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Abstract. While differential behavior of modern ciphers in a single secret key scenario is
relatively well understood, and simple techniques for computation of security lower bounds are
readily available, the security of modern block ciphers against related-key attacks is still very
ad hoc. In this paper we make a first step towards provable security of block ciphers against
related-key attacks by presenting an efficient search tool for finding differential characteristics
both in the state and in the key (note that due to similarities between block ciphers and hash
functions such tool will be useful in analysis of hash functions as well). We use this tool
to search for the best possible (in terms of the number of rounds) related-key differential
characteristics in AES, byte-Camellia, Khazad, FOX, and Anubis. We show the best related-
key differential characteristics for 5, 11, and 14 rounds of AES-128, AES-192, and AES-256
respectively. We use the optimal differential characteristics to design the best related-key and
chosen key attacks on AES-128 (7 out of 10 rounds), AES-192 (full 12 rounds), byte-Camellia
(full 18 rounds) and Khazad (7 and 8 out of 8 rounds). We also show that ciphers FOX and
Anubis have no related-key attacks on more than 4-5 rounds.

Keywords: Cryptanalysis tool, search for best differential characteristics, related-key attack,
open key, AES, Camellia, Khazad, Anubis, FOX.

1 Introduction

Proving security of modern block ciphers against differential [6] and linear cryptanalysis [28] has
become a well understood and relatively simple task. Many of the modern ciphers are constructed
as so-called substitution-permutation networks (SPN) — they consist of layers of non-linear substi-
tution boxes (S-boxes) and diffusion layers built from linear or affine functions. The designer simply
has to use diffusion layers with high (or maximal) branch number which is typically achieved by
using maximum distance separable matrices [13]. Using such diffusion layers one can prove lower
bounds on the number of active S-boxes for a certain number of internal rounds. The designer then
picks the number of rounds for which the probability of the best differential or linear characteristic
is lower than 2−k where k is the key size of a cipher. The resultant cipher is then provably secure
against standard differential and linear attacks.

Such reasoning however holds only in the single key model, and does not extend to the case
of related-key attacks [4]. In this class of cryptanalytic attacks the attacker knows or chooses the
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relation between several keys and is given access to encryption/decryption functions with all these
keys. The goal of the attacker is to find the actual keys. The relation between the secret keys is a
function chosen by the attacker with some extra care taken to avoid trivial attacks, and quite often
it is just a XOR with a chosen constant. Security of most modern block ciphers against related-key
attacks still relies on heuristic and ad hoc arguments. This situation is very similar to the heuristic
security that we have for the modern hash functions, which is due to a lack of proper tools and
methodologies for the analysis of differentials of non-bijective functions.

In this paper we make a step in the direction of provable security of modern block ciphers (and
by analogy of modern hash functions), by presenting an efficient tool that can evaluate and help
to prove bounds for the security of block-ciphers (hash functions) against differential related-key
(open-key or chosen message) attacks.

Automatic search for best differential characteristics and linear approximations in a single key
scenario was first performed by Matsui [29] for DES. Algorithms for automatic search of differential
characteristics for MD4 were presented in [34, 15], and for MD5 in [35]. De Cannière and Rechberger
in [11] described a method that finds characteristics in SHA-1 in an automatic way and produced
the best known collision trails for SHA-1. A typical problem that arises when trying to construct
a tool for automatic search of characteristics is the size of the search space. The search space is
exponential in the size of the block and the key which makes straightforward approaches infeasible
for 128-bit block 128-256 bit key ciphers1. Therefore often the most important task for producing an
efficient tool is the reduction in the size of the internal state by using some equivalent representation
of the state, but with smaller size.

In that respect it is natural to look at byte (or word)-oriented ciphers which constitute a large
fraction of modern ciphers. A natural compact (sometimes known as truncated) representation
would shrink each byte into a single bit, representing by 0 a byte without difference and by 1 a byte
with a difference. In such representation 16-byte block state, 16-32 byte key would translate into
16 and 16-32 bits respectively. These numbers are low, and give hope that a search of the whole
232 – 248 space of related-key differential characteristics might be possible. The main problem with
this representation is a very heavy branching which will happen in the linear diffusion layers and
on the XORs. Such representation alone will only allow to search for the most basic and short
characteristics which happen with probability close to 1.

Our Contribution. Our goal is to perform a full search for related-key differential characteristic
and to be able to find or to prove the non-existence of characteristics similar to those that were
used in the recent attack on AES-256 [10]. In this paper we achieve this goal for all versions of
AES and for several other ciphers. At the basis of our related-key search algorithm, further denoted
as a tool, lies Matsui’s approach for search of the best differential characteristics, with several
important modifications. Depending on the key schedule of a cipher, we differentiate three classes
of block ciphers. This is done to improve the efficiency. For each of the classes we introduce a
special modification to Matsui’s algorithm to obtain the final tool. The internal representation of
the difference in a cipher (state and subkeys) plays a very important role for constructing a feasible
tool. Using only compact representation may lead to a high branching (caused by XORs or other
linear-diffusion transforms such as MixColumns in AES) when trying to build all possible one round
characteristics. We completely eliminate the branching in the state of a cipher by using a special
1 Note that full search was feasible for 64-bit block cipher DES, due to its Feistel structure, which reduces
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representation that takes into account the properties of the matrix used in the linear-diffusion layer.
The related-key differential characteristics produced by our tool, fix only the positions of the active
bytes2. To produce standard differential characteristics, i.e. characteristic with exact values of the
differences in the active bytes, one has to fix the byte differences corresponding to the possible
transitions of the differences trough the S-boxes.

