Fpairs outputs the chosen shares to the players.

Fig. 3: The functionality Fpairs

An observation is needed before we present the protocol. Say we have some
permutation π on l different elements, a vector of random blocks (x1, . . . , xn),
and a vector of yi = π(xi). Now suppose we apply some m by n matrix M and
get the resulting vectors (x′1, . . . , x

′
m) and (y′1, . . . , y

′
m)

Applying M to a vector of blocks corresponds to applying M to l different
vectors at once. Permuting all blocks and then applying M clearly has the same
result as applying M and then permuting the resulting blocks. More precisely,
after applying M , π(x′i) = y′i.

We now present the protocol RandomPairs. It is run in parallel for all of the
players with the restriction that n−3t = Ω(n). The matrix M is hyperinvertible
of dimension n by n−2t, and X is hyperinvertible of dimension n−2t by n−2t.
The protocol is shown in Figure 4 on the next page.

Proposition 1. The protocol RandomPairs securely realizes Fpairs in the UC
model with perfect security against an active and adaptive adversary corrupting



1. Sharing
For each player D acting as dealer, and each group g of pairs to make, run the following in
parallel:

(a) D picks random blocks (x1, . . . , xn−2t) and (y1, . . . , yn−2t) = (π(x1), . . . , π(xn−2t)).
(b) D shares the xi and the yi using protocol Share.
(c) All players calculate

([x
′
1], . . . , [x

′
n]) = M([x1], . . . , [xn−2t])

([y
′
1], . . . , [y

′
n]) = M([y1], . . . , [yn−2t]).

(d) For all i, all players Pj send their shares of [x′i] and [y′i] to Pi.
(e) For all i, the dealer D sends all shares of [x′i] and [y′i] to Pi.

2. Checking
Initialize C = ∅. This set will contain sets of conflicting players. Now for each player Pi in
parallel:

(a) Pi checks that the sharings received for x′i and y′i by all D for all groups are consistent, and
that y′i = π(x′i). For any pair (Pj , D) where this check went well, Pi also checks that he
received the same shares from all pairs of dealers D and Pj . If all goes well, he broadcasts
a 1, and a 0 is broadcast if one or more checks fail.

(b) If Pi broadcast a 0, he now proceeds to broadcast the number of complaints he intends
to make. The complaints are then handled as described in the following. If at any point
Pi broadcasts badly formatted complaints or the same complaint more than once, Pi is
immediately eliminated and ignored.

(c) If a dealer D dealt inconsistent shares or the pairs were not correctly permuted, Pi broad-
casts (conflict, Pi, D). All players include the set {Pi, D} in C.

(d) Otherwise, if Pi sees that it has received different shares from some Pj and D for a group
g, it broadcasts (conflict, D, Pj , g, shareD, sharePj

, w), where w indicates whether it is

a conflict with shares of [x′i] or [y′i]. Such conflicts are sent out for any relevant cases, but
at most one conflict is sent out for any specific pair (D,Pj).

i. If D finds that shareD does not match what he sent to Pi, he broadcasts
(conflict, D, Pi), and it is recorded in C.

ii. If Pj finds that sharePj
does not match what he sent to Pi, he broadcasts

(conflict, Pj , Pi). This is recorded in C.
iii. If neither D nor Pj broadcasts a conflict, the conflicting set {D,Pj} is included in C.

3. Elimination
All players now locally run the following elimination algorithm:

(a) If there is a pair {Pi, Pj} ∈ C such that neither player has been eliminated so far, eliminate
both players by removing them from the set S of player.

(b) Keep all pairs ([xi], [yi]) shared by non-eliminated players, throw away the rest.

4. Postprocessing phase

(a) Reorder the players such that 1 through n− 2t are non-eliminated.

(b) (xj
i , y

j
i ) is the i’th pair of blocks known to the j’th player, for all non-eliminated j, and

for each group.
(c) Every player calculates

([a
1
i ], . . . , [a

n−2t
i ]) = X

−1
([x

1
i ], . . . , [x

n−2t
i ])

([b
1
i ], . . . , [b

n−2t
i ]) = X

−1
([y

1
i ], . . . , [y

n−2t
i ]).

for all i ∈ {1, . . . , n− 3t}, and for each group.

(d) For each group, the output is given by the pairs ([aji ], [bji ]) for i, j ∈ {1, . . . , n− 3t}.

