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Abstract. We analyze the relation between induction, co-induction and
the presence of encryption cycles in the context of computationally sound
symbolic equivalence of cryptographic expressions. Our main finding is
that the use of co-induction in the symbolic definition of the adversarial
knowledge allows to prove soundness results without the need to require
syntactic restrictions, like the absence of encryption cycles, common to
most previous work in the area. Encryption cycles are relevant only to the
extent that the key recovery function associated to acyclic expressions
can be shown to have a unique fixed point. So, when a cryptographic
expression has no encryption cycles, the inductive (least fixed point) and
co-inductive (greatest fixed point) security definitions produce the same
results, and the computational soundness of the inductive definitions for
acyclic expressions follows as a special case of the soundness of the co-
inductive definition.
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1 Introduction

The symbolic approach to security analysis (pioneered by Dolev and Yao in [1])
has been very useful in the construction and application of automated reasoning
tools for the analysis of cryptographic protocols, like the Murphi model checker
[2] and the Isabelle theorem prover [3], just to name two representative examples.
However, the simplicity of the associated adversarial model (which enables the
construction of automated analysis tools) is also the main weakness of symbolic
security analysis: security is guaranteed only against attackers that abide to the
rules of the Dolev-Yao model. In practice, one needs security against any (com-
putationally feasible) attack as typically considered in modern computational
cryptography. In the last few years, starting with the seminal work of Abadi and
Rogaway [4], there has been considerable progress in understanding the rela-
tion between symbolic security analysis, and computational cryptography. Yet,
it is fair to say that many problems related to the connection of symbolic and
computational cryptography are still wide open.
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The aim of this paper is to explore one specific aspect that sets the symbolic
and computational models apart, and that has not received much attention so
far: the use of induction versus co-induction in security proofs. We do so in
the simplest possible setting considered in the literature: the indistinguishability
of cryptographic expressions, i.e., expressions like ({|d1|}k1

, {|k1|}k2
), where {|m|}

k

represents the encryption of message m under key k. These are the expressions
typically used to model messages in cryptographic protocols. For example, the
above expression may be used to represent the message in a protocol where a
long term key k2 is used to encrypt a session key k1, which in turn is used to
encrypt the actual message d1. The standard notion of equivalence in cryptog-
raphy is computational indistinguishability: two expressions are equivalent if no
probabilistic polynomial time adversary can distinguish the probability distri-
butions naturally associated to the two expressions in an actual execution of
the protocol. In the symbolic setting, equivalence is usually defined by map-
ping each expression to a corresponding pattern. For example, the expression
({|d1|}k1

, {|d1|}k2
, k2) may be mapped to the pattern ({|�|}

k1
, {|d1|}k2

, k2) to model
the fact that an adversary observing the messages {|d1|}k1

,{|d1|}k2
and k2, can

recover the key k2, decrypt the second ciphertext to d1, and even detect that
the first ciphertext uses a key different from k2 (e.g., because decryption under
k2 fails), but cannot tell that the first ciphertext encrypts the same message d1
as the second.

In the seminal paper [4], Abadi and Rogaway showed that the meaning as-
sociated to cryptographic expressions by standard symbolic methods is com-
putationally sound, in the sense that (under appropriate restrictions) if two
expressions are symbolically equivalent (i.e., they have the same pattern), then
the associated probability distributions are computationally indistinguishable.

Induction versus co-induction. As with most work in the area of formal anal-
ysis of security protocols, Abadi and Rogaway adopt an inductive approach to
the symbolic modeling of adversarial knowledge: initially the attacker does not
know any key and tries to learn as many keys as possible from a given crypto-
graphic expression through the application of Dolev-Yao rules.1 Technically, the
knowledge of the adversary can be defined by associating to each cryptographic
expression e a corresponding key recovery operator Fe (mapping sets of keys
to sets of keys) which roughly corresponds to a single application of the Dolev-
Yao decryption rules. The adversarial knowledge (obtained from observing the
expression e) can be characterized as the least fixed point of the key recovery
operator Fe, i.e., the smallest set of keys S such that Fe(S) = S. Operationally,
this least fixed point can be obtained by starting from the empty set of keys

1 A typical Dolev-Yao rule is that given a key k and the encryption {|m|}
k
of some

message m under k, one can compute the plaintext m. Such rules are intended to
capture the security features of the cryptographic operations used in the construction
of messages, and the whole framework relies on the postulate that the adversary
cannot perform any other operation. So, for example, given the cipher-text {|m|}

k
,

one cannot recover the message m, unless the encryption key k is already known.
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∅ (modeling the adversary’s initial knowledge),2 and applying the key recovery
operator Fe to obtain more and more keys

∅ ⊂ Fe(∅) ⊂ F2
e (∅) ⊂ . . . ⊂ Fm

e (∅) = Fm+1
e (∅)

until the least fixed point Fm
e (∅) is reached, and no additional keys can be

recovered by further applications of Fe.
In this paper we propose a dual, co-inductive approach. Technically, we pro-

pose to define the set of recoverable keys as the greatest fixed point of Fe, i.e.,
the largest set of keys S such that S = Fe(S). As before, the greatest fixed point
can be obtained by repeatedly applying the key recovery operator, but this time
starting from the set of all keys Keys, and resulting in a sequence of smaller
and smaller sets3

Keys ⊃ Fe(Keys) ⊃ . . . ⊃ Fm

e (Keys) = Fm+1
e (Keys)

until the greatest fixed point Fm
e (Keys) is reached. Informally, we start from

the set of all keys that appear in the expression in the role of plaintext of some
encryption, and then iterate through the following process: the new set of keys
is the set of all keys that can be deduced from the expression using the current
set of keys for decryption. This is now the set of exposed keys. Intuitively, this
corresponds to starting from the assumption that no key is guaranteed to be
secure, and proving that more and more keys (namely, those in the complement
of the sets F i

e(Keys)) are hidden to the adversary. As we are going to explain,
this technical change in the definition of symbolic security has far reaching con-
sequences when it comes to computational soundness.

