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Abstract. At CRYPTO 2008 Stam [7] made the following conjecture: if anm + s-bit to s-bit compression function
F makesr calls to a primitivef of n-bit input, then a collision forF can be obtained (with high probability) using
r2(nr−m)/(r+1) queries tof . For example, a2n-bit to n-bit compression function making two calls to a random function
of n-bit input cannot have collision security exceeding2n/3. We prove this conjecture up to a constant multiplicative
factor and under the conditionm′ := (2m − n(r − 1))/(r + 1) ≥ log2(17). This covers nearly all casesr = 1 of the
conjecture and the aforementioned example of a2n-bit to n-bit compression function making two calls to a primitive of
n-bit input.

1 Introduction

A popular paradigm for security proofs in the field of hash function design is to assume that some primitive used
by the hash function, such as a blockcipher, is “ideal”, namely perfectly random subject to the constraints of the
type of primitive concerned, and then to bound the chance of success of some adversary given oracle access to
this primitive in terms of the number of queries allowed to the adversary. In this “ideal primitive” model (or IPM,
as we will call it) adversaries are usually information-theoretic: their only obstacle to achieving an attack is the
randomness of the query responses.

Because the IPM considers information-theoretic adversaries certain limitations naturally arise as to what
kind of security can be achieved for a certain functionalityusing a certain primitive a certain number of times.
For example, consider the task of constructing a2n-bit to n-bit compression functionF using a randomn-bit
to n-bit permutationf as a primitive. There are22n inputs toF but only 2n inputs tof . Thus each input tof
corresponds on average to2n inputs toF , so with just two calls tof we can learn to evaluateF on at least2 · 2n
inputs. But this is more than the number of outputs ofF , so a collision can be obtained with probability 1 in
just two queries. (Note that determining which twof -queries to make is no problem for an information-theoretic
adversary, nor is “finding the collision” among the2 · 2n mapped values.) Thus it is not possible to design a
compression function with these parameters that is collision resistant in the IPM.

In the same vein as the above argument, this paper pursues thetask of determining the limits of IPM security.
Specifically, we tackle the following question: givenm,n, r, s ≥ 1, what is the maximum collision security of
a compression functionF : {0, 1}m+s → {0, 1}s that makesr calls to an ideal primitivef of domain{0, 1}n?
(The range off is not specified because it turns out to be immaterial1.) Here “collision security” means the largest
number off -queries the best information-theoretic adversary can askbefore achieving probability12 of obtaining
a collision.

Since it costs at mostr queries to evaluate any point in the domain, a birthday attack implies that collision
security cannot exceedq = 2

√
2r2s/2 queries (cf. Proposition 1 Section 5). However other attacks may be more

constraining than birthday attacks. In particular Stam [7]conjectured2 that

q = r⌈2(nr−m)/(r+1)⌉ + 1 (1)
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1 Immaterial to proving our upper bound; better upper bounds on security should be provable iff has sufficiently small range, see
comments by Stam [7].

2 Stam’s wording is not quite as precise, as he omits the ceiling brackets, the ‘+1’ term, and the fact that a collision can only be found
with “sufficient” probability, but it is easy to see these changes are necessary for correctness of the conjecture.



queries should always suffice for finding a collision with probability at least12 . This bound becomes more con-
straining than the birthday attack whens/2 > (nr −m)/(r + 1). This occurs for example when(m,n, r, s) =
(n, n, 2, n), the case of a2n-bit to n-bit compression function making two calls to a primitive ofn-bit input,
for which Stam’s bound forecasts a maximum collision resistance of2n/3 whereas a birthday attack caps the
collision resistance at2n/2. It is noteworthy that Stam’s bound is independent ofs. We explain later the intuition
behind the exponent(nr −m)/(r + 1).

Stam’s conjecture is particularly appealing because it apparently constitutes theoptimal upper bound on
collision resistance for all cases for which it beats the birthday bound, while the birthday bound can apparently
be achieved in all other cases. In other words, to the best of current understanding, it seems that the maximum
collision resistance of a compression functionF : {0, 1}m+s → {0, 1}s makingr calls to a random functionf
of n-bit input in fact equals

min(r2s/2, r⌈2(nr−m)/(r+1)⌉)
up to possible lower order terms. This thesis is supported bya number of constructions [4,6,7].

So far, however, Stam’s bound has not been proved for any caseof interest (cases of “non-interest” being
those for whichs/2 ≤ (nr −m)/(r + 1) or nr −m ≤ 0; see Section 2). Here we try to remedy this situation.
We show there is an absolute constantC ≥ 1 such that if

m′ := (2m− n(r − 1))/(r + 1) ≥ 4.09 (2)

then

q = Cr⌈2(nr−m)/(r+1)⌉ (3)

queries suffice in order to obtain a collision with probability at least12 (see Corollary 3 in Section 5 for a tighter
statement). In other words, we prove Stam’s conjecture up toa constant multiplicative factor as long as (2)
holds. To get a better handle on the restriction (2) note thatit reduces tom = m′ ≥ 4.09 for r = 1 and to
2
3m − 1

3n ≥ 4.09 for r = 2. For r = 2 settingm = n reduces the condition ton ≥ 12.27. Our result is partly
based on the observation that Stam’s conjecture reduces to the caser = 1 whenm′ ≥ 1; see Section 4 for details.

We emphasize that our result holds for arbitrary primitivesf . That is, iff has range{0, 1}b, thenf may be
sampled with any distribution from all functions of domain{0, 1}n and range{0, 1}b. Thus our result covers not
only perfectly random primitives but also random permutations and ideal ciphers3. Moreover, in the case where
r > 1, F may callr distinct primitives (of potentially different distributions) rather than the same primitiver
times.

