
Partial Fairness in Secure Two-Party
Computation

S. Dov Gordon1 and Jonathan Katz1?

Department of Computer Science, University of Maryland
{gordon,jkatz}@cs.umd.edu

Abstract. A seminal result of Cleve (STOC ’86) is that complete fair-
ness is impossible to achieve in two-party computation. In light of this,
various techniques for obtaining partial fairness have been suggested in
the literature. We propose a definition of partial fairness within the stan-
dard real-/ideal-world paradigm that addresses deficiencies of prior def-
initions. We also show broad feasibility results with respect to our def-
inition: partial fairness is possible for any (randomized) functionality
f : X × Y → Z1 × Z2 at least one of whose domains or ranges is poly-
nomial in size. Our protocols are always private, and when one of the
domains has polynomial size our protocols also simultaneously achieve
the usual notion of security with abort. In contrast to some prior work,
we rely on standard assumptions only.

We also show that, as far as general feasibility is concerned, our results
are optimal (with respect to our definition).

1 Introduction

In the setting of secure two-party computation, two parties run a protocol that
enables each of them to learn a (possibly different) function of their inputs while
preserving security properties such as privacy, correctness, input independence,
etc. These requirements, and more, are traditionally formalized by comparing a
real-world execution of the protocol to an ideal world where there is a trusted
entity who performs the computation on behalf of the parties. Informally, a
protocol is “secure” if for any real-world adversary A there is a corresponding
ideal-world adversary S (corrupting the same party) such that an execution of
the protocol in the real world with A is computationally indistinguishable from
computing the function in the ideal world with S.

One desirable security property is fairness which, intuitively, ensures that
either both parties learn the output or else neither party does. In a “true” ideal
world — this is the ideal world used in the multi-party setting when a majority
of parties are honest — fairness is ensured since the trusted party evaluating the
function provides output to both parties. Unfortunately, Cleve [10] shows that
complete fairness is impossible to achieve, in general, in the two-party setting.
For this reason, the usual treatment of secure two-party computation (see [18])
? Research supported by NSF CAREER award #0447075 and NSF-CCF #0830464.

weakens the ideal world to one in which fairness is not guaranteed at all. A
protocol is said to be “secure-with-abort” if it can be simulated (as described
above) with respect to this less-satisfying ideal world.

Various methods for achieving partial fairness have been suggested; we pro-
vide an extensive discussion in Section 1.1. With the exception of [17], however,
all previous work has departed from the traditional real-/ideal- world paradigm
in defining partial fairness. (Indeed, addressing this deficiency is explicitly men-
tioned as an open problem by Goldreich [18, Section 7.7.1.1].) Furthermore,
many previously suggested approaches to partial fairness only apply in specific
settings (e.g., fair exchange of signatures) or under certain assumptions on the
parties’ inputs and auxiliary information (e.g., that inputs are chosen uniformly
at random) but do not give a “general-purpose” solution that can be used for
arbitrary functions computed on arbitrary inputs. Finally, much previous work
on partial fairness requires strong cryptographic assumptions, e.g., regarding the
precise amount of time needed to solve some problem (even using parallelism).

As noted earlier, the most desirable (but, in the two-party setting, unachiev-
able) definition of security requires computational indistinguishability between
the real world and a “true” ideal world where both parties receive output. The
usual relaxation of security-with-abort [18] leaves unchanged the requirement of
computational indistinguishability, but weakens the ideal world to one in which
fairness is no longer guaranteed at all. Katz [23] suggested an alternate relax-
ation: keep the ideal world unchanged, but relax the notion of simulation and
require instead that the real and ideal worlds be distinguishable with probabil-
ity at most 1

p + negl, where p is some specified polynomial1 (see Definition 1).
We refer to a protocol satisfying this definition as being “ 1

p -secure”. Cleve [10]
and Moran et al. [27] show 1

p -secure protocols for two-party coin tossing (where
parties have no inputs), but we are not aware of any other results satisfying
our definition. In particular, none of the prior approaches for achieving partial
fairness yield protocols that are 1

p -secure.

We propose the notion of 1
p -security as a new way to approach the prob-

lem of partial fairness, and view this as an independent contribution. We also
demonstrate protocols that achieve this definition for a broad class of functions.
Specifically, let fn : Xn × Yn → Z1

n × Z2
n be a (randomized) functionality where

player 1 (resp., player 2) provides input x ∈ Xn (resp., y ∈ Yn) and receives
output z1 ∈ Z1

n (resp., z2 ∈ Z2
n). (Throughout this paper, n denotes the security

parameter.) For arbitrary polynomial p, we show 1
p -secure protocols for comput-

ing fn as long as at least one of Xn, Yn, Z1
n, Z2

n is polynomial size (in n). Our
protocols are always private, and when either Xn or Yn is polynomial-size we also
achieve the usual notion of security-with-abort. (Relevant definitions are stan-

1 This definition is similar in spirit to (but weaker than) the notion of ε-zero knowl-
edge [13] and is analogous to the definition used in [19] for password-based key ex-
change (although there p is fixed by the size of the password dictionary). A similar
idea, formalized differently and with different motivation, is also used in [1].

dard and appear in the full version of this paper.) We assume only the existence
of enhanced trapdoor permutations or, more generally, oblivious transfer.

We also prove that our feasibility results are, in general, optimal. First, we
demonstrate a deterministic, boolean function fn : Xn× Yn → {0, 1}, where Xn

and Yn both have super-polynomial size, for which no protocol computing fn can
simultaneously achieve both security-with-abort and 1

p -security (for p > 4). We
also show a deterministic function fn : Xn × Yn → Zn, with each of Xn, Yn, Zn

super-polynomial in size, such that fn cannot be 1
p -securely computed for p > 2.

1.1 Prior Work

There is an extensive literature devoted to the problem of achieving partial
fairness when an honest majority is not present, both for the case of specific
functionalities like coin tossing [10, 11, 27] and contract signing/exchanging se-
crets [5, 25, 14, 4, 12, 6], as well as for the case of general functionalities [29, 16, 3,
20, 15, 28, 17]. Prior work (with the exception of [17]; see below), however, does
not consider a simulation-based definition within the standard real/ideal world
paradigm as we do here. Moreover, to the best of our knowledge none of the
previous approaches (with the exception of [10, 27], that deal only with coin
tossing) can be proven 1

p -secure. Beyond the theoretical advantages of achieving
a simulation-based notion of security, our protocols offer several concrete benefits
with respect to prior solutions; these are explained in what follows.

