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Abstract. We present two fully secure functional encryption schemes: a
fully secure attribute-based encryption (ABE) scheme and a fully secure
(attribute-hiding) predicate encryption (PE) scheme for inner-product
predicates. In both cases, previous constructions were only proven to
be selectively secure. Both results use novel strategies to adapt the
dual system encryption methodology introduced by Waters. We con-
struct our ABE scheme in composite order bilinear groups, and prove
its security from three static assumptions. Our ABE scheme supports
arbitrary monotone access formulas. Our predicate encryption scheme is
constructed via a new approach on bilinear pairings using the notion of
dual pairing vector spaces proposed by Okamoto and Takashima.

1 Introduction

In a traditional public key encryption system, data is encrypted to be read by
a particular individual who has already established a public key. Functional
encryption is a new way of viewing encryption which opens up a much larger
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world of possibilities for sharing encrypted data. In a functional encryption sys-
tem, there is a functionality f(x, y) which determines what a user with secret
key y can learn from a ciphertext encrypted under x (we can think of both x
and y as binary strings, for example). This allows an encryptor to specify a
policy describing what users can learn from the ciphertext, without needing to
know the identities of these users or requiring them to have already set up public
keys. The enhanced functionality and flexibility provided by such systems is very
appealing for many practical applications.

Several previous works have pursued directions falling into this general frame-
work, e.g. [34, 25, 17, 5, 32, 24, 39, 27, 12]. However, the same expressive power of
these systems that makes them appealing also makes proving their security es-
pecially challenging. For this reason, all of the prior systems were only proven
selectively secure, meaning that security was proven in a weaker model where
part of the challenge ciphertext description must be revealed before the attacker
receives the public parameters.

In this paper, we present fully secure systems for two cases of functional
encryption, namely attribute-based encryption (ABE) and predicate encryption
(PE) for inner products. Sahai and Waters [34] proposed Attribute-Based En-
cryption as a new concept of encryption algorithms that allow the encryptor to
set a policy describing who should be able to read the data. In an attribute-based
encryption system, private keys distributed by an authority are associated with
sets of attributes and ciphertexts are associated with formulas over attributes.
A user should be able to decrypt a ciphertext if and only if their private key
attributes satisfy the formula. Predicate encryption for inner products was first
presented by Katz, Sahai, and Waters [27]. In a predicate encryption scheme,
secret keys are associated with predicates, and ciphertexts are associated with
attributes. A user should be able to decrypt a ciphertext if and only if their
private key predicate evaluates to 1 when applied to the ciphertext attribute.

Our Two Results The ABE and PE schemes described in this paper have essen-
tial commonalities: both are functional encryption schemes that employ the dual
system methodology of Waters [40] to prove full security. This is a powerful tool
for achieving full security of systems with advanced functionalities, but realizing
the dual system methodology in each new context presents unique challenges.
In particular, the technical challenges for ABE and PE are distinct, and the
two results now combined into this paper were obtained by separate research
groups working independently. The ABE result was obtained by Lewko, Sahai,
and Waters, while the PE result was obtained by Okamoto and Takashima.

1.1 Attribute-Based Encryption

We are particularly interested in attribute-based encryption as a special case
of functional encryption because it provides a functionality that can be very
useful in practice. For example, a police force could use an ABE system to
encrypt documents under policies like “Internal Affairs OR (Undercover AND
Central)” and give out secret keys to undercover officers in the central division



corresponding to the attributes “Undercover” and “Central”. Given the many
potential uses of ABE systems, constructing efficient systems with strong security
guarantees is an important problem.

Previous Constructions and Selective Security. All previous constructions of
ABE systems [34, 25, 18, 5, 32, 24, 39] have only been proven to be selectively
secure. This is a limited model of security where the attacker is required to
announce the target he intends to attack before seeing the public parameters of
the system. This is an unnatural and undesirable restriction on the attacker, but
it unfortunately appears to be necessary for the proof techniques used in prior
works.

To see why this is the case, it is instructive to look into the way that previous
security proofs have worked. In these security proofs, the simulator uses the
attacker’s announced target to embed the challenge in the public parameters in
such a way that the simulator can produce any keys the attacker can request but
can also leverage the attacker’s output to break the underlying challenge. This is
a partitioning strategy reminiscent of the strategies first used to prove security
for IBE systems. The formation of the public parameters partitions the keys into
two classes: those that the simulator can make, and those that are useful to the
simulator in solving its challenge.

While this partitioning strategy was successfully employed by Boneh and
Boyen [7], and Waters [38] to prove full security for an IBE system, any parti-
tioning approach seems doomed to failure when one tries to achieve full security
for ABE systems. Without selectivity, the simulator cannot anticipate which
keys the attacker may ask for, so the attacker must make some type of a guess
about what the partition should be. One natural direction is to partition the
identity space in some random way and hope that the attacker’s queries respect
the partition (which was the main idea behind the works in the IBE setting). For
ABE systems, however, private keys and ciphertexts have much more structure;
different keys can be related (they may share attributes), and this severely re-
stricts allowable partitions. Thus, the power and expressiveness of ABE systems
work directly against us when attempting to create partitioning proofs.

Our Approach. We are able to obtain full security by adapting the dual system
encryption technique of [40, 28] to the ABE case. Waters [40] introduced dual
system encryption to overcome the limitations of partitioning. In a dual encryp-
tion system, keys and ciphertexts can take on one of two forms: normal and
semi-functional. A normal key can decrypt both normal and semi-functional ci-
phertexts, while a semi-functional key can only decrypt normal ciphertexts. The
semi-functional keys and ciphertexts are not used in the real system, only in
the proof of security. The proof employs a hybrid argument over a sequence of
security games. The first is the real security game, with normal keys and cipher-
text. In the second game, the ciphertext is semi-functional and the keys remain
normal. In subsequent games, the keys requested by the attacker are changed to
be semi-functional one by one. By the final game, none of the keys given out are



actually useful for decrypting a semi-functional ciphertext, and proving security
becomes relatively easy.

There is one important subtlety inherent in the dual system technique. In the
step where the kth key becomes semi-functional, the simulator must be prepared
to make any semi-functional challenge ciphertext and any key as the kth key.
At first, this appears to be a paradox, since it seems the simulator can just
make a key that should decrypt the challenge ciphertext and decide for itself
whether the key is semi-functional by attempting to decrypt the semi-functional
challenge ciphertext. Waters addresses this issue by introducing tags: if a key and
ciphertext in his IBE system have the same tag, decryption will fail regardless of
semi-functionality. The simulator is constructed in such a way that if it attempts
to check if key k is semi-functional by decrypting a semi-functional ciphertext,
it will be thwarted because they will have equal tags. (This relationship between
the tags will be hidden to an attacker who cannot request a key able to decrypt
the challenge ciphertext.)

Lewko and Waters [28] provide a new realization of dual system encryption
where tags are replaced by nominally semi-functional keys. Nominally semi-
functional keys are structured like semi-functional keys except that they do also
successfully decrypt semi-functional ciphertexts (the semi-functional contribu-
tion cancels out). When the kth key turns semi-functional in the hybrid, the
simulator is constructed so that it can only make a nominally semi-functional
key k. It is then argued that this looks like a regular semi-functional key to the
attacker.

Though they achieve fully secure HIBE with constant size ciphertext, it is not
clear how to extend the techniques of [40, 28] to obtain fully secure ABE systems.
Both rely on the fact that the identities attached to keys and ciphertexts are
the same. Waters relies on this to align tags, while Lewko and Waters use this
symmetry in designing their system so that a nominally semi-functional key is
identically distributed to a regular semi-functional key in the view of an attacker
who cannot decrypt. This symmetry does not hold in an ABE system, where
keys and ciphertexts are each associated with different objects: attributes and
formulas. The additional flexibility and expressiveness of ABE systems leads to a
much more complicated structure of relationships between keys and ciphertexts,
which makes the potential paradox of the dual system encryption technique more
challenging to address for ABE.

We overcome this by giving a new realization of nominally semi-functional
keys in the ABE setting. We do this by designing the semi-functional components
of our keys and ciphertexts to mirror the functionality of the ABE scheme.
Intuitively, we want to argue that an attacker who cannot decrypt the message
also cannot determine if the final contribution of the semi-functional components
will be non-zero. We make this argument information-theoretically by showing
that our nominally semi-functional keys are distributed identically to regular
semi-functional keys from the attacker’s perspective. This information-theoretic
argument is more intricate than the HIBE analog executed in [28], due to the
more complicated structure of ABE systems.



The ideas above allow us to construct an ABE system that is fully secure. We
build our construction in two phases. First, we construct an ABE system with
the restriction that each attribute can only be used once in an access formula.
We call this a one-use ABE system. Then, we provide a generic transformation
from a one-use system to a system which is fully secure when attributes are
used multiple times (up to a constant number of uses fixed at setup). While
this transformation does incur some cost in key size, it does not increase the
size of the ciphertext; we stress that ours is the first feasibility result for fully
secure ABE. Our construction supports arbitrary monotone access formulas. We
realize our ABE construction using bilinear groups of composite order and prove
security under three assumptions used by Lewko and Waters [28].