PROBLEM HISTORY. The first authors to consider the limits of IPM security in the information-theoretic setting
were Black, Cochran and Shrimpton [2], who showed that any iterated hash function using a2n-bit to n-bit com-
pression functionF making a single call to one ofr different idealn-bit permutations would have (unacceptably
low) collision security ofr(n+ log(n)) queries. Rogaway and Steinberger [5] generalized this result by showing
that collisions could be found with probability 1 in1.89s2n(1−α) queries for any permutation-based hash func-
tion of rateα and output lengths (the rate being the number ofn-bit message blocks processed per application
of then-bit primitive). The latter result is somewhat noteworthy because it does not make any assumption on
the structure (iterated, etc) of the hash function, and doesnot even restrict the number of different independent
permutations used by the hash function—moreover the resultmore generally holds (with the same proof) if the
permutations are replaced by any primitives of domain{0, 1}n.

Rogaway and Steinberger also considered the IPM security ofcompression functions instantiated fromn-bit
random permutations (like above, their proofs in fact applyfor any primitive of domain{0, 1}n). They showed
that with r(2n−m/r + 1) queries an adversary could find a collision with probability1 for any compression

3 A blockcipher ofk-bit key andl-bit word is modeled as a primitive ofl+k-bit input; note the absence of inverse queries does typically
not affect the task of provingupper boundson security, though if desired one may even emulate bidirectional blockcipher queries with
an extra bit of input specifying forward or inverse queries.



functionF : {0, 1}m+s → {0, 1}s that makesr calls to ann-bit permutation. They also noted that, for com-
pression functionsF meeting a certain reasonable-looking heuristic assumption dubbed “collision uniformity”,
r2n−(m+ s

2
)/r queries suffice for finding a collision with probability12 . Stam [7] subsequently found examples

of non-collision-uniform compression functions having higher collision security thanr2n−(m+ s
2
)/r and posited

that collision security could not exceedr⌈2(nr−m)/(r+1)⌉ independently of any heuristic assumption. This is the
bound we discuss in this paper.

ON ‘ OPTIMALITY ’. Security upper bounds are useful as benchmarks for designers. In this area, though, the
situation isn’t so simple: when2(nr−m)/(r+1) < 2s/2 (namely when Stam’s bound becomes more constraining
than the birthday attack upper bound) then the only constructions which can achieve the best-possible collision
security are non-uniform constructions, implying a questionable non-random behavior. The “better” construction
may then be a uniform construction of lower collision security. On the other hand, some non-collision-uniform
constructions have been proposed, for example the JHash compression function [9]. The non-uniformity of these
compression functions is usually belied by the fact that many collisions are obtained whenever a single collision
is obtained. (Uniformity is explained in more detail in Section 3.)

Regarding this issue, Stam has suggested that when(nr −m)/(r + 1) < s/2 one should consider lowering
the state sizes until s/2 = (nr − m)/(r + 1), so that one may (at least theoretically) achieve the optimum
collision resistance with a uniform construction, as opposed to achieving the same collision resistance with a
non-uniform construction or a lower collision resistance with a uniform construction. This makes sense from the
point of view of compression function design, though designers should bear in mind the hash function obtained
by iterating the compression function will probably be weakened by lowering the state size at the same time the
compression function is strengthened (the collision resistance of the hash function being typically higher than
that of the compression function); for example, while a uniform 2n-bit to n-bit compression functionF1 making
two calls to ann-bit input random functionf may have only2n/4 collision security against2n/3 collision security
for a uniform 5

3n-bit to 2
3n-bit compression functionF2 also making two calls to a randomn-bit input functionf ,

the iteration ofF1 may have2n/2 collision security4 whereas the iteration ofF2 will be “stuck” at2n/3 collision
security.

Finally, the usual caveats regarding the ideal primitive model apply to this paper: as the IPM considers
information-theoretic adversaries, our results do not imply security upper bounds with respect to real-world,
computationally bounded adversaries.

ORGANIZATION . In the next section we give some background of results of Rogaway and Steinberger. Section
3 is an optional section giving some intuition about Stam’s conjecture forr > 1. Section 4 examines the case
r = 1 and how certain cases of Stam’s conjecture withr > 1 reduce to the caser = 1. Section 5 contains the
main proof and the formal statement of our result, which is summarized by Corollary 3. Appendix A discusses
an alternate approach to our main result for the special caseof random primitives.

2 Basic results

We first formalize the notion of a compression functionF makingr calls to a primitivef . In fact we allowF to
call potentially distinct primitivesf1, . . . , fr in fixed order mode, meaningfi is called beforefj for i < j.

Let f1, . . . , fr be (not necessarily distinct) functions of domain{0, 1}n and range{0, 1}b, whereb is ar-
bitrary. The compression functionF : {0, 1}m+s → {0, 1}s is defined byr functionsg1, . . . , gr wheregi :
{0, 1}m+s × {0, 1}b(i−1) → {0, 1}n and a functionh : {0, 1}m+s × {0, 1}br → {0, 1}s. We then define
F (v) = h(v, y1, . . . , yr) whereyj = fj(gj(v, y1, . . . , yj−1)) for j = 1 . . . r. We call the valuesy1, . . . , yr
“intermediate chaining variables”.

We say an adversaryA with oracle access tof1, . . . , fr “knows the firstk chaining variables” for some input
v ∈ {0, 1}m+s whenA has made the queriesf1(g1(v)) = y1, f2(g2(v, y1)) = y2, . . . , fk(gk(v, y1, . . . , yk−1)) =
yk, where0 ≤ k ≤ r. We start with the following basic observation of Rogaway and Steinberger [5]:

4 This is indeed conjectured for a number of two-call constructions, such as the Grøstl compression function [3].



Lemma 1. LetF : {0, 1}m+s → {0, 1}s be a compression function calling primitivesf1, . . . , fr : {0, 1}n →
{0, 1}b in fixed-order mode and let0 ≤ k ≤ r. Then with at mostq queries to each of the functionsf1, . . . , fk
an adversary can learn the firstk chaining variables for at least

2m+s
( q

2n

)k

inputs.