One approach that has been suggested for achieving partial fairness is to
construct a protocol where, roughly speaking, at every round both parties can
recover their output using a “similar” amount of work (except in early rounds,
where one party can recover their output only by investing exponential work).
This idea was used in [16, 12, 6, 28], and was formalized by Garay et al. [17] within
the framework of universal composability [9]. An unsatisfying feature of this ap-
proach, no matter how it is implemented, is that the decision of whether an
honest party should invest the necessary work and recover the output is not de-
termined by the protocol, but is somehow decided “externally”; if the adversary
knows how this decision is made, then it can abort at “exactly the right time”
and violate fairness completely. In this approach there may also be no a priori
polynomial bound on the honest party’s running time. This approach also seems
problematic in defending against an adversary who runs in polynomial time, but
has more computational power than honest parties are able to invest. Finally,
this technique appears to inherently require strong assumptions regarding the
precise time required to solve some specific computational problem.

A second approach, used in, e.g., [25] for exchanging secrets and in [3, 20] for
computation of general functions, gradually increases each party’s confidence in
their output by, roughly speaking, masking the correct output with “noise” that
tends to 0 as the protocol progresses. Protocols of this sort are inapplicable when
the adversary has auxiliary information about the output of the function, since in
that case the adversary’s “confidence” at any point in the protocol is impossible
to estimate. More problematic is that an adversary can bias the output of the
honest party beyond what is possible in the ideal world. As a simple illustration,

consider a computation of the equality function where each party holds a value
chosen uniformly from some domain D. In the ideal world, the probability that
an adversary can cause the honest player to output 1 is exactly 1/|D|. Using
the approach of [3, 20], however, the adversary can cause the honest player to
output 1 with probability essentially 1/2 by aborting in the first round (when
the true answer is masked by an almost uniform random bit). Besides indicating
a weakness of previous protocols, this example also demonstrates the importance
of defining partial fairness within the simulation paradigm.

Gordon et al. [22] recently showed that complete fairness is possible in the
two-party setting for certain specific functions. Work continuing that direction
is complementary to our work here: while we do not yet have a complete charac-
terization of what can be computed with complete fairness, we know that there
certainly do exist some functions that cannot be computed with complete fair-
ness [10] and so some relaxation must be considered (at least for some functions).
Our feasibility results here apply to a much richer class of functions.

Other work has looked at achieving complete fairness with off-line trusted
third parties (e.g., [7]) or in non-standard communication models (e.g., [24]). We
work in the standard communication model, and without any trusted parties.

1.2 Overview of our Approach

We now give an informal description of our feasibility results (details are in
Section 3). Let x denote the input of P1, let y denote the input of P2, and let
f : X × Y → Z denote the function they are trying to compute. (For simplicity,
here we omit the dependence of X, Y , and Z on n, and focus on the case where
each party receives the same output.) As in [23, 22, 27], our protocols will be
composed of two stages, where the first stage can be viewed as a “pre-processing”
step and the second stage takes place in a sequence of r = r(n) iterations. The
stages have the following form:

First stage. This consists of the following steps:
1. A value i∗ ∈ {1, . . . , r} is chosen according to some distribution (see below).

This represents the iteration in which the parties will learn the “true output”.
2. Values a1, . . . , ar and b1, . . . , br are generated. For i < i∗, the {ai} (resp.,
{bi}) are chosen (independently) according to some distribution that is inde-
pendent of y (resp., x). For i ≥ i∗, however, it holds that ai = bi = f(x, y).

3. Each ai is randomly shared as a
(1)
i , a

(2)
i with a

(1)
i ⊕ a

(2)
i = ai (and similarly

for each bi). The stage concludes with P1 being given a
(1)
1 , b

(1)
1 , . . . , a

(1)
r , b

(1)
r ,

and P2 being given a
(2)
1 , b

(2)
1 , . . ., a

(2)
r , b

(2)
r . (Shares are also authenticated

with an information-theoretic MAC.)

After this stage, each party has a set of random shares that reveal nothing about
the other party’s input. This stage can thus be carried out by any protocol that
is secure-with-abort.

Second stage. In each iteration i, for i = 1, . . . , r, the parties do the following:
First, P2 sends a

(2)
i to P1 who reconstructs ai; then P1 sends b

(1)
i to P2 who

reconstructs bi. (Parties also verify validity of the MAC but we omit this here.)
If a party (say, P1) aborts in some iteration i, then the other party (here, P2)
outputs the value reconstructed in the previous iteration (i.e., bi−1). Otherwise,
after reaching iteration r the parties output ar and br, respectively.

To fully specify the protocol we must specify the distribution of i∗ as well as
the distribution of the ai, bi for i < i∗. As in [23, 27], we choose i∗ uniformly from
{1, . . . , r}. (In [22] a geometric distribution was used. That would work here, but
with slightly worse round complexity.) When X and Y (the domains of f) are
polynomial size, we follow [22] and set ai = f(x, ŷ) for ŷ chosen uniformly from
Y , and set bi = f(x̂, y) for x̂ chosen uniformly (and independently) from X.
Note that ai (resp., bi) is independent of y (resp., x), as desired.

Intuitively, this is partially fair because fairness is only violated if P1 aborts
exactly in iteration i∗. (If P1 aborts before iteration i∗ then neither party learns
the “correct” value z = f(x, y), while if it aborts subsequently then both parties
learn the correct value. An abort by P2 in iteration i∗ does not violate fairness,
since by then P1 has already learned the output.) We show that even if P1 knows
the value of z (which it may, depending on partial information P1 has about y), it
cannot determine with certainty when iteration i∗ occurs. Specifically, we prove
a general result (see Lemma 1) implying (roughly) that as long as Pr[ai = z] ≥ α
for all i < i∗, then P1 cannot abort in iteration i∗ except with probability at
most 1/αr (recall that r is the number of iterations in the second phase). Since
Pr[ai = f(x, y)] = Prŷ∈Y [f(x, ŷ) = f(x, y)] ≥ Prŷ∈Y [ŷ = y] = 1/|Y | for any x, y,
we conclude that setting r = p · |Y |, so that 1/αr = 1/p, suffices to achieve
1
p -security. We thus get a protocol with polynomially many rounds as long as Y
is polynomial size.

The above does not work directly when Y has super-polynomial size. To
fix this, we must ensure that for every possible z ∈ Z (the range of f) we
have that Pr[ai = z] is noticeable. We do this by changing the distribution
of ai (for i < i∗) as follows: with probability 1 − 1/q choose ai as above, but
with probability 1/q choose ai uniformly from Z. Now, for any f, x, y, we have
Pr[ai = f(x, y)] ≥ 1

q · Prai∈Z [ai = f(x, y)] ≥ 1/q|Z| and so setting r = pq|Z|
ensures that P1 cannot abort in iteration i∗ except with probability at most 1/p.