Encryption cycles. In order to prove their soundness theorem, Abadi and Ro-
gaway [4] need to impose a simple, but fundamental, technical restriction: the
cryptographic expressions should not contain encryption cycles, e.g., sequences
of messages of the form

{|k1|}k2
, {|k2|}k3

, . . . , {|kn−1|}kn

, {|kn|}k1
,

where each key ki is encrypted under the next key k(i mod n)+1 in the sequence,
circularly. While encrypting a key with itself is typically considered a dangerous
cryptographic practice, encryption cycles do occur in a small number of applica-
tions (e.g., credential systems [5], encrypted data backups, etc.), and the problem
of designing encryption schemes supporting such a use has been the subject of
many recent papers [6–10]. In the symbolic security setting it is customary to as-
sume that encryption cycles are secure, in the sense that an adversary observing
a sequence of circularly encrypted keys, cannot recover any of them.

2 The knowledge of the keys of corrupted parties can be modeled by including those
keys as part of the expression e.

3 We remark that Fe(S) is defined as the set of keys that can be immediately recovered
from the expression e using the keys in S for decryption. In particular, Fe(S) does
not necessarily contain S as a subset, e.g., if some keys in S only occur in e as
encryption keys, but never as (possibly encrypted) messages.
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Our contribution. The main contribution of this paper is to highlight the re-
lation of encryption cycles to inductive and co-inductive definitions of security.
Specifically, we prove that

– (Theorem 1) if the set of recoverable keys is defined by co-induction (i.e.,
as the greatest fixed point of the key recovery operator), then the compu-
tational soundness result of Abadi and Rogaway holds without the need to
impose syntactic restrictions: if two expressions (with or without encryption
cycles) are symbolically equivalent, then their computational counterparts
are indistinguishable.

– (Theorem 2) if an expression has no encryption cycles, then the associated
key recovery function has a unique fixed point. In particular, the least and
greatest fixed point coincide, and the conditional result of Abadi and Rog-
away for acyclic expressions follows from the unrestricted result in the co-
inductive setting.

Our results show that what sets the symbolic and computational frameworks
apart (e.g., with respect to their ability to deal with encryption cycles,) is not the
inherent difference between the computational and symbolic protocol execution
models. Rather, it is the modeling of adversarial knowledge, which is typically
inductive in the case of symbolic analysis, while intrinsically co-inductive in the
computational setting.

At the technical level, our main computational soundness result (Theorem 1)
is fairly general, and applicable to classes of cryptographic expressions that occur
in many application domains, like secure multicast key distribution [11–13], and
cryptographically controlled access to XML documents [14]. A follow-up paper
[15] demonstrates the generality of our techniques using Theorem 1 to establish
a computational soundness theorem for expressions with pseudo-random keys,
as those used in [11–13]. As in this work, the results of [15] hold without the
need to impose any syntactic restriction on the expressions.

We remark that the uniqueness of the fixed point for acyclic expressions is
a purely symbolic result: neither the statement nor proof of Theorem 2 requires
the use of the computational execution model. In fact, the proof is simple enough
that one could model and verify it using an automated theorem prover. This fact,
together with the simplicity of our computational soundness theorem (compared
to analogous results from [4] and related papers), suggest that our greatest fixed
point framework may be a useful tool even when one is interested in compu-
tational soundness with respect to the traditional inductive security definition.
Specifically, in order to prove such computational soundness results one can

– first prove computational soundness for the corresponding co-inductive def-
inition of security (possibly using Theorem 1), and

– then find and check (possibly with the help of automated symbolic reason-
ing tools) syntactic restrictions under which the inductive and co-inductive
symbolic security definitions coincide.

So, even if induction may be the most intuitive and preferred way to analyze
security protocols in practice, we believe that the co-inductive method would
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still be a valuable tool to establish the computational soundness of the inductive
symbolic analysis.

Related work Computationally sound symbolic analysis has been the topic of
many recent works. This paper is most closely related to the line of work ini-
tiated by Abadi and Rogaway in [4], where secrecy properties with respect to
passive adversaries are considered. Subsequent developments along the same lines
include [16, 12, 11, 14]. We mention that other approaches to symbolic analysis
(e.g., [17]) inherit certain co-inductive ideas from the underlying process calcu-
lus, e.g., the use of bisimulation to define the equivalence between cryptographic
processes. However, those frameworks are substantially more elaborate than the
simple computational soundness setting considered in this paper, and their use
of co-induction is quite different.

The problem of dealing with encryption cycles is a classic one in cryptogra-
phy, already mentioned in the seminal paper [18] introducing the modern notion
of computational security for encryption. Following [4], the problem has attracted
renewed interest, both within the computational and symbolic setting. Two op-
posite approaches to resolving the discrepancy with respect to encryption cycles
were proposed in [19, 20].