Proof. We proceed by induction onk, with the result obviously holding fork = 0. Now assume1 ≤ k ≤ r. By
the induction hypothesis, the adversary can makeq queries to each off1, . . . , fk−1 so that it knows the firstk−1
chaining variables for at least

2m+s
( q

2n

)k−1

inputs. LetX be the set of these inputs, and for eachz ∈ {0, 1}n let Xz be the set of inputsv ∈ X such that
gk(v, y1, . . . , yk−1) = z wherey1, . . . , yk−1 are the firstk − 1 chaining variables forv. Because{Xz : z ∈
{0, 1}n} are disjoint and have unionX there exist distinct valuesz1, . . . , zq ∈ {0, 1}n such that

∑q
i=1 |Xzi | ≥

q|X|/2n. By queryingfk(z1), . . . , fk(zq) the adversary thus learns the firstk intermediate variables for at least

q|X|/2n ≥ 2m+s
( q

2n

)k

inputs. ⊓⊔

Rogaway and Steinberger originally stated this observation for primitivesf1, . . . , fr : {0, 1}n → {0, 1}n, but the
output length of thefi’s does not in fact play any role. Stam [7] subsequently generalized Lemma 1 to the case of
compressing primitivesfi : {0, 1}n+c → {0, 1}n, but this generalization is equivalent to Lemma 1 for the same
reason (namely it can be obtained by substitutingn+ c for n andn for b, the latter with no effect).

As a direct corollary of Lemma 1, we have the following:

Corollary 1. LetF : {0, 1}m+s → {0, 1}s be a compression function calling primitivesf1, . . . , fr : {0, 1}n →
{0, 1}b in fixed-order mode. Then withq queries to eachfi, an adversary can learn to evaluateF on at least

2m+s
( q

2n

)r

inputs.

In particular, if

2m+s
( q

2n

)r
> 2s

then an adversary can obtain a collision forF with probability 1 inrq queries. Solving this inequality forq gives

q > 2n−m/r

so that

r(⌊2n−m/r⌋ + 1)

queries suffice to find a collision with probability 1 (whenn −m/r = 0 one can improve this bound tor + 1
queries). This proves Stam’s conjecture for the casenr−m ≤ 0. (In fact (1) is one more query than needed when
nr −m < 0.)



3 Intuition for Stam’s bound: the case r > 1

In this section we explain where Stam’s bound “comes from”. We assumer > 1; the caser = 1, which has
certain peculiarities, is discussed in the next section. Our account of the intuition behind the conjecture gives a
different viewpoint than Stam’s own, so readers will find an additional perspective by consulting [7]. The rest of
the paper does not rely on this section’s discussion.

We keep the definitions ofF , f1, . . . , fr as in Section 2. Let

Yield(q) = 2m+s
( q

2n

)r
.

ThusYield(q) is a lower bound for the number ofF -inputs an adversary can learn to evaluate withq queries to
each primitivefi (Corollary 1). However,Yield(q) may badly underestimate this number of inputs. For example
an adversary can always learn to evaluate at leastq inputs inq queries to each of thefi’s, whereasYield(q) goes
to zero for larger as long as (say)q < 2n−1. A better (and in fact fairly accurate) lower bound is

BYield(q) = max (q,Yield(q))

where ‘B’ is for ‘better’. Since

Yield(q) ≥ q ⇐⇒ 2m+s
( q

2n

)r
≥ q ⇐⇒ q ≥ 2(nr−m−s)/(r−1)

(where we user > 1) we have more exactly that

BYield(q) =

{

q if q ≤ 2(nr−m−s)/(r−1),

Yield(q) if q ≥ 2(nr−m−s)/(r−1).

Notice5 that as long asq < 2(nr−m−s)/(r−1) one may increasem or s without affectingBYield(q), whereas if
q ≥ 2(nr−m−s)/(r−1) increasing2m+s by a factorc increasesBYield(q) by that much; for example increasings
by 1, which doubles the size of the range, also doubles the size ofBYield(q).

Empirically, one might estimate that the chance of finding a collision for a given value ofq is lower bounded
by

BYield
2(q)/2s

since a birthday attack which learnst outputs in a range of size2s has chance approximatelyt2/2s of yielding
a collision. This is correct whenBYield(q) = q, since then the adversary can independently sample each input
point for which it chooses to learn the output, but whenBYield(q) > q the inputs for which the adversary learns
the output are not independently sampled, and, hence, it is not clear the attack works (indeed it is in fact easy
to construct an artificial compression functionF that will fool the deterministic adversary of Lemma 1 in this
regard). Roughly speaking, Rogaway and Steinberger [5] saythat a compression functionF is collision uniform
if learning to evaluateF on anyt inputs gives chance≈ t2/2s of obtaining a collision. Since a randomF has
this property, they argue that so should most cryptographically good constructions (i.e. constructions of interest).
So far this thesis seems to bear out for all real-world constructions withr > 1. The 1.5n-bit to n-bit JHash
compression function (Fig. 1) is a nice example of a non-collision-uniform compressionfunction withr = 1: a
single query to the underlying permutation already allows the evaluation oft = 2n/2 inputs, but one must actually
makeq = 2n/4 queries on average to the permutation before finding a collision (at which point2n/2 different
collisions are found at once). One can also note the JHash compression function is quite “non-random”, as2n/2

input-output pairs can be deduced from any single input-output pair.

5 It is also instructive to note that the thresholdq = 2(nr−m−s)/(r−1) occurs when the adversary of Lemma 1 learns on average the
value of exactly one input with each query it makes tofr. Indeed,

2m+s
“ q

2n

”r

= q ⇐⇒ 2m+s
“ q

2n

”r−1

= 2n

meaning that withq = 2(nr−m−s)/(r−1) queries tof1, . . . , fr−1 the adversary will have2n “surviving inputs” for which it knows the
first r − 1 intermediate chaining values, or on average one input for each point in the domain offr.



f

Fig. 1: The JH compression function from{0, 1}1.5n to {0, 1}n. All wires carryn/2-bit values.