Changing the distribution of ai, however, introduces a new problem: if P2

aborts prior to iteration i∗, the output of the honest P1 in the real world cannot
necessarily be simulated in the ideal world. We show, however, that it can be
simulated to within statistical difference O(1/q). Taking q = p (along with r =
pq|Z|) thus gives a 1

p -secure protocol with polynomially many rounds.

2 Definitions

Preliminaries. A function µ(·) is negligible if for every positive polynomial p(·)
and all sufficiently large n it holds that µ(n) < 1/p(n). A distribution ensemble
X = {X(a, n)}a∈Dn, n∈N is an infinite sequence of random variables indexed by
a ∈ Dn and n ∈ N, where Dn may depend on n.

For a fixed function p, the distribution ensembles X = {X(a, n)}a∈Dn, n∈N
and Y = {Y (a, n)}a∈Dn, n∈N are computationally 1

p -indistinguishable, denoted

X
1/p≈ Y , if for every non-uniform polynomial-time algorithm D there exists a

negligible function µ(·) such that for every n and every a ∈ Dn

∣∣∣ Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]
∣∣∣ ≤ 1

p(n)
+ µ(n).

Two distribution ensembles are computationally indistinguishable, denoted X
c≡

Y , if for every c ∈ N they are computationally 1
nc -indistinguishable.

Functionalities. A functionality F = {fn}n∈N is a sequence of poly-time com-
putable, randomized mappings fn : Xn × Yn → Z1

n × Z2
n, where Xn and Z1

n

(resp., Yn and Z2
n) denote the input and output of the first (resp., second) party.

We write fn = (f1
n, f2

n) if we wish to emphasize the two outputs of fn, but stress
that if f1

n and f2
n are randomized then the outputs of f1

n and f2
n are correlated

random variables. If Pr[f1
n(x, y) = f2

n(x, y)] = 1 for all x, y, then we call fn a
single-output functionality and write it as fn : Xn × Yn → Zn. If F is determin-
istic, we sometimes call it a function. For notational convenience, we sometimes
drop the explicit dependence on n.

Two-party computation. A two-party protocol for computing a functionality
F = {(f1, f2)} is a protocol running in polynomial time and satisfying the
following correctness requirement: if party P1 begins by holding 1n and input
x ∈ X, and party P2 holds 1n and input y ∈ Y , then the joint distribution of
the outputs of the parties is statistically close to (f1(x, y), f2(x, y)).

Security of protocols. We consider active adversaries, who may deviate from
the protocol in an arbitrary manner, and static corruptions. We use the stan-
dard real/ideal paradigm [18] (based on [26, 2, 8]). Define idealF,A(aux)(x, y, n)
as the random variable consisting of the output of the adversary A and the
output of the honest party following a computation of F in the ideal model
(where complete fairness is guaranteed), with security parameter n and parties
holding initial inputs x and y, respectively, and auxiliary input aux. We also
define realΠ,A(aux)(x, y, n) as the analogous random variable for the real-world
execution of protocol Π.

Having defined the ideal and real models, we now state our new notion of
security. Loosely speaking, our definition asserts that a secure protocol (in the
real model) emulates the ideal model (in which a trusted party exists) to within
a difference of 1

p . This is formulated as follows:

Definition 1. Let F ,Π be as above, and fix a function p. Protocol Π is said to
1
p -securely compute F if for every non-uniform probabilistic polynomial-time ad-
versary A in the real model, there exists a non-uniform probabilistic polynomial-
time adversary S in the ideal model such that

{
idealF,S(aux)(x, y, n)

} 1/p≈ {
realΠ,A(aux)(x, y, n)

}
.

Although our definition of 1
p -security allows privacy to be violated with prob-

ability 1
p , in fact all our protocols are fully private. We remark further that

1
p -security (even with privacy) and security-with-abort are incomparable.

3 1
p
-Secure Computation of General Functionalities

We begin in Section 3.1 by stating a lemma that forms an essential piece of our
analysis in the two sections that follow. In Section 3.2 we demonstrate a private
and 1

p -secure protocol for functionalities defined on polynomial-size domains. A
slight modification of this protocol is also simultaneously secure-with-abort. To
keep the exposition as simple as possible, we restrict our attention there to single-
output functionalities (though the techniques extend easily to the general case).
In Section 3.3 we show how to adapt the protocol for functionalities defined over
domains of super-polynomial size (but polynomial range), and also generalize to
functionalities generating different outputs for each party.

3.1 A Useful Lemma

We analyze an abstract game Γ between a challenger and an (unbounded) ad-
versary A. The game is parameterized by a value α ∈ (0, 1] and an integer r ≥ 1.
Fix arbitrary distributions D1, D2 such that for every z it holds that

Pra←D1 [a = z] ≥ α · Pra←D2 [a = z]. (1)

The game Γ (α, r) proceeds as follows:

1. The challenger chooses i∗ uniformly from {1, . . . , r}, and then chooses a1, . . . , ar

as follows:
– For i < i∗, it chooses ai ← D1.
– For i ≥ i∗, it chooses ai ← D2.

2. The challenger and A then interact in a sequence of at most r iterations. In
iteration i:
– The challenger gives ai to the adversary.
– The adversary can either abort or continue. In the former case, the game

stops. In the latter case, the game continues to the next iteration.
3. A wins if it aborts the game in iteration i∗.

Let Win(α, r) denote the maximum probability with which A wins the game.

Lemma 1. For any D1, D2 satisfying (1), it holds that Win(α, r) ≤ 1/αr.

Proof. Fix D1, D2 satisfying (1). We prove the lemma by induction on r. When
r = 1 the lemma is trivially true; for completeness, we also directly analyze the
case r = 2. Since A is unbounded we may assume it is deterministic. So without
loss of generality, we may assume the adversary’s strategy is determined by a

set S in the support of D2 such that A aborts in the first iteration iff a1 ∈ S,
and otherwise aborts in the second iteration (no matter what). We have

Pr[A wins] = Pr[A wins and i∗ = 1] + Pr[A wins and i∗ = 2]

=
1
2
· Pra←D2 [a ∈ S] +

1
2
·
(
1− Pra←D1 [a ∈ S]

)

≤ 1
2
· Pra←D2 [a ∈ S] +

1
2
·
(
1− α · Pra←D2 [a ∈ S]

)

=
1
2

+
1
2
·
(
(1− α) · Pra←D2 [a ∈ S]

)
≤ 1− α/2,

where the first inequality is due to Equation (1). One can easily verify that
1− α/2 ≤ 1/2α when α > 0. We have thus proved Win(α, 2) ≤ 1/2α.

