
Secure Message Transmission
with Small Public Discussion

Juan Garay1, Clint Givens2, and Rafail Ostrovsky3?

1 AT&T Labs – Research. garay@research.bell-labs.com
2 Department of Mathematics, UCLA. cgivens@math.ucla.edu

3 Departments of Computer Science and Mathematics, UCLA. rafail@cs.ucla.edu

Abstract. In the problem of Secure Message Transmission in the public discus-
sion model (SMT-PD), a Sender wants to send a message to a Receiver privately
and reliably. Sender and Receiver are connected by n channels, up to t < n of
which may be maliciously controlled by a computationally unbounded adversary,
as well as one public channel, which is reliable but not private.
The SMT-PD abstraction has been shown instrumental in achieving secure multi-
party computation on sparse networks, where a subset of the nodes are able to
realize a broadcast functionality, which plays the role of the public channel. How-
ever, the implementation of such public channel in point-to-point networks is
highly costly and non-trivial, which makes minimizing the use of this resource an
intrinsically compelling issue.
In this paper, we present the first SMT-PD protocol with sublinear (i.e., logarith-
mic in m, the message size) communication on the public channel. In addition,
the protocol incurs a private communication complexity of O(mn

n−t
), which, as

we also show, is optimal. By contrast, the best known bounds in both public
and private channels were linear. Furthermore, our protocol has an optimal round
complexity of (3, 2), meaning three rounds, two of which must invoke the public
channel.
Finally, we ask the question whether some of the lower bounds on resource use
for a single execution of SMT-PD can be beaten on average through amortization.
In other words, if Sender and Receiver must send several messages back and forth
(where later messages depend on earlier ones), can they do better than the naı̈ve
solution of repeating an SMT-PD protocol each time? We show that amortiza-
tion can indeed drastically reduce the use of the public channel: it is possible to
limit the total number of uses of the public channel to two, no matter how many
messages are ultimately sent between two nodes. (Since two uses of the public
channel are required to send any reliable communication whatsoever, this is best
possible.)

1 Introduction

Dolev, Dwork, Waarts and Yung [DDWY93] introduced the model of Secure Message
Transmission (SMT) in an effort to understand the connectivity requirements for secure
? Supported in part by IBM Faculty Award, Xerox Innovation Group Award, the Okawa Foun-

dation Award, Intel, Teradata, NSF grants 0716835, 0716389, 0830803, 0916574, BSF grant
2008411 and U.C. MICRO grant.

communication in the information-theoretic setting. Generally speaking, an SMT pro-
tocol involves a sender, S, who wishes to transmit a messageM to a receiver,R, using a
number n of channels (“wires”), some of which are controlled by a malicious adversary
A. The goal is to send the message both privately and reliably. Since its introduction,
SMT has been widely studied and optimized with respect to several different settings
of parameters (for example, see [SA96,SNP04,ACH06,FFGV07,KS08]).

Garay and Ostrovsky [GO08] studied a model they called Secure Message Trans-
mission by Public Discussion (SMT-PD) as an important building block for achieving
secure multi-party computation [BGW88,CCD88] on sparse (i.e., not fully connected)
networks. (An equivalent setup was studied earlier in a different context by Franklin
and Wright [FW98].) In this model, in addition to the wires in the standard SMT for-
mulation, called “common” or “private” wires from now on, S and R gain access to a
public channel which the adversary can read but not alter. In this new setting, secure
message transmission is achievable even if the adversary corrupts up to t < n of the
private wires—i.e., up to all but one.

The motivation for this abstraction comes from the feasibility in partially connected
settings for a subset of the nodes in the network to realize a broadcast functionality
despite the limited connectivity [DPPU86,Upf92,BG93]1, which plays the role of the
public channel. (The private wires would be the multiple paths between them.) As such,
the implementation of the public channel in point-to-point networks is costly and highly
non-trivial in terms of rounds of computation and communication, as already the send-
ing of a single message to a node that is not directly connected is simulated by sending
the message over multiple paths, not just blowing up the communication but also incur-
ring a slowdown factor proportional to the diameter of the network, and this is a process
that must be repeated many times—linear in the number of corruptions for determin-
istic, error-free broadcast protocols (e.g., [GM98]), or expected (but high) constant for
randomized protocols [FM97,KK06].

A main goal of this work is to minimize the use of this expensive resource, both
in terms of communication as well as in the number of times it must be used when
sender and receiver must send many messages back and forth, as it is the case in secure
multi-party computation. We first present an SMT-PD protocol with a logarithmic (in
m, the message size) communication complexity on the public channel; the best known
bound, due to Shi, Jiang, Safavi-Naini, and Tuhin [SJST09], was linear (see related
work below). In addition, our protocol incurs a private communication complexity of
O(mn

n−t), which, as we also show, is optimal, thus providing an affirmative answer to
the question posed in [SJST09] of whether their O(mn) private communication could
be improved. Furthermore, our protocol has an optimal round complexity of (3, 2),
meaning 3 rounds, 2 of which must invoke the public channel [SJST09].

Regarding the number of times the public channel must be used when considering
SMT-PD as a subroutine in a larger protocol, we ask the question whether some of
the lower bounds on resource use for a single execution of SMT-PD can be beaten on
average through amortization. In other words, if a sender and receiver must send several
messages back and forth (where later messages depend on earlier ones), can they do
better than the naı̈ve solution of repeating an SMT-PD protocol each time, incurring

1 Called “almost-everywhere” agreement, or broadcast, in this setting.

a cost of three rounds and two public channel transmissions per message? We show
that amortization can in fact drastically reduce the use of the public channel: indeed,
it is possible to limit the total number of uses of the public channel to two, no matter
how many messages are ultimately sent between two nodes. (Since two uses of the
public channel are required to send any reliable communication whatsoever, this is best
possible.)

Prior work. The first variant of SMT considered in the literature is perfectly secure mes-
sage transmission (PSMT), in which both privacy and reliability are perfect [DDWY93].
It is shown in the original paper that PSMT is possible if and only if n ≥ 2t+1. For such
n, 2 rounds are necessary and sufficient for PSMT, while one-round PSMT is possible
if and only if n ≥ 3t+ 1.

The communication complexity of PSMT depends on the number of rounds. For
1-round PSMT, Fitzi et al. [FFGV07] show that transmission rate ≥ n

n−3t is neces-
sary and sufficient. (Recall that n > 3t is required in this case.) For 2-round PSMT,
Srinathan et al. [SNP04] show that a transmission rate ≥ n

n−2t is required2; this was
extended in [SPR07], which showed that increasing the number of rounds does not
help. Kurosawa and Suzuki [KS08] construct the first efficient (i.e., polynomial-time)
2-round PSMT protocol which matches this optimal transmission rate.

A number of relaxations of the perfectness requirements of PSMT are considered
in the literature to achieve various tradeoffs (see for example [CPRS08] for a detailed
discussion of variants of SMT). The most general version of SMT (or SMT-PD) is
perhaps (ε, δ)-SMT. We call a protocol for SMT(-PD) an (ε, δ)-SMT(-PD) protocol
provided that the adversary’s advantage in distinguishing any two messages is at most
ε, and the receiver correctly outputs the message with probability 1−δ. The lower bound
n ≥ 2t+ 1 holds even in this general setting (at least for non-trivial protocols, such as
those satisfying ε + δ < 1/2); hence the most interesting case for SMT-PD is the case
when the public channel is required: t < n ≤ 2t. As noted above, this requires round
complexity (3,2) [SJST09]. Franklin and Wright [FW98] show that perfectly reliable
(δ = 0) SMT-PD protocols are impossible when n ≤ 2t. On the other hand, perfect
privacy (ε = 0) is possible, and is achieved by previous SMT-PD constructions (see
below).