In any case, let us momentarily (and heuristically) assume that adversaries have chanceBYield
2(q)/2s of

obtaining a collision inq queries. If so, the collision resistance ofF will be (r times) the leastq such that
BYield(q) = 2s/2. If 2s/2 ≤ 2(nr−m−s)/(r−1) this is2s/2, otherwise it is the solution to

2m+s
( q

2n

)r
= 2s/2

which is q = 2(nr−m− s
2
)/r. Thus, notingHeuristicSec(m,n, r, s) this “heuristic maximum collision security”,

we have

HeuristicSec(m,n, r, s) =

{

r2s/2 if 2s/2 ≤ 2(nr−m−s)/(r−1),

r2(nr−m− s
2
)/r if 2s/2 ≥ 2(nr−m−s)/(r−1).

Now considerm, n, r as fixed ands as variable. Note that for sufficiently larges we will be in the second
case,2s/2 ≥ 2(nr−m−s)/(r−1). Also note that if we increases while in the second case,HeuristicSec decreases6.
However, as noted by Stam, increasing the state sizes should never decrease the best-possible collision security
of a compression function, as additional input bits can always be forwarded to the output as the identity without
affecting collision security. This shows thatHeuristicSec is provably notthe correct maximum collision security
for the range2s/2 ≥ 2(nr−m−s)/(r−1).

This leaves us with the question of determining the “real” collision security when2s/2 ≥ 2(nr−m−s)/(r−1).
Still thinking ofm, n, r as fixed ands as variable, Stam conjectured that ass increases collision security simply
“tops off” when 2s/2 reaches2(nr−m−s)/(r−1) and remains constant afterwards. We have2(nr−m−s)/(r−1) =
2s/2 when s = s0 = 2(nr − m)/(r + 1), meaning that collision security can never exceedr2(nr−m)/(r+1)

according to this conjecture (or more precisely, sinceq must be kept integer, that collision security can never
exceedr⌈2(nr−m)/(r+1)⌉). Succinctly put, while the heuristic attack gives an incorrect bound, it still manages to
“freeze” collision security at the point where the attack comes into effect.

Summarizing, Stam’s conjecture forr > 1 stipulates the “true maximum collision security”TrueSec(m,n, r, s)
is

TrueSec(m,n, r, s) =

{

r2s/2 if 2s/2 ≤ 2(nr−m−s)/(r−1)

r⌈2(nr−m)/(r+1)⌉ if 2s/2 ≥ 2(nr−m−s)/(r−1)

= min(r2s/2, r⌈2(nr−m)/(r+1)⌉)
up to some small multiplicative constant. Sincer2s/2 queries obviously do suffice for finding a collision with
probability 1

2 (up to said small multiplicative constant), the problem reduces to showing thatr⌈2(nr−m)/(r+1)⌉
queries also always suffice.

4 Intuition for r = 1 and reduction to r = 1

For r = 1 the conjectured maximum collision security is again

min(r2s/2, r⌈2(nr−m)/(r+1)⌉) = min(2s/2, ⌈2(n−m)/2⌉)
6 This can be seen as a consequence of the fact thatBYield(q) is proportional to2s whenq ≥ 2(nr−m−s)/(r−1), and that the chance of

obtaining a collision is estimated asBYield
2(q)/2s, so that increasings actually increases this ratio.



but a separate explanation is required. Note that whenr = 1 an adversary can learn to evaluateF on at least
2m+s−nq inputs inq ≤ 2n queries to the (unique) primitivef1. If m ≥ n this gives a 2-query attack, so we may
assumem ≤ n. If n ≥ m + s then2(n−m)/2 ≥ 2s/2 is more than the cost of a birthday attack, so we may also
assumen ≤ m+ s.

We now argue the bound of2(n−m)/2 queries “by example” for the casem ≤ n ≤ m + s by showing a
construction collision secure up to that many queries. As each input tof1 corresponds on average to2m+s−n

inputs from the domain{0, 1}m+s, it is natural to write the domain as{0, 1}m+s−n × {0, 1}n, and to have
g1(x||y) = y for anyx ∈ {0, 1}m+s−n andy ∈ {0, 1}n (this at least “balances”g1 across the domain). Since we
do not want the adversary to obtain a collision from a single queryf1(y), we “reserve”m + s − n output bits
for the portion of the domain which does not affecty; namely we setF (x||y) = x||z wherez is the truncation
to s − (m + s − n) = n −m bits of f1(y), where we can assumef1 has output lengthb ≥ n −m. To find a
collision the adversary only needs to find a collision in the lastn−m bits of output (and can then adjust the first
m+ s− n bits as it wants), leading to collision resistance of2(n−m)/2.

Crucially to the results of this paper, certain casesr > 1 of the conjecture reduce to the caser = 1. Assume
r > 1. By Lemma 1, an adversary makingq = 2(nr−m)/(r+1) queries to eachf1, . . . , fr−1 can learn the first
r − 1 chaining variables for at least

2m+s
( q

2n

)r−1
= 2m+s(2(nr−m)/(r+1)−n)r−1

= 2m+s(2−(n+m)(r−1)/(r+1))

= 2s+(2m−n(r−1))/(r+1)

inputs toF . Let A be the set of these inputs. Consider the compression function F ′ : A → {0, 1}s defined
by F ′(v) = F (v). Let m′ = (2m − n(r − 1))/(r + 1). If m′ ≥ 1 then we may viewF ′ as a compression
function from{0, 1}m′+s bits to{0, 1}s making a single call to a primitive ofn-bit input, namelyfr (whenm′ is
non-integral we simply mean thatF ′ has domain of size at least2m

′+s). According to the caser = 1 of Stam’s
conjecture,2(n−m′)/2 queries tofr should suffice for finding a collision inF ′. However,

2(n−m′)/2 = 2(n−
2m−n(r−1)

r+1
)/2 = 2(nr−m)/(r+1) = q,

the number of queries allotted tof1, . . . , fr−1. Thus if Stam’s conjecture holds forr = 1 and for non-integral
m ≥ 1 (to allow non-integralm′) then it more generally holds whenever(2m−n(r−1))/(r+1) ≥ 1. We make
this idea more formal in the next section.

5 Main Result

We first prove Stam’s conjecture forr = 1 andm ≥ log2(17) ≈ 4.09. The more general result will follow as a
corollary via the reduction outlined at the end of the previous section.