In [20], Adao, Bana, Herzog and Scedrov prove a soundness theorem in the
presence of key cycles using a strong security notion for encryption recently
proposed in [21, 5]. This notion, called security under “Key Dependent Messages”
or “Key Dependent Input”, allows encrypted messages to depend on the secret
decryption key. At the time of [5, 21, 20], no scheme achieving this security notion
was known in the standard model, and the only solutions (proposed in [5, 21])
relied on the random oracle heuristic. Since then, the problem of building KDM-
secure cryptographic primitives has been investigated in various works [7, 6, 8,
10]. Similar results in the presence of active adversaries are given in [22]. In
this paper, we do not consider the extended notions of computational security
employed in these works, except for a brief discussion in Section 5. Rather,
we focus on the question of the relation between symbolic and computational
security when the standard computational security notion of indistinguishability
under chosen plaintext attacks (still the golden standard in cryptography in the
setting of passive attacks) is employed.

A different approach is used in[19], where Laud addresses the problem of
reconciling symbolic and computational analysis in the presence of key cycles
by strengthening the symbolic adversary. Specifically, Laud augments the en-
tailment relation used in inductive approaches with a special rule that explic-
itly allows the symbolic adversary to break encryption cycles. As a result, Laud
proves a computational soundness theorem for encrypted expressions (essentially
equivalent to our Corollary 1) that does not require syntactic restrictions. Inter-
estingly, greatest fixed point computations were suggested [23, equation 15] as
an algorithmic tool to evaluate Laud’s entailment relation. The main difference
between [19, 23] and our work is that [19, 23] retain the inductive framework
(and entailment relation, see Section 2) for modeling the adversarial knowledge,
and resolve the encryption cycles issue using ad-hoc methods. Here we establish
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a close connection between greatest fixed points and cryptographic expressions
at the semantic (computational soundness) level, and present a general approach
(based on the use of co-induction) that can be generalized to a larger class of
cryptographic expressions, e.g., the expressions with pseudo-random keys [13,
12], secret sharing schemes [14], etc.

Organization The rest of the paper is organized as follows. In Section 2 we
present some preliminary definitions on symbolic expressions. (For an overview of
the computational cryptography notions used in this paper the reader is referred
to the appendix.) In Section 3 we present our main technical results. In Section 4
we illustrate our results on a simple example expression. Section 5 concludes with
a discussion of future research directions and open problems.

2 Preliminaries

In this section we review the results and standard notation used in previous
papers, mostly following the seminal work of Abadi and Rogaway [4]. For an
overview of standard computational cryptography definitions and how symbolic
expressions are evaluated to probability distributions over bitstrings, the reader
is referred to the Appendix. Let Exp(Keys,Data) be the set of cryptographic
expressions built from two (disjoint) sets of key and data symbols Keys,Data,
using pairing and encryption operations. Formally, Exp(Keys,Data) is the set
of expressions generated by the grammar

Exp ::= Data | Keys | (Exp,Exp) | {|Exp|}Keys, (1)

where (e1, e2) denotes the concatenation of e1 and e2, and {|e|}
k
denotes the

encryption of e under k. Define also the set of patterns

Pat(Keys,Data) ⊂ Exp(Keys ∪ {◦},Data ∪ {�}), (2)

where ◦ and � are two special symbols (not in Keys or Data) which denote un-
known keys or data respectively.4 Notice that expressions are just a special case
of patterns, while patterns can be regarded (at least syntactically) as expressions
over an extended set of keys and data that include the special symbols ◦ and
�. This justifies the use (common throughout this paper) of the same symbols
e, e1, e2 to denote both expressions and patterns. As a notational convention,
we do not write the special key symbol ◦ when it occurs as an encryption key.
We also assume the paring operation (·, ·) is right associative, and omit unnec-
essary parenthesis. So, for example, we write (e1, e2, e3) and {|e1, e2|} instead of
(e1, (e2, e3)) and {|(e1, e2)|}◦.

4 To be precise, not all expressions in Exp(Keys∪{◦},Data∪{�}) are valid patterns.
Formally, the set of patterns is defined as the image p(Exp(Keys,Data),P(Keys))
of the function p given in Figure 2, where P(Keys) is the power-set of Keys. The
reader can safely ignore this technical detail, which is important only when mapping
patterns to probability distributions over bit-strings.
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The keys and parts of an expression or pattern are defined in the obvious
way according to the rules given in Figure 1. Notice that the special symbol ◦
is never included among the keys of a pattern. With this notation, the set of
keys k ∈ Keys that occur only as encryption subscripts in an expression (but
never as messages) is precisely Keys(e) \Parts(e). Keys are usually viewed as
bound names up to renaming. (E.g., as in the spi calculus [24].) Formally, two
expressions or patterns e1, e2 are equivalent up to renaming (written e1 ∼= e2),
if there exists a bijection µ:Keys(e1) → Keys(e2) such that µ(e1) = e2, where
µ acts on e1 as a substitution. Notice that, by definition, µ only acts on Keys

and maps the special symbol ◦ always to ◦.

Keys(d) = ∅

Keys(k) = {k} ∩Keys

Keys(e1, e2) = Keys(e1) ∪Keys(e2)

Keys({|e|}
k
) = ({k} ∩Keys) ∪Keys(e)

Parts(d) = {d}

Parts(k) = {k}

Parts(e1, e2) = Parts(e1) ∪Parts(e2)

Parts({|e|}
k
) = {{|e|}

k
} ∪Parts(e)

Fig. 1. The keys and parts of a pattern.