1.2 Predicate Encryption for Inner Products

ABE systems have desirable functionality, but have one limitation in that the
structure of the ciphertext is revealed to users who cannot reveal. For example,
in a CP-ABE system, a user who cannot decrypt can still learn the formula
associated with the ciphertext. For applications where the access policy must
also be kept secret, this is unacceptable. In our second result we address a class of
systems, called predicate encryption systems, that overcome this limitation. Our
second result gives predicate encryption of inner products between the ciphertext
and key vectors.

Predicate encryption (PE) for inner products was presented by Katz, Sahai
and Waters [27] as a generalized (fine-grained) notion of encryption that cov-
ers identity-based encryption (IBE) [6, 7, 9, 19, 21, 26], hidden-vector encryption
(HVE) [12] and attribute-based encryption (ABE) [5, 25, 32–34]. Informally, se-
cret keys in a PE scheme correspond to predicates in some class F , and a sender
associates a ciphertext with an attribute in set Σ; a ciphertext associated with
attribute I ∈ Σ can be decrypted using a secret key skf corresponding to pred-
icate f ∈ F if and only if f(I) = 1.

The special case of inner product predicates is obtained by having each at-
tribute correspond to a vector −→x and each predicate f−→v correspond to a vec-
tor −→v , where f−→v (−→x ) = 1 iff −→x · −→v = 0. (Here, −→x · −→v denotes the standard
inner-product). We note that these represent a wide class of predicates includ-
ing equality tests (for IBE and HVE), disjunctions or conjunctions of equality
tests, and, more generally, arbitrary CNF or DNF formulas (for ABE). However,
we note that inner product predicates are less expressive than the LSSS access
structures of ABE. To use inner product predicates for ABE, formulas must be
written in CNF or DNF form, which can cause a superpolynomial blowup in size
for arbitrary formulas.

Katz, Sahai, and Waters also introduced attribute-hiding, a security notion for
PE that is stronger than the basic security requirement, payload-hiding. Roughly
speaking, attribute-hiding requires that a ciphertext conceal the associated at-
tribute as well as the plaintext, while payload-hiding only requires that a cipher-
text conceal the plaintext. If attributes are identities, i.e., PE is IBE, attribute-
hiding PE implies anonymous IBE. This notion of attribute-hiding addresses the



limitation of ABE systems. Katz, Sahai, and Waters provided a scheme which
is attribute-hiding PE for inner-product predicates, but it is only proven to be
selectively secure and no delegation functionality is provided.

Our Results

– This paper proposes the first adaptively secure PE scheme for inner-product
predicates in the standard model. The scheme is proven to be adaptively
attribute-hiding (against CPA) under an assumption that is non-interactive.
The number of terms of the assumption depends on a system parameter
n, which is the vector length. (However, the number of terms does not de-
pend on the number of adversarial private key queries.) We prove that the
assumption is true in the generic model of bilinear pairing groups.
The efficiency of the proposed PE scheme is comparable to that of the ex-
isting selectively-secure PE schemes [27, 31].

– This paper also establishes a (hierarchical) delegation functionality on the
proposed adaptively secure PE scheme. That is, we propose an adaptively
secure (attribute-hiding) hierarchical PE (HPE) scheme for inner-product
predicates (with polynomially many levels) in the standard model under the
n-eDDH assumption.
The proposed HPE scheme implies the first anonymous hierarchical IBE
(HIBE) with polynomially many levels in the standard model as a special
case (when the associated inner-product predicate is specialized as the equal-
ity test for HIBE).

– It is straightforward to convert the (CPA-secure) basic (H)PE scheme to a
CCA-secure (H)PE scheme by employing an existing general conversion such
as that by Canetti, Halevi and Katz [16] or that by Boneh and Katz [11] (us-
ing an additional level with two-dimensions for the basic (H)PE scheme, and
a strongly unforgeable one-time signature scheme or message authentication
code and encapsulation). That is, we can present a fully secure (adaptively
attribute-hiding against CCA) (H)PE scheme for inner-product predicates
in the standard model under the n-eDDH assumption as well as a strongly
unforgeable one-time signature scheme or message authentication code and
encapsulation.

– To achieve the result, this paper elaborately combines a new methodology,
the dual system encryption, proposed by Waters [40] and a new approach
based on a notion of higher dimensional vector spaces, dual pairing vector
spaces (DPVS), proposed by Okamoto and Takashima [30, 31]. The notion
of DPVS is constructed on bilinear pairing groups, and they presented a
selectively secure (H)PE scheme on DPVS [31]. We will explain this approach
and our key technique in Section 3.1.
Note that the n-eDDH assumption in this paper is defined over the basic
primitive, bilinear pairing groups (not over the higher level concept, DPVS),
although the proposed PE and HPE schemes are constructed over DPVS,
and the assumptions in [31] are defined over DPVS.

– Since HPE is a generalized (fine-grained) version of anonymous HIBE (AHIBE)
(or includes AHIBE as a special case), HPE covers (a generalized version of)



applications described in [13], fully private communication and search on
encrypted data. For example, we can use a two-level HPE scheme where the
first level corresponds to the predicate/attribute of (single-layer) PE and
the second level corresponds to those of “attribute search by a predicate”
(generalized “key-word search”).

1.3 Related Work

Identity Based Encryption (IBE) was proposed by Shamir [35]. In an identity
based encryption system, an authority distributes keys to users with associ-
ated identities, and messages are encrypted directly to identities. The first IBE
schemes were constructed by Boneh and Franklin [9] and Cocks [19]. These
schemes were proven secure in the random oracle model. Then selectively secure
schemes in the standard model were constructed [15, 6]. Boneh and Boyen [7]
and Waters [38] constructed fully secure IBE schemes in the standard model.
Gentry [21] gave an IBE system and security proof that moved beyond the con-
fines of the partitioning strategy, but at the cost of a large and complicated
complexity assumption.

Hierarchical Identity Based Encryption (HIBE) [23, 26] expands the function-
ality of identity based encryption to include a hierarchical structure on identities,
where identities can delegate secret keys to their subordinate identities. Boneh
and Boyen [6] constructed a selectively secure HIBE scheme. Boneh, Boyen, and
Goh [8] constructed a selectively secure HIBE scheme with constant size cipher-
texts. Gentry and Halevi [22] extended Gentry’s techniques to get a fully secure
HIBE system, but under “q-type” assumptions. Waters [40] leveraged the dual
system encryption methodology to obtain fully secure IBE and HIBE systems
from simple assumptions. Lewko and Waters [28] extended the dual encryption
technique to obtain a fully secure HIBE system with constant size ciphertexts.

Attribute-based encryption was introduced by Sahai and Waters [34]. Goyal,
Pandey, Sahai, and Waters [25] formulated two complimentary forms of ABE:
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) and Key-Policy Attribute-
Based Encryption (KP-ABE). In a CP-ABE system, keys are associated with
sets of attributes and ciphertexts are associated with access policies. In a KP-
ABE system, the situation is reversed: keys are associated with access policies
and ciphertexts are associated with sets of attributes. Selectively secure CP-ABE
and KP-ABE systems were constructed in [34, 25, 18, 5, 32, 24, 39].

Goyal, Jain, Pandey, and Sahai [24] provide a general way to transform a
KP-ABE system into a CP-ABE system. Chase [17] considered the problem of
ABE with multiple authorities.

Other works have discussed similar problems without addressing collusion
resistance [1–3, 14, 29, 37]. In these systems, the data encryptor specifies an access
policy such that a set of users can decrypt the data only if the union of their
credentials satisfies the access policy.

Predicate encryption was introduced by Katz, Sahai, and Waters [27], who
also provided a scheme which is attribute-hiding PE for inner-product predicates;



only the selective security (not adaptive security) is proven and no delegation
functionality is provided.

Shi and Waters [36] presented a delegation mechanism for a class of PE, but
the admissible predicates of the system, which is a class of equality tests for
HVE, are more limited than inner-product predicates in [27]. Moreover, they
proved only selective security.

Okamoto and Takashima [31] proposed a (hierarchical) delegation mecha-
nism for a PE scheme, i.e., a hierarchical PE (HPE) scheme, for inner-product
predicates, but only selective security is proven.

Dual pairing vector spaces were introduced by Okamoto and Takashima [30,
31], who presented a selectively secure (H)PE scheme based on DPVS.

1.4 Organization

In Section 2, we present our result for ABE. In more detail, Subsection 2.1 pro-
vides the necessary background on linear secret-sharing schemes (LSSS), CP-
ABE, and composite order bilinear groups, and states our complexity assump-
tions. Subsection 2.2, we describe our transformation from a one-use CP-ABE
system to a system that is secure when attributes are used multiple times in a
formula. In Subsection 2.3, we present our CP-ABE system and prove its secu-
rity. In Subsection 2.4, we discuss extensions of our ABE result.

In Section 3, we present our result for PE for inner products. Subsection 3.1
describes the main ideas of the approach and establishes the necessary notations.
In Subsection 3.2, we formally define DPVS. In Subsection 3.3, we state the com-
plexity assumption. In Subsection 3.4, we formally define predicate encryption
and inner product predicate encryption. In Subsection 3.5, we present our in-
ner product predicate encryption scheme and its security. In Subsection 3.6, we
present our HPE scheme.