Fig. 4: Protocol RandomPairs



at most t players, where n − 3t = Ω(n). RandomPairs creates Θ(n2) permuted
pairs at a time with a communication complexity of O(n3), and a computational
complexity of O(n3 log n). In both cases, we add O(n2) per complaint.

Proof. The proof is divided into three parts. The first two are correctness and
simulation, and together they prove security in the UC model. The last part
deals with the complexity.

Correctness: To show correctness, we must prove that all generated pairs are
consistently shared and correctly permuted. Consider the set of players P. If we
denote by P ′ the subset of non-eliminated players, we know that by the end of
the elimination step, only sharings coming from players in P ′ will be used.

We know that for any dealer D ∈ P ′, there are no conflicts {Pi, D} ∈ C for
any Pi ∈ P ′. If there were such conflicts, they would have caused the elimination
of either D or Pi in the elimination phase. This means that all honest players in
P ′ agree that the shares they have received from dealers D ∈ P ′ are consistent
and represent correctly permuted pairs, and furthermore these shares agree with
all shares received from Pj ∈ P ′.

Now consider all non-eliminated honest players. We know that at least for
every two players eliminated, one of the players must have been corrupted. There-
fore, we have at least n − 2t honest players in P ′. Now select exactly n − 2t of
those and form the set H. It can be seen then that

([x′i])Pi∈H = MH([xi])1≤i≤n−2t,

where MH is a matrix containing only the rows of M with indices corresponding
to the players in H. Since MH is a square submatrix of a hyperinvertible matrix,
it must be invertible. This means that

([xi])1≤i≤n−2t = M−1
H ([x′i])Pi∈H .

The calculations above also hold for the yi. We know that all pairs (x′i, y
′
i)

where Pi ∈ H are guaranteed to be consistently shared and correctly permuted.
Applying the linear transformation M−1

H preserves this property, and so we know
that all of the original pairs (xi, yi) must be correct as long as the dealer is in
P ′, but these are exactly the pairs we keep after the elimination phase.

Following the elimination phase, new pairs are created by applying yet an-
other linear transformation. As before, linear transformations preserve the con-
sistency of sharings and the property that pairs are correctly permuted, and thus
correctness is ensured.

Simulation: To prove UC security, we must also show that we can construct a
simulator S such that any environment Z cannot distinguish between the real
world where it communicates with the adversary A and the ideal world where it
communicates with S. We do this by first proving perfect privacy (i.e. we prove
that the adversary’s view is independent of the secrets shared), and then we
show how to use this and correctness to build a simulator.



For perfect privacy, all values seen by the adversary should be independent
of the secret, which in this case is the set of output pairs. Throughout the
protocol, A learns openings of sharings from honest players, and it knows its
own sharings as well. It is these values that should be independent of the output.
More specifically, we need only examine sharings by non-eliminated players, since
the others are not used to create the output.

First, we prove that the sharings distributed by non-eliminated honest players
are independent of the sharings opened towards A. For any honest dealer and
any group, let I = {1, . . . , n−3t} be the indices of the initial blocks and R those
of the remaining blocks. Now choose a set C of size t that contains all indices of
the corrupted players. The corrupted players now know openings of

([x′i])i∈C = M I
C([xi])i∈I +MR

C ([xi])i∈R,

where MB
A means the matrix M restricted to rows in A and columns in B. A

similar equation holds for the y′i. Since |C| = |R|, there is exactly one choice of
blocks in R that matches what the adversary can see for any set of blocks in I.
In other words, the blocks opened to A are independent of the ones dealt by the
honest dealers.

The final output blocks are created using the sharings from all non-eliminated
servers, possibly including some corrupted servers. Therefore, we must also prove
that the final outputs are independent of sharings from non-eliminated corrupt
players. For the aji and any group (the proof is the same for the bji ), let I =
{1, . . . , n− 3t} be the set of the initial n− 3t indices, R the subsequent t, and C
a set of size t containing the indices of all non-eliminated corrupted players (fill
the rest of C with other players if there are less than t). The adversary knows
xji for all j ∈ R, so the sharings known to A are

([xji ])j∈C = XI
C([aji ])j∈I +XR

C ([aji ])j∈R,

for all i. Since |C| = |R|, and since X is hyperinvertible, XR
C is invertible.

Therefore, for any set of blocks known to the adversary, there is exactly one
choice of blocks [aji ]j∈R not output for any set of output blocks. In other words,
the blocks dealt by A are independent of the output blocks. This concludes our
proof of privacy.