The communication complexity lower bounds noted above all apply to PSMT; for
more general SMT bounds, we are aware only of [KS07]. They consider the prob-
lem of almost-secure message transmission, which is only slightly less restrictive than
PSMT. Namely, the problem requires perfect privacy, and that the Receiver never out-
put an incorrect message, though he may output “failure” with probability δ. The au-
thors show that in this model, there is a communication complexity lower bound of
n(m+ log(1/δ)) (up to an additive constant).

A number of protocols for SMT-PD appear in previous work. The first such comes
in [FW98] as a consequence of the equivalence shown there between networks with
multicast and those with simple lines and broadcast (i.e., the public discussion model).
Their solution has optimal round complexity (3, 2)3; however, when t < n < d 3t

2 e
2 The authors claim a matching upper bound as well, but this was shown to be flawed [ACH06].
3 The round complexity is not apparent from the text, for two reasons: (1) The protocol is de-

scribed in terms of the multicast model, not SMT-PD directly; and (2) the authors consider

(including the worst case t = n + 1), their protocol has (pick your poison) either
positive privacy error ε > 0, or exponential communication complexity. Garay and
Ostrovsky [GO08] first describe a (4,3)-round (0, δ) protocol which was subsequently
improved to (3,2) rounds. The protocol has linear transmission rate (in terms of mes-
sage size) on the public and private channels. Shi et al. [SJST09] give the first protocol
with constant transmission rate on the public channel (for messages of sufficient, mod-
est size) with linear transmission rate on the private channels as well; however, the
communication complexity of their protocol is linear.

Our contributions. By contrast, we obtain the first round-optimal SMT-PD protocol
with sublinear (logarithmic) communication complexity on the public channel. More
specifically (and assuming for simplicity δ = O(1)), our protocol has public chan-
nel communication complexity O(n log n logm) for messages of sufficient size, as
compared with O(m) in the protocol of [SJST09]. (The message size required by
either protocol—namely, m/ logm = Ω(n log n) for ours, or m = Ω(n2) for that
of [SJST09]—ensures that O(n log n logm) improves over O(m) for relevant values
of n,m.) The protocol also enjoys a private communication complexity of O(nm

n−t),
which (just by itself) improves on previous constructions and, as we also show, is opti-
mal. At a high level, the protocol has the same structure as previous 3-round SMT-PD
protocols, with the following important differences: (1) our use of randomness extrac-
tors allows us to reduce the amount of transmitted randomness, which is reflected in the
gain in private communication, and (2) typically in previous protocols the message is
transmitted in the last round over the public channel, blinded by the private randomness
thought not to have been tampered with; our improvement to public communication
comes from the transmission of the (blinded) message on the private wires, provided
that the sender authenticates the transmission making use of the public channel, which
in turn requires smaller communication. Additionally, we achieve these improved com-
munication bounds even for messages of smaller required size than Shi et al. [SJST09].4

Finally, the protocol achieves perfect privacy.
We arrive at this result through a series a transformations. First, we design a generic

SMT-PD protocol with linear public communication and O(nm
n−t) private communica-

tion (note that this already improves on existing results); second, we consider instantia-
tions of the generic protocol’s “black boxes” with different randomness extractors, each
providing its own benefits (perfect privacy vis-à-vis smaller message size); and last, we
obtain the final protocol by essentially running two perfect-privacy instantiations of the
generic protocol in parallel, one for the message itself and a “smaller” version for the
authentication key. These results are presented in Section 3.

As noted above, we also show (Section 4) an Ω(nm
n−t) lower bound on private com-

munication. The lower bound holds for SMT without public discussion as well. The
bound itself is weaker than previous, but it holds for a more general class of SMT pro-
tocols. In particular, it is the first communication complexity lower bound to consider

synchronous “rounds” not in the abstract SMT-PD model, but in the more concrete setting of
nodes relaying messages in the underlying network.

4 Specifically, [SJST09] require message size m = Ω(n2(log(1/δ))2), where we require only
m = Ω(n(logn+ log(1/δ)) log q), with q ≈ mn/(n− t).

non-perfect privacy, as well as the first to allow for the Receiver outputting an incorrect
message.

Finally, we show in Section 5 how amortization can drastically reduce the use of the
public channel, allowing sender and receiver to communicate indefinitely after using the
public channel twice and a limited initial message. Our approach is to separate Sender
and Receiver’s interaction following the first execution of SMT-PD into two modes:
a Normal Mode and a Fault-Recovery Mode. At a high level, in the Normal Mode,
secure communication is successful provided the adversary does not interfere; this is
implemented by a one-round protocol satisfying a relaxed version of the problem that
we call Weak SMT-PD. Fault-Recovery Mode is entered if corruption is detected.5

Preliminaries and definitions are given in Section 2. Due to space limitations, most
of the proofs, as well as additional background material, are given in the full version of
the paper [GGO09].

2 Model and Preliminaries

Definition 1. If X and Y are random variables over a discrete space S, the statistical
distance between X and Y is defined to be

∆(X,Y) def=
1
2

∑
s∈S

|Pr[X = s]− Pr[Y = s]| .

We say that X and Y are ε-close if ∆(X,Y) ≤ ε.

The public discussion model. The public discussion model for secure message trans-
mission [GO08] consists of a Sender S and ReceiverR (PPTMs) connected by n com-
munication channels, or wires, and one public channel. S wishes to send a message
MS from message space M to R, and to this end S and R communicate with each
other in synchronous rounds in which one player sends information across the wires
and/or public channel. Communication on the public channel is reliable but public; the
common wires may be corrupted and so are not necessarily reliable or private.
A is a computationally unbounded adversary who seeks to disrupt the communica-

tion and/or gain information on the message. A may adaptively corrupt up to t < n of
the common wires (potentially all but one!). Corrupted wires are actively controlled by
A: he can eavesdrop, block communication, or place forged messages on them. Further,
we assumeA is rushing—in each round, he observes what is sent on the public channel
and all corrupted wires before deciding what to place on corrupted wires, or whether to
corrupt additional wires (which he then sees immediately).

An execution E of an SMT-PD protocol is determined by the random coins of S,
R, and A (which we denote CS , CR, CA respectively), and the message MS ∈ M.
The view of a player P ∈ {S,R,A} in an execution E, denoted ViewP , is a random
variable consisting of P’s random coins and all messages received (or overheard) by P .

5 Effectively, this is an instantiation in the SMT context of the “fast-track” approach
(e.g., [Lam87,GRR98]), where if things are “smooth” then the algorithm or protocol performs
very efficiently, reverting to a more punctilious mode otherwise.

(S’s view also includes MS). Additionally, let ViewP(M0) denote the distribution on
ViewP induced by fixing MS = M0. In each execution,R outputs a received message
MR, a function of ViewR.

We can now define an (ε, δ)-SMT-PD protocol (cf. [FW98,GO08,SJST09]):

Definition 2. A protocol Π in the model above, in which S attempts to send a message
MS toR, is (ε, δ)-secure (or simply, is an (ε, δ)-SMT-PD protocol) if it satisfies:

PRIVACY: For any two messages M0,M1 ∈ M, ViewA(M0) and ViewA(M1) are
ε-close.