2 Fully Secure Attribute-Based Encryption

2.1 Background

Linear Secret-Sharing Schemes The formal definitions of access structures and
linear secret-sharing schemes (LSSS) can be found in [4] and the full version of
this paper. Informally, a LSSS is a share-generating matrix A whose rows are
labeled by attributes. When we consider the column vector v = (s, r2, . . . , rn),
where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp are randomly
chosen, then Av is the vector of ` shares of the secret s. A user’s set of attributes
S satisfies the LSSS access matrix if the rows labeled by the attributes in S have
the linear reconstruction property, which means there exist constants {ωi} such
that, for any valid shares {λi} of a secret s according to the LSSS matrix, we
have:

∑
i ωiλi = s. Essentially, a user will be able to decrypt a ciphertext with

access matrix A if and only if the rows of A labeled by the user’s attributes
include the vector (1, 0, . . . , 0) in their span.



Now, we formally define CP-ABE and give the full security definition. We
also give the necessary background on composite order bilinear groups and state
our complexity assumptions.

CP-ABE A ciphertext-policy attribute-based encryption system consists of
four algorithms: Setup, Encrypt, KeyGen, and Decrypt.

Setup(λ,U)→ (PK,MSK) The setup algorithm takes in the security parameter
λ and the attribute universe description U . It outputs the public parameters PK
and a master secret key MSK.

Encrypt(PK,M,A) → CT The encryption algorithm takes in the public pa-
rameters PK, the message M , and an access structure A over the universe of
attributes. It will output a ciphertext CT such that only users whose private
keys satisfy the access structure A should be able to extract M . We assume that
A is implicitly included in CT .

KeyGen(MSK,PK, S)→ SK The key generation algorithm takes in the master
secret key MSK, the public parameters PK, and a set of attributes S. It outputs
a private key SK.

Decrypt(PK,CT, SK) → M The decryption algorithm takes in the public pa-
rameters PK, a ciphertext CT , and a private key SK. If the set of attributes
of the private key satisfies the access structure of the ciphertext, it outputs the
message M .

Security Model for CP-ABE We now give the full security definition for
CP-ABE systems. This is described by a security game between a challenger
and an attacker. The game proceeds as follows:

Setup The challenger runs the Setup algorithm and gives the public parameters
PK to the attacker.

Phase 1 The attacker queries the challenger for private keys corresponding to
sets of attributes S1, . . . , Sq1 .

Challenge The attacker declares two equal length messages M0 and M1 and
an access structure A∗. This access structure cannot be satisfied by any of the
queried attribute sets S1, . . . , Sq1 . The challenger flips a random coin β ∈ {0, 1},
and encrypts Mb under A∗, producing CT ∗. It gives CT ∗ to the attacker.

Phase 2 The attacker queries the challenger for private keys corresponding to
sets of attributes Sq1+1, . . . , Sq, with the added restriction that none of these
satisfy A∗.



Guess The attacker outputs a guess β′ for β.
The advantage of an attacker is this game is defined to be Pr[β = β′]− 1

2 . We
note that the model can easily be extended to handle chosen-ciphertext attacks
by allowing for decryption queries in Phase 1 and Phase 2.

Definition 1. A ciphertext-policy attribute-based encryption system is fully se-
cure if all polynomial time attackers have at most a negligible advantage in this
security game.

Selective security is defined by adding an initialization phase where the at-
tacker must declare A∗ before seeing PK. Unlike previous works [5, 25, 39], we
do not impose this restriction on the attacker.

Composite Order Bilinear Groups We will construct our systems in com-
posite order bilinear groups. Composite order bilinear groups were first intro-
duced in [10]. We define a group generator G, an algorithm which takes a security
parameter λ as input and outputs a description of a bilinear group G. For our
purposes, we will have G output (p1, p2, p3, G,GT , e) where p1, p2, p3 are distinct
primes, G and GT are cyclic groups of order N = p1p2p3, and e : G2 → GT is a
non-degenerate bilinear map.

We now state the complexity assumptions that we will rely on to prove
security of our systems. These same assumptions were used by Lewko and Waters
to obtain full security of their IBE and HIBE constructions in composite order
groups [28]. We note that all three assumptions are static (constant size) and
the first assumption is just the subgroup decision problem in the case where the
group order is a product of three primes. The assumptions were proven to be
generically secure in [28].

In the assumptions below, we let Gp1p2 , e.g., denote the subgroup of order
p1p2 in G.

Assumption 1 (Subgroup decision problem for 3 primes) Given a group generator
G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g
R←− Gp1 , X3

R←− Gp3 ,
D = (G, g,X3),

T1
R←− Gp1p2 , T2

R←− Gp1 .
We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We note that T1 can be written (uniquely) as the product of an element of

Gp1 and an element of Gp2 . We refer to these elements as the “Gp1 part of T1”
and the “Gp2 part of T1” respectively. We will use this terminology in our proofs.

Definition 2. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.



Assumption 2 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− G, T2

R←− Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We use Gp1p3 to denote the subgroup of order p1p3 in G. We note that T1

can be (uniquely) written as the product of an element of Gp1 , an element of
Gp2 , and an element of Gp3 . We refer to these as the “Gp1 part of T1”, the “Gp2
part of T1”, and the “Gp3 part of T1”, respectively. T2 can similarly be written
as the product of an element of Gp1 and an element of Gp3 .

Definition 3. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 3 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G, α, s R←− ZN ,

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3 ,

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 4. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

2.2 Transformation from One-Use CP-ABE

Here we show how to obtain a fully secure CP-ABE system where attributes are
used multiple times from a fully secure CP-ABE system where attributes are
used only once. We do this with a simple encoding technique.

Suppose we have a CP-ABE system with a universe of n attributes with
LSSS access structures that is secure when the function ρ is injective for each
access structure associated to a ciphertext (i.e. attributes are only used once
in the row labeling the of the share-generating matrix). Suppose we would like
to have a system with n attributes where attributes can be used ≤ k times in



the row labeling of a share-generating matrix. We can realize this by essentially
taking k copies of each attribute in the system: instead of a single attribute B,
we will have new “attributes” B : 1, . . . , B : k. Each time we want to label a row
of an access matrix A with B, we label it with B : i for a new value of i. We
let ρ denote the original row labeling of A and ρ′ denote this new row labeling.
Each time we want to associate a subset S of attributes to a key, we instead use
S′ := {B : 1, . . . , B : k|B ∈ S}. We can then employ the one use system on the
new universe of kn attributes and retain its full security. We note that the set
S′ satisfies the access structure (A, ρ′) if and only if the set S satisfies the access
structure (A, ρ).

For our construction, the sizes of the public parameters and the secret keys
grow linearly in the number of involved attributes, so these will expand by a
factor of k under this transformation. Note that the size of the access matrix
does not change, so ciphertexts in our construction will remain the same size.

2.3 Our Fully Secure CP-ABE System

We construct our fully secure CP-ABE system in composite order groups of or-
der N = p1p2p3 with LSSS access structures. We note the strong resemblance
between our system and the selectively secure CP-ABE system of Waters [39].
The KP-ABE system we give in the full version of this paper also bears a strong
resemblance to the selectively secure schemes in [25]. We thus provide addi-
tional examples of the phenomenon noted by [40, 28]: dual system encryption
is a powerful and versatile tool for transforming selectively secure schemes into
fully secure ones.

The normal operation of our system essentially occurs in the subgroup Gp1 .
Keys are additionally randomized in Gp3 , and the subgroup Gp2 is our semi-
functional space, which is not used in the real system. Keys and ciphertexts
will be semi-functional when they involve elements in the Gp2 subgroup. When
normal keys are paired with semi-functional ciphertexts or semi-functional keys
are paired with normal ciphertexts, the elements in Gp2 will not contribute to the
pairings because they are orthogonal to elements in the Gp1 and Gp3 subgroups.
When we pair a semi-functional key with a semi-functional ciphertext, we get
an extra term arising from pairing the corresponding elements of Gp2 which will
cause decryption to fail, unless this extra term happens to be zero. When this
cancelation occurs and decryption still works, we say the key is nominally semi-
functional. In other words, nominally semi-functional keys involve elements in
Gp2 , but these cancel when paired with the Gp2 elements involved in the semi-
functional ciphertext.

Our proof of security will rely on the restriction that each attribute can
only be used once in the row labeling of an access matrix. This is because we
will argue that a nominally semi-functional key is identically distributed to a
regular semi-functional key in the attacker’s view, since the attacker cannot ask
for keys that can decrypt the challenge ciphertext. This information-theoretic
argument fails when attributes can be used multiple times. Nonetheless, we can



achieve full security for a system which uses attributes multiple times through
the transformation given in the last section.

We believe that our fully secure system in composite order groups can be
transformed to a fully secure system in prime order groups. This was accom-
plished for the previous applications of dual system encryption in [40, 28].

Construction

Setup(λ,U) → PK,MSK The setup algorithm chooses a bilinear group G of
order N = p1p2p3 (3 distinct primes). We let Gpi denote the subgroup of order
pi in G. It then chooses random exponents α, a ∈ ZN , and a random group
element g ∈ Gp1 . For each attribute i ∈ U , it chooses a random value si ∈ ZN .
The public parameters PK are N, g, ga, e(g, g)α, Ti = gsi∀i. The master secret
key MSK is α and a generator X3 of Gp3 .