The symbolic equivalence of cryptographic expressions is defined by means
of a pattern function p (mapping expressions to corresponding patterns) and
the auxiliary function struct, both defined in Figure 2. Intuitively, struct(e)
represents structural information about e (e.g., its size) that may be leaked when
encrypting e under standard computational encryption schemes, and p(e, T )
is the pattern observable in e using the keys in T for decryption. Informally,
struct(e) is obtained by replacing all keys and data symbols in e by ◦ and �

respectively, and p(e, T ) is obtained replacing all subexpressions {|e′|}
k
in e such

that k /∈ T by {|struct(e′)|}
k
. For example,

p(({|d1|}k1
, {|d2|}k1

, {|d1, d2|}k2
), {k1}) = ({|d1|}k1

, {|d2|}k1
, {|�,�|}

k2
).

The pattern in this example models the fact that, using the key k1, an adversary
observing the message ({|d1|}k1

, {|d2|}k1
, {|d1, d2|}k2

) can detect that the first two
ciphertexts are the encryption of d1 and d2 under k1. The adversary can also
determine that the third ciphertext uses a key different from k1 (e.g., because
decryption under k1 fails), and encodes a message which is about the same size as
the concatenation of d1 and d2 (e.g., by looking at the length of the ciphertext).
However, the adversary cannot extract any other information about the third
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p(d, T ) = d

p(k, T ) = k

p((e1, e2), T ) = (p(e1, T ),p(e2, T ))

p({|e|}
k
, T ) =

{

{|p(e, T )|}
k

if k ∈ T
{|struct(e)|}

k
if k /∈ T

struct(d) = �

struct(k) = ◦

struct((e1, e2)) = (struct(e1), struct(e2))

struct({|e|}
k
) = {|struct(e)|}

Fig. 2. Rules defining the pattern function p:Pat(Keys,Data) × P(Keys) →
Pat(Keys,Data) and auxiliary function struct:Pat(Keys,Data) → Pat(∅, ∅),
where k ∈ Keys ∪ {◦}, d ∈ D ∪ {�}, and e, e1, e2 ∈ Pat(Keys,Data).

message. In particular, it cannot detect that the third message is indeed the
concatenation of the first two.

Going back to the definition of symbolic equivalence, each expression is
mapped to a pattern

pattern(e) = p(e, recoverable(e)) (3)

where recoverable(e) ⊆ Keys is a set (to be defined) which informally consists
of all keys that can be “recovered” by an adversary observing e. Two expressions
e1, e2 are considered symbolically equivalent if pattern(e1) ∼= pattern(e2), i.e.,
if they have the same pattern up to key renaming.

In most previous work (starting from the original Dolev-Yao paper [1], and
including the seminal contribution of Abadi and Rogaway [4]) the set of recov-
erable keys is defined as

recoverable(e) = {k: e ⊢ k}

where the entailment relation ⊢ is the smallest binary relation over the set
Exp(Keys,Data) such that

1. e ⊢ e for all e ∈ Exp(Keys,Data),
2. if e ⊢ (e1, e2) then e ⊢ e1 and e ⊢ e2, and
3. if e ⊢ {|e1|}k and e ⊢ k, then e ⊢ e1.

Informally, the entailment relation ⊢ represents the capabilities of a Dolev-Yao
adversary, that given e, tries to learn as much as possible from e. For example
the last rule stipulates that if the adversary can recover both the ciphertext
{|e1|}k and the key k, then she can decrypt and recover the plaintext e1 too.
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We remark that other definitions of recoverable keys have been considered
in the literature. Most notably, in an effort to remove the syntactic restric-
tion to acyclic expressions, Laud [19] has proposed an alternative definition
of the entailment relation that strengthens the Dolev-Yao adversary by ex-
plicitly allowing him to break the encryption cycles. Formally, Laud defines
recoverable(e) = {k: e ⊢∅ k} where the entailment relation ⊢S is defined as
the smallest relation satisfying the following conditions

1. e ⊢S e,
2. if e ⊢S (e1, e2) then e ⊢S e1 and e ⊢S e2,
3. if e ⊢S {|e′|}

k
then e ⊢S∪{k} e′,

4. if e ⊢S∪{k} e′ and e ⊢S k then e ⊢S e′,
5. if e ⊢S e′ and S ⊆ S′ then e ⊢S′ e′,
6. if e ⊢S∪{k} k then e ⊢S k.

Intuitively, the relation e ⊢S e′ models the fact that expression e′ can be
recovered from expression e using the keys in S for decryption. So, for example,
rule 5 simply states that increasing the number of available decryption keys
does not decrease our ability to recover information from e. Rules 1 and 2 are
the same as for the entailment relation ⊢ used by Abadi and Rogaway. Rules 3
and 4 together imply the standard decryption rule: if e ⊢S {e′}k and e ⊢S k,
then e ⊢S e′. The main novelty in Laud’s definition is rule 6, which captures
the idea that the adversary can break encryption cycles: if decrypting under k
allows to recover k, then k is part of an encryption cycle and it can be recovered
by the adversary.

3 Computationally sound greatest fixed point semantics

In order to compare our results to prior work, it is convenient to give a different,
but equivalent definition of the set of recoverable keys. First of all, we extend the
pattern computation function p of Abadi and Rogaway [4] to include patterns
in its domain. This is done in the obvious way, namely, we let

p:Pat(Keys,Data)× P(Keys) → Pat(Keys,Data)

be the function defined precisely by the same rules already given in Figure 2.
Next, we introduce a key recovery function

r:Pat(Keys,Data) → P(Keys)

which is, in a sense, a counterpart to the pattern computation function p of [4].
Intuitively, the function r maps the expression or pattern e to the set of keys
recoverable from all parts of e. For the class of patterns used in this paper, the
function r can be simply defined as

r(e) = {k ∈ Keys(e): k ∈ Parts(e)} = Keys(e) ∩Parts(e), (4)
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i.e., r(e) is the set of all keys that appear in e as a message. In other words,
r(e) includes all keys of e, except those that occur exclusively as encryption
subscripts.