RELIABILITY: For all MS ∈ M and all adversaries A, R should correctly receive
the message with probability at least 1 − δ; i.e., Pr[MR = MS] ≥ 1 − δ. (The
probability is taken over all players’ random coins.)

Error-correcting codes and consistency checks for codewords. For our purposes, the
following definition of error-correcting codes is sufficient:

Definition 3. Given a finite alphabet Σ, an error-correcting code E of minimum dis-
tance d is a pair of mappingsEnc : ΣK → ΣN , whereK < N andDec : ΣN → ΣK ,
such that (1) any two distinct elements x, y in the image of Enc (the codewords) have
dist(x, y) ≥ d in the Hamming metric; (2) Dec(Enc(x)) = x for all x ∈ FK

q .6 We say
E has rate K/N and relative minimum distance d/N .

We require a family of codes of increasing input length which is asymptotically
good, that is, E should have constant rate and constant relative minimum distance D.
See, e.g., [MS83] for a standard reference.

Of particular interest for us are the well-known Reed-Solomon codes over Fq , ob-
tained by oversampling polynomials in Fq[X]. Given an input in FK

q , we interpret it as a
polynomial f of degree≤ K−1; to obtain a codeword from f , we simply evaluate it at
N distinct points in Fq , for any N > K. Indeed, any two such polynomials agree on at
mostK−1 points, therefore the Reed-Solomon code has minimum distanceN−K+1.

Our protocols make use of a simple method to probabilistically detect when code-
words sent on the private wires are altered byA. Simply put, the sender of the codeword
reveals a small subset of the codeword symbols. Formally, suppose S sends a codeword
C ∈ ΣN toR over one of the private wires, andR receives the (possibly altered) code-
word C∗. (If R receives a non-codeword, he immediately rejects it.) Then to perform
the consistency check, S chooses a random set J = {j1, j2, . . . , j`} ⊂ [N] and sends
(J, C|J) toR, where C|J represents the codeword C restricted to the indices in J . If the
revealed symbols match, then the consistency check succeeds; otherwise the check fails
andR rejects C∗ as tampered.

Suppose A alters C to a different codeword, C∗ 6= C. Since C and C∗ are distinct
valid codewords, they differ in at least, say, 1/3 of their symbols. Therefore, the proba-
bility that they agree on a randomly chosen index is ≤ 2/3, and so

Pr[R accepts C∗] = Pr[C|J = C∗|J] ≤ (2/3)`.

6 Note in particular that this allows us to test for membership in the image Enc(ΣK) by first
decoding and then re-encoding.

Thus, with probability≥ 1− (2/3)`,R will reject a tampered codeword. Of course, the
validity of the check depends upon A not knowing J at the time of potential corruption
of C.

Average min-entropy and average-case randomness extractors. Recall that the min-
entropy of a distribution X = (X1, . . . , XN) over {0, 1}N is defined as

H∞(X) = min
x

(− log (Pr[X = x])) ,

and gives a measure of the amount of randomness “contained” in a weakly random
source. We say a distribution X is a kmin-source if H∞(X) ≥ kmin.

A (seeded) (N,M, kmin, ε)-strong extractor is a (deterministic) function

Ext : {0, 1}N × {0, 1}D → {0, 1}M

such that for any kmin-source X , the distribution UD ◦ Ext(X,UD) is ε-close to UD ◦
UM (where Uk represents the uniform distribution on {0, 1}k). The input to the ex-
tractor is the N -bit kmin-source, X , together with a truly random seed s, which is
uniformly distributed over {0, 1}D. Its output is an M -bit string which is statistically
close to uniform, even conditioned on the seed s used to generate it.

This notion of min-entropy, and of a general randomness extractor, may be an awk-
ward fit when considering an adversary with side information Y as above. In these
cases, a more appropriate measure may be found in the average min-entropy ofX given
Y , defined in [DORS08] by

H̃∞(X | Y) = − log
(
Ey←Y

[
max

x
Pr [X = x | Y = y]

])
.

Note that this definition is based on the worst-case probability for X , conditioned on
the average distribution (as opposed to worst-case probability) of Y . The rationale is
that Y is assumed to be outside of the adversary’s control; however, once Y is known,
the adversary then predicts the most likely X , given that particular Y .

[DORS08] use average min-entropy to define an object closely related to extractors:
A (seeded) average-case (N,M, kmin, ε)-strong extractor is a (deterministic) function

Ext : {0, 1}N × {0, 1}D → {0, 1}M

such that the distribution of (UD ◦Ext(X,UD), I) is ε-close to (UD ◦UM , I), whenever
(X, I) is a jointly distributed pair satisfying H̃∞(X | I) ≥ kmin. The similarity to
an ordinary extractor is clear. [DORS08] prove the following fact about average min-
entropy:

Fact 4 If Y has at most 2` possible values, then H̃∞(X | (Y,Z)) ≥ H̃∞(X | Z)− `.

Extracting randomness from Fq . We will make use of a special-purpose deterministic
(seedless) extractor Extq which operates at the level of field elements in Fq as opposed
to bits. Extq works not on general min-entropy sources, but on the restricted class of
symbol-fixing sources, which are strings in FN

q such that some subset of K symbols is
distributed independently and uniformly over Fq , while the remaining N −K symbols

are fixed. Given a sample from any such source, Extq outputs K field elements which
are uniformly distributed over FK

q .
Extq works as follows: Given α ∈ FN

q , construct f ∈ Fq[X] of degree ≤ N − 1,
such that f(i) = αi for i = 0, . . . , N − 1. Then Extq(α) = (f(N), f(N + 1), . . . ,
f(N +K − 1)). (Of course we require N +K ≤ q.) This extractor has proven useful
in previous SMT protocols as well (see, e.g., [ACH06,KS08]).

3 SMT-PD with Small Public Discussion

In this section we present our main positive results. First, we construct a basic (ε, δ)-
SMT-PD protocol, ΠGen (for “generic”), with optimal private communication and lin-
ear public communication. We then consider possible instantiations of ΠGen; using, in
particular, Reed-Solomon codes and the extractor Extq , improves it to a 0-private pro-
tocol. Finally, we use ΠGen (instantiated with Reed-Solomon codes) as a building block
to construct our main protocol ΠSPD, which achieves logarithmic public communica-
tion while maintaining optimal private communication (and other desirable properties).

3.1 A generic protocol with optimal private communication

Protocol ΠGen achieves essentially optimal communication complexity on the private
wires of O(mn

n−t), where m is the length of the message, while maintaining linear com-
munication complexity on the public channel. (See Section 4 for a precise statement of
the lower bound.) This is the first SMT-PD protocol to achieve sublinear transmission
rate on the private wires, and as such provides an affirmative answer to the question
posed in [SJST09] of whether O(n) private-wire transmission rate can be improved.

ΠGen relies on two primitives as black boxes: an error-correcting code E and an
average-case strong extractor, ExtA. The efficiency of the protocol depends on the in-
teraction between the basic parameters of the protocol—ε, δ, m, n, and t—and the
parameters of E and ExtA. After presenting the protocol and proving its security, we
will examine its complexity in terms of these parameters.

At a high level, the protocol has the same structure as previous 3-round SMT-PD
protocols: (1) in the first round, one of the parties (in our case R) sends lots of ran-
domness on each private wire; (2) using the public channel, R then sends checks to
verify the randomness sent in (1) was not tampered with; (3) S discards any tampered
wires, combines each remaining wire’s randomness to get a one-time pad R, and sends
C = M ⊕ R on the public channel. However, our use of extractors allows us to re-
duce the amount of transmitted randomness, which is reflected in the gain in private
communication.