We apply the tool to different byte-oriented block ciphers. The tool finds related-key charac-
teristics for the full-round ciphers, or if such characteristics do not exist, for the maximal number
of rounds for which they exist. We provide the best possible differential characteristics for all the
versions of AES. For AES-128 it is on 5 rounds out of 10 (this also means that AES-128 is secure
against straightforward related-key attacks after 6 rounds). For AES-192 it is on 11 rounds – just
one round short of the total 12 rounds. The characteristic for AES-256 is on all 14 rounds, and it
is the same characteristic (and the only one on 14 rounds) that was given in [10]. Then we present
boomerang attack on AES-128 reduced to 7 rounds, and improve the complexity of the best attack
on AES-192 by a factor 27. We analyze the version of Camellia without the FL functions, and where
the rotation constants in the key schedule are multiplies of 8. For this ”byte-Camellia”, the best
related-key differential characteristic is on 8 rounds (out of 18). Additionally, we launch a chosen-
key attack and find a characteristic on all 18 rounds of byte-Camellia. For Khazad first we find a
related-key characteristic on 7 rounds (out of 8), and then we show a boomerang attack on 7 rounds,
and a chosen-key attack on the full-round Khazad. For the ciphers FOX and Anubis, we show that
related-key differential characteristics cannot exist on more than 4-5 rounds. The summary of our
results is given in Tables 1,2. Due to space limitations, we will not describe the ciphers that we
analyze, we refer the reader to [13, 1, 3, 20, 2], and will use the original notation proposed by the
designers in these papers.

2 A Tool for Search of Related-Key Differential Characteristics

Related-key differentials, introduced by Biham in [4], unlike the traditional single-key differentials
that have difference only in the plaintext, have difference in the key as well. A related-key differential
is specified with two input differences: ∆P in the plaintext and ∆K in the key, and an output
difference ∆C in the ciphertext. A pair of plaintexts (P1, P2) and a pair of keys (K1,K2) follow
the related-key differential in the cipher EK(P ), if P1 ⊕ P2 = ∆P ,K1 ⊕K2 = ∆K and EK1(P1)⊕
EK2(P2) = ∆C . A popular technique to find lower bounds on the probability of differentials is via
finding probabilities of the best differential characteristics. A related-key differential characteristic
besides the differences in the key, plaintext and ciphertext, also fixes the differences in the state
and the subkeys after each round of the cipher.

There are a couple of approaches to construct a tool for search of the best round-reduced
(related- or single-key) differential characteristics. One approach is using dynamic programming.
Let ∆Xi, ∆Yj , ∆Zk be the differences only in the plaintext in the case of single-key, or in both
the plaintext and the subkeys in case of related-key differentials. First, all one round characteristics
∆Xi → ∆Yj are built, i.e. the attacker tries all possible starting differences Xi, and for each of them
goes through one round of the cipher and obtains the differences Yj . Distinct starting differences
Xi1 , Xi2 can produce the same difference Yj . For each Yj only the characteristics, that have the

2 Note that while our characteristics allow certain flexibility in the values due to the compact representation
of differences – they are not truncated differentials since our goal is to find fully specified differential
characteristics, rather than just truncated characteristics.



Table 1. Summary of attacks on the ciphers examined in the paper

Cipher Attack/Result Rounds Data Workload Reference

AES-128 Collisions 7 232 2128 [16]
Partial sum 7 2128 − 2119 2120 [14]
Impossible diff. 7 2112.2 2117.2 [26]
Boomerang - RK 7 297 297 Section 3.2

AES-192 Rectangle - RK 9 264 2143 [18]
Rectangle - RK 10 2125 2182 [22]
Boomerang - RK 12 2123 2176 [9]
Boomerang - RK 12 2116 2169 Section 3.3

AES-256 Rectangle - RK 10 2114 2173 [5, 22]
Subkey Diff. 10 248 249 [8]
Differential - RK 14 2131 2131 [10]
Boomerang - RK 14 299.5 299.5 [9]

Camellia-128 Impossible 11 2118 2126 [27]
byte-Camellia-128 Chosen-key dist. 18 26·17 26·17 Section 4.2

Khazad Slide attacka 5 298 2104 [7]
Integral 5 264 291 [31]
Boomeranga - RK 7 250 250 Section 5.2
Chosen-key dist. 8 255 255 Section 5.3

a The attack works for a weak key class, and the workload includes the effort to find related keys from the
class.

Table 2. The upper bounds on the probabilities of the related-key differential characteristics for full or
round-reduced ciphers examined in the paper. The probabilities for a higher number of rounds are below
2−k, where k is the key size.

Cipher Rounds Workload Section

AES-128 5 26·17 3.2
AES-192 11 26·31 3.2

AES-256 14b 2131 3.2
byte-Camellia-128 8 26·19 4.1
Khazad 7 25·19 5.1

b The same characteristics as in [10].

highest probability are left. Next, the attacker builds again all one round characteristics Yj → Zk,
for different Yj (but only those Yj that were obtained in the first step). Again, for each Zj he selects
only the characteristics that have the highest probability. As a result, he had built the optimal
two-round characteristics Xi → Yj → Zk. This procedure is repeated until the target n-round
differential characteristic is built. The time complexity of the dynamic programming approach is
linear in the number of one round characteristics, but it requires a lot of memory for storing the
intermediate round values ∆Y,∆Z, etc. That is why we will use the second approach, similar to
the one used by Matsui in [29] for finding the best differential and linear characteristics in DES.
It requires relatively small memory and the time complexity highly depends on the probability of
the best round-reduced differential characteristics. The algorithm works by induction: to find the



best n-round characteristic first it finds the best 1, 2, . . . , n−1 round characteristics. At some stage
it requires building all one round characteristics – their number depends on the size of the search
space. Thus a straightforward application of Matsui’s search to modern ciphers would immediately
fail but there is some hope for byte-oriented ciphers if one switches to compact representations in
which each byte is replaced by a single bit: a byte with a difference, also called an active byte, is
replaced by 1, a byte without a difference — by 0. This means that the difference in n-byte cipher
can be represented as n-bit vector.