Clearly the fact that the compression functionF manipulates bit strings is unimportant: the determining
factors are the size of the domain, the size of the range, and the size off ’s domain. We let the size ofF ’s domain
and range beMS andS, respectively, whereS is a positive integer andM ≥ 2. If MS is non-integral then
our meaning is thatF has domain of sizeat leastMS (so ⌈MS⌉ or more). The size off ’s domain will be
N . Thus under our original notation,M = 2m, S = 2s andN = 2n. For r = 1, the object is to show that
≈ 2(n−m)/2 =

√

N/M queries tof suffice for finding a collision inF .
Our collision attack ultimately reduces to a birthday attack. To make fully precise what we mean by a “birth-

day attack” letB : DB → RB be any fixed function of finite domainDB and finite rangeRB. Then performing a
q-query birthday attack onB means evaluatingB atq points ofDB sampled uniformly without replacement, halt-
ing when a collision is found. We use the following proposition due to Wiener [8] lower bounding the probability
of success of a birthday attack:



Proposition 1. (cf. [8] Theorem 7)LetB : DB → RB such thatDB , RB are finite andDB ≥ 2RB . Then a
q-query birthday attack onB has chance at least1 − 3e−2 > 0.5 of success whenq ≥ 2

√
2RB + 1.

We can now state and prove our main technical result:

Theorem 1. LetS,N be positive integers and letM ≥ 17 be a real number such thatN/M ≥ 128. LetF be a
compression function of domain of size at leastMS and range of sizeS making a single call to a primitivef of
domain of sizeN . Then a collision can be found forF with probability at least0.5 in q = ⌈4

√

8N/M⌉ queries
to f .

Proof. Letw = MS/2N and letb = ⌈4S/w⌉ = ⌈8N/M⌉.
Let DF , RF denote the domain and range ofF and letDf denote the domain off . For eachx ∈ Df let

Tx = {y ∈ DF : g1(y) = x} (namelyTx is the set ofF -inputs that can be evaluated oncef is queried atx). Let
W = {x ∈ Df : |Tx| ≥ w}. Note the adversary can computeW .

For eachx ∈ W the adversary dividesTx into setsT 1
x , . . . , T

jx
x such that eachw ≤ |T ix| < 2w for i =

1 . . . jx. Let U be the set of all these sets, namelyU : {T ix : x ∈ W, 1 ≤ i ≤ jx}. The adversary’s attack will
consist in repeatedly choosing without replacement a random elementT ix fromU uniformly among the elements
of U that have not yet been chosen and queryingf atx if f has not yet been queried at that point, until eitherq
queries have been made or until no elements are left inU .

We lower bound the adversary’s chance of finding a collision with this attack. In fact, we will only give the
adversary credit if it finds a collision for inputs that belong to sets that it chose fromU , so we more precisely
lower bound the probability of the latter event happening.

Let U1 = {T ix ∈ U : |F (T ix)| = |T ix|} and letU2 = U\U1 = {T ix ∈ U : |F (T ix)| < |T ix|}. ThusU is the
disjoint union ofU1 andU2. ForT ix ∈ U1 consider the eventAT i

x
thatb random elements ofRF chosen uniformly

with replacement do not intersectF (T ix). Since|F (T ix)| = |T ix| ≥ w and|RF | = S, we have

Pr[AT i
x
] ≤

(

1 − w

S

)b
≤ e−4 ≤ 0.02.

Thus there exists some set ofb values{r1, . . . , rb} ⊆ RF such that at least0.98 of the sets inU1 contain one of
the valuesr1, . . . , rb.

LetD′
F =

⋃

x∈W Tx. Since
∑

x/∈W |Tx| ≤ Nw we have|D′
F | ≥ MS − Nw. Since each element ofU is a

set of size at most2w and sinceD′
F =

⋃

T i
x∈U

T ix, we have

|U | ≥ |D′
F |

2w
≥ MS −Nw

2w
=

1

2

(

MS

w
−N

)

and so0.98|U | ≥ 2b, since

0.98|U | ≥ 2b ⇐=
0.98

2

(

MS

w
−N

)

≥ 4S/w + 2

⇐⇒ 0.49N ≥ 8N/M + 2

⇐⇒ 0.49M ≥ 8 + 2M/N

⇐⇒ M(0.98 − 4

N
) ≥ 16

⇐= M ≥ 17

usingN ≥ 128M ≥ 128 · 17 for the last implication.



We say that a setT ix chosen by the adversary during its attack (as described above) is “lost” if T ix ∈ U1 and
T ix ∩{r1, . . . , rb} = ∅. Since|U | ≥ 2b andq ≤ 4

√
b+ 1, any set chosen by the adversary has probability at most

0.02|U |
|U | − q

≤ 0.02(2b)

2b− 4
√
b− 1

=
0.04

2 − 4/
√
b− 1/b

=
0.04

2 − 4/32 − 1/1024

≤ 0.0214

of being lost independently of the result of previous choices, usingb ≥ 8N/M ≥ 1024. By a multiplicative
Chernoff bound, the probability that total number of non-lost sets is less than0.8(1−0.0214)q = 0.8 ·0.9786q =
0.78288q is therefore at most

e−
0.9786q0.22

2 ≤ e−2.505

usingq ≥ 4
√

8N/M ≥ 128. Thus with chance at least1 − e−2.505 ≥ 0.918, the adversary chooses at least
0.78288q ≥ 3

√
b non-lost sets.