KeyGen(MSK,S, PK)→ SK The key generation algorithm chooses a random
t ∈ ZN , and random elements R0, R

′
0, Ri ∈ Gp3 . The secret key is:

S, K = gαgatR0, L = gtR′0, Ki = T tiRi ∀i ∈ S.

Encrypt((A, ρ), PK,M)→ CT A is an `×n matrix and ρ is map from each row
Ax of A to an attribute ρ(x). The encryption algorithm chooses a random vector
v ∈ ZnN , denoted v = (s, v2, . . . , vn). For each row Ax of A, it chooses a random
rx ∈ ZN . The ciphertext is (we also include (A, ρ) in the ciphertext, though we
do not write it below):

C = Me(g, g)αs, C ′ = gs,

Cx = gaAx·vT−rxρ(x) , Dx = grx ∀x.

Decrypt(CT, PK, SK) → M The decryption algorithm computes constants
ωx ∈ ZN such that

∑
ρ(x)∈S ωxAx = (1, 0, . . . , 0). It then computes:

e(C ′,K)/
∏

ρ(x)∈S

(
e(Cx, L)e(Dx,Kρ(x))

)ωx = e(g, g)αs.

Then M can be recovered as C/e(g, g)αs.

Security Before we give our proof of security, we need to define two additional
structures: semi-functional ciphertexts and keys. These will not be used in the
real system, but will be needed in our proof.

Semi-functional Ciphertext A semi-functional ciphertext is formed as follows. We
let g2 denote a generator of Gp2 and c a random exponent modulo N . We also
choose random values zi ∈ ZN associated to attributes, random values γx ∈ ZN
associated to matrix rows x, and a random vector u ∈ ZnN . Then:

C ′ = gsgc2, Cx = gaAx·vT−rxρ(x)g
Ax·u+γxzρ(x)
2 , Dx = grxg−γx2 ∀x.



Semi-functional Key A semi-functional key will take on one of two forms. A
semi-functional key of type 1 is formed as follows. Exponents t, d, b ∈ ZN and
elements R0, R

′
0, Ri ∈ Gp3 are chosen randomly. The key is set as:

K = gαgatR0g
d
2 , L = gtR′0g

b
2, Ki = T tiRig

bzi
2 ∀i ∈ S.

A semi-functional key of type 2 is formed without the terms gb2 and gbzi2 (one
could also interpret this as setting b = 0):

K = gαgatR0g
d
2 , L = gtR′0, Ki = T tiRi ∀i ∈ S.

We note that when we use a semi-functional key to decrypt a semi-functional
ciphertext, we are left with an additional term:

e(g2, g2)cd−bu1 ,

where u1 denotes the first coordinate of u (i.e. (1, 0, . . . , 0) ·u). We also note that
these values zi are common to semi-functional ciphertexts and semi-functional
keys of type 1. These zi terms always cancel when semi-functional keys are paired
with semi-functional ciphertexts, so they do not hinder decryption. Instead, they
are used as blinding factors to hide the value being shared in the Gp2 subgroup of
a semi-functional ciphertext (the value u1) from an attacker who cannot decrypt.
This is where our one-use restriction is crucial: an attacker with a single semi-
functional key of type 1 which cannot decrypt the challenge ciphertext should
only be able to gain very limited information-theoretic knowledge of the zi values.
If attributes are used multiple times, too many zi values may be exposed to
the attacker. In each of the games we define below, at most one key is semi-
functional of type 1 and all other semi-functional keys are type 2. This is to
avoid information-theoretically leaking the zi values by using them in multiple
keys at once.

We call a semi-functional key of type 1 nominally semi-functional if cd−bu1 =
0. Notice that when such a key is used to decrypt a corresponding semi-functional
ciphertext, decryption will succeed.

We will prove the security of our system from Assumptions 1, 2, and 3 using a
hybrid argument over a sequence of games. The first game, GameReal, is the real
security game (the ciphertext and all the keys are normal). In the next game,
Game0, all of the keys will be normal, but the challenge ciphertext will be semi-
functional. We let q denote the number of key queries made by the attacker. For
k from 1 to q, we define:

Gamek,1 In this game, the challenge ciphertext is semi-functional, the first k−1
keys are semi-functional of type 2, the kth key is semi-functional of type 1, and
the remaining keys are normal.

Gamek,2 In this game, the challenge ciphertext is semi-functional, the first k
keys are semi-functional of type 2, and the remaining keys are normal.

We note that in Gameq,2, all of the keys are semi-functional of type 2. In the
final game, GameFinal, all keys are semi-functional of type 2 and the ciphertext



is a semi-functional encryption of a random message, independent of the two
messages provided by the attacker. In GameFinal, the attacker’s advantage is 0.
We will prove these games are indistinguishable in the following four lemmas. We
give the proof of the most interesting lemma below, and the rest of the proofs
can be found in the full version of this paper. For notational purposes in the
lemmas below, we think of Game0,2 as another way of denoting Game 0.

Lemma 1. Suppose there is an efficient algorithm A such that GameRealAdvA−
Game0AdvA = ε. Then we can construct an efficient algorithm B with advantage
ε in breaking Assumption 1.

Lemma 2. Suppose there is an efficient algorithm A such that Gamek−1,2AdvA−
Gamek,1AdvA = ε. Then we can construct an efficient algorithm B with advan-
tage negligibly close to ε in breaking Assumption 2.

Proof. B is given g,X1X2, X3, Y2Y3, T . It will simulate Gamek−1,2 or Gamek,1
with A. It chooses random exponents a, α ∈ ZN and a random exponent si ∈ ZN
for each attribute i in the system. It then sends A the public parameters:

PK = {N, g, ga, e(g, g)α, Ti = gsi ∀i}.

To make the first k − 1 keys semi-functional of type 2, B responds to each
key request by choosing a random t ∈ ZN , random elements R′0, Ri of Gp3 , and
setting:

K = gαgat(Y2Y3)t, L = gtR′0, Ki = T tiRi ∀i ∈ S.

We note that K is properly distributed because the values of t modulo p2 and
p3 are uncorrelated to its value modulo p1. To make normal keys for requests
> k, B can simply run the key generation algorithm since it knows the MSK.

To make key k, B will implicity set gt equal to the Gp1 part of T . B chooses
random elements R0, R

′
0, Ri in Gp3 and sets:

K = gαT aR0, L = TR′0, Ki = T siRi ∀i ∈ S.

We note that if T ∈ Gp1p3 , this is a properly distributed normal key. If T ∈ G,
this is a semi-functional key of type 1. In this case, we have implicitly set zi = si.
If we let gb2 denote the Gp2 part of T , we have that d = ba modulo p2 (i.e. the
Gp2 part of K is gb2a, the Gp2 part of L is gb2, and the Gp2 part of Ki is gbzi2 .
Note that the value of zi modulo p2 is uncorrelated from the value of si modulo
p1.
A sends B two messages M0,M1 and an access matrix (A∗, ρ). To make the

semi-functional challenge ciphertext, B implicitly sets gs = X1 and gc2 = X2.
It chooses random values u2, . . . , un ∈ ZN and defines the vector u′ as u′ =
(a, u2, . . . , un). It also chooses a random exponent r′x ∈ ZN . The ciphertext is
formed as:

C = Mβe(gα, X1X2), C ′ = X1X2,



Cx = (X1X2)A
∗
x·u
′
(X1X2)−r

′
xsρ(x) , Dx = (X1X2)r

′
x .

We note that this sets v = sa−1u′ and u = cu′, so s is being shared in the Gp1
subgroup and ca is being shared in the Gp2 subgroup. This also implicitly sets
rx = r′xs, γx = −cr′x. The values zρ(x) = sρ(x) match those in the kth key if it is
semi-functional of type 1, as required.

The kth key and ciphertext are almost properly distributed, except for the
fact that the first coordinate of u (which equals ac) is correlated with the value of
a modulo p2 that also appears in key k if it is semi-functional. In fact, if the kth

key could decrypt the challenge ciphertext we would have cd−bu1 = cba−bca = 0
modulo p2, so our key is either normal or nominally semi-functional. We must
argue that this is hidden to the attacker A, who cannot request any keys that
can decrypt the challenge ciphertext.

To argue that the value being shared in Gp2 in the challenge ciphertext is
information-theoretically hidden, we appeal to our restriction that attributes
are only used once in labeling the rows of the matrix. Since the kth key cannot
decrypt the challenge ciphertext, the rowspace R formed by the rows of the
matrix whose attributes are in the key does not include the vector (1, 0, . . . , 0).
So for shares δx = A∗x ·u in the Gp2 subgroup, we can write u = uR +uW , where
uR is in the space R and uW is in its orthogonal complement, W . We note that
u1 = u · (1, 0, . . . , 0) cannot be determined from uR alone - some information
about uW is needed.

The only places uW appears are in equations of the form:

A∗x · u+ γxzρ(x),

where the ρ(x)’s are each unique attributes not appearing the kth key. As long
as each γx is not congruent to 0 modulo p2, each of these equations introduces
a new unknown zρ(x) that appears nowhere else, and so no information about
uW can be learned by the attacker. More precisely, for each potential value of
u1, there are an equal number of solutions to these equations, so each value is
equally likely. Hence, the value being shared in the Gp2 subgroup in the semi-
functional ciphertext is information-theoretically hidden, as long as each γx is
non-zero modulo p2. The probability that any of the γx values are congruent to 0
modulo p2 is negligible. Thus, the ciphertext and key k are properly distributed
in the attacker’s view with probability negligibly close to 1.