Assume Win(α, r) ≤ 1/αr, and we now bound Win(α, r + 1). As above, let
S denote a set in the support of D2 such that A aborts in the first iteration iff
a1 ∈ S. If A does not abort in the first iteration, and the game does not end,
then the conditional distribution of i∗ is uniform in {2, . . . , r + 1} and the game
Γ (α, r + 1) from this point forward is exactly equivalent to the game Γ (α, r).
In particular, conditioned on the game Γ (α, r + 1) not ending after the first
iteration, the best strategy for A is to play whatever is the best strategy in
game Γ (α, r). We thus have

Win(α, r + 1) = Pr[A wins and i∗ = 1] + Pr[A wins and i∗ > 1]

=
1

r + 1
· Pra←D2 [a ∈ S] +

r

r + 1
·
(
1− Pra←D1 [a ∈ S]

)
·Win(α, r)

≤ 1
r + 1

· Pra←D2 [a ∈ S] +
1

α(r + 1)
·
(
1− α · Pra←D2 [a ∈ S]

)
·

=
1

α(r + 1)
.

This completes the proof.

3.2 1
p
-Security for Functionalities with Polynomial-Size Domain

In this section, we describe a protocol that works for functionalities where at
least one of the domains is polynomial-size. (We stress that the protocol works
directly for randomized functionalities; the standard reduction from randomized
to deterministic functionalities [18] would not apply here since, in general, it
makes the domain too large.) Although a small modification of the protocol
works even when the parties receive different outputs, for simplicity we assume
here that the parties compute a single-output function. We return to the more
general setting in the following section.

Theorem 1. Let F = {fn : Xn × Yn → Zn} be a (randomized) functionality
where |Yn| = poly(n). Assuming the existence of enhanced trapdoor permutations,
for any polynomial p there is an O (p · |Yn|)-round protocol computing F that is
private and 1

p -secure.

ShareGenr

Inputs: The security parameter is n. Let the inputs to ShareGenr be x ∈ Xn

and y ∈ Yn. (If one of the received inputs is not in the correct domain, a default
input is substituted.)

Computation:

1. Define values a1, . . . , ar and b1, . . . , br in the following way:
– Choose i∗ uniformly at random from {1, . . . , r}.
– For i = 1 to i∗ − 1 do:

• Choose ŷ ← Yn and set ai = fn(x, ŷ).
• Choose x̂ ← Xn and set bi = fn(x̂, y).

– Compute z = fn(x, y). For i = i∗ to r, set ai = bi = z.

2. For 1 ≤ i ≤ r, choose (a
(1)
i , a

(2)
i) and (b

(1)
i , b

(2)
i) as random secret sharings of

ai and bi, respectively. (I.e., a
(1)
i is random and a

(1)
i ⊕ a

(2)
i = ai.)

3. Compute ka, kb ← Gen(1n). For 1 ≤ i ≤ r, let ta
i = Macka(i‖a(2)

i) and

tb
i = Mackb(i‖b(1)

i).

Output:

1. Send to P1 the values a
(1)
1 , . . . , a

(1)
r and (b

(1)
1 , tb

1), . . . , (b
(1)
r , tb

r), and the
MAC-key ka.

2. Send to P2 the values (a
(2)
1 , ta

1), . . . , (a
(2)
r , ta

r) and b
(2)
1 , . . . , b

(2)
r , and the

MAC-key kb.

Fig. 1. Functionality ShareGenr.

Proof. As described in Section 1.2, our protocol Π consists of two stages. Let
p be an arbitrary polynomial, and set r = p · |Yn|. We will implement the
first stage of Π using a sub-protocol π for computing a randomized function-
ality ShareGenr defined in Figure 1. (ShareGenr is parameterized by a polyno-
mial r.) This functionality returns shares to each party, authenticated using
an information-theoretically secure r-time MAC (Gen, Mac,Vrfy). In the second
stage of Π the parties exchange these shares in a sequence of r iterations as
described in Figure 2.

We analyze our protocol in a hybrid model where there is a trusted party
computing ShareGenr according to the second ideal model where a malicious P1

can abort the trusted party before it sends output to the honest party. We prove
privacy and 1

p -security of Π in this hybrid model; it follows as in [8] that if we
use a sub-protocol for computing ShareGenr that is secure-with-abort, then the
real-world protocol Π is private and 1

p -secure.
We first consider the case of a malicious P1. Intuition for the following claim

was given in Section 1.2. The formal statement and proof follow.

Claim 1. Let Πhy denote an execution of Π in a hybrid model with access to
an ideal functionality computing ShareGenr (with abort). For every non-uniform,
polynomial-time adversary A corrupting P1 and running Πhy, there exists a non-
uniform, polynomial-time adversary S corrupting P1 and running in the ideal

Protocol 1

Inputs: Party P1 has input x and party P2 has input y. The security parameter
is n. Let r = p · |Yn|.
The protocol:

1. Preliminary phase:
(a) P1 chooses ŷ ∈ Yn uniformly at random, and sets a0 = fn(x, ŷ). Similarly,

P2 chooses x̂ ∈ Xn uniformly at random, and sets b0 = fn(x̂, y).
(b) Parties P1 and P2 run a protocol π to compute ShareGenr, using their

inputs x and y.
(c) If P2 receives ⊥ from the above computation, it outputs b0 and halts.

Otherwise, the parties proceed to the next step.
(d) Denote the output of P1 from π by a

(1)
1 , . . . , a

(1)
r , (b

(1)
1 , tb

1), . . . , (b
(1)
r , tb

r),
and ka.

(e) Denote the output of P2 from π by (a
(2)
1 , ta

1), . . . , (a
(2)
r , ta

r), b
(2)
1 , . . . , b

(2)
r ,

and kb.
2. For i = 1, . . . , r do:

P2 sends the next share to P1:
(a) P2 sends (a

(2)
i , ta

i) to P1.

(b) P1 receives (a
(2)
i , ta

i) from P2. If Vrfyka
(i‖a(2)

i , ta
i) = 0 (or if P1 received

an invalid message, or no message), then P1 outputs ai−1 and halts.

(c) If Vrfyka
(i‖a(2)

i , ta
i) = 1, then P1 sets ai = a

(1)
i ⊕ a

(2)
i (and continues

running the protocol).
P1 sends the next share to P2:
(a) P1 sends (b

(1)
i , tb

i) to P2.