We observe that the functions p and r satisfy the following fundamental
properties:

p(e,Keys) = e (5)

p(p(e, S), T ) = p(e, S ∩ T ) (6)

r(p(e, T )) ⊆ r(e) (7)

These are all very natural requirements. Properties (5) and (6) just say that
p makes keys act on the patterns, or, more precisely, (P(Keys),∩) acts5 as a
monoid on the set Pat(Keys,Data). The third property (7) states that the
action p(·, T ) does not increase the amount of information recoverable from (the
parts of) a pattern. When p and r satisfy properties 5-7, we say that “p is
an r-projection”. We will see later that these are the only properties needed to
instantiate our general framework, but for now the reader may want to focus on
the specific functions p and r defined in Figure 2 and (4).

The functions p, r are used to associate to each e ∈ Exp(Keys,Data) a
corresponding key recovery operator

Fe:T 7→ r(p(e, T )) (8)

that maps any T ⊆ Keys to the set of keys recoverable from all the parts of
the observable pattern p(e, T ). The function Fe models the process of using a
set of keys T to break an expression e into parts, and then using all such parts
to recover as many keys as possible. In Theorem 1 we will show that for any
expression e, the key recovery operator (8) is a monotone function. In particular,
Fe admits both a least and a greatest fixed point

fix(Fe) =
⋃

n

Fn(∅) FIX(Fe) =
⋂

n

Fn(Keys).

It is a well known fact that the set of keys {k: e ⊢ k} recoverable by a Dolev-
Yao adversary is precisely the least fixed point of Fe. So, the Abadi-Rogaway
definition of the pattern of an expression can be reformulated as pattern(e) =
p(e, fix(Fe)).

Our general framework is very similar to the one of Abadi and Rogaway, and
we adopt most definitions given so far. The only difference is that, instead of
defining recoverable keys as the least fixed point of Fe, we take the greatest fixed
point and let

Pattern(e) = p(e,FIX(Fe)). (9)

As usual, two expressions are symbolically equivalent if they have the same
pattern (9) up to key renaming. We refer the reader to Section 4 for an example
of use of the greatest fixed point patterns.

5 Recall that an action of a monoid (G, ·) on a set A is a binary operation × mapping
A×G to A such that (a× g1)× g2 = a× (g1 · g2) and a× 1G = a.
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In this section we prove that our new greatest fixed point symbolic semantics
is computationally sound, i.e., for any two expressions e1, e2, if Pattern(e1) ∼=
Pattern(e2), then the probability distributions Je1K and Je2K are computation-
ally indistinguishable. We do so in a very general way, applicable to a wider class
of cryptographic expressions than considered in this paper and in [4], as demon-
strated in follow-up work [15]. Theorem 1 below states that, as long as properties
(5-7) are satisfied, in order to establish the computational soundness of the great-
est fixed point symbolic semantics (9) it is enough to test the following simpler
condition: for any pattern e, the probability distributions JeK, and Jp(e, r(e))K
are computationally indistinguishable. Informally, this condition states that the
keys r(e) recoverable from all parts of a pattern do not increase our knowledge
about the pattern. This is a non-trivial assumption, as it depends on the security
of the encryption scheme, but still it is a much easier-to-check condition than
the conclusion of the soundness theorem. In particular, the indistinguishability
of Jp(e, r(e))K and JeK can be usually proved in a fairly direct way, starting from
the definition of secure encryption scheme, without the need to go through a
complex hybrid argument.

Theorem 1. Let Keys and Data be two (disjoint) sets of key and constant
symbols, and let p and r be functions such that p is an r-projection. Then, for any
expression e ∈ Exp(Keys,Data), the key recovery operator Fe(T ) = r(p(e, T ))
is a monotone function, and the greatest fixed point semantics Pattern(e) =
p(e,FIX(Fe)) is well defined. Moreover, if, for any e ∈ Pat(Keys,Data), the
distributions JeK and Jp(e, r(e))K are computationally indistinguishable, the dis-
tribution JeK is computationally indistinguishable from Pattern(e). In partic-
ular, for any two expressions e1, e2 ∈ Exp(Keys,Data), if Pattern(e1) ∼=
Pattern(e2), then the distributions Je1K and Je2K are computationally indistin-
guishable.

Proof. First of all, we show that the key recovery operator is monotone. Let
S ⊆ T ⊆ Keys be two sets of keys. From the definition of Fe and properties
(6–7), we obtain

Fe(S) = r(p(e, S))

= r(p(e, T ∩ S))

= r(p(p(e, T ), S))

⊆ r(p(e, T )) = Fe(T ).

So, Fe is a monotone operator and it admits a greatest fixed point FIX(Fe) =⋂
i
F i(Keys).

