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Abstract. An efficient protocol for quantum key distribution is pro-
posed the security of which is entirely device-independent and not even
based on the accuracy of quantum physics. A scheme of that type re-
lies on the quantum-physical phenomenon of non-local correlations and
on the assumption that no illegitimate information flows within and be-
tween Alice’s and Bob’s laboratories. The latter can be enforced via the
non-signaling postulate of relativity if all measurements are carried out
simultaneously enough.

1 Non-Locality, General Non-Signaling Adversaries, and

Device-Independent Secrecy

1.1 Minimizing Assumptions for Secure Key Agreement

It is well-established that secrecy must be based on certain premises such as a
limitation on the adversary’s computing power [2], [3] or memory [4], [5], noise
in communication channels [6], [7], [8], the uncertainty principle of quantum
physics [9], or entanglement [10]. In traditional quantum key distribution, the
security proof is based on

1. the postulates of quantum physics,
2. the assumptions that the used devices work according to their specification,

and
3. that Eve does not get information about the generated key out of the legit-

imate partners’ laboratories.

This article is concerned with a variant of quantum key distribution which al-
lows the first two assumptions to be dropped, if at the same time, the third is
augmented by the assumption that no unauthorized information is exchanged
within and between the legitimate laboratories. One possibility to guarantee this
is via the non-signaling postulate of relativity if certain actions are carried out
in a space-like separated3 way. Of particular importance is device independence

⋆ Because of space limitations, technical proofs are omitted in this extended abstract.
The full proofs are given in [1].

3 Two events, i.e., points in space-time, are called space-like separated if no signal at
the speed of light, or smaller, can get from one to the other.



(i.e., dropping Condition 2), for two reasons. First, the necessity to trust the
manufacturer is never satisfactory. Second, the security of traditional protocols
for quantum key distribution relies crucially on the fact that the devices exactly
match the theoretical model used in the security analysis, e.g., that a single
photon source only emits always exactly one photon. For instance, the BB84
protocol [9] becomes completely insecure if larger systems, such as pairs of pho-
tons, are transmitted. With present technology, this is a significant issue. The
fact that practical deviations from the theoretical model open the possibility of
attacks has been demonstrated experimentally, see [11], [12], [13], [14], [15],
[16], and references therein.

The question of device-independent security has been raised by Mayers and
Yao in [17]. It was shown in [18] that such security is possible in principle. How-
ever, no non-zero secret-key rate has been achieved, and the classical-communi-
cation cost is exponential in the security parameter. Later schemes, robust
against noise and achieving a positive key rate, have been proven secure against
certain restricted types of attacks [19], [20], [21], [22]. The current state of the
art is that security can hold against all attacks for which no (quantum) correla-
tion is introduced between subsequent measurements, see, e.g., [23].

1.2 The Basic Idea: Systems, Correlations, and Non-Locality

We explain the basic idea of achieving device-independent security by Barrett,
Hardy, and Kent [18]. The resulting confidentiality is based on certain correla-
tions — called non-local — between Alice and Bob.4

Non-locality is a property of the joint input-output behavior of two (or more)
remote objects. Surprisingly, certain quantum states show such a behavior: The
two parts of some entangled states display, under measurements, correlations un-
explainable by shared classical information. This fact was observed by Bell [25] in
1964 and terminated attempts to completely describe quantum physics by local
classical parameters, so-called hidden variables, as claimed by Einstein, Podol-
sky, and Rosen in 1935 [26]. It is, roughly speaking, exactly the non-existence of
such hidden variables which can be exploited cryptographically: Information that
does not exist can, in particular, not be known to an adversary (see Sect. 1.5).

In order to explain non-local correlations, we introduce the notion of a two-
party system, defined by its joint input-output behavior PXY |UV (see Fig. 1).

Definition 1. A bipartite system is a conditional distribution PXY |UV . It is
local if PXY |UV =

∑n
i=1 wiP

i
X|UP

i
Y |V for some wi ≥ 0 and distributions P i

X|U
and P i

Y |V , i = 1, . . . , n. It is non-signaling if it does not allow for message trans-

mission, i.e., if
∑

x PXY |UV (x, y, u, v) =
∑

x PXY |UV (x, y, u′, v) for all y, v, u, u′,

4 Note that although classically the possibility to derive secrecy from correlations
alone appears unusual, this is not so in quantum physics, since entanglement is
monogamous to some extent [24]: If Alice and Bob are maximally entangled, then
Eve factors out and must be independent.
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Fig. 1. A two-party system. If it does not allow for message transmission, it is called a
non-signaling box.

and similarly for the converse direction. A bipartite system that is non-signaling
is also called a non-signaling box.

Local systems are exactly what can be achieved with shared randomness:
The randomness is equal to the i in the weighted sum. We will concentrate
on systems that are non-local and at the same time non-signaling. It may be
somewhat surprising that such systems exist, and we describe an example in
Sect. 1.3. Note that throughout this paper, all systems are non-signaling boxes.