We remark that one may modify ΠGen to have interaction order S-R-S, instead
of R-R-S as we present it. One advantage of R-R-S is that when instantiated with
deterministic extractors (see below), it does not require any random coins for S (in
contrast to S-R-S, where both parties use randomness crucially).

Now we turn to the details of protocol ΠGen. Let error-correcting code E have en-
coding and decoding functions Enc : {0, 1}K → {0, 1}N and Dec : {0, 1}N →
{0, 1}K , respectively, and relative minimum distance D. (We will specify K below.)

While N > K may be arbitrarily large for the purpose of correctness, we will want
K/N and D both to be constant for our complexity analysis—that is, we want E to be
asymptotically good.

Second, let ExtA be an average-case (nK,m, kmin, ε/2)-strong extractor. Here K
is, as above, the source length of the error-correcting code E , and m and ε are the
message-length and privacy parameters of ΠGen. kmin is the min-entropy threshold.
Now clearly m ≤ kmin ≤ nK. On the other hand, we require kmin = O(m) for
our complexity claim to hold—that is, ExtA should extract a constant fraction of the
min-entropy. Further, the extractor’s seed length s should be O(n+m).

Finally, let b = 1
1−D , and then set ` = dlogb(t/δ)e. Now with foresight, we set

K = dkmin/(n − t)e+ `.7 Note that if kmin = O(m), then K = O(m)/(n − t) + `.
The protocol, ΠGen, is presented in Fig. 1.

Protocol ΠGen(ε, δ,m, n, t, E ,ExtA)

1. (R PRI→ S). For each wire i,R chooses a random ri ∈ {0, 1}K and sends the codeword
Ci = Enc(ri) along wire i. Let C∗i be the codeword received by S, and r∗i = Dec(C∗i).

2. (R PUB→ S). R chooses a random subset J = {j1, j2, . . . , j`} ⊂ [N] of codeword
indices, |J | = `. Let

Ci|J = (Ci,j1 , Ci,j2 , . . . , Ci,j`) ∈ {0, 1}`

be the codeword Ci restricted to the indices of J . R sends (J, {Ci|J}i∈[n]) to S over
the public channel.

3. (S PUB→ R). S rejects any wire i which is syntactically incorrect (including the case
that C∗i is not a valid codeword), or for which Ci|J conflicts with C∗i . Call the set of
remaining, accepted wires ACC, and let B ∈ {0, 1}n, where bi = 1 ⇐⇒ i ∈ ACC.
Let α∗ denote the concatenation of r∗i for all i ∈ ACC, padded with zeroes so that
|α∗| = nK. S chooses seed ∈ {0, 1}s uniformly at random. He applies ExtA :
{0, 1}nK × {0, 1}s → {0, 1}m to obtain R∗ = ExtA(α∗, seed), where |R∗| = m. S
puts C = MS ⊕R∗, and sends (B,C, seed) on the public channel.
Receiver:R uses B to reconstruct ACC. He forms α by concatenating ri for each i ∈
ACC, and padding with zeroes to size nK. He applies ExtA : {0, 1}nK → {0, 1}m,
obtaining R = ExtA(α, seed). He then recovers MR = C ⊕R.

Fig. 1. A generic SMT-PD protocol with optimal communication complexity on the pri-
vate wires and linear communication complexity on the public channel.

Theorem 5. Let t < n. Protocol ΠGen is a (3, 2)-round (ε, δ)-SMT-PD protocol with
communication complexity O(mn

n−t) on the private wires provided that m/(n − t) =

7 As a sanity check, observe that kmin ≤ nK = n(kmin/(n − t) + `), so the extractor we
define can exist.

Ω(log(t/δ)), and communication complexity max(O(log(t/δ)(n+logm)), O(m+n))
on the public channel, provided only that m = Ω(log(t/δ)).

Proof. Privacy. We first claim that if we omit C, thenA has essentially no information
(up to ε) on S’s output of the average-case extractor, R∗ = ExtA(α∗, seed). Formally:

Claim. The distribution (Us, R
∗,ViewA \ C) is ε/2-close to (Us, Um,ViewA \ C).

The remainder of the proof of ε-privacy is by contradiction: We show that, if there exists
an adversary A and messages M0,M1 such that ∆(ViewA(M0),ViewA(M1)) > ε,
then there exists a distinguisher D which can distinguish (Us, R

∗,ViewA \ C) from
(Us, Um,ViewA \ C), in contradiction to the above claim.

So suppose such an A, M0, M1 exist. Then there exists a distinguisher D0 which
satisfies

|Pr[D0(ViewA(M0)) = 1]− Pr[D0(ViewA(M1)) = 1]| > ε

In particular it follows that either

(1)
∣∣Pr[D0(ViewA(M0)) = 1]− Pr[D0(ViewA(M$)) = 1]

∣∣ > ε/2

or

(2)
∣∣Pr[D0(ViewA(M$)) = 1]− Pr[D0(ViewA(M1)) = 1]

∣∣ > ε/2.

Here ViewA(M$) denotes the random variable obtained by first sampling M$ uni-
formly from {0, 1}m, and then sampling from ViewA conditioned on MS = M$. (If
the probability distribution on M is uniform, then the distribution of ViewA(M$) is
identically that of ViewA, but we do not assume this here.)

Without loss of generality, we assume case (1) above holds. Now we describe
D, which uses D0 as a black box in order to distinguish (Us, R

∗,ViewA \ C) and
(Us, Um,ViewA \ C). First, the challenger flips a coin. On heads, he samples u ←
(Us, R

∗,ViewA \C), and on tails, u← (Us, Um,ViewA \C). In either case he obtains
u = (us, utest, uview) which he passes on to D. D forms CD = M0 ⊕ utest, which
plays the role of C in the protocol. He passes uview ∪ CD to D0, which returns a bit b
representing its guess that uview ∪ CD was sampled from ViewA(Mb). If b = 0, then
D outputs a guess of “heads” (i.e., guesses utest was sampled from R∗), otherwise D
guesses “tails” (utest was sampled from Um).

Now consider the success probability of D when the challenger flips heads, so that
utest ∼ R∗. In this case, CD = M0 ⊕ R∗ is obtained exactly as in ΠGen, and there-
fore uview ∪ CD is distributed identically with ViewA(M0). Thus Pr[D(u) = 1 |
heads] = Pr[D0(ViewA(M0)) = 1]. Alternatively, suppose the challenger flips tails,
and utest is uniform. Then CD = M0 ⊕ utest is uniform, which is also the distribu-
tion of C if we choose M = MS uniformly at random. Thus Pr[D(u) = 1 | tails] =
Pr[D0(ViewA(M$)) = 1]. Putting these together, we discover∣∣Pr[D(Us, R

∗,ViewA \ C) = 1]− Pr[D(Us, Um,ViewA \ C) = 1]
∣∣

=
∣∣Pr[D0(ViewA(M0)) = 1]− Pr[D0(ViewA(M$)) = 1]

∣∣
> ε/2,

which contradicts the above claim. This completes the verification of ε-privacy.