The compact representation seems optimal, yet several improvements to Matsui’s algorithm are
still required. Almost all byte-oriented ciphers are designed as substitution-permutations networks
(SPN), i.e. they have a layer of S-boxes (S-layer) and a linear diffusion layer – a simple multiplication
of the input by a matrix A (P-layer). When the S-boxes are bijective (a property common to most
ciphers developed in the last 15 years), then an active byte stays active (and vice-versa) before
and after the S-box. Hence, the S-layer does not alter the compact representation. On the other
hand, the P-layer can change the number of the active bytes as well as their positions (depending
on the exact values of the differences in the active bytes, and the branch number of the matrix
A) and therefore it introduces a branching. Thus, besides the traditional compact representation,
further denoted as S-value, we will introduce additional representation, called P-value. Indeed, the
difference in n-byte cipher will be represented as 2n-bit vector, where the first n coordinates (bits)
are the S-value coordinates, and the next n are the P-value coordinates. The P-value of a difference
is obtained when S-value goes through a P-layer and it is the same as the previous S-value (see Fig.1
for clarification). For example, in AES, if the value of a difference of some column is (0,1,0,0,0,0,0,0)
(i.e. there is a difference only in the second byte of the column, the difference is of a type (0, x, 0, 0)T )
before the MixColumn, then after the MixColumn it is (0,0,0,0,0,1,0,0) meaning: A(0, x, 0, 0)T ,
where A is the MixColumn matrix and x is an arbitrary non-zero byte value (i.e. it is a four-byte
difference, obtained when some column with a difference only in the second byte was multiplied
by the MixColumn matrix). Note that the representation can always be reduced to only S-value
(although often not uniquely). For example, the above vector (0,0,0,0,0,1,0,0) can be represented
as (1,1,1,1,0,0,0,0). The P-values reduce the branching as well: it is better to XOR two P-values,
then to reduce them to only S-values and then XOR them. For example, if we XOR two differences
(0,0,0,0,0,1,0,0) and (0,0,0,0,0,1,0,0) then the result can be (0,0,0,0,0,1,0,0) or (0,0,0,0,0,0,0,0). On
the other hand, if we first reduce them to only S-values, then we will get the values (1,1,1,1,0,0,0,0)
and (1,1,1,1,0,0,0,0). Obviously, XOR of these two values gives 24 possible outputs. In the states of
the ciphers, after each transform, we will have either only non-zero S-value or only non-zero P-value
of a difference (but never both), and hence we can effectively eliminate any branching in the state
(the branching goes into the key). However even in such representations the search space of 128-bit
block, 256-bit key cipher would be 16+32 bits, i.e. 248. Another complication is that if one would
like to search for differential characteristics rather than truncated differentials one will need to pay
in heavy branching at every XOR operation both in the state and in the key-schedule, which makes
the search completely infeasible. Hence, depending on the key schedule, we would like to propose
different variants of the tool to solve these problems:

1. The first variant is the original Matsui’s approach itself. It applies to ciphers that have minimal
branching in the key schedule, with subkeys consecutively obtained one from another. This means
that once the difference in the subkey Ki is fixed, the difference in the subkey Ki+1 can easily
and almost uniquely be determined. Let ∆X → ∆Y be one round differential characteristic,
where ∆X is the input difference in both the state and the subkey, and ∆Y is the output



difference, and let W (∆X → ∆Y ) be the weight function of this characteristic – the probability
cost required to produce a pair that follows the characteristic (the exact definition of W is given
later). Let W1,W2, . . . ,Wn−1 be the weights of the best 1, 2, . . . , (n − 1)-round characteristic
found previously with the algorithm and let W̃n be the weight of some (not necessarily optimal)
n-round characteristic Dn. The search for the best n-round characteristic in pseudo code is
described in Alg. 13. In short, first the algorithm builds all possible one round characteristics
with a weight at most W̃n−Wn−1. This constraint is introduced to filter some of the one round
characteristics: if the weight of the first round is more than W̃n −Wn−1 then it can not be
extended to an n-round characteristic because the weight of n − 1 rounds is at least Wn−1 so
in total it will have a weight more than the previously found characteristic of weight W̃n. Each
of the good one round characteristics (the one that pass the filter) is extended (when possible)
to n rounds by the NextRound procedure. One call of this procedure extends the characteris-
tic by one additional round. Again, it extends only the characteristics that satisfy the weight
condition, by checking if the sum of the weights of the r and n− r characteristics is not greater
than the weight W̃n of the already known differential Dn.

2. The second variant of the tool is for ciphers that have possibly high branching in the key schedule,
with subkeys consecutively obtained one from another. A good example of this type of key
scheduling is the one in AES (subkey Ki+1 is obtained from Ki in one iteration, but due to
XORs in the key schedule, there is a lot of branching). If we try to apply the variant 1 of the tool
to this type of ciphers we would have to build all one round characteristics (with differences
in the state and the subkey). Yet, the high branching in the subkey, blows the number of
characteristic out of proportion, and the search becomes infeasible. That is why we have to
modify the tool for this special case of ciphers. Let ∆Sr be the difference in the state of round
r after the XOR of the subkey Kr and let ∆Kr be the difference in this subkey. To add one
more round to this characteristic one can proceed as follows:
– take ∆Sr and go through all one round transformations of the state to build ∆S̃r+1 which

is the difference in the state of round r + 1 just before the XOR of the subkey Kr+1

– take any ∆Sr+1

– XOR ∆S̃r+1 and ∆Sr+1 to produce ∆Kr+1

– check if ∆Kr+1 can be obtained from ∆Kr in one round.
This way, instead of building all one round characteristics in the subkey, we only have to check
if some subkey difference can be transformed to another difference in one subkey round (see
Fig. 1). The number of these transitions that has to be checked is related to the size and
branching of the state. Usually the state has smaller size than the subkey, and with the right
representation it can have minimal or no branching, leading to a feasible search. Let ∆P be
the plaintext difference, ∆Sr, ∆Kr be the difference in the state and the subkey of round r,
∆S̃r the difference in the state of round r just before the subkey XOR, W (∆Sr → ∆S̃r+1)
the probability of the characteristic ∆Sr → ∆S̃r+1. The notions of Wi are the same as in the
previous variant. For the sake of clarity we assume there is no whitening key. The variant 2 of
our search tool is described in Alg. 1.2.