1.3 Non-Locality Exists in Nature

In this section, we discuss a type of non-locality that exists in nature, named
CHSH after [27]. For simplicity, we first discuss an idealization of that behavior,
introduced by Popescu and Rohrlich [28] and called the PR box (see Fig. 2).

Definition 2. [28] A Popescu-Rohrlich box (or PR box for short) is the follow-
ing bipartite system PXY |UV : For each input pair (u, v), X is a random bit and
Prob [X ⊕ Y = U · V ] = 1.
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Fig. 2. The PR box.

Bell [25] showed this system to be non-local. More precisely, any system that
behaves like a PR box with probability greater than 75% is. This can be seen
as follows: Locality is equivalent to the possibility that the outputs to the two



alternative inputs are pre-determined on each side. Let us call these bits X0

(Alice’s output if U = 0), X1, and Y0, Y1, respectively. Now, X ⊕ Y = U · V
translates to the four contradictory conditions X0 = Y0, X1 = Y0, X0 = Y1, and
X1 6= Y1: Only three out of the four can be satisfied at a time!

The concept of a non-signaling box can now be used to investigate the prop-
erties of entangled quantum states. For this one considers a setting where Alice
and Bob can choose local measurements, U and V respectively, and obtain out-
puts X and Y . Interestingly, in this model a PR box can be approximated by
roughly 85%! In order to see this, note first that when the two Qbits of a sys-
tem in the singlet state |ψ−〉 := (|01〉 − |10〉)/

√
2 are measured in bases that

enclose an angle of ϕ, then the probability of observing opposite measurement
results is cos2 ϕ. The behavior of a PR box can be approximated with probability
cos2 22.5◦ ≈ 85% if the bases as shown in Fig. 3 are used, and if Bob flips his
output bit. (Here, U0 determines the measurement basis Alice uses upon getting
input 0, etc.) This is optimal for all quantum states [29]. We have seen above
that with shared (classical) information, at most 75% can be achieved; hence,
nature is non-local!

22.5◦
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Fig. 3. Alice’s and Bob’s measurement
bases for obtaining a 85%-PR box.
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Fig. 4. The measurement bases used in
Protocol 1.

1.4 The General Non-Signaling Adversary

We model an adversary as an additional interface to the non-signaling box, with
the only restriction that the tripartite box is still non-signaling. In our security
analysis, we will show that the key, generated by Alice and Bob by interacting
with their respective parts of the non-signaling box, is secure in the sense that it
is uniform and independent of all information accessible at this third interface.
This model obviously puts minimal assumptions on the adversary: As usual in
quantum key distribution, Eve may be in control of the entire environment,
i.e., the complement of the two laboratories. Moreover, the information she has
about what happens in these laboratories is only restricted by the non-signaling



postulate: From the adversary’s viewpoint (i.e., given all her information), no
signaling can occur between space-like separated events, and no information is
leaked out of the legitimate laboratories to the adversary. Note, in particular,
that Eve is not assumed to be limited by quantum physics, neither is she assumed
not to be the manufacturer of the devices used by Alice and Bob.

The non-signaling condition may be enforced by relativity, i.e., by carrying
out the corresponding measurements in a space-like separated way. An alterna-
tive is to place every partial system into a shielded laboratory. Non-signaling
is also a direct consequence of the assumption usually made in quantum key
distribution that the Hilbert space is the tensor product of the Hilbert spaces
associated with the local measurement processes of the parties and the dynamics
factorizes.

We will see in Sect. 1.5 that in a non-local system, the non-signaling condition
leads to a limitation on the bias of the system’s outputs. When this fact is
interpreted as being from an adversary’s viewpoint, it represents a limitation on
her information about these outputs: Bits that are unbiased for an adversary are
secret.

1.5 Non-Locality + Non-Signaling = Limited Bias = Secrecy

The PR box is non-signaling: X and Y separately are perfectly random bits
and independent of the input pair. On the other hand, as we show below,
a system PXY |UV (where all variables are bits) satisfying X ⊕ Y = U · V
is non-signaling only if the outputs are completely unbiased, given the input
pair, i.e., PX|U=u,V =v(0) = PY |U=u,V =v(0) = 1/2. In other words, the out-
put bit can not even be slightly biased, let alone pre-determined. Assume that
Alice and Bob share some kind of physical system, carry out space-like sep-
arated measurements—hereby excluding message transmission—, and measure
data having the statistics of a PR box. The outputs must then be perfectly
secret bits because even when conditioned on an adversary’s complete informa-
tion, the correlation between Alice and Bob must still be non-signaling and fulfill
X ⊕ Y = U · V .

Unfortunately, the behavior of perfect PR boxes does not occur in nature:
Quantum physics is non-local, but not maximally so. Can we also obtain secret
bits from weaker, quantum-physical, non-locality? Barrett, Hardy, and Kent [18]
have shown that the answer is yes. But their protocol is inefficient: In order to
force the probability that the adversary learns a generated bit shared by Alice
and Bob below ε, they have to communicate Θ(1/ε) Qbits.