We can now show how to construct a simulator S. It simply runs dummy
versions of the honest players and lets the execute the protocol with A. We
know that any values seen by A during the protocol are independent of the ac-
tual secrets shared, so the values generated by S towards A must be correctly
distributed. When the protocol is done, the shares for corrupted players gener-
ated by the simulated run is fed into Fpairs. The functionality now chooses the
output sharing so to match these values, i.e. the honest players obtain shares
that are consistent with a set of correctly distributed secrets and with the shares
held by the adversary. By correctness of the protocol, this matches exactly the
distribution of the output of a real protocol run.

The very last part of the proof is to deal with adaptive corruptions. First
of all, if an honest player is corrupted during the protocol run but before we



receive outputs from Fpairs, we may simply open up one of the dummy parties
to the adversary and continue from there. The only difficult part is if a server is
corrupted after the output sharings have been chosen, because in that case the
view of a dummy party does not match the output sharings. To adjust the view
of a dummy party to the actual output shares of Fpairs, we examine how these

shares are constructed. We start by adjusting the shares of the [aji ] for j ∈ I (all

of the following works in the same way for the bji ). The adversary knows the full
sharings of

([xji ])j∈C = XI
C([aji ])j∈I +XR

C ([aji ])j∈R,

so for those we simply pick the correct shares of [aji ] for j ∈ R to match the

adjusted shares for j ∈ I. Now calculate ([xji ])j = X([aji ])j to find the remaining
shares owned by the newly corrupted player. This of course means that the other
dummy parties have to adjust their sharings from this point. The last problem
is xji created by this player. We can easily adjust its sharing of those values
to match what we need, but it also needs to match the values opened to the
adversary during the sharing of them. Luckily, we already know that this is
simply a matter of adjusting the randomness used in the sharing.

Complexity: We now examine the complexity of the protocol. Going through
each step of the protocol and remembering that every server is a dealer, we see
that each step has a maximum communication complexity of O(n3). Clearly
this is also the total communication complexity. The computational complexity
is O(n3 log n) plus the cost of each complaint, since in the slowest step, every
server must check the consistency of Θ(n) sharings by interpolation, which can be
done by using O(n log n) FFT. Every complaint adds O(n2) to both complexities
for the broadcast.

Permuting Elements within Blocks The next subprotocol PermuteWithinBlocks,
and it is shown in Figure 5 takes as input the shares of blocks ([x1], . . . , [xn]), a
vector of random pairs (([s1], [π(s1)]), . . . , ([sn], [π(sn)])), and the permutation
π. It outputs shares of new sharings ([π(x1)], . . . , [π(xn)]). For this protocol, we
prove correctness and privacy here, and use these properties in the simulation
proof for the main protocol.

1. For every n input blocks, we do the following.
2. The servers locally compute [xi + si] = [xi] + [si], 1 ≤ i ≤ n.
3. The servers select the non-eliminated server j that has least recently been chosen in this way

and invoke Reco to reconstruct the [xi + si] to j.
4. Server j locally computes π(xi) for all i.
5. Server i uses protocol Permuted to share [π(xi + si)] for all i, proving in the process that it

has been consistently shared and permuted. If Permuted outputs fail, return to step 3 (see
description of Permuted in the text).

6. The players locally compute [π(xi)] = [π(xi + si)]− [π(si)], 1 ≤ i ≤ n.

Fig. 5: Protocol PermuteWithinBlocks



Note that we only run the protocol for n blocks at a time to limit the cost of
Permuted failing. For efficiency, we must work on at least n blocks at a time, so
this is the natural choice. The protocol Permuted that was mentioned above is
an adaptation of RandomPairs: there is only one dealer, server j. Rather than
sharing both the xi’s and π(xi)’s, the server shares only π(xi), since servers
already have shares of the xi’s in question. However some extra random xi’s are
added to ensure privacy (recall that RandomPairs requires extra random blocks
that will not be output). Otherwise, we do exactly the same as in RandomPairs

but if fail if server j is eliminated we stop immediately and output fail. The
postprocessing phase is omitted, since there is only a single dealer who is allowed
to know the (masked) secret.

It is perfectly private and correct by for the same reason that PermutedPairs
is. As for the complexities, we consider permuting β groups ofΘ(n) blocks (i.e. we
permute Θ(βn) blocks). Ignoring broadcasts for a moment, we see that commu-
nication is at its most expensive when initially sharing, which costs O(βn2). The
most expensive computational step is still checking, which costs O(βn2 log n).
For both computation and communication, we need to add O(n3) in broadcast
costs in both cases (regardless of the number of groups) and a further O(n2) per
complaint.