3. The third variant of the tool applies to ciphers that have key schedule with subkeys that are
not successively obtained one from another. Usually, the key schedule of these ciphers applies
heavy transformations to the master key to obtain another key, and then combines these two
keys (often with linear transformations) to get all subkeys. To build the tool we will use the
following strategy: 1) from the master key, obtain all the subkeys, and 2) apply the first variant



011101

S-value P-value

000000

S-layer

011101 000000

P-layer

011101000000

110000 000000

S-value P-valueS-value P-value

Sr

˜Sr+1

Sr+1

Kr+1 011101110000

Fig. 1. The variant 2 of the tool with S- and P-value representations.

of the tool – build the characteristics for the state, but use the obtained subkeys (instead of
building characteristics for subkeys). Let ∆X ∆K−→ ∆Y denote one round characteristic where
∆X,∆Y are the differences in the initial and final states, and ∆K is the subkey used in that
round. The rest of the notions are the one used in variant 1. The pseudo code of the third
variant is given in Alg. 1.3.

Algorithm 1.1. Search of n-round differential characteristics - Variant 1

for all {∆X → ∆Y |W (∆X → ∆Y ) +Wn−1 ≤ W̃n} do
Call NextRound(∆Y , W (∆X → ∆Y ), 2)

end for

NextRound(∆Y , w, r)
for all {∆Z|∆Y → ∆Z and W (∆Y → ∆Z) + w +Wn−r ≤ W̃n} do

if r = n then
Update Dn
W̃n ← w +W (∆Y → ∆Z)

else
Call NextRound(∆Z,w +W (∆Y → ∆Z), r + 1)

end if
end for

Now, let us determine the weight function W (∆1 → ∆2) of the one round characteristics ∆1 →
∆2. In the attacks on AES [10, 9], the attacker pays only for the active S-boxes (active bytes that
go through S-boxes) in the state and the subkey in each round of the cipher. Hence, we will use
the same definition: W (∆1 → ∆2) is defined as the number of active S-boxes in the state and the
subkey in the one round characteristic ∆1 → ∆2.

When searching for n-round differential characteristic, the upper bounds on the weight of these
characteristics are limited by the maximal number of active S-boxes that a characteristic can have.
These upper bounds, depend on the key size and the difference propagation probability of the S-
boxes which is usually 2−7 (sometimes 2−6 or even 2−5). The weight of the n-round differential
characteristic for a cipher with k-bit key, and S-boxes with maximal difference propagation proba-



Algorithm 1.2. Search of n-round differential characteristics - Variant 2

for all ∆P,∆S1 do
Obtain ∆S̃1 from ∆P
∆K1 = ∆S̃1 ⊕∆S1

Call NextRound(∆S1,∆K1,W (∆P → ∆S̃1), 2)
end for

NextRound(∆Sr−1,∆Kr−1, w, r)
Obtain ∆S̃r from ∆Sr−1

if W (∆Sr−1 → ∆S̃r) + w +Wn−r ≤ W̃n then
for all ∆Sr do
∆Kr = ∆S̃r ⊕∆Sr
if r = n then

Update Dn
W̃n ← w +W (∆Sr−1 → ∆S̃r)

else
Call NextRound(∆Sr,∆Kr, w +W (∆Sr−1 → ∆S̃r), r + 1)

end if
end for

end if

Algorithm 1.3. Search of n-round differential characteristics - Variant 3

for all master ∆K| obtain subkeys ∆K1, . . .∆Kn with weight WK do

for all {∆X ∆K1−→ ∆Y |W (∆X
∆K−→ ∆Y ) +WK +Wn−1 ≤ W̃n} do

Call NextRound(∆Y , W (∆X
∆K−→ ∆Y ), 2)

end for
end for

NextRound(∆Y , w, r)

for all {∆Z|∆Y ∆Kr−→ ∆Z and W (∆Y
∆Kr−→ ∆Z) + w +WK +Wn−r ≤ W̃n} do

if r = n then
Update Dn

W̃n ← w +W (∆Y
∆Kr−→ ∆Z) +WK

else
Call NextRound(∆Z,w +W (∆Y → ∆Z), r + 1)

end if
end for

bility 2−l is upper bounded by bkl c. The related-key differential characteristics produced by the tool
have fixed positions of the active bytes, while the exact values are undefined. To produce standard
differential characteristics, one has to find the exact values of the active bytes (the differences in the
active bytes). The probability of the standard characteristics may be lower than the one predicted
by the tool, but never higher, because the tool assumed that all active S-boxes hold with maximal
differential probability, while in practice (in the case of standard characteristic) some S-boxes may
hold with lower probability.



A new class of attacks, presented in [23, 10], called open-key attacks, gives the attacker the full
freedom of knowing or even choosing the key. In return, the attacker has to demonstrate some non-
trivial property of the cipher which differentiates it from an ideal cipher. The motivation behind
these attacks is that ciphers are often used as building blocks for some other cryptographic primi-
tives, such as hash functions. There, the attacker has a full freedom of choosing all input parameters.
An interesting approach is applicable to all ciphers in the chosen-key attack model. We call this
approach divide-and-conquer technique. Let us have some related-key differential characteristic for
a cipher. Since we control both the key and the state (it is a chosen-key attack), we can find a
good pair of keys and states that follow the characteristic by the following method: 1) first find a
good pair of keys that follow the differential characteristic only in the key, 2) once the subkeys are
fixed, find a good pair of plaintexts that follow the differential characteristic in the state. It means
we can split the whole characteristic in two halves: the one in the key, and the one in the state,
and instead of multiplying their probabilities, we can add them. We will launch chosen related-key
differential attacks on the full-round ciphers, in the cases when (secret) related-key characteristics
do not exist. Note that proving the resistance against the chosen related-key differential attacks is
still an open problem because it is unclear how to estimate the upper bound on the weighs of these
characteristics since the number of rounds that can be covered for free varies from 1 in the rebound
attack [30], 2 in the Super-Sbox [17], and even more in the tool of Khovratovich et al [21].