Thus, if T ∈ Gp1p3 , then B has properly simulated Gamek−1,2, and if T ∈ G
and all the γx values are non-zero modulo p2, then B has properly simulated
Gamek,1. B can therefore use the output of A to gain advantage negligibly close
to ε in breaking Assumption 2.

Lemma 3. Suppose there is an efficient algorithm A such that Gamek,1AdvA−
Gamek,2AdvA = ε. Then we can construct an efficient algorithm B with advan-
tage ε in breaking Assumption 2.

Lemma 4. Suppose there is an efficient algorithm A such that Gameq,2AdvA−
GameFinalAdvA = ε. Then we can construct an efficient algorithm B with ad-
vantage ε in breaking Assumption 3.



We have now proven the following theorem:

Theorem 1. If Assumptions 1, 2, and 3 hold, then our CP-ABE system is
secure.

Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous lem-
mas that the real security game is indistinguishable from GameFinal, in which
the value of β is information-theoretically hidden from the attacker. Hence the
attacker cannot attain a non-negligible advantage in breaking the CP-ABE sys-
tem.

Expanding to Multi-Use To build a fully secure CP-ABE system where each
attribute can be used up to k times in the row labeling of an access matrix, we
apply the encoding technique of Section 2.2. We note that the public parameters
and key sizes will grow by a factor of k, but the encoding does not increase the
size of the ciphertext.

2.4 Discussion

We have obtained the first fully secure CP-ABE system in the standard model.
Our techniques also yield a fully secure KP-ABE system. Our KP-ABE system
and the proof of its security can be found in the full version of this paper. Es-
sentially, a KP-ABE system is like a CP-ABE system with the roles of keys
and ciphertexts reversed: in a KP-ABE system, keys are associated with access
structures and ciphertexts are associated with subsets of attributes. Our tech-
niques readily adapt to KP-ABE, and the proof of security is very similar to the
CP-ABE case.

It is also possible to adapt our techniques to obtain a large universe con-
struction. In our current construction, the size of the public parameters is linear
in the number of attributes in the universe. In a large universe construction,
we could use all elements of Z∗p1 as attributes, with the size of the public pa-
rameters linear in n, a parameter which denotes the maximum size of a set of
attributes used in the system. This reduces the size of the public parameters and
allows us to use arbitrary strings as attributes by applying a collision-resistant
hash function H : {0, 1}∗ → Z∗p1 . Note that these attributes no longer need to
have been considered during setup. To obtain a large universe construction, we
could replace the group elements Ti associated with attributes i with a function
T : Zp1 → Gp1 based on a degree n polynomial. Goyal, Pandey, Sahai, and
Waters [25] do this for their KP-ABE construction.

Though we build our ABE systems in composite order bilinear groups, we
believe that similar systems can be constructed in prime order groups. Wa-
ters [40] first instantiated his fully secure IBE and HIBE systems in composite
order groups and then transferred them into prime order groups, obtaining full
security under the well-established d−BDH and decisional Linear assumptions.
Lewko and Waters [28] built upon these ideas to obtain an analog of their IBE



system in asymmetric prime order groups. The introduction of asymmetry sim-
plified their construction, at the expense of relying on non-standard (static)
assumptions. Freeman [20] also discusses a general class of transformations from
composite order groups to prime order groups, but this does not encompass our
construction. In the future, these transformation techniques might be extended
to obtain versions of our ABE schemes in prime order groups.

3 Fully Secure Predicate Encryption

3.1 Our Approach and Key Technique

Dual Pairing Vector Spaces (DPVS) We now briefly explain our approach,
DPVS, constructed on symmetric pairing groups (q,G,GT , g, e), where q is a
prime, G and GT are cyclic groups of order q, g is a generator of G, e : G×G→
GT is a non-degenerate bilinear pairing operation, and gT := e(g, g) 6= 1. Here
we denote the group operation of G and GT by multiplication. Note that this
construction also works on asymmetric pairing groups (in this paper, we use
symmetric pairing groups for simplicity of description). As for the definitions of
some notations, see the last part of this subsection.

Vector space V: V :=

N︷ ︸︸ ︷
G× · · · ×G, whose element is expressed byN -dimensional

vector, x := (gx1 , . . . , gxN ) (xi ∈ Fq for i = 1, . . . , N).
Canonical base A: A := (a1, . . . ,aN ) of V, where a1 := (g, 1, . . . , 1), a2 :=

(1, g, 1, . . . , 1), . . . , aN := (1, . . . , 1, g).
Pairing operation: e(x,y) :=

∏N
i=1 e(g

xi , gyi) = e(g, g)
∑N
i=1 xiyi = g

−→x ·−→y
T ∈

GT , where x := (gx1 , . . . , gxN ) = x1a1+· · ·+xNaN ∈ V, y := (gy1 , . . . , gyN ) =
y1a1 + · · · + yNaN ∈ V, −→x := (x1, . . . , xN ) and −→y := (y1, . . . , yN ). Here,
x and y can be expressed by coefficient vector over basis A such that
(x1, . . . , xN )A = (−→x )A := x and (y1, . . . , yN )A = (−→y )A := y.

Base change: Canonical basis A is changed to basis B := (b1, . . . , bN ) of V
using a uniformly chosen (regular) linear transformation, X := (χi,j)

U←
GL(N,Fq), such that bi =

∑N
j=1 χi,jaj , (i = 1, . . . , N). A is also changed to

basis B∗ := (b∗1, . . . , b
∗
N ) of V, such that (ϑi,j) := (XT )−1, b∗i =

∑N
j=1 ϑi,jaj ,

(i = 1, . . . , N). We see that e(bi, b∗j ) = g
δi,j
T , (δi,j = 1 if i = j, and δi,j = 0 if

i 6= j) i.e., B and B∗ are dual orthonormal bases of V.
Here, x := x1b1 + · · · + xNbN ∈ V and y := y1b

∗
1 + · · · + yNb∗N ∈ V can

be expressed by coefficient vectors over B and B∗ such that (x1, . . . , xN )B =
(−→x )B := x and (y1, . . . , yN )B∗ = (−→y )B∗ := y, and e(x,y) = e(g, g)

∑N
i=1 xiyi

= g
−→x ·−→y
T ∈ GT .

Intractable problem: One of the most natural decisional problems in this
approach is the decisional subspace problem [30]. It is to distinguish v :=
vN2+1bN2+1 + · · ·+vN1bN1 (= (0, . . . , 0, vN2+1, . . . , vN1)B), from u := v1b1 +
· · ·+vN1bN1 (= (v1, . . . , vN1)B), where (v1, . . . , vN1) U← FN1

q and N2+1 < N1.



Trapdoor: Although the decisional subspace problem is assumed to be in-
tractable, it can be efficiently solved by using trapdoor t∗ ∈ span〈b∗1, . . . , b∗N2

〉.
Given v := vN2+1bN2+1 + · · ·+ vN1bN1 or u := v1b1 + · · ·+ vN1bN1 , we can
distinguish v from u using t∗ since e(v, t∗) = 1 and e(u, t∗) 6= 1 with high
probability.

Dual System Encryption Methodology At the top level of strategy of the
security proof, we follow the dual system encryption methodology proposed by
Waters [40]. Security is proven using a sequence of games. Game 0 is the real
security game. In Game 1, the target ciphertext is changed to semi-functional.
When ν secret key queries are issued by an adversary, there are ν game changes
from Game 1 (Game 2-0) through Game 2-ν. In Game 2-k, the first k keys
are semi-functional while the remaining keys are normal. The final game with
advantage 0 is changed from Game 2-ν. As usual, we prove that the advantage
gaps between neighboring games are negligible.

The most difficult part in the security proof, especially for inner-product pred-
icate encryption, is how to resolve a paradoxical problem to prove the negligible
gap between Game 2-k and Game 2-(k − 1), where the simulator (for the secu-
rity proof) itself may distinguish the simulated k-th key (semi-functional key) in
Game 2-k and the k-th key (normal key) in Game 2-(k−1) by using a simulated
(semi-functional) ciphertext, since the simulator can make ciphertexts and keys
for any legal attributes and predicates (especially, in the adaptive security game,
the simulator should generate a target ciphertext associated with any attribute
adaptively selected by the adversary).

For (H)IBE, this problem was resolved by introducing tricks such that the
simulated k-th key and ciphertext have a special correlation regarding the equal-
ity of their identity values [28, 40].

This problem is much harder for inner-product predicate encryption. Given a
predicate vector −→v for secret key sk−→v , there are exponentially many (orthogonal)
attribute vectors −→x for ciphertext c−→x such that sk−→v can decrypt c−→x , i.e., −→v ·−→x =
0. Therefore, in order to resolve the above-mentioned paradoxical problem, we
should give some trick on the simulated k-th key sk−→v with −→v and all ciphertexts
with −→x satisfying −→v · −→x = 0, while a trick on the simulated k-th key skI with
identity I and ciphertext with the same I is enough for (H)IBE.