Now consider an expression e and the corresponding pattern pattern(e) =
p(e,FIX(Fe)), and assume without loss of generality that Keys = Keys(e), so
that n = |Keys| is polynomially bounded in the size of e. Since Fe is a monotone
function, we have FIX(Fe) = Fn

e (Keys), where n = |Keys| is the length of the
longest chain in P(Keys). We will show that for every i, Jp(e,F i+1

e (Keys))K
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is computationally indistinguishable from Jp(e,F i
e(Keys))K. It follows, by tran-

sitivity, that Jp(e,FIX(Fe))K = Jp(e,Fn
e (Keys))K is computationally indistin-

guishable from JeK = Jp(e,Keys)K = Jp(e,F0
e (Keys))K. More specifically, any

probabilistic polynomial time algorithm distinguishing JeK from Jpattern(e)K
with advantage δ can be turned into a probabilistic polynomial time algorithm
that distinguishes Jp(e,F i+1

e (Keys))K from Jp(e,F i
e(Keys))K for some i with

advantage δ/n.
Fix the value of the index i, and let T = F i

e(Keys) and e′ = p(e, T ). Clearly,
Fe(Keys) ⊆ Keys because Keys is the set of all keys in e, and from the
monotonicity of Fe we get that F i+1

e (Keys) ⊆ F i
e(Keys) for all i ≥ 0. In

particular, Fe(T ) ⊆ T . We want to prove that Jp(e,Fe(T ))K is indistinguishable
from Jp(e, T )K. Notice that, using the definition of Fe(T ) = r(p(e, T )), we get

p(e′, r(e′)) = p(p(e, T ),Fe(T ))

= p(e, T ∩ Fe(T ))

= p(e,Fe(T )).

Remember that by hypothesis, Jp(e′, r(e′))K is computationally indistinguish-
able from Je′K. Therefore, Jp(e,Fe(T ))K = Jp(e′, r(e′))K is indistinguishable from
Je′K = Jp(e, T )K as claimed.

We remark that in Theorem 1 we have assumed that e is an expression
for simplicity only. The same result (and proof) holds true also when e ∈
Pat(Keys,Data) is an arbitrary pattern. In the following corollary we apply
Theorem 1 to the functions p and r defined in Figure 2 and (4).

Corollary 1. If E is a (length regular) semantically secure encryption scheme,
then for any two expressions e1, e2 ∈ Exp(Keys,Data) such that Pattern(e1) ∼=
Pattern(e2), the distributions Je1K and Je2K are computationally indistinguish-
able.

Proof. We already observed that p and r satisfy properties (5–7). In order to ap-
ply Theorem 1 and conclude that Je1K is indistinguishable from Je2K, we only need
to prove that for any pattern e, the distributions Jp(e, r(e))K and JeK and compu-
tationally indistinguishable. To this end, assume for contradiction that there ex-
ists an efficient algorithm D that distinguishes distribution JeK from Jp(e, r(e))K
with non-negligible probability. (See Definition 2 in Appendix.) We use D to
construct an efficient adversary that breaks the indistinguishability of the en-
cryption scheme E used to evaluate the patterns. Let T = Keys(e) \ Parts(e)
be the set of all encryption keys in e that do not also appear in e as a message.
We define an adversary A that is given access to |T | encryption oracles Et

b
(·, ·)

(indexed by t ∈ T ). The adversary A chooses keys σ(k) independently at ran-
dom for all k ∈ Keys(e) \T = r(e). It then evaluates the expression e according
to the usual evaluation rules, except for subexpressions of the form {|e′|}

k
where

k ∈ T . These are evaluated using oracle Ek

b
. When A is done evaluating e, it

submits the resulting string to the distinguisher D. Notice that when b = 1, the
adversary A produces a query which is distributed identically to JeK, while when
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b = 0 the distribution is Jp(e, r(e))K. So, A will have the same advantage in
breaking the encryption scheme as D has in distinguishing JeK from Jp(e, r(e))K.

Corollary 1 is very similar in spirit to the soundness result proved by Abadi
and Rogaway in [4]. However, our proof of Corollary 1 is much simpler than the
original argument given by Abadi and Rogaway, which requires the expressions
e1, e2 to be acyclic. The main difference is our use of greatest fixed points in the
definition of adversarial knowledge, while [4] uses the traditional least fixed point
definition. At first sight, the two results may seem incomparable, since they use
different definitions of patterns. The following theorem bridges the gap between
the two (inductive and co-inductive) definitions of pattern, showing that acyclic
expressions have a unique fixed point. So, under the acyclicity hypothesis of
[4] (common to most other work on computationally sound symbolic cryptogra-
phy) the traditional least fixed point semantics and the new greatest fixed point
semantics are identical.

Theorem 2. If e ∈ Exp(Keys,Data) is an acyclic expression, then fix(Fe) =
FIX(Fe).

Proof. Assume fix(Fe) 6= FIX(Fe). We prove that e contains an encryption cycle.
Since fix(Fe) ⊂ FIX(Fe), the set T = FIX(Fe) \ fix(Fe) is not empty. Notice
that all k ∈ T necessarily belong to r(e) because by monotonicity

T ⊆ FIX(Fe) = Fe(FIX(Fe)) ⊆ Fe(Keys(e)) = r(p(e,Keys(e)) = r(e). (10)

However, all occurrences of k ∈ T in e must be under the scope of an encryption
operator {|. . . k . . .|}

k′ with k′ /∈ fix(Fe), because k /∈ fix(Fe). Again, from (10),
we get that at least some occurrence of k in e must not be encrypted under
keys outside of FIX(Fe). It follows, that k must be encrypted under some key
k ∈ FIX(Fe)\fix(Fe) = T . Consider now the “encrypt” relation, restricted to the
keys in T : for any k1, k2 ∈ T , k1 encrypts k2 (in e) if e contains a subexpression
{|e′|}

k1
such that k2 ∈ Parts(e′). We just proved that all keys in T are encrypted

in e under some key in T , i.e., all nodes T in the graph of the “encrypt” relation,
have in-degree at least one. Since T is a non-empty finite set, it must necessarily
contain a cycle.