3 AES

The 128-bit block version of Rijndael[13] has been standardized by NIST as Advanced Encryption
Standard (AES) in November 2001 [32]. It supports three different key sizes: 128, 192, and 256
bits, denoted as AES-128, AES-192, and AES-256, respectively. Various cryptanalytic results were
published on AES, and until recently, the best attacks presented non-random properties of 7/10/10
rounds (out of 10/12/14 rounds) of AES-128/192/256 [14, 16, 23, 18, 22]. A breakthrough in analysis
of AES have been the results [10, 9]. In [10] a related-key attack on all 14 rounds of AES-256 was
presented. In [9], boomerang attacks on full-round AES-192 and AES-256 were shown.

AES is an SPN cipher. The subkeys are generated consecutively one from another, but there is a
lot of branching caused by the XORs of columns in the key schedule. Hence, we will use variant 2 of
the tool. The state goes through four transformations: S-box layer, ShiftRows, linear-diffusion layer
called MixColumns, and XOR of the key. In the tool we will use the following optimal representation
of the state trough one round: the beginning state (before the S-boxes) can have non-zero only S-
value (but zero P-value), after the S-box layer and after ShiftRows has again only non-zero S-value,
after the MixColumns has non-zero only P-value, and after the subkey XOR again it has only non-
zero S-value. This way, there is no branching in the state. The subkeys then can be determined as
a XOR of a state of only P-value (the one after MixColumns) and a state of only S-value (the next
round state, just before the S-boxes), hence they have columns that can have both non-zero S- and
P-values. To use variant 2 of the tool we would have to be able to determine if the difference in
the subkey Ki+1 can be obtained from the difference in Ki. One subkey round consists of XOR
of columns, application of S-boxes, and rotation of a column. If we represent the columns of the
subkeys simply with only S-value, all of the above transforms can be easily checked. Therefore,
each column of the subkeys is reduced only to S-value: 1) convert P-value into S-value, 2)XOR the
obtained S-value with the initial S-value. Note, reduction to S-value as well as the XOR introduce
branching, but the search is still feasible.



3.1 Best Round-Reduced Differential Characteristics for AES

We have applied the tool to all three versions of AES. The maximal difference propagation of the
S-box in AES is 2−6. Since the key sizes are 128,192, and 256, we can allow no more than 21, 31,
and 42 active S-boxes in the characteristics for AES-128, AES-192, and AES-256, respectively. For
AES-128 we found differentials characteristics on 4 rounds with 13 active S-boxes, and on 5 rounds
with 17 active S-boxes. In AES-128 there are no 6-round related-key differential characteristics. For
AES-192 we found differential characteristics up to 11 rounds out of 12. The characteristic on 11
rounds has 31 active S-boxes (20 in the state, and 11 in the key). For AES-256 we found unique
differential characteristic on all 14 rounds, but this is the same characteristic that was presented in
[10]. The characteristic from [10] is optimal for 9-14 rounds, but we have found better characteristic
on 8 rounds (10 active S-boxes instead of 14). The 5-round differential characteristic for AES-128,
and 11-round for AES-192 are presented in Fig. 2 in the Appendix. Regarding chosen-key attacks,
in all versions of AES, there are no differential characteristic on 10 rounds with 21 or less active
S-boxes in the state.

3.2 Related-key Boomerang Attack on 7-round AES-128

Let us show a boomerang attack on 7 rounds of AES-128. We will use two 3-round differential
characteristics: a top 3-round truncated differential characteristic (4-1-4-16) with no key difference,
and a 3-round related-key bottom differential characteristic with 5 active S-boxes in the state and
1 in the subkeys. They are presented in the Figure 4 in the Appendix. Note that if we extend the
bottom characteristic for one additional round then the difference in the ciphertexts is fixed in 9
bytes, 4 bytes have equal difference and 3 bytes have a random difference. The difference δ between
these two ciphertexts can have 24·7 = 228 distinct values (1-bit of freedom is lost for each of the 4
active S-boxes, since given a fixed input difference only 27 output differences are possible). Let ∆ be
the difference between K4 and let the key schedule transform this difference into ∆′ in K7. Instead
of guessing 228 possibilities of the bottom difference for each ciphertext (which would increase the
pressure on our filters) we guess 31 bit of the key: seven bits of k6

1,3 and full k7
1,1, k

7
1,2, k

7
1,3. This

guess allows us to work on both faces of the bottom characteristic, since unlike in most related-key
boomerang attacks our boomerang has only two related keys, instead of four.

The attack works as follows: For each guess of 231 bits of the key

1. Prepare a structure of plaintexts Pi with all the possible 232 four byte values on the main
diagonal and the other bytes fixed.

2. Enrypt all the plaintexts Pi with the secret key K and obtain ciphertexts Ci.
3. For each ciphertexts Ci compute the correct difference δ using the 31-bit key guess, and obtain
Di = Ci ⊕ δ.

4. Decrypt all Di with the key which is computed from the last subkey: K7 ⊕ ∆′ and obtain
plaintexts Qi.

5. Sort all Qi by 12 non-diagonal bytes. Pick only the pairs (Qi, Qj) that have zero difference in
these 12-bytes. If none are found then goto 1.

6. Check the candidate quartet against 8 active S-boxes at the top (four on both sides of the
boomerang) which gives an 8-bit filter.