Reliability. Observe that MR = C ⊕R and MS = C ⊕R∗. Therefore,

R fails to decode correctly (MR 6= MS) ⇐⇒ Ext(α, seed) = R 6= R∗ = Ext(α∗, seed)
=⇒ α 6= α∗

=⇒ ∃i ∈ ACC s.t. ri 6= r∗i

=⇒ ∃i ∈ ACC s.t. Ci 6= C∗i .

The latter event only happens if A succeeds in altering Ci without S detecting it. By
construction, our consistency check (Section 2) guarantees that this happens with prob-
ability at most (1 − D)` = δ/t for a single wire, hence (taking a union bound over
corrupt wires) probability at most δ overall. Consequently, Pr[MR = MS] ≥ 1− δ.

Complexity. The private wires are used only in round 1, to send Enc(ri) on each wire.
The total complexity is therefore nN = O(nK) (for E of constant rate). As noted
above, our assumptions on E and ExtA imply thatK = O(m/(n−t)+`), and therefore
the total private wire complexity is O(mn/(n − t) + n`), which is O(mn/(n − t))
provided m/(n− t) = Ω(`).

The public channel is used in Rounds 2 and 3. In Round 2,R transmits J ⊂ [N] of
size `, and the restricted codewords Ci|J , at total cost `n + ` logN = `n + `(logK +
O(1)) = `n + O(`(log(m/(n − t) + `))). Provided that m = Ω(`), this is O(`(n +
logm)).

In Round 3, S uses the public channel to send (B,C, seed) where B indicates
accepted wires, C hides the message MS , and seed is a seed for ExtA. Thus the Round
3 public communication is n + m + s, which is O(n + m) for any extractor with
reasonable seed length. ut

3.2 Instantiating the generic protocol

Here we consider possible instantiations of ΠGen. Since our main interest is in 0-private
protocols, the most important instantiation will be that with Reed-Solomon codes and
the extractor Extq of Section 2. Nevertheless, other choices of (explicit) extractor, such
as Kamp and Zuckerman’s deterministic symbol-fixing extractor [KZ06], are possible;
refer to [GGO09] for more details.

Statistical error is a feature of all general-purpose randomness extractors. To get
around it, we can exploit the fact that the sources arising from ΠGen are not general min-
entropy sources. Rather, conditioning on the adversary’s view, each good wire carries
independent, uniform randomness, and the corrupt wires carry fixed values. Thus the
source we are interested in actually carries quite a great deal of structure. In particular,
we may view it as a symbol-fixing source as described in Section 2, since we may group
bits into symbols, and the adversary has no information on the symbols carried by good
wires.

Consider an instantiation of ΠGen using the extractor Extq : FkN
q → Fr

q of Sec-
tion 2, which is indeed errorless. (Here r = dm/ log qe is the size of MS in field
elements.) Extq is, according to our notation, a (kN, r, r, 0) extractor for sources over

Fq: It extracts 100% of the randomness from its input with no statistical error. (It is also
deterministic, hence trivially strong.) Since Extq operates at the level of field elements,
Reed-Solomon codes are a natural choice for the error-correcting code E of ΠGen. We
choose E to be Extq : FK

q → F2K
q , with relative minimum distance 1/2.

We now describe two requirements imposed by this instantiation. First, the descrip-
tion of ΠGen assumes an extractor which operates on bits rather than field elements.
This presents no real problem, as all statements can be recast in a straightforward way
to this new setting. However, as mentioned above, the move from {0, 1} to Fq does have
the effect of adding a log q term to the message size required for optimal communication
complexity (see statement of and complexity analysis for Theorem 6).

Second, we must specify the appropriate field size q in terms of the basic parameters
m,n, t, δ. Recall ` = dlog(t/δ)e. We require (with foresight):

q log q = Ω(mn/(n− t)) and (q − 2`) log q >
2m
n− t

.

Thus MS ∈ Fr
q , where r = dm/ log qe.

For the proof of privacy, we require Extq : FnK
q → Fr

q is in fact a perfect random-
ness extractor—so we need q ≥ nK + r. Since K = r/(n − t) + `, we have (using
m = Ω(n`)):

nK + r = n · (r

n− t
+ `) + r = r(

n

n− t
+ 1) + n`

=
m

(log q)
· n

n− t
+O(m) = O(

m

(log q)
· n

n− t
).

Thus, for q ≥ nK + r it suffices that q log q = Ω(mn/(n − t)), which is our first
assumption on q.

Now observe that in order for our codeword authentication to be valid, we need
q ≥ 2K = 2r/(n− t) + 2`. Thus we require:

q ≥ 2r/(n− t) + 2` ⇐⇒ q ≥ 2m
(log q)(n− t)

+ 2`

⇐⇒ q log q ≥ 2m
n− t

+ 2` log q

⇐⇒ (q − 2`) log q ≥ 2m
n− t

,

which gives our second condition on q.

3.3 A protocol with logarithmic public communication

In this section we present a protocol for SMT-PD which is the first to achieve loga-
rithmic communication complexity (in m) on the public channel. The protocol is per-
fectly private, achieves the optimal communication complexity of O(mn

n−t) on the pri-
vate wires, and has optimal round complexity of (3, 2).

In its Round 3 communication, ΠGen incurs a cost of size m on the public channel,
which we wish to reduce to O(logm). Our improvement comes from the insight that S

can send the third-round message (C, in the notation of ΠGen) on the common wires,
provided that S authenticates the transmission (making use of the public channel).
S could simply send C on every common wire and authenticate C publicly. The

downside of this approach is that the private wire complexity would be Ω(mn) rather
than O(mn

n−t)—no longer optimal. Our solution is to take C and encode it once again
using Reed-Solomon into shares C1, . . . , Cn, each of size ≈ m

n−t , such that any n − t
correct Ci’s will reconstruct C. S then sends Ci on wire i, and authenticates each Ci

publicly.
This authentication uses a short secret key, s∗, of size `(n + log(cm

n−t)) (which is
the cost of authenticating n messages of size cm/(n − t), using the consistency check
of Section 2; c is an absolute constant defined below). Thus, S and R will run two
processes in parallel: a “small” strand, in which S privately sends the short key to R;
and a “big” strand, in which S sendsMS toR, making use of the shared key in the third
round. The small protocol sends the short key using any reasonably efficient SMT-PD
protocol; for ease of exposition, we use ΠGen, instantiated with Reed-Solomon codes.
We also use ΠGen with Reed-Solomon codes for the big strand of the protocol in order
to achieve perfect privacy and optimal private wire complexity.

We now describe the protocol in detail. Many of the parameters are the same as in
(the Reed-Solomon instantiation of) ΠGen: We set ` = dlog(t/δ)e, and fix a prime q
such that

q log q = Ω(mn/(n− t)) and (q − 2`) log q ≥ 2m
n− t

.

The message space isM = Fr
q , that is, anm-bit message is considered as a sequence of

r = dm/ log qe field elements in Fq . (However, we also assume, for the purpose of the
Round 3 authentication, that the field elements are actually represented as bit-strings of
length r log q.) Set K = dr/(n− t)e+ ` and N = 2K.

In addition to the above parameters, we will also define their small-strand counter-
parts, which we notate using variables with hats. Set m̂ = `(n + log(cK log q))—as
noted above, this is the size of the shared secret which will be used to authenticate
the Ci’s. Here the constant c > 1 is the expansion factor of an efficiently computable,
constant-rate error-correcting code E ′ of relative minimum distance (say) 1/3. (We cau-
tion that E ′ plays a different role in ΠSPD than E did in ΠGen, hence the different name.)
We will use Enc and Dec to denote the encoding and decoding functions of E ′; we use
EncRS andDecRS for the encoding and decoding functions of the Reed-Solomon code
which functions as E for ΠSPD.