The theorem follows by ascribing to each non-lost element ofU1 an element of{r1, . . . , rb} that it contains
and to each element ofU2 an arbitrary element of{r1, . . . , rb}, and noting that the adversary wins if it ever
chooses two (non-lost) elements ofU that are ascribed the same element of{r1, . . . , rb}. (Indeed, if the adversary
ever chooses an element ofU2, it finds a collision automatically.) Thus the adversary’s attack becomes a birthday
attack on a function of domain at least0.98|U | ≥ 2b and rangeb, in which the adversary queries at least3

√
b ≥

2
√

2b + 1 independent domain points of the function with probabilityat least0.918. By Proposition 1 the latter
number of queries is sufficient to find a collision with probability at least1− 3e−2 ≥ 0.5/0.918, thus concluding
the proof. ⊓⊔

Corollary 2. LetS, N be positive integers and letM ≥ 17. LetF be a compression function of domain of size
at leastMS and range of sizeS making a single call to a primitivef of domain of sizeN . Then a collision can
be found forF with probability at least0.5 in

q =







2175 if N/17 < 128
128 if N/17 ≥ 128 andN/M < 128

⌈4
√

8N/M⌉ if N/M ≥ 128

queries tof .

Proof. The last case is Theorem 1 and the first case is obvious sinceN < 17 · 128 = 2176 whenN/17 < 128,
and f has domain of sizeN . For the second case, it suffices to observe that we can apply Theorem 1 to a
restricted versionF ′ of F , whereF ′ is the restriction ofF to a domainD′

F ′ ⊆ DF , |D′
F ′ | = M ′S where

M ′ = N/128 ≥ 17. In the latter case, the cost of the Theorem 1 attack onF ′ is q = 4⌈
√

8N/M ′⌉ = 128. ⊓⊔

The next corollary is the paper’s main result:

Corollary 3. LetF : {0, 1}m+s → {0, 1}s be a compression function calling primitivesf1, . . . , fr : {0, 1}n →
{0, 1}b in fixed-order mode. Then ifm′ = (2m− n(r − 1))/(r + 1) ≥ log2(17), an adversary making

q = (r − 1)⌈2(nr−m)/(r+1)⌉ +







2175 if 2n/17 < 128
128 if 2n/17 ≥ 128 andn−m′ < 7

⌈8
√

2 · 2(nr−m)/(r+1)⌉ if n−m′ ≥ 7

queries to thefi’s can find a collision forF with probability> 0.5.



Proof. As shown at the end of section 4, an adversary makingq0 = ⌈2(nr−m)/(r+1)⌉ queries to each of the
functionsf1, . . . , fr−1 can learn the intermediate chaining valuesy1, . . . , yr−1 for at least2s+m

′

inputs. We then
consider the restrictionF ′ of F to those inputs as a single-call compression function.F ′ has a domain of size
MS and a range of sizeS whereS = 2s, M = 2m

′ ≥ 17, and uses a primitive of domainN = 2n. The result
then follows from Corollary 2 by noting that

√

N/M = 2(n−m′)/2 = 2(nr−m)/(r+1). ⊓⊔
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A An alternate approach for random primitives

In this section we give an alternate proof of (a version of) Theorem 1 when the primitivef = f1 of the com-
pression functionF is random, or more exactly when its outputs are independently distributed from each other
(though not necessarily uniformly distributed across the range off ). This alternate version implies corollaries
similar to corollaries 2 and 3, which we do not list. We present this alternate proof partly because some may find
it more intuitive than the proof of Theorem 1 and partly because of the intrinsic interest of a supporting lemma,
whose content and proof technique are of independent interest from the rest of the paper.

We start by stating this lemma, which we dub the ‘MECMAC’ lemma for ‘Many Expected Collisions Means
A Collision’.

Lemma 2 (MECMAC). Let S be a set and letc ≤ |S| be a positive integer. LetX1, . . . ,Xn be independent
random variables whose values are subsets ofS of size at mostc. LetX =

∑

i<j |Xi ∩Xj| and letµ = E[X].
Then

Pr[X = 0] ≤ e−µ/4c + e−
√
µ/2c +

√

µ/2c e1−
3
28

√
µ/2c.

We do not believe the bound of Lemma 2 is sharp; we expect the optimal upper bound forPr[X = 0] to be closer

to (1 +
√

2µ/c)e−
√

2µ/c, but we could not achieve this bound with our current proof technique. Note Lemma 2
has a statement of the form: “LetX1, . . . ,Xn be independent random variables, and letµ =

∑

i<j fij(Xi,Xj)
wherefij : Range(Xi)×Range(Xj) → [0, c]. Then ifµ/c is large,Pr[

∑

fij(Xi,Xj) = 0] is small”. However,
this more general type of statement is not true, as can be seenfrom easily-constructed counterexamples. Thus
Lemma 2 crucially relies on structural properties of set intersections (and in particular on the fact that if many
sets intersect a single one, these are also likely to intersect each other).

Our alternate version of Theorem 1 for random primitives is the following:



Theorem 2. LetS,N be positive integers and letM ≥ 16 be a real number. LetF be a compression function of
domain of size at leastMS and range of sizeS making a single call to a primitivef of domain of sizeN whose
outputs are independently distributed. LetE ≥ 16 be such thatq = 1+E

√

N/M is an integer and letψ = E/4.
Then if1 + ⌈log logN⌉ < 3

8M a collision can be found forF with probability at least1 − g(ψ) where

g(ψ) = e−ψ/4 + e−
√
ψ/2 +

√

ψ/2e1−
3
28

√
ψ/2

by usingq queries tof .

Note:The constraint⌈log logN⌉ < 3
8M does not correspond to any constraint in Theorem 1. In practiceN is

around2128, say, in which case⌈log logN⌉ < 3
8M becomesM > 64/3, which is not much more restrictive than

M ≥ 16.

Proof of Theorem 2.LetDF , RF be the domain and range ofF , and letg, h be the deterministic functions such
thatF (v) = h(v, f(g(v))). Also letDf be the domain off . For eachx ∈ Df let Tx ⊆ T be the set of inputs
v ∈ DF such thatg(v) = x. Thus if the adversary makes the queryf(x) it learns to evaluateF (v) for all v ∈ Tx.