7. Do the key counting step with the remaining quartet candidates.



Let us calculate the data and time requirements of the attack. A pair of plaintexts passes the first
round with a probability 2−22 (MixColumns from four to one active byte, the position and the value
of the active byte is irrelevant). The next two rounds are passed with probability 1, so in the third
round with have a pair of states with all bytes active. In the second characteristic, from the bottom
up assume that the initial 31-bit guess was correct, then in the next three rounds we have five active
S-boxes which hold with probability 2−30 (when each is 2−6). Yet for the two pairs of ciphertexts
we only need the same difference after the fourth round (from bottom up) and therefore the two
S-boxes of this round can be counted only once (on the one side of the boomerang the pair passes
the layer of S-boxes with one of the 214 possible differences, on the parallel side of the boomerang
the pair matches this difference with probability 2−14). So the two pairs of ciphertexts pass the
second characteristic with a probability of 2−(3·6+3·6+2·7) = 2−50. Now that we have passed with
low cost the 4th round layer of S-boxes where the top-down characteristic had 16 active S-boxes
we switch to the last phase of the boomerang attack, where the effect of the mixing of the third
round can be undone for free because are guaranteed to have the same difference as in the forward
direction. In the second round we pay again 2−24 for four to one active byte of MixColumns(2−22 if
we do not require the boomerang to return in exactly the same 4 bytes). The next round is done
for free so we obtain two plaintexts with a difference only in four diagonal bytes. Hence the total
probability of the boomerang is 2−22−50−24 = 2−96. Each structure of 232 plaintexts contains 263

pairs with a difference in the four diagonal bytes. Hence, to find two good boomerang quartets we
need 296−63+1 = 234 structures or 234+32 = 266 chosen plaintexts and 231 ·266 = 297 adaptive chosen
ciphertexts. The average amount of false quartets for all 231 key guesses which satisfy our 96+8 =
104-bit filtering condition is 231+34+63−104 = 224. Note that each boomerang quartet suggest 31-bit
value for the key guess at the bottom as well as 16 guesses for 64 bits at the top (corresponding to 4
active S-boxes in the plaintext at each side). Since we requested two good boomerang quartets they
will vote together for the correct keys while the remaining 224 false quartets would vote randomly.
We expect that none of the false quartets survive this 91-bit key voting step.

At this point the attacker can either finish the attack with an exhaustive search of about 296

steps or by repeating the boomerang attack starting from another 4 active S-boxes in the plaintext.

3.3 Related-key Boomerang Attacks on AES-192 and AES-256

We tweaked our tool to produce the optimal differential characteristics for a boomerang attack on
AES-192. The tool produced a top differential characteristic other than the one presented in [9],
with the same bottom characteristic. The two characteristics are shown at Fig.3 in the Appendix.
The ladder switch between the two characteristics in round 6 is simpler: due to the switch there are
no active S-boxes in this round. The top characteristic has 2 active in round 3, and 1 in round 4,
while the bottom characteristic has 1 active in round 7, 8, and 10, and 2 active in round 9. Hence,
the probability of the boomerang is 2−6·(2+1+1+1+2+1) = 2−48 compared to the boomerang in [9]
with a probability 2−55. A rough estimate between these two attacks gives us a speed-up of 27: the
new boomerang attack requires 2116 data, and 2169 time.

For AES-256, on 6 and 7 rounds there are only two characteristics with 5 active S-boxes (and
no characteristics with less active S-boxes), and these are the exact characteristics used in the
boomerang attack on AES-256 in [9]. On the other hand, 8-round characteristic has at least 10
active S-boxes, hence using it in a boomerang attack will blow up the complexity above the best
known attack. Therefore, we believe that the characteristics used for the attack on AES-256 in [9]
are optimal.



4 Camellia

Camellia [1] is a 128-bit SPN block cipher with 128, 192, and 256-bit keys. We will analyze Camellia
with 128-bit keys, without the FL functions. This version has 18 rounds, and so far, the best
cryptanalytical results are truncated differential of 8 rounds [25], and impossible differential on 11
rounds [27]. The key schedule of Camellia is not byte oriented because the rotation constants are
not a multiple of 8. In order to test our tool we will make it byte oriented, by using the following
rotation constants for rounds 1-18: 0, 0, 16, 16, 16, 16, 48, 48, 48, 64, 64, 64, 96, 96, 96, 96, 112,
112. We call this version — byte-Camellia. Note that, since we choose the rotation constants as
close as possible to the original constants, a differential characteristic in the key schedule of byte-
Camellia, may be suitable for the original Camellia. For that to happen, the positions of the active
bits in an active byte have to be invariant of small rotations. On the other hand, trying all possible
combinations of active bits, i.e. building all possible differential characteristics in the key schedule
for the original version of Camellia, seems too much time consuming. Hence, we will analyze only
byte-Camellia.

The key schedule of Camellia-128 applies transforms (4 rounds) to the master key KL, to produce
another key KA and it uses these two values to generate the subkeys in a linear way. Therefore,
we will use variant 3 of the tool. Internally in the tool, in all steps we will use only the S-type
representation.

4.1 Best Round-reduced Differential Characteristics for byte-Camellia

The maximal difference propagation probability of the S-boxes in Camellia is 2−6. Therefore, we
can allow no more than b 1286 c = 21 active S-box in the characteristic of the key and the state. With
this type of limitations, the tool produced the best related-key differential characteristic. It is on 8
rounds, and it has 20 active S-boxes.

4.2 Chosen-key Attack on Full-round byte-Camellia

When searching for chosen related-key characteristics in byte-Camellia, we can spend 21 active
S-box in each, the key and the state (using the divide-and-conquer technique). With these weight
limitations our tool was able to produce a good characteristic on all 18 rounds of byte-Camellia. The
characteristic has 17 active S-boxes in the key, and 15 in the state (see Fig. 4 in the Appendix). The
characteristic can be used to show that 256-bit double-block-length [19] hash function construction
initiated with byte-Camellia-128 cipher, can be distinguished from a random function.