For the protocol PermuteWithinBlocks, it is clear that we still have privacy,
since random blocks are added before opening. Correctness is trivial from the
construction. As for the complexities, the most expensive step is Permuted. So
both computational and communication complexities are as above, with the
exception that the cost is multiplied by the number of times we fail and have to
rerun Permuted. Since each failure results in at least one corrupt player being
eliminated, the worst case is having to rerun t times.

5.2 Multiplications

As explained earlier, our circuit consists of only addition, multiplication and h-
gates, where h(x, y, c) = (cx+ (1− c)y, cy+ (1− c)x). Since addition is trivially
done by local computation, it is sufficient to explain how to handle multiplica-
tions. In order to do this, we need the protocol RobustReshare; as mentioned
above it coverts a vector of blocks from being shared with degree d1 to shares
with degree d2. In a nutshell, it publicly reconstructs the values and then re-
shares them. Assume that we are given shared blocks [x]d, [y]d with degree d
and sharings [r]d, [r]2d of the same r but with degree d and 2d. The protocol
Multiply then works as shown in Figure 6.

1. For every pair of blocks x, y to multiply, we assume sharings [r]d, [r]2d are available. The servers
locally compute [xy + r]2d = [x]d[y]d + [r]2d.

2. RobustReshare is run to obtain [xy + r]d for all x, y.
3. For every x, y the servers locally compute [xy]d = [xy + r]d − [r]d.

Fig. 6: Protocol Multiply



The pairs [r]d, [r]2d we need can be generated using RanDouSha mentioned
above. Correctness follows from correctness of RobustReshare. Privacy follows
from privacy of RanDouSha since we can then assume the r is uniformly random
from the adversary’s point of view. The complexity is clearly dominated by
RobustReshare whose complexity was covered earlier.

6 The Main Protocol

The final protocol is described in Figure 8, while the functionality realized is in
Figure 7. This leads to:

1. The input clients send their inputs (x1, . . . , xr) to FC .
2. FC distributes (y1, . . . , yt) = C(x1, . . . , xr) to the intended output clients.

Fig. 7: The functionality FC for the circuit C

Preprocessing: Transform C into C′.
Step 0: Input clients invoke the functionality FRobustShare to share their inputs to the servers.

The servers invoke Fpairs and Fdouble to create a set Pi of pairs and a set DSi of double
sharings for every layer 1 ≤ i ≤ d of C′, where d = depth(C′).

Step i: For 1 ≤ i ≤ d, we have from the previous layers the set Ii of inputs for this layer as well as
pairs and double sharings Pi and DSi for this layer. Layer i is evaluated on Ii by the servers
through local computations and a constant number of calls to Multiply.
The outputs of the layer may need to be permuted. If the blocks are to be permuted, they are
permuted by local computation. If the elements within the blocks need to be permuted, the
servers invoke PermuteWithinBlocks on the blocks in question.

Step d+ 1: The servers open sharings to the relevant output clients using Reco.

Fig. 8: Protocol EvalCircuit

Theorem 1. There exists 0 < δ < 1/3 such that given n servers and an arith-
metic circuit C that is at least Ω(n) gates wide, the protocol EvalCircuit re-
alizes FC with perfect security in the UC model against an active and adaptive
adversary corrupting up to t < δn servers.

The total communication complexity is

O(log n log |C| · |C|) + poly(n, log |C|) · depth(C)2,

while the total computational complexity is

O(log2 n log |C| · |C|) + poly(n, log |C|) · depth(C)2.

The actual threshold in Theorem 1 is quite far from the optimal n/3 bound.
To improve on this, we may use the player virtualization technique by Bracha [6]
in the same way it was used in [13], to which we refer for the details of the



construction. The basic idea is to construct virtual servers that run our protocol.
To simulate each virtual server, a subset of the servers run a less efficient protocol,
the inner protocol, that has a high threshold.

The difference from [13] is that here we are interested in perfect security.
Therefore we need an inner protocol that also has perfect security. To this end,
we can employ the BGW protocol [3]. Since it has threshold n/3, the construction
from [13] gives us a threshold of n/3−ε for sufficiently large n, where ε > 0 may
be chosen arbitrarily.

The construction increases both the computational and communication com-
plexities to be the sum of the previous computational and communication com-
plexities. Therefore, the new bound for both will be the old computational bound.

Because of space limitations, the proof of Theorem 1 on the previous page is
given in the full version (on ePrint) [12].