(b) P2 receives (b
(1)
i , tb

i) from P1. If Vrfykb
(i‖b(1)

i , tb
i) = 0 (or if P2 received

an invalid message, or no message), then P2 outputs bi−1 and halts.

(c) If Vrfykb
(i‖b(1)

i , tb
i) = 1, then P2 sets bi = b

(1)
i ⊕ b

(2)
i (and continues

running the protocol).
3. If all r iterations have been run, party P1 outputs ar and party P2 outputs br.

Fig. 2. Generic protocol for computing a functionality fn.

world with access to an ideal functionality computing F (with complete fairness),
such that 1

p -security and privacy hold.

Proof. We construct a simulator S given black-box access to A. For readability in
what follows, we ignore the MAC-tags and keys. When we say that A “aborts”,
we include in this the event that A sends an invalid message, or a message whose
tag does not pass verification. We also drop the subscript n from our notation
and write X, Y in place of Xn, Yn.

1. S invokes A on the input2 x′, the auxiliary input, and the security param-
eter n. The simulator also chooses x̂ ∈ X uniformly at random (it will send
x̂ to the trusted party, if needed).

2 We reserve x for the value input by A to the computation of ShareGenr.

2. S receives the input x ofA to the computation of the functionality ShareGenr.
(If x 6∈ X a default input is substituted.)

3. S sets r = p · |Y |, and chooses uniformly-distributed shares a
(1)
1 , . . . , a

(1)
r

and b
(1)
1 , . . . , b

(1)
r . Then, S gives these shares to A as its output from the

computation of ShareGenr.
4. If A sends abort to the trusted party computing ShareGenr, then S sends x̂

to the trusted party computing f , outputs whatever A outputs, and halts.
Otherwise (i.e., if A sends continue), S proceeds as below.

5. Choose i∗ uniformly from {1, . . . , r}
6. For i = 1 to i∗ − 1:

(a) S chooses ŷ ∈ Y uniformly at random, computes ai = f(x, ŷ), and sets
a
(2)
i = a

(1)
i ⊕ai. It gives a

(2)
i to A. (A fresh ŷ is chosen in every iteration.)

(b) If A aborts, then S sends x̂ to the trusted party, outputs whatever A
outputs, and halts.

7. For i = i∗ to r:
(a) If i = i∗ then S sends x to the trusted party computing f and receives

z = f(x, y).
(b) S sets a

(2)
i = a

(1)
i ⊕ z and gives a

(2)
i to A.

(c) If A aborts, then S then outputs whatever A outputs, and halts. If A
does not abort, then S proceeds.

8. If A never aborted (and all r iterations are done), S outputs what A outputs
and halts.

It is immediate that the view of A in the simulation above is distributed
identically to its view in Πhy; privacy follows. We now prove 1

p -security.
Ignoring the possibility of a MAC forgery, we claim that the statistical dif-

ference between an execution of A, running Π in a hybrid world with access to
an ideal functionality computing ShareGenr, and an execution of S, running in
an ideal world with access to an ideal functionality computing f , is at most 1/p.
(Thus, taking into account the possibility of a MAC forgery makes the statistical
difference at most 1/p + µ(n) for some negligible function µ.) To see this, let y
denote the input of the honest P2 and consider three cases depending on when
the adversary aborts:

1. A aborts in round i < i∗. Conditioned on this event, the view of A is identi-
cally distributed in the two worlds (and is independent of y), and the output
of the honest party is f(x̂, y) for x̂ chosen uniformly in X.

2. A aborts in round i > i∗ (or never). Conditioned on this, the view of A
is again distributed identically in the two worlds, and in both worlds the
output of the honest party is f(x, y).

3. A aborts in round i = i∗: here, although the view of A is still identical in
both worlds, the output of the honest party is not: in the hybrid world the
honest party will output f(x̂, y), for x̂ chosen uniformly in X, while in the
ideal world the honest party will output f(x, y).
However, Lemma 1 implies that this event occurs with probability at most 1/p.
To see this, let D1 denote the distribution of ai for i < i∗ (i.e., this is the

distribution defined by the output of f(x, ŷ), for ŷ chosen uniformly from Y),
and let D2 denote the distribution of ai∗ (i.e., the distribution defined by
the output of f(x, y)). For any z ∈ Z we have

Pra←D1 [a = z] def= Prŷ←Y [f(x, ŷ) = z]

≥ 1
|Y | · Pr[f(x, y) = z] =

1
|Y | · Pra←D2 [a = z].

Taking α = 1/|Y | and applying Lemma 1, we see that A aborts in iteration i∗

with probability at most 1/αr = |Y |/|Y |p = 1/p.

This completes the proof of the claim.

Next we consider the case of a malicious P2. A proof of the following is
almost identical to that of Claim 1; in fact, the proof is simpler and we can
prove a stronger notion of security since P1 always “gets the output first” in
every iteration of Π. For these reasons, a proof is omitted.

Claim 2. (Informal.) Let Πhy denote an execution of Π in a hybrid model
where the parties have access to an ideal functionality computing ShareGenr (with
abort). Then for any adversary corrupting P2, protocol Πhy securely computes F
(which in particular implies privacy).

The results of [8], along with the fact that a secure-with-abort protocol for
ShareGenr is implied by the existence of enhanced trapdoor permutations, com-
plete the proof of Theorem 1.

Achieving security-with-abort. As written, the protocol is not secure-with-
abort. However, the protocol can be modified easily so that it is (without affect-
ing 1

p -security): simply have ShareGenr choose i∗ uniformly from {2, . . . , r + 1}
and set bi∗−1 =⊥, where ⊥ is some distinguished value outside the range of f .
Although this allows a malicious P2 to identify exactly when iteration i∗ oc-
curs, this does not affect security since by that time P1 has already received the
correct output.

3.3 1
p
-Security for Functionalities with Polynomial-Size Range

The protocol from the previous section does not apply to functions on domains
of super-polynomial size, since the round complexity is linear in the size of the
smaller domain. Here we show how to extend the protocol to handle arbitrary
domains if the range of the function (for at least one of the parties) is polynomial
size. We now also explicitly take into account the case when parties obtain
different outputs. Intuition for the changes we introduce is given in Section 1.2.

Theorem 2. Let F = {fn : Xn × Yn → Z1
n × Z2

n} be a (randomized) func-
tionality, where |Z1

n| = poly(n). Assuming the existence of enhanced trapdoor
permutations, for any polynomial p there is an O (

p2 · |Z1
n|

)
-round protocol com-

puting F that is private and 1
p -secure.