5 Khazad

Khazad [3] is a 64-bit block cipher with a key size of 128 bits. It is an SPN with 8 rounds. The best
attacks go only up to 5 rounds: an integral attack [31] with 291 complexity and a class of 264 weak
keys which can be attacked in 240 steps using a slide attack [7].

The subkeys in the key schedule of Khazad are obtained consecutively from one another using
a Feistel function. Therefore, we will use variant 2 of the tool. The small key and block sizes, in
addition to the low branching in the key schedule allows to use the variant 1 as well. The optimal
representation is similar to the one used in the tool for AES. In the state, after the S-boxes (γ) we
will have non-zero only S-value, and after the linear-diffusion layer (θ) only P-value.



5.1 Best Round-reduced Differential Characteristics for Khazad

The maximal difference propagation of the S-boxes in Khazad is 2−5. Hence, a differential char-
acteristic for Khazad cannot have more than 25 active S-boxes, at most 12 can be in the state.
With this type of limitations, the tool was able to produce interesting results. The best related-key
differential characteristics for 4,5,6, and 7 rounds have 9, 10, 19, and 20 active S-boxes, respectively.
The related-key attacks based on such characteristics would be the new best attacks on Khazad up
to 7 rounds. The 7-round characteristic is presented at Fig.5 in the Appendix.

5.2 Related-key Boomerang Attacks on 7 rounds of Khazad

Let us improve the probability of the 7-round attack by using a boomerang attack. We will use two
4 round characteristics (See Fig.5 in the Appendix). The four related keys KA,KB ,KC , and KD,
are obtained as follows: 1) fix any KA, i.e. (KA

−2,K
A
−1), 2) produce (KA

0 ,K
A
1 ) from KA, and fix

KB such that KB = (KA
0 ,K

A
1 ) ⊕ (∆K0, ∆K1), 2) obtain (KA

6 ,K
A
7 ) and (KB

6 ,K
B
7 ) and then fix

KC = (KA
6 ,K

A
7 )⊕ (∆K6, ∆K7), KD = (KB

6 ,K
B
7 )⊕ (∆K6, ∆K7). The pink difference was chosen

such that after γ and θ it could produce gray difference with a probability 2−5. Let us find the
complexity of the attack. We start with the same one byte difference (the pink byte) in the plaintext
and the subkey K0, hence there are no active bytes in the state in round 1 and 2. The difference
in the subkey K3, as well as in the state, (denoted with the grey bytes) is obtained when the pink
byte goes through γ and θ, and hence it happens with 2−5. At the end of round 4 we can switch to
the bottom characteristic. The ciphertext difference is fully determined. We pay 2−5 in round 7 so
the blue byte in the state after the inverse S-box will become pink (and then cancel with the pink
difference in the key). To get a zero difference in the subkey K5 we pay additional 2−5. In round 4
we switch the state to the top characteristic. An important moment is the switch in the keys. When
the gray difference in the top characteristic between KA and KB in the subkey K3 is the same as
the gray difference in the bottom characteristic between KA and KC (and KB and KD) in the
subkey K3, then the switch in the key is for free (this is due to the Feistel switch3, See [9]). Then not
only the difference in K3 between KC and KD will be the same as between KA and KB , but their
value will be equal to the values of KA

3 and KB
3 and hence will go through the S-boxes producing

the same values. Therefore, we pay additional 2−5 for each of the differences in subkey K3 (instead
of a switching cost of 2−64!). After the switch to the top characteristic, we pay 2−5 in the state of
round 3 to get the same pink difference which will cancel after the key XOR. We pay additional
2−5 for the zero difference in the subkey K1. The rest of the characteristic holds with probability
1. The probability of the whole boomerang attack is 2−(2·5+2·5+2·5+2·5+5+5) = 2−50. This translates
into a boomerang attack in a class of weak keys that works for 1 out of 230 related-key quartets,
with a complexity 220 encryptions/decryptions. Moreover if we relax constraints on the difference
in the key we can increase the size of the weak key class to 1 out of every 28 keys which can be
attacked with complexity of 249 encryptions and analysis steps. In both cases when the boomerang
returns we know the plaintext difference and thus we have a 64 bit filter which allows us to filter
out all the wrong quartets. Returning boomerang provides us with 7 bits of information about the
key byte K0

2 since we know the input and output difference for the active S-box of the key schedule
and similarly about 7 bits of the key of K0

6 . One can extend this attack into a full key recovery
attack via auxiliary techniques.
3 We have tested the Feistel switch in the key schedule of Khazad, and a related-key quartet, following the

whole 7-round differential characteristic, was found.



5.3 Chosen-key Attack on Full-round Khazad

The 7-round related-key differential characteristic can easily be extended at the top for an additional
round and then used in a chosen-key attack (See Fig. 5 in the Appendix). Since we control the exact
values of the key and the state, we will use the divide-and-conquer technique, and first fix the keys
satisfying the characteristic in the key, and then find a proper pair of plaintexts that follow the
characteristic in the state. We can use the rebound attack [30] and fix one round for free in both
the key and in the state. For the key, we can fix the round for ∆K4 (or ∆K6), and obtain a
characteristic in the key that holds with probability 2−55. In the state, we will fix the values in
the first round, hence the characteristic in the state holds with 2−10. The S-boxes are non-injective
regarding the difference, i.e. if we fix the input and output difference of the S-box, then there is a
solution with probability 1

2 . Therefore, we introduce a possible one bit difference in each byte of the
plaintext so that there will always be a solution for the S-box input/output differences. The total
complexity of the chosen-key distinguisher is bounded by the probability of the characteristic in the
key and is 255. The input difference is fixed in 56 bits, while the output is fixed in all 64-bits. This
shows that full Khazad has properties which are not present in an ideal cipher. This also means,
for example, that 256-bit Tandem-DM[24] hash function construction initiated with Khazad cipher,
can be distinguished from a random function.