In the full version we also prove Corollary 1, which is a reduction in the
complexity in some cases, namely when the depth is large and when X (the
maximal number of connections from one layer to others) is large.

Corollary 1. With the modification of the full version, the complexities of The-
orem 1 can be altered to

O(log depth(C) log n log |C| · |C|) + poly(n, log |C|) · depth(C) log depth(C)

for communication and

O(log depth(C) log2 n log |C| · |C|) + poly(n, log |C|) · depth(C) log depth(C)

for computation.

7 Application to Two-Party Cryptography

In this section we sketch the application of our main result to reducing the com-
putational overhead of zero-knowledge proofs and secure two-party computation.

In [20] it is shown how to obtain a zero-knowledge proof for the satisfiability
of a circuit C from any MPC protocol for n servers in which one client (“the
prover”) has an input w and another client (“the verifier”) should output C ′(w),
where C ′ is a constant-depth circuit of roughly the same size as C which is easily
determined by C. If the MPC protocol is adaptively secure against an active
adversary who corrupts the prover and a constant fraction of the servers, the
resulting zero-knowledge protocol will have soundness error of 2−Ω(n) plus the
correctness error of the MPC protocol. The simulation error corresponds to that
of the MPC protocol. The efficiency of the zero-knowledge protocol is essentially
the same as that of the MPC protocol, excluding the cost of n commitments to
strings whose total size is roughly the communication complexity of the MPC
protocol.

The above transformation was combined with the MPC techniques from [11,
9] to yield zero-knowledge proofs with a constant communication overhead. How-
ever, to guarantee soundness error of 2−k, the computational overhead of this



protocol must be Ω(k), even if ideal commitments are used. Plugging in our
main result, we obtain a perfect zero-knowledge protocol in the commitment-
hybrid model (i.e., using ideal commitments) in which both the communication
and computation overhead are polylogarithmic in k. As a side benefit, the perfect
security of our protocol allows for a simpler and more round-efficient transfor-
mation into a zero-knowledge proof protocol (see [20], Section 4).

To implement the commitment-hybrid model, we can use the constant over-
head constructions from [21] or the polylog-overhead constructions from [1]. The
latter have the advantage of relying on fairly standard cryptographic assump-
tions, related to the intractability of decoding random linear codes or learning
with errors.

We note that in the case of zero-knowledge arguments (with computational
soundness), it is possible to combine the PCP-based approach of [23, 25] for
efficient arguments with state of the art PCP constructions [4] and efficient
lattice-based constructions of collision-resistant hash functions [26, 24] to get
alternative constructions with polylogarithmic computational overhead. How-
ever, other than offering only computational soundness, the resulting protocol
requires stronger assumptions, inherits the complex and seemingly impractical
nature of current PCP constructions, and does not allow to eliminate the need
for cryptography using preprocessing.

We finally note that similar results can be obtained in the more general con-
text of secure two-party computation. One approach to obtain these results is to
apply the GMW-compiler [17], with the efficient zero-knowledge proofs described
above, to a constant-overhead protocol for the semi-honest model from [21]. The
latter protocol relies on the existence of a pseudorandom generator stretching n
bits to n2 bits in which each bit of the output depends on just a constant num-
ber of input bits — a plausible but nonstandard assumption. Another approach,
which can offers unconditional security in the OT-hybrid model, is to instantiate
the protocol compiler from [22] with our main protocol as the “outer protocol”.

8 On the Relevance of Gentry’s Scheme

The recent breakthrough of Gentry [16], suggesting the first plausible candi-
date for a fully homomorphic encryption scheme, has a great impact on the
theoretical efficiency of MPC. By distributing the key generation and decryp-
tion of Gentry’s scheme between the n players, it is possible to obtain general
constant-round MPC protocols whose communication complexity only depends
on n and the length of the inputs and outputs of C rather than the size of C.
We note, however, that this protocol can only provide computational security
(under a non-standard assumption) and, perhaps more importantly, its compu-
tational overhead involves a large polynomial in the security parameter. The
high computational cost seems to make Gentry’s scheme, in its current form,
too inefficient for practical purposes. Finally, for circuits whose output length
is not much smaller than their size (as in the case of performing a large num-
ber of simple computations), even the communication overhead of this protocol



becomes a large polynomial in k and n. In contrast, our protocol has the same
overhead even in this case. In light of the above, it seems fair to conclude that
Gentry’s result has limited relevance to the results of the present work from both
a theoretical and from a practical point of view.
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