We use special form of semi-functional keys and ciphertexts for simulating
the k-th key and target ciphertext such that the simulated k-th key (a special
form of semi-functional key) sk−→v in Game 2-k can decrypt all simulated ci-
phertexts (a special form of semi-functional ciphertexts) c−→x with −→x satisfying
−→v · −→x = 0. Essentially, we adapt the notion of nominally semi-functional keys
and ciphertexts that was introduced by Lewko and Waters [28] to the setting of
inner product encryption.

In addition, the distribution of a pair comprising the simulated k-th key sk−→v
and simulated ciphertext c−→x (i.e., a special semi-functional key and ciphertext)
is equivalent to that of an independent and random semi-functional key and
ciphertext except with negligible probability, when −→v · −→x 6= 0.



That is, the special forms of semi-functional keys and ciphertexts are corre-
lated (for the case of −→v ·−→x = 0), but the adversary cannot notice the correlation
since the adversary’s queries should satisfy the condition −→v · −→x 6= 0. In other
words, nominal semi-functionality is information-theoretically hidden from the
adversary. A more detailed explanation of how this is implemented on DPVS
will be given in the proof outline in Section 3.5.

Notations When A is a random variable or distribution, y R← A denotes that
y is randomly selected from A according to its distribution. When A is a set,
y

U← A denotes that y is uniformly selected from A. y := z denotes that y is set,
defined or substituted by z. When a is a fixed value, A(x)→ a (e.g., A(x)→ 1)
denotes the event that machine (algorithm) A outputs a on input x. A function
f : N → R is negligible in λ, if for every constant c > 0, there exists an integer
n such that f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq. A vector symbol denotes a vec-
tor representation over Fq, e.g., −→x denotes (x1, . . . , xn) ∈ Fn

q . For two vec-
tors −→x = (x1, . . . , xn) and −→v = (v1, . . . , vn), −→x · −→v denotes the inner-product∑n
i=1 xivi. X

T denotes the transpose of matrix X. I` and 0` denote the ` × `
identity matrix and the ` × ` zero matrix, respectively. A bold face letter de-
notes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈−→x 1, . . . ,

−→x n〉) denotes the subspace gener-
ated by b1, . . . , bn (resp. −→x 1, . . . ,

−→x n). For bases B := (b1, . . . , bN ) and B∗ :=
(b∗1, . . . , b

∗
N ), (x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . , yN )B∗ :=

∑N
i=1 yib

∗
i .

3.2 Dual Pairing Vector Spaces by Direct Product of Symmetric
Pairing Groups

Definition 5. “Symmetric bilinear pairing groups” (q,G,GT , g, e) are a tuple
of a prime q, cyclic (multiplicative) groups G and GT of order q, g 6= 1 ∈ G, and
a polynomial-time computable nondegenerate bilinear pairing e : G × G → GT

i.e., e(gs, gt) = e(g, g)st and e(g, g) 6= 1.
Let Gbpg be an algorithm that takes input 1λ and outputs a description of

bilinear pairing groups (q,G,GT , g, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [30, 31] constructed by using symmetric bilinear pairing groups given in
Definition 5.

Definition 6. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , g, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . ,aN ) of V, where ai := (

i−1︷ ︸︸ ︷
1, . . . , 1, g,

N−i︷ ︸︸ ︷
1, . . . , 1), and

pairing e : V× V→ GT .



The pairing is defined by e(x,y) :=
∏N
i=1 e(gi, hi) ∈ GT where x := (g1, . . . ,

gN ) ∈ V and y := (h1, . . . , hN ) ∈ V. This is nondegenerate bilinear i.e.,
e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0. For
all i and j, e(ai,aj) = g

δi,j
T where δi,j = 1 if i = j, and 0 otherwise, and

gT := e(g, g) 6= 1 ∈ GT .
DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak)

= 0 if k 6= j, which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
1, . . . , 1, gj ,

N−i︷ ︸︸ ︷
1, . . . , 1)

where x := (g1, . . . , gN ). We call φi,j “distortion maps”.
DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and

outputs a description of paramV := (q,V,GT ,A, e) with security parameter λ and
N -dimensional V. It can be constructed by using Gbpg.

For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A∗, e), see the full
version of this paper. The above symmetric version is obtained by identifying
V = V∗ and A = A∗ in the asymmetric version. (For the other realization using
higher genus Jacobians, see [30].)

We describe random dual orthonormal bases generator Gob below, which is
used as a subroutine in the proposed (H)PE scheme.

Gob(1λ, N) : paramV := (q,V,GT ,A, e)
R← Gdpvs(1λ, N),

X := (χi,j)
U← GL(N,Fq), (ϑi,j) := (XT)−1,

bi :=
∑N
j=1 χi,jaj , B := (b1, . . . , bN ), b∗i :=

∑N
j=1 ϑi,jaj , B∗ := (b∗1, . . . , b

∗
N ),

return (paramV,B,B∗).

3.3 Assumption

Definition 7 (n-eDDH: n-Extended Decisional Diffie-Hellman Assump-
tion). The n-eDDH problem is to guess β ∈ {0, 1}, given (paramG, g, g

κ, {gω+γihi ,

gγi , ghi}1≤i≤n, {gγihj}1≤i 6=j≤n, Yβ) R← Gn-eDDH
β (1λ), where

Gn-eDDH
β (1λ) : paramG := (q,G,GT , g, e)

R← Gbpg(1λ),

κ
U← F×q , ω, hi, γi

U← Fq for i = 1, . . . , n,

Y0 := gκω, Y1
U← G,

return (paramG, g, g
κ, {gω+γihi , gγi , ghi}1≤i≤n, {gγihj}1≤i 6=j≤n, Yβ),

for β U← {0, 1}. For a probabilistic machine C, we define the advantage of C for
the n-eDDH problem as:

Advn-eDDH
C (λ) :=

∣∣∣Pr
[
C(1λ, %)→ 1

∣∣∣ % R← Gn-eDDH
0 (1λ)

]
−Pr

[
C(1λ, %)→ 1

∣∣∣ % R← Gn-eDDH
1 (1λ)

]∣∣∣ .
The n-eDDH assumption is: For any polynomial-time adversary C, the ad-

vantage Advn-eDDH
C (λ) is negligible.



The following lemma shows that the n-eDDH assumption is true in the
generic bilinear pairing group model [8].

Lemma 5. For any adversary C that makes a total of at most ν queries to the
oracles computing the group operation in G and the bilinear pairing e : G×G→
GT , the advantage Advn-eDDH

C (λ) is O((ν+n2)2/2λ) in the generic bilinear pairing
group model.

The proof of Lemma 5 is given in the full version of this paper.

3.4 Definition of Predicate Encryption

This section defines predicate encryption (PE) for the class of inner-product
predicates and its security.

An attribute of inner-product predicates is expressed as a vector −→x ∈ Fn
q \

{−→0 } and a predicate f−→v is associated with a vector −→v , where f−→v (−→x ) = 1 iff
−→v ·−→x = 0. Let Σ := Fn

q \{
−→
0 }, i.e., the set of the attributes, and F := {f−→v |−→v ∈

Fn
q \ {

−→
0 }} i.e., the set of the predicates.

Definition 8. A predicate encryption (PE) scheme for the class of inner-product
predicates F and attributes Σ consists of probabilistic polynomial-time algorithms
Setup,KeyGen,Enc and Dec. They are given as follows:

– Setup takes as input security parameter 1λ outputs (master) public key pk
and (master) secret key sk.

– KeyGen takes as input the master public key pk, secret key sk, and predicate
vector −→v . It outputs a corresponding secret key sk−→v .

– Enc takes as input the master public key pk, plaintext m in some associated
plaintext space, msg, and attribute vector −→x . It returns ciphertext c.

– Dec takes as input the master public key pk, secret key sk−→v and ciphertext
c. It outputs either plaintext m or the distinguished symbol ⊥.

A PE scheme should have the following correctness property: for all f−→v ∈ F
and −→x ∈ Σ, for correctly generated pk, sk−→v and c

R← Enc(pk,m,−→x ), it holds
that m = Dec(pk, sk−→v , c) if f−→v (−→x ) = 1. Otherwise, it holds with negligible
probability.

Definition 9. An inner-product predicate encryption scheme is adaptively attribute-
hiding (AH) against chosen plaintext attacks if for all probabilistic polynomial-time
adversaries A, the advantage of A in the following experiment is negligible in
the security parameter.

1. Setup is run to generate keys pk and sk, and pk is given to A.
2. A may adaptively make a polynomial number of key queries for predicate vec-

tors, −→v . In response, A is given the corresponding key sk−→v
R← KeyGen(sk,−→v ).

3. A outputs challenge attribute vector (−→x (0),−→x (1)) and challenge plaintexts
(m(0),m(1)), subject to the restriction that −→v · −→x (0) 6= 0 and −→v · −→x (1) 6= 0
for all the key queried predicate vectors, −→v .



4. A random bit b is chosen. A is given c(b)
R← Enc(pk,m(b),−→x (b)).

5. The adversary may continue to issue key queries for additional predicate
vectors, −→v , subject to the restriction that −→v · −→x (0) 6= 0 and −→v · −→x (1) 6= 0. A
is given the corresponding key sk−→v

R← KeyGen(sk,−→v ).
6. A outputs a bit b′, and succeeds if b′ = b.

We define the advantage of A as the quantity AdvPE,AH
A (λ) := Pr [b′ = b]− 1/2.