6 FOX and Anubis

The ciphers FOX [20] and Anubis[2] have highly non-linear key schedule, leading to a potentially
low key agility. This property becomes important when the key of the cipher is frequently changed,
for example when the cipher is used in some hash function construction. Yet, with the respect
to related-key differentials, the key schedule of these ciphers is exceptionally resistant. The large
number of S-boxes in the schedule ensures that a related-key differential attack cannot be launched
on more than some very modest number of rounds.

We have analyzed FOX64 – the 64-bit block version of FOX with 128-bit key and 16 rounds.
Each round key of this cipher is produced from the master key with a sequence of transformations
NL64. We have found empirically, by checking all the possible key differential characteristics, that
the minimal number of active S-boxes in NL64 is 7. This means that in any related-key differential
characteristic, for each round of FOX64 one has to spend at least 7 S-boxes only for producing
the round key. The maximal difference propagation probability of the S-box in FOX is 2−4, while
the key is 128 bits. Hence, we can conclude that for FOX64 there is no related-key differential
characteristic on more than b 1284·7 c = 4 rounds.

Anubis, a 128-bit block cipher, supports variety of key sizes from 128 bits to 320 while it has
8 + keysize

32 rounds. We will focus on key sizes up to 256 bits. The maximal difference probability
of the S-boxes is 2−5, hence the maximal number of active S-boxes in a characteristic can not be
greater than b 2565 c = 51. The key schedule of Anubis is SPN with an additional S-box layer at
the end of each round (as well as ω and τ transformations). This means that in a characteristic
of the key schedule, each active S-box should be counted twice, except for the S-boxes in the first
round (which are counted only once). The branch number of the linear-diffusion layer is 5, hence
in four consecutive rounds there are at least 52 = 25 active S-boxes. Therefore, in 5 rounds of the
key schedule, there are at least 2 · 25 active S-boxes in the last 4 rounds, and at least 1 in the first
round, or in total at least 51 active S-boxes in the 5-round characteristic of the key schedule. Hence,
in Anubis there are no related-key differential characteristics on more than 5 rounds.



7 Conclusions and Future Research

We presented a tool for search of related-key differential characteristics in various ciphers. It pro-
duced the best round-reduced differential characteristics, which helped to improve the best known
attacks on AES-128, AES-192, byte-Camellia-128, and Khazad. It also allowed to prove security
bounds against simple related-key attacks for AES-128, FOX and Anubis. The tool runs in a range
of few hours (Khazad, byte-Camellia) to several days (AES-128) and weeks (AES-192) and takes
from several megabytes to 25 Gbytes (byte-Camellia) of memory for the transition lookup tables in
the key schedule.

The tool was implemented as described in the paper and while it produced a lot of interesting
results, a couple of open problems emerged. The first one is how to deal with ciphers that have small
part that is not byte oriented such as Camellia which has rotations in the key schedule. Second, it
is very interesting to adapt the tool to hash functions. This would mean that the problem of very
large internal state of some modern hash functions has to be solved. The idea of applying a similar
tool for finding related-key differential characteristics in DES and in non-byte oriented ciphers also
seems attractive. Producing chosen-key differential characteristics for 9 and 10 rounds of AES-128
is still an open problem.
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21. D. Khovratovich, A. Biryukov, and I. Nikolić. Speeding up collision search for byte-oriented hash
functions. In M. Fischlin, editor, CT-RSA, volume 5473 of Lecture Notes in Computer Science, pages
164–181. Springer, 2009.

22. J. Kim, S. Hong, and B. Preneel. Related-key rectangle attacks on reduced AES-192 and AES-256. In
A. Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science, pages 225–241. Springer,
2007.

23. L. R. Knudsen and V. Rijmen. Known-key distinguishers for some block ciphers. In K. Kurosawa,
editor, ASIACRYPT, volume 4833 of LNCS, pages 315–324. Springer, 2007.

24. X. Lai and J. L. Massey. Hash function based on block ciphers. In R. A. Rueppel, editor, EUROCRYPT,
volume 658 of Lecture Notes in Computer Science, pages 55–70. Springer, 1992.

25. S. Lee, S. Hong, S. Lee, J. Lim, and S. Yoon. Truncated differential cryptanalysis of Camellia. In
K. Kim, editor, ICISC, volume 2288 of Lecture Notes in Computer Science, pages 32–38. Springer,
2001.

26. J. Lu, O. Dunkelman, N. Keller, and J. Kim. New impossible differential attacks on AES. In Chowdhury
et al. [12], pages 279–293.

27. J. Lu, J. Kim, N. Keller, and O. Dunkelman. Improving the efficiency of impossible differential crypt-
analysis of reduced Camellia and MISTY1. In T. Malkin, editor, CT-RSA, volume 4964 of Lecture
Notes in Computer Science, pages 370–386. Springer, 2008.

28. M. Matsui. Linear cryptoanalysis method for DES cipher. In T. Helleseth, editor, EUROCRYPT,
volume 765 of Lecture Notes in Computer Science, pages 386–397. Springer, 1993.

29. M. Matsui. On correlation between the order of S-boxes and the strength of DES. In A. D. Santis,
editor, EUROCRYPT, volume 950 of Lecture Notes in Computer Science, pages 366–375. Springer,
1994.
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Fig. 2. The best characteristics for AES-128(left) and AES-192(right). The first one is on 5 rounds, while
the second one is on 11 rounds.
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rounds. On the right, the related-key differential characteristic (top in the state, bottom in the key) on full-
round byte-Camellia-128 for the chosen-key distinguisher. The characteristic has compact representation,
the actual differences are to be fixed. The key XOR is depicted separately from the function F .
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Fig. 5. Characteristics for the related-key boomerang attack on 7-round Khazad (top), related-key differ-
ential characteristic on 7 rounds (bottom-left), and related-key differential characteristic on 8 rounds used
for a chosen-key distinguisher (bottom-right).