If we measure maximally entangled quantum states, we can get at most 85%-
approximations to the PR-box’ behavior. Fortunately, any CHSH non-locality
implies some secrecy. In order to illustrate this, consider a system approximating
a PR box with probability 1 − ε for all inputs. More precisely, we have

Prob [X ⊕ Y = U · V |U = u, V = v] = 1 − ε (1)

for all (u, v) ∈ {0, 1}2. Then, what is the maximal possible bias p := Prob [X =
0|U = 0, V = 0] such that the system is non-signaling?
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Fig. 5. The maximal bias of the output of a (1 − ε)-approximation of the PR box.

We explain the table (Fig. 5): Because of the (1 − ε)-CHSH condition (1),
the bias of Y , given U = V = 0, must be at least p−ε. Because of non-signaling,
X ’s bias must be p as well when V = 1, and so on. Finally, the (1 − ε)-CHSH
condition for U = V = 1 implies p− ε− (1− (p− 2ε)) ≤ ε, hence, p ≤ 1/2 + 2ε.
For any ε < 1/4, this is a non-trivial bound. (This reflects the fact that ε = 1/4
is the “local limit.”) In the special case of ε = 0 the bit is perfectly secret.

1.6 Strong from Weak Secrecy

Conditioned on Eve’s entire information, this reads: Weak non-locality means
weak secrecy. Can it be amplified? Privacy amplification is a concept well-known
from classical [30], [31], [32] and quantum [33], [34] cryptography, and means
transforming a weakly secret string into a highly secret key by hashing. These
results are, however, not applicable with respect to general non-signaling adver-
saries which may be strictly stronger than any quantum adversary. In [35], it has
been pessimistically argued that privacy amplification of non-signaling secrecy
is impossible, the problem being that certain collective attacks exist which leave
the adversary with significant information about the final key, however the latter
is obtained from the raw key.

Fortunately, the situation changes when one assumes an additional non-
signaling condition between the individual measurements performed within Al-
ice’s as well as Bob’s laboratories (see Fig. 8). This assumption could, for in-
stance, be enforced by a space-like separation of the individual measurement
events. In [36], Masanes has shown that in this case, privacy amplification is
possible in principle — by hashing with a function chosen at random from the
set of all functions.5 Later, he has shown that it is sufficient to consider a two-
universal set of functions (see [37], IV.C).

Our result differs from Masanes’ in the sense that we show a single explicit
function, namely the XOR, to be a good privacy-amplification function. More

5 Masanes’ result is a non-constructive proof of the fact that there exists a fixed func-
tion for privacy amplification.



precisely, we prove that the adversary’s probability of correctly predicting the
XOR of the outcomes of n non-signaling boxes is exponentially (in n) close to
1/2 (Lemma 5). This can be seen as a generalization of the well-known fact
that the XOR of many partially uniform bits is almost uniform, and may be of
independent interest.

1.7 Our Protocol and Results

Protocol 1.

1. Alice prepares n + k Qbit pairs in the state |Ψ−〉 = (|01〉 − |10〉)/
√

2, for
suitable k = Θ(n), and sends one Qbit of every state to Bob.

2. Alice and Bob randomly measure the ith system in either the basis U0 or
U1 (for Alice) and V0 or V1 (Bob);6 the four bases are shown in Fig. 4. All
2(n+ k) measurement events are pairwise space-like separated .

3. They randomly choose n of the measurement results from the instances where
Alice has measured in U0 and Bob in V0. This forms the raw key.

4. For the remaining k measurements, they announce the results over the public
channel and estimate the correlations. More precisely, they determine the
parameter ε, where ε is the probability of violating the CHSH condition
(i.e., X ⊕ Y 6= U · V ) for uniform inputs, and δ, where δ is the probability
of different outputs bits when U0 and V0 were measured. They also check
whether they have obtained roughly the same number of 1’s and 0’s. If the
parameters are such that key agreement is possible (Fig. 6), they continue;
otherwise they abort.

5. Information reconciliation and privacy amplification: Alice randomly chooses
an (m + s) × n-matrix A such that p(0) = p(1) = 1/2 for all entries and
m := ⌈n · h(δ)⌉. She calculates A⊙ x (where x is Alice’s raw key) and sends
the first m bits and the matrix A to Bob over the public authenticated
channel. The remaining bits form the key. Bob uses the information received
from Alice to reconstruct the key.

Theorem 1. Protocol 1 achieves a positive secret-key-generation rate as soon as
the parameter estimation shows an approximation of PR boxes with an accuracy
exceeding 80% and a correlation of the outputs on input (0, 0) higher than 98%,
i.e., if ε ≤ 0.2 and δ ≤ 0.02. The security of the protocol is based solely on the
non-signaling condition; in particular, it is independent of quantum physics and
of the devices used.