ShareGen′p,r

Inputs: The security parameter is n. Let the inputs to ShareGen′p,r be x ∈ Xn

and y ∈ Yn. (If one of the received inputs is not in the correct domain, a default
input is substituted.)

Computation:

1. Define values a1, . . . , ar and b1, . . . , br in the following way:
– Choose i∗ uniformly at random from {1, . . . , r}.
– For i = 1 to i∗ − 1 do:

• Choose x̂ ← Xn and set bi = f2
n(x̂, y).

• With probability 1
p
, choose z ← Z1

n and set ai = z. With the re-

maining probability 1− 1
p
, choose ŷ ← Y and set ai = f1

n(x, ŷ).

– Compute z1 = f1
n(x, y) and z2 = f2

n(x, y) (if fn = (f1
n, f2

n) is randomized,
these values are computed using the same random tape). For i = i∗ to
r, set ai = z1 and bi = z2.

2. For 1 ≤ i ≤ r, choose (a
(1)
i , a

(2)
i) and (b

(1)
i , b

(2)
i) as random secret sharings of

ai and bi, respectively. (E.g., a
(1)
i is random and a

(1)
i ⊕ a

(2)
i = ai.)

3. Compute ka, kb ← Gen(1n). For 1 ≤ i ≤ r, let ta
i = Macka(i‖a(2)

i) and

tb
i = Mackb(i‖b(1)

i).

Output:

1. Send to P1 the values a
(1)
1 , . . . , a

(1)
r and (b

(1)
1 , tb

1), . . . , (b
(1)
r , tb

r), and the
MAC-key ka.

2. Send to P2 the values (a
(2)
1 , ta

1), . . . , (a
(2)
r , ta

r) and b
(2)
1 , . . . , b

(2)
r , and the

MAC-key kb.

Fig. 3. Functionality ShareGen′p,r.

Proof. Our protocol Π is, once again, composed of two stages. The second stage
is identical to the second stage of the previous protocol (see Figure 2), except that
the number of iterations r is now set to r = p2 · |Z1

n|. The first stage generates
shares using a sub-routine π computing a different functionality ShareGen′p,r,
parameterized by both p and r and described in Figure 3.

We again analyze our protocol in a hybrid model, where there is now a trusted
party computing ShareGen′p,r. (Once again, P1 can abort the computation of
ShareGen′p,r in the ideal world.) We prove privacy and 1

p -security of Π in this
hybrid model, implying [8] that if the parties use a secure-with-abort protocol for
computing ShareGen′p,r, then the real-world protocol Π is private and 1

p -secure.
We first consider the case of a malicious P1.

Claim 3. (Informal.) Let Πhy denote an execution of Π in a hybrid model
where the parties have access to an ideal functionality computing ShareGen′p,r

(with abort). Then for any adversary corrupting P1, protocol Πhy privately and
1
p -securely computes F .

Proof. The simulator used to prove this claim is essentially the same as the
simulator used in the proof of Claim 1, except that in step 6(a) the distribution on

ai (for i < i∗) is changed to the one used by ShareGen′p,r. The analysis is similar,
too, except for bounding the probability that A aborts in iteration i∗. To bound
this probability we will again rely on Lemma 1, but now distribution D1 (i.e., the
distribution of ai for i < i∗) is different. Let y denote the input of P2. Note that,
by construction of ShareGen′p,r, for any z ∈ Z1

n we have Pra←D1 [a = z] ≥ 1
p · 1

|Z1
n| .

Regardless of f1 and y, it therefore holds for all z ∈ Z1
n that

Pra←D1 [a = z] ≥ 1
p · |Z1

n|
· Pra←D2 [a = z].

Setting α = 1/p·|Z1
n| and applying Lemma 1, we see that A aborts in iteration i∗

with probability at most
1
αr

=
p · |Z1

n|
p2 · |Z1

n|
=

1
p
.

This completes the proof of the claim.

We next consider the case of a malicious P2. Note that, in contrast to Claim 2,
here we claim only 1

p -security.

Claim 4. (Informal.) Let Πhy denote an execution of Π in a hybrid model
where the parties have access to an ideal functionality computing ShareGen′p,r

(with abort). Then for any adversary corrupting P2, protocol Πhy privately and
1
p -securely computes F .

Proof. A proof appears in the full version of this work, and is omitted here due
to space constraints.

The results of [8], along with the fact that a secure-with-abort protocol for
ShareGen′p,r is implied by the existence of enhanced trapdoor permutations, com-
plete the proof of Theorem 2.

4 Optimality of Our Results

We show that the results of the previous section are optimal as far as generic
feasibility is concerned.

4.1 Impossibility of 1
p
-Security and Security-with-Abort

Simultaneously

In Section 3.2 (cf. the remark at the end of that section) we showed a protocol
achieving 1

p -security and security-with-abort simultaneously for functionalities
where at least one of the domains is polynomial-size. We show that if both
domains are super-polynomial in size then, in general, it is impossible to achieve
both these criteria at once.

Theorem 3. Let F =
{
EQn : {0, 1}`(n) × {0, 1}`(n) → {0, 1}}, where EQn de-

notes the equality function on strings and `(n) = ω(log n). Let Π be any protocol
computing F . If Π is secure-with-abort, then Π does not 1

p -securely compute F
for any p ≥ 4 + 1

poly(n) .

Proof. Let Π be a protocol that computes F and is secure-with-abort. Assume
without loss of generality that P2 sends the first message in Π and that P1

sends the last message. Say Π has r = r(n) iterations for some polynomial r,
where an iteration consists of a message sent by P2 followed by a message sent
by P1. Let a0 denote the value that P1 outputs if P2 sends nothing, and let ai,
for 1 ≤ i ≤ r, denote the value that P1 outputs if P2 aborts after sending its
iteration-i message. Similarly, let b0 denote the value that P2 outputs if P1 sends
nothing, and let bi, for 1 ≤ i ≤ r, denote the value that P2 outputs if P1 aborts
after sending its iteration-i message. We may assume without loss of generality
that, for all i, we have ai ∈ {0, 1} and bi ∈ {0, 1,⊥}.

We will consider two experiments involving an execution of Π. In the first,
x and y are chosen uniformly and independently from {0, 1}`(n); the parties are
given inputs x and y, respectively; and the parties then run protocol Π honestly.
We denote the probability of events in this experiment by Prrand[·]. In the second
experiment, x is chosen uniformly from {0, 1}`(n) and y is set equal to x; these
inputs are given to the parties and they run the protocol honestly as before. We
denote the probability of events in this probability space by Preq[·].
Lemma 2. Prrand[a0 = 1 ∨ · · · ∨ ar = 1] and Prrand[b0 = 1 ∨ · · · ∨ br = 1] are
negligible.