Fix q̂ to be a prime such that

q̂ log q̂ = Ω(
m̂n

n− t
) and (q̂ − 2`) log q̂ >

2m̂
n− t

,

Set r̂ = dm̂/ log q̂e, K̂ = dr̂/(n−t)e+`, and N̂ = 2K̂. Finally, set `3/2 = log3/2(t/δ).
The protocol, ΠSPD (for “small public discussion”), is shown in Figure 2. Keep in

mind the high-level understanding of the protocol: The first two rounds are simply par-
allel versions of Rounds 1 and 2 of ΠGen, run with different (big and small) parameters.
In Round 3, we complete the small instance of ΠGen as usual, and use the resulting

Protocol ΠSPD

1. (R PRI→ S). (small) For each wire i, R chooses a random f̂i ∈ Fq̂[X] such that deg(f̂i) ≤
K̂. R sends the Reed-Solomon (RS) codeword Ĉi =

(
f̂i(1), f̂i(2), . . . , f̂i(N̂)

)
along wire

i. Let Ĉ∗i be the codeword received by S, and f̂∗i = DecRS(Ĉ∗i).
(big) For each wire i, R chooses a random fi ∈ Fq[X] such that deg(fi) ≤ K. R sends
the RS codeword Ci =

(
fi(1), fi(2), . . . , fi(N)

)
along wire i. Let C∗i be the codeword

received by S, and f∗i = DecRS(C∗i).
2. (R PUB→ S). (small) R chooses a random subset Ĵ = {ĵ1, . . . , ĵ`} ⊂ [N̂] of codeword

indices, |Ĵ | = `.R performs codeword verification as in Section 2 by sending Ĵ , as well as
{Ĉi|Ĵ} for each wire i, over the public channel.
(big) R chooses a random subset J = {j1, . . . , j`} ⊂ [N] of codeword indices, |J | = `.
R performs codeword verification as in Section 2 by sending J , as well as {Ci|J} for each
wire i, over the public channel.

3. (S PUB+PRI−→ R). S rejects any wire i which is syntactically incorrect or which fails one of
the consistency checks in Round 2. Call the set of remaining, accepted wires ACC.
(small) Let α̂∗ denote the concatenation of f̂∗i for each i ∈ ACC, padded with 0 ∈ Fq so its
length is K̂n. Applying Extq̂ : FK̂n

q̂ → Fr̂
q̂ of Section 2, S obtains s∗ = Extq̂(α̂∗).

(big) Let α∗ denote the concatenation of f∗i for each i ∈ ACC, padded with 0 ∈ Fq so
its length is Kn. Applying the randomness extractor Extq : FKn

q → Fr
q , S obtains R∗ =

Extq(α∗).
Now MS and R∗ are both vectors in Fr

q; S puts C = R∗ + MS . Now S applies the Reed
Solomon code Fr

q → FKn
q to C, obtaining a codeword D ∈ FKn

q . Let D = (D1, . . . , Dn)
where each Di ∈ FK

q . View Di as a bit-string of length K log q, and let Ei = Enc(Di),
so that |Ei| = cK log q (in bits). S sends Ei on wire i ∈ ACC; let E∗i denote the message
received byR on wire i.
To authenticate each Ei, S chooses a random subset J ′ ⊆ [cK log q], |J ′| = `3/2. Put
authS = (J ′, {Ei|J′}i∈ACC); we have |authS | ≤ m̂ (with equality if every wire is in
ACC). Padding as necessary, view authS as an element of Fr̂

q̂ . S sets V = s∗ + authS and
sends (V,B) over the public channel, where B is an n-bit string representing the set ACC.
Receiver:R learns ACC fromB. For i ∈ ACC, he forms α, the concatenation of fi for each
i ∈ ACC (padded with 0 ∈ Fq to length Kn). He applies Extq to obtain R = Extq(α) ∈
Fr

q .
Similarly, for i ∈ ACC, he forms α̂, the concatenation of f̂i for each i ∈ ACC (padded with
0 ∈ Fq to length K̂n). He applies Extq̂ to obtain s = Extq̂(α̂) ∈ Fr̂

q̂ .
Next R forms V − s, which he parses as authR = (J ′

∗
, {checki}i∈ACC). For each (cor-

rectly formed) E∗i , R verifies its authenticity by checking that E∗i |∗J′ = checki. For those
which pass, he recovers D∗i = Dec(E∗i), D∗i ∈ FK

q . Once R has recovered at least n − t
valid D∗i ’s, he has K(n− t) = r symbols in Fq , which he uses to decode the RS code used
by S to encode C. (This is simply interpolation.) Call the result C∗ ∈ Fr

q . Finally,R obtains
MR = C∗ −R.
(On failure to authenticate at least n− t E∗i ’s, or to parse authR correctly,R outputs ⊥.)

Fig. 2. SMT-PD protocol with small (logarithmic) public communication and optimal
private communication.

shared secret to blind the (public-channel) authentication of the Ci’s which encode C.
The latter have been sent on the unreliable private wires, unlike in ΠGen, where no
authentication was required in Round 3 since C itself was sent on the public channel.

Theorem 6. Protocol ΠSPD (Fig. 2) is a valid (3, 2)-round (0, 3δ)-SMT-PD protocol.
It has communication complexityO(mn

n−t) on the private wires andO(n log(t/δ) logm)
on the public channel, provided m = Ω(n log(t/δ) log q).

4 Private Communication Lower Bound

In this section we prove a lower bound of Ω(nm
n−t) for the expected communication

complexity on the private wires, for any (ε, δ)-SMT-PD protocol (where ε and δ are
considered constants). Since protocol ΠGen of the previous section meets this bound,
we provide a complete answer to the question raised in [SJST09] of determining the
optimal transmission rate on private wires for an (ε, δ)-SMT-PD protocol.

Our communication lower bound holds even for a weakened adversary who is pas-
sive and non-adaptive—that is, A chooses which wires to corrupt at the start of the
protocol and only eavesdrops thereafter. It also holds even if we modify δ-reliability so
that the probability that MR = MS is taken over the the choice of MS as well (and not
just the players’ coins). Further, as noted in the Introduction, it also holds in the case of
SMT with no public channel, mutatis mutandis.

For the lower bound, we assume that MS is chosen uniformly at random fromM;
in this caseH(MS) = log |M|. In the following lemmas we assumeΠ is a valid (ε, δ)-
SMT-PD protocol, and probabilities are over all players’ coins as well as the random
selection of MS ∈M.

The first two lemmas are complementary, establishing entropy versions of ε-privacy
and δ-reliability, respectively. Namely, in Lemma 7, we show that in any ε-private pro-
tocol, the entropy of MS remains high given the adversary’s view. Then in Lemma 8,
we show that for any δ-reliable protocol (with passive adversary), the entropy of MS
given the entire transcript of communications is low. Though these statements are quite
intuitive, their proofs are relatively delicate.

Lemma 7. For all adversaries A and all ε-private protocols, H (MS | ViewA) ≥
− log(1/|M|+ 2ε).8

The transcript T of an (ε, δ)-SMT-PD protocol execution is the random variable
consisting of the list of messages the players send on public and private channels over
the course of the protocol. Thus in the case of a passive adversary, T is completely
determined by MS , CS , and CR. For a given set of wires S, we will let TS denote
the transcript restricted to communications on the wires in S. In the sequel we use
PUB, PRIV, CORR, and SEC to denote respectively the public channel, private wires,
corrupted wires, and secure (uncorrupted and private) wires.