Protocol 1 also allows for “traditional” entanglement-based quantum key agree-
ment [10]. Therefore, we have the following.

Corollary 1. Protocol 1 allows for efficient information-theoretic key agreement
if quantum or relativity theory is correct.

6 To increase the efficiency, the bases U0 and V0 may be choosen with very high
probability, such that there are at least n positions where both Alice and Bob have
measured in this basis.
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Fig. 6. The parameter regions for which key agreement is possible (below the solid
line) and reachable by quantum mechanics (above the dashed line). ε is the probability
of violating the CHSH condition (i.e., X ⊕ Y 6= U · V ) for uniform inputs, and δ the
probability of different output bits on input (0, 0).

2 Model and Security Definition

2.1 Modeling the Attacks

When Alice, Bob, and Eve carry out measurements on a (joint) physical system,
they can choose their measurement settings (the inputs) and receive their respec-
tive outcomes (the outputs). It is, therefore, natural to model the situation by a
tripartite system, characterized by PXY Z|UV W as depicted in Fig. 7. Our secu-

PXY Z|UV W

U V

X Y

W Z

Alice Bob

Eve

Fig. 7. The tripartite scenario including the eavesdropper.

rity analysis will be based on the non-signaling condition, i.e., the input/output



behavior of one side tells nothing about the input on the other side(s) (the same
must also hold with respect to a separation of all interfaces in two groups).

Condition 1 [18] The system PXY Z|UV W must not allow for signaling:

∑

x
PXY Z|UV W (x, y, z, u, v, w) =

∑

x
PXY Z|UV W (x, y, z, u′, v, w)

for all u, u′, y, z, v, w and similarly for signaling in all other directions.

If a system is non-signaling between its interfaces, this also means that its
marginal systems are well-defined: What happens at one of the interfaces does
not depend on any other input. This implies that at all the interfaces, an output
can always be provided immediately after the input has been given.

This tripartite scenario can be reduced to a bipartite one: Because Eve cannot
signal to Alice and Bob (even together) by her choice of input, we must have

∑

z
PXY Z|UV W (x, y, z, u, v, w) = PXY |UV (x, y, u, v) for all w ,

and the right-hand side is exactly the marginal box as seen by Alice and Bob.
We can, therefore, see Eve’s input as a choice of convex decomposition of Alice’s
and Bob’s box, and her output as indicating one part of the decomposition.
Furthermore, the condition that even Alice and Eve together must not be able
to signal to Bob and vice versa means that the distribution conditioned on
Eve’s outcome, P z

XY |UV , must also be non-signaling between Alice and Bob.
Informally, we can write

A B = p(z0|w) · A B

z0

+ p(z1|w) · A B

z1

+ · · ·

and this also covers all possibilities available to Eve. Formally, we define:

Definition 3. A box partition of a given bipartite non-signaling box PXY |UV

is a family of pairs (pz,P z
XY |UV

), where pz is a weight and P z
XY |UV

is a non-

signaling box, such that PXY |UV =
∑

z p
z · P z

XY |UV
.

This definition allows us to switch between the scenario of a bipartite non-
signaling box plus box partition and the scenario of a tripartite non-signaling
box, as stated in Lemmas 1 and 2.

Lemma 1. For any given tripartite non-signaling box PXY Z|UV W , any input
w induces a box partition of the bipartite box PXY |UV parametrized by z with
pz := p(z|w) and P z

XY |UV
:= PXY |UV,Z=z,W=w.

Lemma 2. Given a bipartite non-signaling box PXY |UV , let W be a set of box
partitions w = {(pz, P z

XY |UV
)}z. Then the tripartite box, where the input of

the third party is w ∈ W, defined by PXY Z|UV ,W=w(z) := pz · P z
XY |UV is non-

signaling and has marginal box PXY |UV .
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Fig. 8. Alice and Bob share n non-signaling boxes which are independent from their
viewpoint. However, Eve can attack all of them at once. The gray lines stand for the
non-signaling condition.

As explained in the introduction, it is crucial for our security analysis to
assume that Alice and Bob have several input/output interfaces (whereas Eve’s
inputs and output may have an arbitrary structure). We then require the non-
signaling condition to hold between all of the interfaces. We, therefore, extend
Condition 1 from the tripartite to the (2n + 1)-partite case in the obvious way
and call such a system (2n+ 1)-partite non-signaling (see Fig. 8).

In order to study our particular protocol described in Sect. 1.7 we consider
the case where Alice and Bob share 2n interfaces, each taking one bit input
and giving one bit output.7 Each input bit corresponds to the choice of a basis
applied to measure one part of an entangled state and the output bit corresponds
to the measurement result. In the case of a passive adversary, the distribution will
approximate the behavior of n non-local boxes. To prove security, however, we
cannot make any assumptions about the distribution (which may be arbitrarily
influenced by an adversary8). For this reason, our security proof only relies on
the non-signaling condition, which we now reformulate for this specific case.