Proof. This follows from the fact that Π is secure-with-abort. If, say, it were the
case that Prrand[a0 = 1 ∨ · · · ∨ ar = 1] is not negligible, then we could consider
an adversarial P2 that runs the protocol honestly but aborts at a random round.
This would cause the honest P1 to output 1 with non-negligible probability in
the real world, whereas P1 outputs 1 with only negligible probability in the ideal
world (since the parties are given independent, random inputs).

Assume for simplicity that Π has perfect correctness, i.e., that ar = br =
EQ(x, y) when the two parties run the protocol honestly holding initial inputs x
and y. (This assumption is not necessary, but allows us to avoid having to deal
with annoying technicalities.) Then

Pr
eq

[a0 = 1 ∨ · · · ∨ ar = 1] = Pr
eq

[b0 = 1 ∨ · · · ∨ br = 1] = 1

since, in particular, Preq[ar = 1] = Preq[br = 1] = 1. In a given execution, let
i∗ denote the lowest index for which ai∗ = 1, and let j∗ denote the lowest index
for which bj∗ = 1. Since

Preq[i∗ ≤ j∗] + Preq[i∗ > j∗] = 1,

at least one of the terms on the left-hand side is at least 1/2. We assume that
Preq[i∗ ≤ j∗] ≥ 1/2 in what follows, but the same argument (swapping the roles
of the parties) applies if Preq[i∗ > j∗] ≥ 1/2.

Consider now a third experiment that is a mixture of the previous two.
Specifically, in this experiment a random bit b is chosen; if b = 0 then the parties
are given inputs x and y as in the first experiment (i.e., chosen uniformly and
independently at random), while if b = 1 then the parties are given (random)
x = y as in the second experiment. The parties then run protocol Π honestly. We
denote the probability of events in this probability space by Prreal3 [·]. We use the
superscript real to distinguish this from an ideal-world version of this experiment
where the bit b is chosen uniformly and the parties are given x and y generated
accordingly, but now the parties interact with an ideal party computing EQ
without abort (i.e., in the first ideal model). We denote the probability of events
in this experiment by Prideal

3 [·].
Consider an execution of the third experiment (in either the real or ideal

worlds), in the case when P1 is malicious. Let guess denote the event that P1

correctly guesses the value of the bit b, and let out2 denote the output of P2. It
is not hard to show that

Prideal
3 [guess ∧ out2 6= 1] =

1
2
. (2)

(Note that out2 ∈ {0, 1} in the first ideal world.) Now take the following real-
world adversary A corrupting P1: upon receiving input x, adversary A runs Π
honestly but computes ai after receiving each iteration-i message from P2. Then:

– If, at some point, ai = 1 then A aborts the protocol (before sending the
iteration-i message on behalf of P1) and outputs the guess “b = 1”.

– If ai = 0 for all i, then A simply runs the protocol to the end (including the
final message of the protocol) and outputs the guess “b = 0”.

We have:

Prreal3 [guess ∧ out2 6= 1]

=
1
2
· Prrand[guess ∧ out2 6= 1] +

1
2
· Preq[guess ∧ out2 6= 1]

≥ 1
2
· Prrand[a1 = 0 ∧ · · · ∧ ar = 0 ∧ br = 0] +

1
2
· Preq[i∗ ≤ j∗]

≥ 1
2
· (1− negl(n)) +

1
4

=
3
4
− negl(n), (3)

using Lemma 2 for the second inequality. Equations (2) and (3) show that Π
cannot also be 1

p -secure for any p ≥ 4 + 1
poly(n) .

4.2 Impossibility of 1
p
-Security for General Functions

Our results show that 1
p -security is achievable for any functionality f : Xn ×

Yn → Z1
n × Z2

n if at least one of Xn, Yn, Z1
n, Z2

n has polynomial size. Here, we
demonstrate that this limitation is inherent.

Define a deterministic, single-output function F = {Swapn} with

Swapn : {0, 1}ω(log n) × {0, 1}ω(log n) → {0, 1}ω(log n)

as follows: Fix some `(n) = ω(log n). Let (Gen, Mac, Vrfy) denote an information-
theoretic, one-time MAC for messages of length 2 · `(n) with key length O(`(n))
and tag length `(n). Then

Swapn

(
(x1, t1, k2), (x2, t2, k1)

)

def=
{

(x1, x2) if Vrfyk1
(x1, t1) = Vrfyk2

(x2, t2) = 1
⊥ otherwise .

(Note that both parties receive the same output (x1, x2) in the first case.)

Theorem 4. Function F cannot be 1
p -securely computed for any p ≥ 2+ 1

poly(n) .

Proof. Consider an ideal-world computation of Swap where:

– x1, x2 are chosen uniformly at random from {0, 1}2`(n).
– k1, k

′
1, k2, k

′
2 are output by Gen(1n) (i.e., they are random MAC-keys).

– t1 = Mack1(x1), t′1 = Mack′1(x1), t2 = Mack2(x2), and t′2 = Mack′2(x2).
– P1 is given input (x1, t1, k2) and auxiliary information (k′2, t

′
2)

– P2 is given input (x2, t2, k1) and auxiliary information (k′1, t
′
1).

Define a win for P1 as the event that P1 outputs x2 while P2 fails to output x1.
(A win for P2 is defined analogously.) It is easy to see that, e.g., a malicious P1

cannot win in the ideal world, where complete fairness is guaranteed, except with
negligible probability. This is because x2 is a uniform 2`(n)-bit value, while the
only information P1 has about x2 initially is the `(n)-bit tag t′2. Thus, the only
way for P1 to learn x2 is to submit to the trusted party some input (x̂1, t̂1, k̂2)
for which Vrfyk1

(x̂1, t̂1) = 1; unless x̂1 = x1, however, this condition holds with
negligible probability.

In any real-world computation of Swap, however, there must be one party
who “gets its output first” with probability at least 1/2, and can identify exactly
when this occurs using its auxiliary information. More formally, say we have an
r-iteration protocol Π computing Swap where P2 sends the first message and P1

sends the last message. Let ai, for i = 0, . . . , r, denote the second component of
the value P1 would output if P2 aborts the protocol after sending its iteration-
i message, and let bi denote the first component of the value that P2 would
output if P1 aborts the protocol after sending its iteration-i message. Each value
ai and bi can be computed in polynomial time after receiving the other party’s
iteration-i message. We can therefore define an adversary P ∗1 that acts as follows:

Run the protocol honestly until the first round where Vrfyk′2
(ai, t

′
2) = 1;

then output ai and abort.