Remark: In Definition 9, adversary A is not allowed to ask a key query for −→v
such that −→v · −→x (b) = 0 for some b ∈ {0, 1}, while in the security definition in
[27], such a key query is allowed provided that m(0) = m(1) and −→v · −→x (b) = 0
for all b ∈ {0, 1}.

3.5 The Proposed PE Scheme

Construction

Setup(1λ, n) : (paramV,B,B∗)
R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), sk := B∗, pk := (1λ, paramV, B̂),
return sk, pk.

KeyGen(sk,−→v := (v1, . . . , vn)) : σ, η
U← Fq,

k∗ := σ(
∑n
i=1 vib

∗
i ) + b∗2n+1 + ηb∗2n+2,

return sk−→v := k∗.

Enc(pk,m ∈ GT ,
−→x := (x1, . . . , xn)) : δ1, δ2, ζ

U← Fq,
c1 := δ1(

∑n
i=1 xibi) + ζb2n+1 + δ2b2n+3, c2 := gζTm,

return (c1, c2).
Dec(pk,k∗, (c1, c2)) : m′ := c2/e(c1,k

∗),
return m′.

[Correctness] k∗ and c1 can be expressed by k∗ = (σ−→v , 0, . . . , 0, 1, η, 0)B∗ , and
c1 = (δ1−→x , 0, . . . , 0, ζ, 0, δ2)B. Hence, e(c1,k

∗) = g
(δ1
−→x ,0,...,0,ζ,0,δ2)·(σ−→v ,0,...,0,1,η,0)

T

= g
δ1σ(−→x ·−→v )+ζ
T , i.e., e(c1,k

∗) = gζT if −→x · −→v = 0.

Security

Theorem 2. The proposed PE scheme is adaptively attribute-hiding against
chosen plaintext attacks under the n-eDDH assumption. For any adversary A,
there exist probabilistic machines Ck (k = 0, . . . , ν), whose running times are
essentially the same as that of A, such that for any security parameter λ,

AdvPE,AH
A (λ) ≤

ν∑
k=0

Advn-eDDH
Ck (λ) +

ν

q
,

where ν is the maximum number of adversary A’s key queries.



We will show Lemmas 6, 7, and 8 for the proof of Theorem 2. The proofs of
these lemmas are given in the full version of this paper.

Definition 10. Problem 1 is to guess β ∈ {0, 1}, given (paramV, B̂, B̂∗, {eβ,i}i=1,..,n)
R← GP1

β (1λ, n), where

GP1
β (1λ, n) : (paramV,B,B∗)

R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), B̂∗ := (b∗1, . . . , b
∗
n, b
∗
2n+1, b

∗
2n+2),

δ1, δ2,i
U← Fq, ρ

U← F×q , (ui,j)
U← GL(n,Fq) for i, j = 1, . . . , n,

for i = 1, . . . , n,
e0,i := δ1bi + δ2,ib2n+3,

e1,i := δ1bi + ρ
∑n
j=1 ui,jbn+j + δ2,ib2n+3,

return (paramV, B̂, B̂∗, {eβ,i}i=1,...,n),

for β U← {0, 1}. For a probabilistic machine B, we define the advantage of B for
Problem 1 as:

AdvP1
B (λ) :=

∣∣∣Pr
[
B(1λ, %)→1

∣∣∣ % R←GP1
0 (1λ, n)

]
−Pr

[
B(1λ, %)→1

∣∣∣ % R←GP1
1 (1λ, n)

]∣∣∣ .
Lemma 6. For any adversary B, there is a probabilistic machine C, whose run-
ning time is essentially the same as that of B, such that for any security param-
eter λ, Advn-eDDH

C (λ) = AdvP1
B (λ).

Definition 11. Problem 2 is to guess β ∈ {0, 1}, given (paramV, B̂, B̂∗, {h∗β,i,
ei}i=1,...,n) R← GP2

β (1λ, n), where

GP2
β (1λ, n) : (paramV,B,B∗)

R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), B̂∗ := (b∗1, . . . , b
∗
2n+2),

ω, γi, δ
U← Fq, ρ, τ

U← F×q ,

(ui,j)
U← GL(n,Fq), (zi,j) := ((ui,j)−1)T for i, j = 1, . . . , n,

for i = 1, . . . , n,
h∗0,i := ωb∗i + γib

∗
2n+2,

h∗1,i := ωb∗i + τ
∑n
j=1 zi,jb

∗
n+j + γib

∗
2n+2,

ei := δbi + ρ
∑n
j=1 ui,jbn+j ,

return (paramV, B̂, B̂∗, {h∗β,i, ei}i=1,...,n),

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem
2, AdvP2

B (λ), is similarly defined as in Definition 10.

Lemma 7. For any adversary B, there is a probabilistic machine C, whose run-
ning time is essentially the same as that of B, such that for any security param-
eter λ, Advn-eDDH

C (λ) = AdvP2
B (λ).



Lemma 8. Let C := {(−→x ,−→v )|−→x · −→v 6= 0} ⊂ V × V ∗ where V is n-dimensional
vector space Fn

q , and V ∗ its dual. For all (−→x ,−→v ) ∈ C, for all (−→r ,−→w ) ∈ C,

Pr
Z

U← GL(n, Fq),
ρ, τ

U← F×q

[−→x (ρU) = −→r ∧ −→v (τZ) = −→w ] =
1
s
,

where U := (Z−1)T and s := ] C (= (qn − 1)(qn − qn−1)).

Proof Outline of Theorem 2: To prove the security, we employ Game 0 (original
adaptive-security game) through Game 3. Roughly speaking, the (normal) target
ciphertext is changed to a semi-functional ciphertext in Game 1 (or Game 2-0),
the k-th secret key replied to the adversary is changed to a semi-functional key in
Game 2-k (k = 1, . . . , ν), and the (semi-functional) target ciphertext is changed
to perfectly randomized key in Game 3, whose advantage is 0.

A normal secret key k∗ norm−→v (with predicate vector −→v ) is a correct form of
the secret key of the proposed PE scheme, i.e., k∗ norm−→v := σ(

∑n
i=1 vib

∗
i )+b∗2n+1+

ηb∗2n+2 = (σ−→v ,−→0 n, 1, η, 0)B∗ , where
−→
0 n := (

n︷ ︸︸ ︷
0, · · · , 0). Similarly, a normal ci-

phertext (with attribute −→x ) is (cnorm−→x , c2) with cnorm−→x := δ1(
∑n
i=1 xibi)+ζb2n+1 +

δ2b2n+3 = (δ1−→x ,
−→
0 n, ζ, 0, δ2)B. (Hereafter we will ignore c2 since c2 is always cor-

rectly generated.) A semi-functional secret key is k∗ semi−→v := (σ−→v ,−→r , 1, η, 0)B∗

and a semi-functional ciphertext is csemi−→x := (δ1−→x ,−→s , ζ, 0, δ2)B, where −→r ,−→s U←
Fn
q . If −→x · −→v = 0, then e(cnorm−→x ,k∗ norm−→v ) = e(cnorm−→x ,k∗ semi−→v ) = e(csemi−→x ,k∗ norm−→v ) =

gζT , which leads to correct decryption. In contrast, e(csemi−→x ,k∗ semi−→v ) = g
−→s ·−→r +ζ
T ,

which is uniformly and independently distributed over Fq since −→r ,−→s U← Fn
q ,

(i.e., leads to random decryption).
To prove that the advantage gap between Games 0 and 1 is bounded by

the advantage of Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of
the challenger of Game 0 (or 1) (against an adversary A) by using an instance
with β

U← {0, 1} of Problem 1. We then show that the distribution of the secret
keys and target ciphertext replied by the simulator is equivalent to those of
Game 0 when β = 0 and Game 1 when β = 1. That is, the advantage of
Problem 1 is equivalent to the advantage gap between Games 0 and 1 (Lemma
9). The advantage of Problem 1 is proven to be equivalent to that of the n-eDDH
assumption (Lemma 6).

The advantage gap between Games 2-(k − 1) and 2-k is similarly shown to
be bounded by the advantage of Problem 2 (i.e., of the n-eDDH assumption)
+1/q (Lemmas 7 and 10).

Problem 2 is based on our key trick (explained in Section 3.1). Here, we intro-
duce special form of semi-functional keys and ciphertexts such that k∗ spec.semi

−→v :=
(σ−→v , (τ−→v Z), 1, η, 0)B∗ , and cspec.semi

−→x := (δ−→x , (ρ−→x U), ζ, 0, δ2)B, where Z is a ran-

dom regular (n× n)-matrix, U := (Z−1)T, and τ, ρ
U← Fq.



k∗ spec.semi
−→v can decrypt cspec.semi

−→x for all vectors −→x with −→v · −→x = 0, since
(τ−→v Z) · (ρ−→x U) = τρ(−→v · −→x ), i.e., e(cspec.semi

−→x ,k∗ spec.semi
−→v ) = g(δ1σ+τρ)(−→v ·−→x )+ζ .