Condition 1′ The system PXYZ|UVW must not allow for signaling between
any of the 2n+ 1 marginal systems, i.e.,

∑

xi

PXYZ|UVW (x,y, z,u\ui, ui,v, w) =
∑

xi

PXYZ|UVW (x,y, z,u\ui, u
′
i,v, w)

7 We will write U for the random bit denoting Alice’s input, bold-face letters U will
denote an n-bit random variable (i.e., an n-bit vector), Ui a single random bit in this
n-bit string, and lowercase letters the value that the random variable has taken. A
similar notation is used for Alice’s output X and Bob’s input and output V and Y .
No assumption is made about the range of Eve’s input/output variables W and Z.

8 This scenario is analogous to Eve being able to do coherent attacks in a quantum
key distribution protocol.



for all x\xi,y, z, ,u\ui, ui, u
′
i,v, w, and where we used the notation x\xi to ab-

breviate x1, . . . , xi−1, xi+1, . . . xn, i.e., all xj for which j 6= i (and similarly for
signaling in all other directions).

Note that the set of possible attacks of an adversary is determined by Con-
dition 1′ only. More precisely, the adversary, Eve, could choose an arbitrary
behavior of the non-signaling box PXY Z|UV W satisfying Condition 1′ and has
full access to the interface taking input W and giving output Z.

2.2 Security Definition

We define security in the context of random systems [38]. The closeness of two
systems S0 and S1 can be measured by introducing a so-called distinguisher.
A distinguisher D is itself a system, and it can interact with the other system.
Assume the distinguisher is given at random either system S0 or S1; after inter-
acting with the system, the distinguisher outputs a bit guessing whether it has
interacted with system S0 or S1. The distinguishing advantage between system
S0 and S1 is the maximum guessing advantage any distinguisher can have in this
game.

Definition 4. The distinguishing advantage between two systems S0 and S1 is

δ(S0,S1) = max
D

[P (B = 1|S = S0) − P (B = 1|S = S1)] .

Two systems S0 and S1 are called ǫ-indistinguishable if δ(S0,S1) ≤ ǫ.

The probability of any event E , defined by any of the input and output variables,
when the distinguisher D is interacting with S0 or S1 cannot differ by more than
this quantity. The reason is that otherwise this event could be used to distinguish
the two systems.

Lemma 3. Let S0 and S1 be ǫ-indistinguishable systems. Denote by P (E|S0,D)
the probability of an event E, defined by any of the input and output variables,
given the distinguisher is interacting with the system S0. Then P (E|S0,D) ≤
P (E|S1,D) + ǫ.

The security of a cryptographic primitive can be measured by its distance
from an ideal system which is secure by definition. For example in the case of key
distribution, the ideal system is the one which outputs a uniform and random
key (bit string) S at one end and for which all other input/output interfaces are
completely independent of this first interface. This key is secure by construction.
If the real system generating a key is indistinguishable from the ideal one, this
key is called secure.

Definition 5. A key S is ǫ-secure if the system outputting S is ǫ-indistinguish-
able from an ideal system which outputs a uniform random variable S and for
which all other input/output interfaces are completely independent of the random
variable S.



As a consequence of Lemma 3, the resulting security is composable [39], [40],
[41].

For the security analysis, we consider an entanglement-based version of Pro-
tocol 1 (Sect. 1.7). This means that the protocol starts with step 2 and it is
assumed that the n+ k quantum states have already been pre-distributed (pos-
sibly by an adversary). As described in Sect. 2.1, these states are modeled as
non-signaling boxes. We model the public authenticated channel connecting Al-
ice and Bob as an additional (signaling) system, as depicted in Fig. 9. Eve can
wire-tap the public channel, choose an input on her part of the non-signaling
box and obtain an output (i.e., measure her part of the quantum state). Similar
to the quantum case, it is no advantage for Eve to make several box partitions
(measurements) instead of a single one, as the same information can be obtained
by making a refined box partition of the initial box. Without loss of generality,
we can, therefore, assume that Eve gives a single input to the non-signaling box
at the end (after all communication between Alice and Bob is finished). In our
scenario, Eve, therefore, obtains all the communication exchanged over the pub-
lic channel Q, can then choose the input to her interface of the non-signaling box
W (which can depend on Q), and finally obtains the outcome of the box Z. As

public channel

X

U

Y

V

W Z

quantum state
ψ

Q

π π

SA SB

Fig. 9. Our system. Alice and Bob share a public authentic channel and a quantum
state. When they apply a protocol π to obtain a key, all this can together be modeled
as a system.

shown in Fig. 9, we may also define a lager box Sreal which includes the behavior
of the protocol executed by Alice and Bob and outputs SA and SB. According to
Definition 5, the key SA

9 is secure if the system Sreal is ǫ-indistinguishable from
the ideal system (see Fig. 10). For the security analysis it is useful to formulate
this definition in terms of the distance from uniform.