An adversary P ∗2 can be defined analogously. Note that if, e.g., Vrfyk′2
(ai, t

′
2) = 1

then ai = x2 except with negligible probability; this follows from the information-
theoretic security of the MAC along with the fact that the execution of Π is
independent of k′2, t

′
2.

Let i denote the first round in which Vrfyk′2
(ai, t

′
2) = 1, and let j denote

the first round in which Vrfyk′1
(bj , t

′
1) = 1. Assuming for simplicity that Π has

perfect correctness, we have

Pr[i ≤ j] + Pr[j > i] = 1.

Further, since
∣∣Pr[P ∗1 wins]− Pr[i ≤ j]

∣∣ and
∣∣Pr[P ∗2 wins]− Pr[i > j]

∣∣ are both
negligible, we see that either P ∗1 or P ∗2 wins in the real world with probability
at least 1/2− negl(n). Since an adversary wins in the ideal world with negligible
probability, this rules out 1

p -security for p > 2.

Theorem 4 does not contradict the results of [12], or any previous work on fair
exchange of signatures. One reason is that prior work on fair exchange typically
assumes that each party has no auxiliary information about the other party’s se-
cret, whereas our definition (as is standard for definitions of secure computation)
accounts for this possibility.3 Also, in some previous work on fair exchange the
running time of the honest party is not bounded by a fixed polynomial, whereas
in our setting we require this to be the case.

5 Conclusions and Open Questions

Our work offers a clean definition of partial fairness within the standard real/ideal
world paradigm, and settles the question of the general feasibility of achieving
this notion in the two-party setting. Several compelling questions remain:

– An easy modification of our second impossibility result (cf. Theorem 4)
rules out our definition of partial fairness for the interesting special case of
exchanging digital signatures. What is the appropriate (simulation-based?)
notion of partial fairness for that setting?

– We can show a function F = {fn : Xn × Yn → Zn} for which any protocol
computing F with 1

p -security requires min {p, |Xn|, |Yn|} rounds. This leaves
a gap as compared to Theorem 1.

– The question of partial fairness in the multi-party setting (with dishonest
majority) is wide open. We are not aware of any results in this direction ex-
cept for the case of coin tossing [10, 27], or functions where complete fairness
is possible [21].

References

1. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In 4th Theory of Cryptography Conference — TCC 2007,
volume 4392 of LNCS, pages 137–156. Springer, 2007.

3 Our proof of Theorem 4 exploits this. We can prove an analogue of Theorem 4, based
on the assumption that one-way functions exist, that rules out partial fairness even
if the adversary has no auxiliary information.

2. D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology
— Crypto ’91, volume 576 of LNCS, pages 377–391. Springer, 1992.

3. D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In
30th Annual Symposium on Foundations of Computer Science (FOCS), pages 468–
473. IEEE, 1989.

4. M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing
contracts. IEEE Trans. Information Theory, 36(1):40–46, 1990.

5. M. Blum. How to exchange (secret) keys. ACM Transactions on Computer Sys-
tems, 1:175–193, 1984.

6. D. Boneh and M. Naor. Timed commitments. In Advances in Cryptology —
Crypto 2000, volume 1880 of LNCS, pages 236–254. Springer, 2000.

7. C. Cachin and J. Camenisch. Optimistic fair secure computation. In Advances in
Cryptology — Crypto 2000, volume 1880 of LNCS, pages 93–111. Springer, 2000.

8. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

9. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 136–145. IEEE, 2001.

10. R. Cleve. Limits on the security of coin flips when half the processors are faulty. In
18th Annual ACM Symposium on Theory of Computing (STOC), pages 364–369.
ACM Press, 1986.

11. R. Cleve. Controlled gradual disclosure schemes for random bits and their appli-
cations. In Advances in Cryptology — Crypto ’89, volume 435 of LNCS, pages
573–588. Springer, 1990.

12. I. Damg̊ard. Practical and provably secure release of a secret and exchange of
signatures. Journal of Cryptology, 8(4):201–222, 1995.

13. C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. Journal of the
ACM, 51(6):851–898, 2004.

14. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Comm. ACM, 28(6):637–647, 1985.

15. M. Franklin. Complexity and Security of Distributed Protocols. PhD thesis,
Columbia University, 1993.

16. Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure faut-tolerant
protocols and the public-key model. In Advances in Cryptology — Crypto ’87,
volume 293 of LNCS, pages 135–155. Springer, 1988.

17. J. A. Garay, P. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource fair-
ness and composability of cryptographic protocols. In 3rd Theory of Cryptography
Conference — TCC 2006, volume 3876 of LNCS, pages 404–428. Springer, 2006.

18. O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge
University Press, Cambridge, UK, 2004.

19. O. Goldreich and Y. Lindell. Session-key generation using human passwords only.
Journal of Cryptology, 19(3):241–340, 2006.

20. S. Goldwasser and L. A. Levin. Fair computation of general functions in presence
of immoral majority. In Advances in Cryptology — Crypto ’90, volume 537 of
LNCS, pages 77–93. Springer, 1991.

21. S. Gordon and J. Katz. Complete fairness in multi-party computation without an
honest majority. In 6th Theory of Cryptography Conference — TCC 2009, volume
5444 of LNCS, pages 19–35. Springer, 2009.

22. S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-
party computation. In 40th Annual ACM Symposium on Theory of Computing
(STOC), pages 413–422. ACM Press, 2008.

23. J. Katz. On achieving the “best of both worlds” in secure multiparty computation.
In 39th Annual ACM Symposium on Theory of Computing (STOC), pages 11–20.
ACM Press, 2007.

24. M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and
coalition-safe cheap talk. In 23rd ACM Symposium Annual on Principles of Dis-
tributed Computing, pages 1–10. ACM Press, 2004.

25. M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit by
flipping a symmetrically-biased coin. In 24th Annual Symposium on Foundations
of Computer Science (FOCS), pages 23–30. IEEE, 1983.

26. S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology —
Crypto ’91, volume 576 of LNCS, pages 392–404. Springer, 1992.

27. T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In 6th Theory
of Cryptography Conference — TCC 2009, volume 5444 of LNCS, pages 1–18.
Springer, 2009.

28. B. Pinkas. Fair secure two-party computation. In Advances in Cryptology —
Eurocrypt 2003, volume 2656 of LNCS, pages 87–105. Springer, 2003.

29. A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium
on Foundations of Computer Science (FOCS), pages 162–167. IEEE, 1986.