4 Example

In this section we illustrate our greatest fixed point symbolic framework on a
simple example expression. Let

e = ({|k1, {|{|k4|}k3
|}
k4

|}
k2

, {|k2|}k1
).

The set of recoverable keys associated to this expression is defined as the greatest
fixed point of the key recovery operator Fe. This fixed point is computed as
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follows. Start from the set K0 = {k1, k2, k3, k4} of all keys in the expression, and
apply Fe to it to obtain the set

K1 = Fe(K0)

= r(p(e,K0))

= r({|(k1, {|{|k4|}k3
|}
k4

)|}
k2

, {|k2|}k1
)

= {k1, k2, k4}.

As we apply Fe to K1 we obtain

K2 = Fe(K1)

= r(p(e,K1))

= r({|(k1, {|{|◦|}k3
|}
k4

)|}
k2

, {|k2|}k1
)

= {k1, k2}.

If we apply Fe once more we obtain

K3 = Fe(K2)

= r(p(e,K2))

= r({|(k1, {|{|◦|}|}k4

)|}
k2

, {|k2|}k1
)

= {k1, k2}.

Notice that we obtained a decreasing sequence of sets

F0
e (Keys) = {k1, k2, k3, k4}

⊃ F1
e (Keys)

= {k1, k2, k4}

⊃ F2
e (Keys) = {k1, k2}

= F3
e (Keys)

and F i
e(Keys) = {k1, k2} for all i ≥ 2. This is the greatest fixed point of the

operator Fe, so the symbolic semantics of expression e is

Pattern(e) = p(e, {k1, k2}) = {|(k1, {|{|◦|}|}k4

)|}
k2

, {|k2|}k1
).

This pattern tells us that the keys k1 and k2 are not guaranteed to be hid-
den from an adversary when a computational encryption scheme (satisfying the
standard notion of indistinguishability against chosen plaintext attack) is used.
On the other hand, the adversary cannot recover they keys k3 and k4, even if k4
is part of an encryption cycle.

5 Discussion and open problems

We presented a general framework for the computationally sound symbolic anal-
ysis of cryptographic expressions, as those used to model messages in security
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protocols. The framework is essentially the same as the standard one proposed by
Abadi and Rogaway [4], with the only difference that the adversarial knowledge
is defined by co-induction (using greatest fixed points), rather than induction
(using least fixed points). This simple change brings the computational and sym-
bolic definitions much closer to each other.

We believe that our observations improve our understanding of the relation
between symbolic and computational cryptography, and open up several new
interesting research directions. In retrospect, the fact that co-inductive methods
(in the symbolic setting) result in a closer connection to computational security
should not come too much as a surprise, since the methods of computational
cryptography (e.g., the notion of computational indistinguishability, a form of
observational equivalence) have a very strong co-inductive flavor. Acyclicity and
similar syntactic restrictions are not a peculiarity of [4]: most work on com-
putationally sound symbolic security analysis (with just a few rare exceptions
like [19]) seem to require restrictions of this sort. Our results suggest the use
of co-induction in the symbolic modeling of adversarial knowledge as a general
method to prove closer connections between symbolic and computational secu-
rity in other settings. There is a need for more work in the area of co-inductive
symbolic security analysis, and such work is likely to provide a better bridge be-
tween symbolic and computational cryptography than traditional methods based
on induction.

It is natural to ask how co-induction relates to recent constructions of cir-
cularly secure encryption [8, 25], i.e., computational encryption schemes that
remain secure even in the presence of encryption cycles. We remark that [8, 25]
achieve circular security by building encryption schemes satisfying very strong
homomorphic properties that allow, for example, to build the encryption of k
under k (i.e., an encryption cycle of length 1) given the encryption of 0 under k,
and similarly for longer cycles. We conjecture that if the Dolev-Yao deduction
rules are properly modified to model encryption schemes with special homomor-
phic properties (as those used in [8, 25]), then the resulting key recovery operator
Fe associated to any expression (with or without encryption cycles) would al-
ways have a unique fixed point. We leave a full investigation of computational
soundness of encryption schemes with special properties to future work.

The generality of our approach (at least in the setting of secrecy properties
in the presence of passive adversaries) has recently been demonstrated in [15],
where Theorem 1 is used to establish the computational soundness of symbolic
expressions with pseudorandom keys, as those employed in multicast key distri-
bution protocols [11–13]. As in this paper, the result of [15] does not require the
expressions to be acyclic or satisfy any syntactic restriction. We expect similar
results can also be obtained for cryptographic expressions that make use of secret
sharing schemes (as those employed in [14] in the analysis of cryptographically
controlled access to XML documents), and most other cryptographic primitives
achieving secrecy goals.