For eachx ∈ Df we letXx = F (Tx). NoteXx is a random variable that depends onf(x) and whose value
is a subset ofRF . Then{Xx : x ∈ Df} is an independent set of random variables. LetCollx be the event that a
collision occurs among the inputs inTx, namely that|Xx| < |F (Tx)|. If Pr[Collx] = 1 for somex the adversary
can simply queryf(x), so we may assumePr[Collx] < 1 for all x ∈ Df . (This poses the question of how the
adversary “knows” the existence of such anx; however since the adversary is chosen after the parametersm, n,
r, s and the distribution forf is fixed, the value ofxmay be hardcoded. Similar remarks apply to further points in
the proof.) LetXx = Xx|¬Collx be the modified random variable whose distribution is conditioned on the event
¬Collx. Thus|Xx| = |F (Tx)| and{Xx : x ∈ Df} is an independent set of random variables. We will exhibit a
setZ ⊆ Df of sizeq such that

Pr[Xx ∩Xy = ∅ for all x, y ∈ Z, x 6= y] ≤ g(ψ).

This will prove the theorem since the adversary can queryf at all the points inZ, and since the adversary obtains
a collision anyway ifCollx occurs for somex ∈ Z.

Define a sequenceβ0, β1, β2, . . . by
βk = E2k−1−1MS/N

for k ≥ 0. Note thatβk+1 = β2
kEN/MS. LetUk = {x ∈ Df : βk < |Tx| ≤ βk+1} and letΣk =

∑

x∈Uk
|Tx|

for all k ≥ 0.
Let t ≥ 0 be the least integer such thatβt+1 ≥ S. Then

t ≤ ⌈log(1 + log(N/M)/ log(E))⌉
≤ ⌈log logN⌉

usingM,E ≥ 16. Note we cannot have|Uk| > 0 for k > t, or elsePr[Collx] = 1 for x ∈ Uk. If |Σk| ≤ 2S for
all k ≥ 0 then becauseE− 1

2 ≤ 1
4 and1 + ⌈log logN⌉ < 3

8M ,

|T | =
∑

x∈Df

|Tx|

≤ Nβ0 +

t
∑

k=0

|Σk|

≤ Nβ0 + (t+ 1)2S

≤ E− 1
2MS + 2(1 + ⌈log logN⌉)S

< S

(

1

4
M +

3

4
M

)

= MS



a contradiction. Thus there must exist a valuek0 such thatΣk0 ≥ 2S.
If |Uk0 | ≤ q then the adversary can queryf at all points inUk0 and obtain a collision with probability 1, so

we may assume|Uk0 | ≥ q. Now consider the following two experiments:

(1) queryf at all points inUk0, resulting in values ofXx for x ∈ Uk0 , then selectq distinct setsXx1, . . . ,Xxq

uniformly at random from{Xx : x ∈ Uk0}, and remove the other sets

(2) queryf at q distinct random pointsx1, . . . , xq in Uk0, resulting inq known setsXx1 , . . . ,Xxq

Clearly these two experiments have identical outcomes. Foreach experiment, let a “collision” be a triple(i, j, t)
with i < j such thatt ∈ Xxi ∩Xxj . We will show that in experiment (1) the expected number of collisions is at
leastψβk0+1 and hence that there exists some setZ of q distinct valuesx1, . . . , xq ∈ Uk0 such that the expected
number of collisions amongXx1 , . . . , Xxq is at leastψβk0+1.

Let Σk0 = aS wherea ≥ 2. After the first stage of experiment (1) it is easy to see (evenwhena is not an

integer) that there are at leasta(a−1)
2 S ≥ a2S/4 collisions among the sets{Xx : x ∈ Uk0}. When selecting

q distinct sets at random from the set of|Uk0 | sets, each collision remains selected with probability at least
q(q−1)

|Uk0
|(|Uk0

|−1) ≥ (q − 1)2/|Uk0 |2, so by linearity of expectation the expected number of collisions in experiment

(1) is at leasta2S(q − 1)2/4|Uk0 |2. Since|Uk0 |βk0 ≤ Σk0 = aS, we have|Uk0| ≤ aS/βk0 , so we have

a2S(q − 1)2

4|Uk0 |2
≥ a2S(q − 1)2

4a2S2/β2
k0

=
β2
k0

(q − 1)2

4S

=
β2
k0
E2N

4MS
= ψβk0+1

where we usedβk+1 = β2
kEN/MS andψ = E/4.

By the probabilistic argument outlined earlier, there therefore exist a setZ of q distinct pointsx1, . . . , xq
such that the expected number of collisions amongXx1 , . . . ,Xxq is at leastψβk0+1. However by the definition
of Uk0 we have|Xxi | ≤ βk0+1 for i = 1 . . . q, so, becauseXx1 , . . . ,Xxq are independent, Lemma 2 applied with
µ = ψβk0+1 andc = βk0+1 implies the probability of no collisions among them is at most g(ψ), as desired. �

Proof of the MECMAC Lemma.Because the bound is void forµ ≤ 2c we can assumeµ ≥ 2c. For any partition
C,D of [n] = {1, 2, . . . , n} let

XC,D = |{(i, j, s) : s ∈ Xi ∩Xj and (i, j) ∈ (C ×D) ∪ (D × C)}|
and letµC,D = E[XC,D]. If C,D are selected at random by independently placing each element of [n] in C or D
with probability 1

2 then

E[µC,D] =
1

2
µ

since for each triplet(i, j, s) such thats ∈ Xi ∩Xj andi 6= j there is chance12 that(i, j) ∈ (C ×D)∪ (D × C).
Therefore there must exist a partitionA, B of [n] such thatµA,B ≥ 1

2µ.
Letk = |A|, ℓ = |B|. We renameX1, . . . ,Xn as two listsA1, . . . , Ak andB1, . . . , Bℓ such that{A1, . . . , Ak} =

{Xi : i ∈ A} and{B1, . . . , Bℓ} = {Xj : j ∈ B}. For 1 ≤ i ≤ k let Yi = |{(j, s) : s ∈ Ai ∩ Bj}| and let
µi = E[Yi]. Then

k
∑

i=1

µi = µA,B.

For allU ⊆ S let

βU =

ℓ
∑

j=1

E
[

|Bj ∩ U |
]

.