9 Note that we can consider the distance of SA from an ideal key and the distance
between SA and SB (probability of the keys to be unequal) separately. By the triangle
inequality, the distance of the total real system from the ideal system is at most the
sum of the two.



S Q WZ

Sreal
t

S Q WZ

× Sideal
t

Fig. 10. An illustration of the security protocol: the real system (left) is compared to
the ideal system (right). The distribution of S in the ideal case is PS(s) = 1/|S|.

Definition 6. The distance from uniform of S given Z(w) and Q is

d(S|Z(w), Q) = 1/2
∑

s,q

max
w

∑

z

PZ,Q|W=w(z, q) · |PS|Z=z,Q=q,W=w(s) − PU | .

We have written Z(w) because the eavesdropper can choose the input adaptively,
and the choice of input changes the output distribution.

It is then straightforward to show the following Lemma 4.

Lemma 4. A key S generated by a system as given in Fig. 9 is ǫ-secure if
d(S|Z(w), Q) ≤ ǫ.

3 Privacy Amplification

In this section, we prove the main technical result. We consider the situation
where Alice and Bob share n imperfect PR boxes, and the key is computed by
taking the XOR of all n output bits. We will show that taking the XOR of the
outputs of several non-signaling boxes is a good privacy-amplification function
in the sense that the resulting bit is almost perfectly secret (for sufficiently large
n).

We now start with the statement and proof of our main claim.

Lemma 5. Let a (2n+1)-partite non-signaling box PXYZ|UVW , f(X) :=
⊕

i Xi

and Q := (U = u,V = v). Then

d(f(X)|Z(W ), Q) ≤ 1/2 ·
∑

x,y,u,v: xi⊕yi 6=ui·vi ∀i

PXY|UV(x,y,u, v) .

Note that Alice and Bob estimate the average probability that their non-signaling
boxes deviate from the perfect CHSH condition. Conditioned on this estimate
of ε, the right-hand side is approximately equal to 1/2 · (4ε)n.

We proceed in several steps. First, we show that the problem of finding the
maximum distance from uniform of the XOR of several output bits can be cast
as a linear optimization problem. Then, we show that this linear program de-
scribing n non-signaling boxes can be seen as the n-wise tensor product of the



linear program describing a single non-signaling box — this is the crucial step.
By using the product form of the linear program we can then show that there
exists a dual feasible solution — i.e., an upper-bound on the distance from uni-
form — reaching the above value.

First note that, because of convexity, the maximal possible non-uniformity
of the XOR of the output bits can be obtained by a box partition with only two
outputs, 0 and 1. It is, therefore, sufficient to consider a box partition with only
two elements z = 0 and z = 1. However, given one element of the box partition
(p, PZ=0

XY|UV
), the second element (1 − p, PZ=1

XY|UV
) is determined because their

convex combination forms the marginal box, PXY|UV. The distance from uniform
of a random bit from the adversary’s point of view can then be expressed only
in terms of the one element of the box partition as

d(
⊕

i

Xi|Z(w̄), Q) = 2 · p · (P [
⊕

i

Xi = 0|Z = 0, Q] − 1/2) .

This implies that finding the distance from uniform is equivalent to finding
the “best” element of a box partition (p, PZ=0

XY|UV
). When can (p, PZ=0

XY|UV
) be

element of a box partition? The criterion is given in Lemma 6. It follows from
the positivity of probabilities and the linearity of the non-signaling conditions.

Lemma 6. A non-signaling box PXY|UV has a box partition with element
(p, PZ=0

XY|UV
) if and only if for all inputs and outputs x,y,u, v,

p · PZ=0
XY|UV(x,y,u, v) ≤ PXY|UV(x,y,u, v) .

We can now show that the maximal distance from uniform which can be
reached by a non-signaling adversary is the solution of a linear programming
problem (see, e.g., [42] for a good introduction to linear programming). We
introduce a new variable ∆. ∆(x,y|u,v) can be defined as 2p · PZ=0(xy|uv) −
P (xy|uv).10

Lemma 7. The distance from uniform of
⊕

iXi given Z(W ) and Q := (U =
u,V = v) is

d(
⊕

i
Xi|Z(W ), Q) = 1/2 · bT ·∆∗ ,

where bT ·∆∗ is the optimal value of the linear program

max:
∑

(x,y):f(x)=0

∆(xy|uv) −
∑

(x,y):f(x)=1

∆(xy|uv)

s.t.:
∑

x

∆(xy|uv) −
∑

x

∆(xy|u’v) = 0 ∀y, v,u,u’ (non-sig. Alice to Bob)

∑

y

∆(xy|uv) −
∑

y

∆(xy|uv’) = 0 ∀x,u, v, v’ (non-sig. Bob to Alice)

∆(xy|uv) ≤ P (xy|uv) ∀x,y,u, v (Lemma 6)

∆(xy|uv) ≥ −P (xy|uv) ∀x,y,u, v (positivity of probabilities) .