In addition, (τ−→v Z) and (ρ−→x U) are uniformly and pairwise-independently dis-
tributed (i.e., equivalently distributed to (−→r ,−→s ) U← (Fn

q )2\{(−→r ,−→s ) | −→r · −→s =
0}), when −→v · −→x 6= 0 (Lemma 8). Therefore, the joint distribution of k∗ spec.semi

−→v
and cspec.semi

−→x is equivalent to that of an independent pair of k∗ semi−→v and csemi−→x
(except with probability 1/q), when −→v · −→x 6= 0.

Finally we show that Game 2-ν can be conceptually changed to Game 3 by
using the fact that n elements of B, (bn+1, . . . , b2n), are secret to the adversary
(Lemma 11).

Proof of Theorem 2: To prove Theorem 2, we consider the following (ν + 3)
games.

Game 0 Original game.
Game 1 Same as Game 0 except that the target ciphertext (c1, c2) for challenge

plaintexts (m(0),m(1)) and challenge attributes (−→x (0),−→x (1)) is

c1 := δ1(
∑n
i=1 x

(b)
i bi) +

∑n
i=1 wibn+i + ζb2n+1 + δ2b2n+3, c2 := gζTm

(b),

where δ1, δ2, ζ
U← Fq, b

U← {0, 1}, (x(b)
1 , . . . , x

(b)
n ) := −→x (b), and (w1, . . . , wn) U←

Fn
q \ {

−→
0 }.

Game 2-k (k = 1, . . . , ν) Game 2-0 is Game 1. Game 2-k is the same as Game
2-(k − 1) except the reply to the k-th key query for −→v := (v1, . . . , vn) is:

k∗ := σ(
∑n
i=1 vib

∗
i ) +

∑n
i=1 rib

∗
n+i + b∗2n+1 + ηb∗2n+2,

where σ, η U← Fq and −→r := (r1, . . . , rn) U← Fn
q .

Game 3 Same as Game 2-ν except that the target ciphertext (c1, c2) for chal-
lenge plaintexts (m(0),m(1)) and challenge attributes (−→x (0),−→x (1)) is

c1 :=
∑n
i=1 x

′
ibi +

∑n
i=1 wibn+i + ζ ′b2n+1 + δ2b2n+3, c2 := gζTm

(b),

where x′1, . . . , x
′
n, δ2, ζ, ζ

′ U← Fq, b
U← {0, 1}, and (w1, . . . , wn) U← Fn

q \ {
−→
0 }.

In particular, we note that (x′1, . . . , x
′
n) and ζ ′ are chosen uniformly and

independently from −→x (0),−→x (1) and ζ.

Let Adv
(0)
A (λ) be AdvPE,AH

A (λ) in Game 0, and Adv
(1)
A (λ),Adv

(2-k)
A (λ),Adv

(3)
A (λ)

be the advantage of A in Game 1, 2-k, 3, respectively. It is clear that Adv
(3)
A (λ) =

0 by Lemma 12.
We will use three lemmas (Lemmas 9, 10, 11) that evaluate the gaps be-

tween pairs of Adv
(0)
A (λ),Adv

(1)
A (λ),Adv

(2-k)
A (λ) (k = 1, . . . , ν),Adv

(3)
A (λ). From

these lemmas, we obtain AdvPE,AH
A (λ) = Adv

(0)
A (λ) ≤

∣∣∣Adv
(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣ +∑ν
k=1

∣∣∣Adv
(2-(k−1))
A (λ)− Adv

(2-k)
A (λ)

∣∣∣ +
∣∣∣Adv

(2-ν)
A (λ)− Adv

(3)
A (λ)

∣∣∣ + Adv
(3)
A (λ) ≤



AdvP1
B0

(λ) +
∑ν
k=1 AdvP2

Bk(λ) + ν
q . From Lemmas 6 and 7, there exist probabilistic

machines Ck (k = 0, . . . , ν), whose running times are essentially the same as those
of Bk, respectively, such that Advn-eDDH

C0 (λ) = AdvP2
B0

(λ) and Advn-eDDH
Ck (λ) =

AdvP2
Bk(λ) (k = 1, . . . , ν). Hence, AdvPE,AH

A (λ) ≤ AdvP1
B0

(λ)+
∑ν
k=1 AdvP2

Bk(λ)+ ν
q ≤∑ν

k=0 Advn-eDDH
Ck (λ) + ν

q . This completes the proof of Theorem 2. �
The proofs of the following lemmas appear in the full version of this paper.

Lemma 9. For any adversary A, there exists a probabilistic machine B0, whose
running time is essentially the same as that of A, such that for any security
parameter λ, |Adv

(0)
A (λ)− Adv

(1)
A (λ)| = AdvP1

B0
(λ).

Lemma 10. For any adversary A, there exists a probabilistic machine Bk, whose
running time is essentially the same as that of A, such that for any security pa-
rameter λ, |Adv

(2-(k−1))
A (λ)− Adv

(2-k)
A (λ)| ≤ AdvP2

Bk(λ) + 1
q .

Lemma 11. For any adversary A, Adv
(2-ν)
A (λ) = Adv

(3)
A (λ).

Lemma 12. For any adversary A, Adv
(3)
A (λ) = 0.

3.6 The Proposed HPE Scheme

The definition of HPE and key idea for the proposed HPE (and the correctness
of the HPE) are given in the full version of this paper.

Construction

Setup(1λ,−→µ := (n, d;µ1, . . . , µd)) : (paramV,B,B∗)
R← Gob(1λ, 2n+ 3),

B̂ := (b1, . . . , bn, b2n+1, b2n+3), sk := B∗, pk := (1λ, paramV, B̂),
return sk, pk.

KeyGen(pk, sk, (−→v 1, . . . ,
−→v `) := ((v1, . . . , vµ1), . . . , (vµ`−1+1, . . . , vµ`)) :

σdec,t, ηdec, σran,j,t, ηran,j (j = 1, .., `+ 1), σdel,j,t, ηdel,j (j = 1, .., n), ψ U← Fq
for t = 1, . . . , `,

k∗`,dec :=
∑`
t=1 σdec,t(

∑µt
i=µt−1+1 vib

∗
i ) + b∗2n+1 + ηdecb

∗
2n+2,

k∗`,ran,j :=
∑`
t=1 σran,j,t(

∑µt
i=µt−1+1 vib

∗
i ) + ηran,jb

∗
2n+2 for j = 1, . . . , `+ 1,

k∗`,del,j :=
∑`
t=1 σdel,j,t(

∑µt
i=µt−1+1 vib

∗
i ) + ψb∗j + ηdel,jb

∗
2n+2

for j = µ` + 1, . . . , n,

return
−→
k ∗` := (k∗`,dec,k

∗
`,ran,1, . . . ,k

∗
`,ran,`+1,k

∗
`,del,µ`+1, . . . ,k

∗
`,del,n).



Enc(pk,m ∈ GT , (−→x 1, . . . ,
−→x `) := ((x1, . . . , xµ1), . . . , (xµ`−1+1, . . . , xµ`)) :

(−→x `+1, . . . ,
−→x d)

U← Fµ`+1−µ`
q × · · · × Fn−µd−1

q , δ1, . . . , δ`, δ2n+3, ζ
U← Fq,

c1 :=
∑`
t=1 δt(

∑µt
i=µt−1+1 xibi) + ζb2n+1 + δ2n+3b2n+3, c2 := gζTm,

return (c1, c2).
Dec(pk,k∗`,dec, c1, c2) : m′ := c2/e(c1,k

∗
`,dec),

return m′.

Delegate`(pk,
−→
k ∗` ,
−→v `+1 := (vµ`+1, . . . , vµ`+1)) :

αdec,t, σdec, αran,j,t, σran,j (j = 1, .., `+ 2), αdel,j,t, σdel,j (j = 1, .., n), ψ′ U← Fq
for t = 1, . . . , `+ 1,

k∗`+1,dec := k∗`,dec +
∑`+1
t=1 αdec,tk

∗
`,ran,t + σdec(

∑µ`+1
i=µ`+1 vik

∗
`,del,i),

k∗`+1,ran,j :=
∑`+1
t=1 αran,j,tk

∗
`,ran,t + σran,j(

∑µ`+1
i=µ`+1 vik

∗
`,del,i) for j = 1, .., `+ 2,

k∗`+1,del,j :=
∑`+1
t=1 αdel,j,tk

∗
`,ran,t + σdel,j(

∑µ`+1
i=µ`+1 vik

∗
`,del,i) + ψ′k∗`,del,j

for j = µ`+1 + 1, . . . , n,

return
−→
k ∗`+1 := (k∗`+1,dec,k

∗
`+1,ran,1, ..,k

∗
`+1,ran,`+2,k

∗
`+1,del,µ`+1+1, ..,k

∗
`+1,del,n).

Remark: A PE scheme with general delegation is given in the full version of
this paper.

Security

Theorem 3. The proposed HPE scheme is adaptively attribute-hiding against
chosen plaintext attacks under the n-eDDH assumption. For any adversary A,
there exist probabilistic machines, C0 and C(k,j) (k = 1, . . . , ν; j = 1, . . . , n+ 1)
whose running times are essentially the same as that of A, such that for any
security parameter λ,

AdvHPE,AH
A (λ) < Advn-eDDH

C0 (λ) +
ν∑
k=1

n+1∑
j=1

Advn-eDDH
C(k,j) (λ) +

(n+ 4)ν
q

,

where ν is the maximum number of adversary A’s key queries.

The proof is given in the full version of this paper.
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