We have

µi =
∑

U⊆S

βU Pr[Ai = U ] = E[βAi ].

Let M =
√

µA,B/c ≥
√

µ/2c ≥ 1. Assume first there is somes ∈ S such thatβs > M . Then letting
αj = Pr[Bj = s] = E[|Bj ∩ {s}|] we haveα1 + · · · + αℓ > M and

Pr[X = 0] ≤
ℓ

∏

j=1

(1 − αj) +

ℓ
∑

j=1

αj

ℓ
∏

h=1,h 6=j

(1 − αh)

≤ e−α1−...−αℓ +

ℓ
∑

j=1

αje
αj−α1−...−αℓ

≤ e−M + e1−α1−...−αℓ

ℓ
∑

j=1

αj

≤ e−M +Me1−M

≤ e−
√
µ/2c +

√

µ/2c e1−
√
µ/2c

where the last two inequalities use the fact thatye−y is a decreasing function ofy for y ≥ 1.
Now assume instead thatβs ≤M for all s ∈ S. Since

βAi =
∑

s∈Ai

βs ≤Mc,

βAi is a nonnegative r.v. bounded byMc of meanµi for 1 ≤ i ≤ k, so

Var(βAi) ≤ µi(Mc− µi)

for 1 ≤ i ≤ k and

k
∑

i=1

Var(βAi) ≤
k

∑

i=1

µi(Mc− µi)

≤Mc

k
∑

i=1

µi

= c
1
2µ

3
2
A,B.

BecauseβA1 , . . ., βAk
are independent and uniformly bounded byMc, Bernstein’s inequality (see notes at

bottom) then implies

Pr

[ k
∑

i=1

βAi ≤ µA,B/2

]

≤ exp

(

− (µA,B/2)
2/2

∑k
i=1 Var(βAi) +McµA,B/6

)

≤ exp

(

−
µ2
A,B/8

c
1
2µ

3
2
A,B + c

1
2µ

3
2
A,B/6

)

≤ e−
3
28

(µA,B/c)
1
2

≤ e−
3
28

√
µ/c.



Let “Σ≥” be the event that
∑k

i=1 βAi ≥ µA,B/2 and let “A6=” be the event thatAi ∩ Aj = ∅ for i 6= j. We
have

Pr[X = 0] = Pr[X = 0 |Σ≥] Pr[Σ≥] + Pr[X = 0 | ¬Σ≥] Pr[¬Σ≥]

≤ Pr[X = 0 |Σ≥] + Pr[¬Σ≥]

≤ Pr[X = 0 |Σ≥] + e−
3
28

√
µ/c

and, since¬A6= =⇒ X ≥ 1,

Pr[X = 0 |Σ≥] = Pr[X = 0 |Σ≥ ∧A6=] Pr[A6= |Σ≥] +

Pr[X = 0 |Σ≥ ∧ ¬A6=] Pr[¬A6= |Σ≥]

= Pr[X = 0 |Σ≥ ∧A6=] Pr[A6= |Σ≥]

≤ Pr[X = 0 |Σ≥ ∧A6=].

Moreover

Pr[X = 0 |Σ≥ ∧A6=] ≤
ℓ

∏

j=1

Pr[Bj ∩ (A1 ∪ · · · ∪Ak) = ∅ |Σ≥ ∧A6=].

To upper bound the latter probability, fix any values ofA1, . . . , Ak such thatΣ≥ ∧ A6=. For1 ≤ j ≤ ℓ letB′
j be

a new random variable that selects uniformly at random an element fromBj. Then

ℓ
∏

j=1

Pr[Bj ∩ (A1 ∪ · · · ∪Ak) = ∅] ≤
ℓ

∏

j=1

Pr[B′
j /∈ A1 ∪ · · · ∪Ak]

=

ℓ
∏

j=1

(

1 −
k

∑

i=1

Pr[B′
j ∈ Ai]

)

≤ e−
Pℓ

j=1

Pk
i=1 Pr[B′

j∈Ai]

= e−
Pℓ

j=1

Pk
i=1 E[|B′

j∩Ai|]

≤ e−
Pk

i=1 βAi
/c

≤ e−µA,B/2c

≤ e−µ/4c

whereA6= is used going to the second line andΣ≥ is used in the next-to-last inequality. Thus

Pr[X = 0 |Σ≥ ∧A6=] ≤ e−µ/4c.

Combining these results we have

Pr[X = 0] ≤ e−µ/4c + e−
3
28

√
µ/c

if βs ≤M for all s ∈ S, and

Pr[X = 0] ≤ e−
√
µ/2c +

√

µ/2c e1−
√
µ/2c

if βs ≥M for somes ∈ S, so we can conclude that

Pr[X = 0] ≤ e−µ/4c + e−
√
µ/2c +

√

µ/2c e1−
3
28

√
µ/2c

in all cases. �



Bernstein’s inequality

LetZ1, . . . , Zn be independent random variables of mean zero such that|Zi| ≤M almost surely for1 ≤ i ≤ n.
Bernstein’s inequality states that

Pr

[ n
∑

i=1

Zi ≥ t

]

≤ exp
(

− t2/2
∑n

i=1E[Z2
i ] +Mt/3

)

.

for all t > 0. Now let T1, . . . , Tn be independent random variables of nonzero mean such thatTi ∈ [0,M ]
almost surely, and letµ = E[T1 + · · · + Tn]. By Bernstein’s inequality applied toZ1 = −(T1 − E[T1]), . . .,
Zn = −(Tn − E[Tn]) (so|Zi| ≤M a.s.) we have

Pr

[ n
∑

i=1

Ti ≤ µ/2

]

= Pr

[ n
∑

i=1

(Ti − E[Ti]) ≤ −µ/2
]

= Pr

[ n
∑

i=1

Zi ≥ µ/2

]

≤ exp
(

− (µ/2)2/2
∑n

i=1E[Z2
i ] +Mµ/6

)

= exp
(

− (µ/2)2/2
∑n

i=1 Var(Ti) +Mµ/6

)

.

This is the form used in the proof of the MECMAC lemma.