10 In the following, we write P (xy|uv) instead of PXY|UV(x,y,u,v).



Note that there is no normalization constraint on ∆ because normalization
follows from the non-signaling constraints. This linear program can easily be
brought into the form

max: bT ·∆
s.t.: A ·∆ ≤ c and its dual

min: cT · λ
s.t.: AT · λ = b

λ ≥ 0
(2)

Note that in the dual program, the marginal box as seen by Alice and Bob
only appears in the objective function cT · λ. The feasible region is, therefore,
completely independent of the marginal.

For the case of a single non-signaling box, A1, b1 and c1 explicitly have the
form

A1 =









An-s
1

−An-s
1

1l16
−1l16









,
b1 =

(

1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
)

c1 =
(

016 016 P (xy|uv) P (xy|uv)
)

,

with An-s
1 =

























1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0 0 −1 0 0 0 −1

























,

and where P (xy|uv) are the probabilities of Alice’s and Bob’s marginal box such
as, for example, given in Fig. 11 below, but with the rows stack on top of each
other to form a vector. The dual optimal solution λ1 can easily be calculated as

λ∗T
1 =

( 0.5 0 0.5 0 0.5 0 0.5 0 0 0.5 0 0.5 0 0.5 0 0.5
0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 ) .

By comparison, we see that for every x, y, u, v such that x ⊕ y 6= u · v, there
is exactly one 1 in the second part of λ∗1 and everywhere else λ∗1 is 0. I.e.,
cT1 · λ∗1 =

∑

x,y,u,v:x⊕y 6=u·v PXY |UV (x, y, u, v).
Our main tool to show Lemma 5 will be to note that we can express the

linear program describing n non-signaling boxes as the tensor product of the
linear program describing one non-signaling box.

Lemma 8. Denote by A1, b1 the vector and matrix associated with the linear
program (2) for the case of a single non-signaling box. Then the value of the
program A, b, c associated with n non-signaling boxes is equal to the value of the
linear program defined by

max: (b⊗n
1 )T ·∆ (3)

s.t.: A⊗n
1 ·∆ ≤ c .



Now we consider the dual program of (3). It follows directly from its form
that if λ1 is a feasible dual solution for a single non-signaling box, then λ⊗n

1 is
feasible for n non-signaling boxes.

Lemma 9. For any λi which is dual feasible for the linear program A1, b1 asso-
ciated with one non-signaling box,

⊗

i λi is dual feasible for the linear program
(3) associated with n non-signaling boxes.

Inserting the explicit value of λ = λ⊗n
1 into the objective function cT ·λ concludes

the proof of Lemma 5.

4 Full Key Agreement

4.1 Information Reconciliation and Privacy Amplification: From
One to Several Bits

We have seen in Sect. 3 that it is possible to create a highly secure bit using a
linear function — the XOR. But obviously, we would like to extract a secure key
string, not only a single bit. Furthermore, Alice’s and Bob’s raw key bits (the
output of the non-signaling boxes) will differ with some probability δ, therefore,
they need to do information reconciliation before extracting the secret key. Both
information reconciliation and privacy amplification can be done the same way:
by applying a random linear function to the output bits, i.e., [R,S] := A ⊙ X,
where A is a (r+s)×n-matrix over GF (2) with p(0) = p(1) = 1/2 for all entries
and we write ⊙ for the matrix multiplication modulo 2. The first r bits R are
released for information reconciliation, while the last s bits form the final key S.

It follows from a result of [43] about two-universal sets of hash functions and
from a result of [44] about information reconciliation that in the limit of large n,
r = ⌈n ·h(δ)⌉ (where δ is the probability that Bob’s bit is different from Alice’s,
and h is the binary entropy function) is both necessary and sufficient for Bob to
be able to correct the errors in his raw key.

In order to show that the key S is secure, we show that it is secure even
given the bits R of the information-reconciliation scheme are released. Using
the triangle inequality, we can reduce the question of the security of the whole
key to the question of the security of each of the bits Si, given all previous bits
S1, . . . , Si−1 and R. We then derive a bound on the distance from uniform of S
using Lemma 5.

Lemma 10. Let a (2n + 1)-partite non-signaling box PXYZ|UVW such that the
estimated average error is ε. Let [R,S] := A ⊙ X, where A is a (r + s) × n-
matrix over GF (2), and PA the uniform distribution over all these matrices.
Q := (U = u,V = v, A). Then

d(S|Z(W ), Q,R) ≤ 1/2 · 2r+s ·
(

1 + 4ε

2

)n

.



4.2 Key Rate

The key rate is the length of the key divided by the number of non-signaling
boxes used in the limit of a large number of boxes. Because we only need a
small number of boxes for parameter estimation [45], this will asymptotically
correspond to q := s/n. From Lemma 10 we can calculate the key rate by
setting r := h(δ) · n (see Sect. 1.7 for a detailed description of the Protocol 1).