The main open problem at this point is to extend our co-inductive framework
to prove computational soundness results in the presence of active adversaries,



16 Daniele Micciancio

as those considered in [26]. We remark that moving from passive adversaries to
active attacks requires substantial changes in the execution model. In a passive
attack, an adversary only gets to see the sequence of messages transmitted during
the execution of the protocol. So the entire adversary’s view of the system can
be modeled by a sequence of expressions (or even a single expression containing
their concatenation.) In an active attack scenario, the adversary interacts with
the honest parties, intercepting and injecting messages in the communication
network. Security properties no longer pertain exclusively what information can
be learned by the adversary, but also how the adversary can influence the mes-
sages. A general approach to computational soundness in the presence of active
adversaries has been proposed in [26], where security properties are modeled
as sets of traces, e.g., sequences of events that can occur during a run of the
protocol. We leave the development of a co-inductive framework for the study
of cryptographic trace properties in the presence of active attacks as an open
problem.
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Appendix

In the computational setting, given an encryption scheme E , each expression
e ∈ Exp(Keys,Data) naturally maps to a probability distribution JeK over
bitstrings. Two expressions e1, e2 are equivalent in the computational setting
if the corresponding probability distributions Je1K ≡ Je2K are computationally
indistinguishable. In this appendix we briefly recall all the basic computational
security definitions used in this paper. The reader is referred to any standard
textbook (e.g., [27, 28]) for details.

Encryption. A (symmetric) encryption scheme is defined as a pair of (proba-
bilistic) polynomial time encryption and decryption algorithms E ,D such that
D(k, E(k,m)) = m for any message m and key k. Here the message m is an ar-
bitrary string, and the key k is a uniformly random string of some fixed length ℓ
that depends on the desired security level. The encryption scheme is considered
secure if it satisfies the following property, called semantic security or indistin-
guishability under chosen plaintext attack.

Definition 1. An encryption scheme (E ,D) is indistinguishable under chosen
plaintext attack if, for any probabilistic polynomial time adversary A, the fol-
lowing holds. Choose a bit b and a key k of length ℓ uniformly at random and
run A on input ℓ and with access to an encryption oracle Ob(m) that outputs
E(k,m) if b = 1, or E(k, 0|m|) if b = 0. The attacker A is required to run in time
polynomial in the security parameter ℓ, and is supposed to guess the value of b.
Then the quantity |Pr{AO1(ℓ) = 1} − Pr{AO0(ℓ) = 1}| is negligible in the secu-
rity parameter ℓ, i.e., it is smaller than 1/ℓc for any constant c and sufficiently
large ℓ.

The above definition can be proved equivalent (via a standard hybrid ar-
gument) to a seemingly stronger definition where the attacker is given access
to several encryption oracles, each encrypting under an independently chosen
random key.

Definition 2. An encryption scheme (E ,D) is indistinguishable under chosen
plaintext attack if, for any probabilistic polynomial time adversary A and poly-
nomial p, the following holds. Choose a bit b and n = p(ℓ) keys k1, . . . , kn of
length ℓ each, uniformly and independently at random and run A on input ℓ and
with access to an encryption oracle Ob(i,m) that outputs E(ki,m) if b = 1, or
E(ki, 0|m|) if b = 0. The attacker A is required to run in time polynomial in the
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security parameter ℓ, and is supposed to guess the value of b. Then the quantity
|Pr{AO1(ℓ) = 1} − Pr{AO0(ℓ) = 1}| is negligible in the security parameter ℓ,
i.e., it is smaller than 1/ℓc for any constant c and sufficiently large ℓ.

Computational equivalence between probability distributions over bitstrings
is defined below.

Definition 3. Let {A0
i
} and {A1

i
} be two probability ensembles, i.e., two se-

quences of probability distributions over bitstrings. {A0
i } and {A1

i } are computa-
tionally indistinguishable if for any probabilistic polynomial time adversary D,
the quantity |Pr{D(A0

i
) = 1} − Pr{D(A1

i
) = 1}| is negligible in i.

Computational evaluation. Cryptographic expressions can be evaluated using a
computational encryption scheme E . In order to map the expressions to strings
we need also to fix a string value γd for every piece of data d ∈ Data appearing
in the expression, and a pairing function γ: {0, 1}∗ × {0, 1}∗ → {0, 1}∗.

We first define the evaluation σJeK of an expression e ∈ Exp(Keys,Data)
with respect to a fixed key assignment σ:Keys → {0, 1}ℓ. The value σJeK is
defined by induction on the structure of the expression e by the rules σJdK = γd,
σJkK = σ(k), σJ(e1, e2)K = γ(σJe1K, σJe2K), and σJ{|e|}

k
K = E(σ(k), σJeK) where

all applications of the encryption algorithm E are performed using independent
randomness. The computational evaluation JeK of an expression e is defined as
the probability distribution obtained by first choosing a random key assignment
σ (by setting σ(k) ∈ {0, 1}ℓ to an independently and randomly chosen value for
each key symbol k ∈ Keys) and then computing σJeK.

Length conventions and pattern evaluation. Since computational encryption is
not usually required to hide the length of the input, it is natural to require that all
functions operating on messages are length-regular, i.e., the length of the output
depends only on the length of the input. Throughout the paper we assume that
the functions d 7→ γd, γ(·, ·) and E are length regular, i.e., |γd| is the same for
all d ∈ Data, |σ(k)| = ℓ for all keys k, |γ(x1, x2)| depends only on |x1| and |x2|,
and |E(k, x)| depends only on |σ(k)| = ℓ and |x|. Under these assumptions, it
is easy to see that any two expressions e, e′ ∈ Exp(Keys,Data) with the same
structure struct(e) = struct(e′) are always evaluated to strings of exactly
the same length |σJeK| = |σJe′K|. Using this fact, the computational evaluation
function σJeK is extended to patterns by defining σJstruct(e)K = 0|σJeK|. Notice
that the definition is well given because |σJeK| depends only on struct(e), and
not on the specific expression e.