We use H2(·) to denote the binary entropy function, H2(p) = −p log p − (1 −
p) log(1− p).

8 This entropy lemma is not directly equivalent to a seemingly related probability version (as
in [SJST09], Lemma 2).

Lemma 8. For all δ-reliable protocols, H(MS | T) ≤ H2(
√
δ) + 2

√
δH(MS).

Given Lemmas 7 (a proof of “high” entropy) and 8 (a proof of “low” entropy), we
take the difference of the two inequalities (leaving still a “high” amount of entropy),
and show that this bounds from below H(TSEC | SEC). This is intuitive: the adversary
knows which wires are secure, and yet it is only from these wires that S and R can
leverage any privacy at all. Therefore the entropy of the messages on them should be
high.

Lemma 9. − log(1/|M|+ 2ε)−H2(
√
δ)− 2

√
δ log |M| ≤ H (TSEC | SEC).

Our main lower bound theorem follows. The idea is straightforward. Since the set
of secure wires is unknown to S andR (for a passive adversary, say), it must be that, in
an average sense, every set of n− t private wires carries the requisite entropy. Then we
use Han’s inequality (see proof in [GGO09]) to “average” the entropy over all subsets
of n− t wires and obtain an estimate for the total entropy on private wires, completing
the proof.

Theorem 10. Let Π be any (ε, δ)-SMT-PD protocol with n ≤ 2t, in the presence of a
passive, non-adaptive adversary A. Let C denote the expected communication (in bits)
over the private wires (the expectation is taken over all players’ coins and the choice of
MS ∈M). Then

C ≥ n

n− t
· (− log(1/|M|+ 2ε)−H2(

√
δ)− 2

√
δ log |M|)

In particular, if ε = O(1/|M|) and δ = O(1), then C = Ω(mn/(n− t)).

Corollary 11. Provided that ε = O(1/|M|), and δ = O(1), protocols ΠGen and ΠSPD

have optimal private communication complexity O(nm
n−t) for messages of size m =

Ω (n`) and m = Ω (n` log q), respectively.

5 Amortized Use of the Public Channel

A natural question when considering SMT-PD as a subroutine in a larger protocol is
whether some of the lower bounds on resource use for a single execution of SMT-PD
can be beaten on average through amortization. For instance, an almost-everywhere
secure computation protocol may invoke an SMT-PD subroutine every time any two
nodes in the underlying network need to communicate. Must they use the public channel
twice every single time, or can the nodes involved, say, save some state information
which allows them to reduce their use of the public channel in later invocations?

Our next result shows that amortization can in fact drastically reduce the use of
the public channel: indeed, it is possible to limit the total number of uses of the public
channel to two, no matter how many messages are ultimately sent between two nodes.
(Since two uses of the public channel are required to send any reliable communication
whatsoever, this is best possible.)

Of course, S andRmay use the first execution of SMT-PD to establish a shared se-
cret key, which can be used for message encryption and authentication on the common

wires. The Sender computes a ciphertext and sends it (with authentication) on every
common wire. With overwhelming probability, no forged message is accepted as au-
thentic, and the Receiver accepts the unique, authentic message which arrives on any
good wire. However, since we are considering the information-theoretic setting, each
use of the shared key reduces its entropy with respect to the adversary’s view. If the par-
ties know in advance an upper bound on the total communication they will require, and
can afford to send a proportionally large shared key in the first execution of SMT-PD,
then this approach is tenable by itself.

In some situations, however, the players may not know a strict upper bound on the
number of messages they will send. And even when they do, it may happen that the
protocol terminates early with some probability, so that an initial message with large
entropy is mostly wasted. With these considerations in mind, we now explore strate-
gies which allow S and R to communicate indefinitely after using only two broadcast
rounds and a limited initial message. Our approach is to separate Sender and Receiver’s
interaction following the first execution of SMT-PD into two modes: a Normal Mode
and a Fault-Recovery Mode.

In the Normal Mode, S and R communicate over the common wires without mak-
ing use of their shared key; they are successful provided the adversary does not actively
interfere. If the adversary does interfere, one of the players (sayR) will detect this and
enter Fault-Recovery Mode, in which he uses the shared key to broadcast information
about the messages he received on each common wire, allowing S to determine at least
one corrupted wire (which he then informsR about, authentically).

In this way, S and R communicate reliably and privately so long as the adversary
is passive; and any time he is active, they are able to eliminate at least one corrupted
wire.9 (Of course, once they have eliminated all t corrupt wires, communication be-
comes very efficient.) In the sequel, we describe implementations of Normal Mode and
Fault-Recovery Mode, as well as how the two modes interact with each other.

Normal Mode. Let us first define a weaker version of SMT by public discussion in
which reliability is only guaranteed for a passive adversary. Let Π be a protocol which
attempts to send a message from S to R using only the common wires (and not relying
on any shared secret key). Then we say Π is a Weak (ε, δ) SMT-PD protocol if it satis-
fies Definition 2 where we (1) add to the adversary’s view a bit indicating whether R
accepted a message or not (see next point), and (2) replace RELIABILITY with:

WEAK RELIABILITY:
(Correctness with passive adversary) If the adversary only eavesdrops, then R re-
ceives the message correctly.
(Detection of active adversary) If the adversary actively corrupts any wire, then
with probability ≥ 1− δ, either R receives the message correctly (MR = MS), or
R outputs “Corruption detected.”

The first change above affects ε-privacy since it alters the definition of ViewA; this
is necessary because in the compiled, amortized protocol using Weak SMT-PD as a
subroutine, the adversary will learn whether R accepted a message based on whether
R does or does not enter Fault-Recovery Mode.

9 This is akin to the “slow” PSMT original protocol in [DDWY93].

We remark in passing that Weak SMT-PD is similar in spirit to almost SMT from
the standard (non-public discussion) model [KS07], in that both are relaxations which
allow one-round transmission (for Weak SMT-PD, only with a passive adversary). The
difference is that in the ordinary model, definitions for almost SMT require that the
message be correctly received with overwhelming probability regardless of the adver-
sary’s actions; in the public discussion model, when the adversary controls a majority
of wires, this is impossible, so we only require that corruptions be detected. Indeed, we
cannot guarantee reliability in a single round even when the adversary simply blocks
transmission on corrupted wires (otherwise a minority of wires would carry enough
information to recover the message, thus violating privacy).

If we do not require the Weak SMT-PD protocol to finish in one round, then there
is a simple solution: use the common wires to simulate the public channel wire in an
ordinary SMT-PD protocol. Any time a party would use the public channel, they instead
send the public-channel message over every common wire. Two possibilities arise: (1)
The adversary never tampers with any such “virtual” public channel invocation. In this
case, the virtual public channel functions like an actual public channel, and the protocol
succeeds with the same probability as the underlying SMT-PD protocol. (2) The adver-
sary at some point tampers with a virtual public channel invocation. If he does, then the
receiving party in that round will detect tampering, and can notify the other player by
sending a flag on every channel (or, if the receiving player isR and it is the final round,
he just outputs “Corruption Detected”).10

The above Weak SMT-PD protocol is conceptually simple (given a pre-existing
SMT-PD protocol!), but we might hope to do Weak SMT-PD in a single round, as op-
posed to the three rounds required for ordinary SMT-PD. The following simple scheme
shows one way this can be done.