Lemma 11. Protocol 1 reaches a key rate q of

q = 1 − h(δ) − log2(1 + 4ε) . (4)

Key agreement is possible if the parameters ε and δ are such that this quantity
is positive, i.e., ε < 2−h(δ)−1 − 1/4 (see Fig. 6).

4.3 The Quantum Regime

If the non-signaling boxes have the same error ε for all inputs, then δ = ε in

(4) and the protocol does not reach a positive secret key rate for ε = 1+
√

2
4 ,

the minimum value reachable by quantum mechanics. In order to avoid this
problem, we have chosen the bases in Protocol 1 (see Sect. 1.7) such that the
corresponding non-signaling box gives highly correlated output bits given input
(0, 0) (see Fig. 11). Alice and Bob generate their raw key only from these out-
puts.11 Note that in a noiseless setting, the distribution described in black font
can be achieved by measuring a singlet state. In that case, Alice and Bob will
have perfectly correlated bits (and, therefore, would not need to do any informa-
tion reconciliation), and the parameter limiting Eve’s knowledge is ε = 0.1875.
The parameters δ and η (in light gray font in Fig. 11) are introduced to account
for possible noise that may arrise in the practical realization of the scheme.
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Fig. 11. The quantum box used for key agreement.

11 Another way to reach a positive key rate in the quantum regime is to use a type of
non-locality characterized by a different Bell inequality allowing for a higher violation
in the quantum regime. See [36] for details.



5 Concluding Remarks and Open Questions

We propose a new efficient protocol for generating a secret key between two
parties connected by a quantum channel whose security is guaranteed solely by
the fact that no information is exchanged between the different measurement
events. The method is based on non-locality which can be generated from en-
tangled quantum states. The security proof, on the other hand, is independent of
quantum physics once the non-local correlations are established and have been
verified.

The practical relevance is that the resulting security is device-independent :
We could even use devices manufactured by the adversary to do key agreement.
The theoretical relevance is that the resulting protocol is secure if either relativity
or quantum theory is correct. This is in the spirit of modern cryptography’s quest
to minimize assumptions on which security rests.

Our scheme requires space-like separation not only between events happening
on Alice’s and Bob’s side, but also between events within the same laboratory.
It is a natural open question whether the space-like-separation conditions can
be relaxed. For instance, is it sufficient if they hold on one of the two sides? Or
in one direction among the n events on each side? Obviously, the latter would
be easy to guarantee in practice.

Acknowledgments. We thank Roger Colbeck, Matthias Fitzi, Severin Win-
kler, and Jürg Wullschleger for helpful discussions, and Hoi-Kwong Lo for bring-
ing reference [17] to our attention. We also thank three anonymous reviewers as
well as Ivan Damg̊ard for their help in improving the presentation of our results.
EH and SW are supported by the Swiss National Science Foundation (SNF)
and by the ETH research commission. RR acknowledges support from the Swiss
National Science Foundation (grant No. 200021-119868).

References

1. Hänggi, E., Renner, R., Wolf, S.: Quantum cryptography based solely on Bell’s
theorem. Available at arxiv:quant-ph/0911.4171 (2009)

2. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on Infor-
mation Theory 22(6) (1976) 644–654

3. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2) (1978) 120–126

4. Maurer, U.: A provably-secure strongly-randomized cipher. In: EUROCRYPT ’90.
Volume 473. (1990) 361–373

5. Dziembowski, S., Maurer, U.: The bare bounded-storage model: The tight bound
on the storage requirement for key agreement. IEEE Trans. on Information Theory
54(6) (2008) 2790–2792

6. Wyner, A.D.: The wire-tap channel. Bell System Technical J. 54(8) (1975) 1355–
1387

7. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans.
on Information Theory 24(3) (1978) 339–348



8. Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized ci-
pher. J. of Cryptology 5(1) (1992) 53–66

9. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Int. Conf. on Computers, Systems and Signal Processing. (1984)

10. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.
67(6) (1991) 661–663

11. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on
quantum-key-distribution systems. Phys. Rev. A 73(2) (2006) 022320

12. Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical
quantum-key-distribution systems. Phys. Rev. A 75(3) (2007) 032314

13. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum
cryptosystems. Quantum Information and Computation 7 (2007) 073–082

14. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: Experimen-
tal demonstration of time-shift attack against practical quantum-key-distribution
systems. Phys. Rev. A 78(4) (2008) 042333

15. Makarov, V.: Controlling passively quenched single photon detectors by bright
light. New J. of Physics 11(6) (2009) 065003

16. Scarani, V., Kurtsiefer, C.: The black paper of quantum cryptography: real imple-
mentation problems. (2009)

17. Mayers, D., C.Yao, A.: Quantum cryptography with imperfect apparatus. In:
FOCS ’98. (1998) 503–509

18. Barrett, J., Hardy, L., Kent, A.: No signalling and quantum key distribution. Phys.
Rev. Lett. 95 (2005) 010503
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