Assume the Sender wants to send a single field element MS = α ∈ Fq . The one-
round protocol, ΠW−SMT−PD, is shown in Figure 3. Essentially, the sender performs
a 3t + 2-out-of-3n Shamir secret sharing of the message; however, rather than send-
ing externally specified shares on each wire i (such as f(1), f(2), f(3) on wire 1), he
chooses a set of random points on which to evaluate f .

Lemma 12. The protocol of Figure 3 is a Weak (δ, δ)-SMT-PD protocol for q suffi-
ciently large (Ω(t/δ)).

We are now ready to describe Normal Mode for S and R: it is simply the repeated
execution of the Weak SMT-PD protocol, with the two players alternating the role of
Sender and Receiver, until one of them as Receiver outputs “Corruption detected.” At
that time, that player’s next message to the other party will alert them to enter Fault-
Recovery Mode.

Fault-Recovery Mode. Specifically, suppose R detects corruption in a message sent
by S. He will then use the shared secret established in the initial execution of (ordi-
nary) SMT-PD to secretly and authentically send the following on all wires: (1) a flag

10 We do not consider here whether such a protocol preserves (ε-)privacy when the adversary
knows whether R detects corruption; obviously this depends on the details of the protocol.
Therefore this is not quite a black-box reduction.

Protocol ΠW−SMT−PD

1. (S PRI→ R). S chooses a random polynomial f ∈ Fq[x] with deg(f) ≤ 3t + 1
and f(0) = α, and a random sequence x11, x12, x13, x21, x22, x23, . . . , xn1, xn2, xn3

of 3n distinct elements of Fq \ {0}. On wire i S sends to R the three pairs
(xi1, f(xi1)), (xi2, f(xi2)), (xi3, f(xi3)).
Receiver: On wire i, R receives (x∗ij , y

∗
ij) for j = 1, 2, 3. He verifies that all 3n

x∗ij’s are distinct, and that the 3n points (x∗ij , y
∗
ij) lie on a polynomial f∗ of degree

≤ 3t+1. If so, he outputsMR = f∗(0); otherwise (or in case some wire is syntactically
incorrect) he outputs “Corruption detected.”

Fig. 3. A one-round Weak SMT-PD protocol.

signalling Fault-Recovery Mode; (2) a list of specific wires known to be corrupted (if
any); (3) the received transmission on all wires not known to be corrupt.

Since at least one of the wires is not corrupted, S will receive this communication
on it and (verifying its authenticity) enter Fault-Recovery Mode also. S recovers the
set of received transmissions and determines which ones were tampered with. He then
sends the following to R, again using the shared secret for privacy and authentication:
(1) the message MS on which R detected corruption; (2) an updated list of specific
wires known to be corrupted. At this time, R has received the intended message and
Normal Mode resumes withR now playing the role of Sender.

Each time Fault-Recovery Mode occurs, S and R are able to detect at least one
previously unknown corrupt wire. If at any point S and R have jointly detected t wires
as corrupt, they will simply send all future transmissions on the remaining, good wires,
guaranteeing perfect privacy and reliability.

Theorem 13. Given an initial shared secret consisting of O(n2) field elements, S and
R can communicate indefinitely using only the private wires. The probability that one of
them will ever accept an incorrect message is≤ tδ. Moreover, with probability≥ 1−tδ,
A gains at most δ information on each of t different messages, and no information on
any other message.

References

[ACH06] S. Agarwal, R. Cramer, and R.de Haan. Asymptotically optimal two-round perfectly
secure message transmission. In Advances in Cryptology–CRYPTO’06, 2006.

[BG93] P. Berman and J. Garay. Fast consensus in networks of bounded degree. Distributed
Computing, 2(7):62–73, 1993. Preliminary version in WDAG’90.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC, pages 1–10, 1988.

[CCD88] D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally secure protocols.
In STOC, pages 11–19, 1988.

[CPRS08] A. Choudhary, A. Patra, C. P. Rangan, and K. Srinathan. Unconditionally reliable
and secure message transmission in undirected synchronous networks: Possibility,
feasibility and optimality. Cryptology ePrint Archive, Report 2008/141, 2008.

[DDWY93] D. Dolev, C. Dwork, O. Waarts, and M. Young. Perfectly secure message transmis-
sion. Journal of ACM, 1(40):17–47, 1993.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput., 2008.

[DPPU86] C. Dwork, D. Peleg, N. Pippinger, and E. Upfal. Fault tolerance in networks of
bounded degree. In STOC, pages 370–379, 1986.

[FFGV07] M. Fitzi, M. Franklin, J. Garay, and S. Harsha Vardhan. Towards optimal and efficient
perfectly secure message transmission. In TCC, 2007.

[FM97] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SIAM J. Comput., 26(4):873–933, 1997.

[FW98] M. Franklin and R. Wright. Secure communications in minimal connectivity models.
In Advances in Cryptology–EUROCRYPT’98, pages 346–360, 1998.

[GGO09] J. Garay, C. Givens, and R. Ostrovsky. Secure message transmission with small
public discussion. Cryptology ePrint Archive, Report 2009/519, 2009.

[GM98] J. Garay and Y. Moses. Fully polynomial Byzantine agreement for n > 3t processors
in t+ 1 rounds. SIAM J. Comput., 27(1):247–290, 1998. Prelim. in STOC ’92.

[GO08] J. Garay and R. Ostrovsky. Almost-everywhere secure computation. In Advances in
Cryptology–Eurocrypt’08, pages 307–323, 2008.

[GRR98] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty com-
putations with applications to threshold cryptography. In Proc. 17th Annual ACM
Symp. on Principles of Distributed Computing, PODC, pages 101–111. ACM, 1998.

[KK06] J. Katz and C. Koo. On expected constant-round protocols for Byzantine agreement.
In Advances in Cryptology – CRYPTO 2006, pages 445–462, 2006.

[KS07] K. Kurosawa and K. Suzuki. Almost secure (1-round, n-channel) message transmis-
sion scheme. Cryptology ePrint Archive, Report 2007/076, 2007.

[KS08] K. Kurosawa and K. Suzuki. Truly efficient 2-round perfectly secure message trans-
mission scheme. In Advances in Cryptology – EUROCRYPT’08, pages 324–340,
2008.

[KZ06] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM J. Comput., 36(5):1231–1247, 2006.

[Lam87] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1–11, 1987.

[MS83] F. Macwilliams and N. Sloane. The Theory of Error-Correcting Codes. North Hol-
land, January 1983.

[SA96] H. Sayeed and H. Abu-Amara. Efficient perfectly secure message transmission in
synchronous networks. Information and Computation, 1(126):53–61, 1996.

[SJST09] H. Shi, S. Jiang, R. Safavi-Naini, and M. Tuhin. Optimal secure message transmis-
sion by public discussion. In IEEE Symposium on Information Theory, 2009.

[SNP04] K. Srinathan, A. Narayanan, and C. Pandu Rangan. Optimal perfectly secure message
transmission. In Advances in Cryptology–CRYPTO’04, pages 545–561, 2004.

[SPR07] K. Srinathan, N. R. Prasad, and C. P. Rangan. On the optimal communication com-
plexity of multiphase protocols for perfect communication. IEEE Symposium on
Security and Privacy, 0:311–320, 2007.

[Upf92] E. Upfal. Tolerating linear number of faults in networks of bounded degree. In
PODC, pages 83–89, 1992.

