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Abstract. At CRYPTO 2008 Stam [7] made the following conjecture: if @mn+ s-bit to s-bit compression function
F makesr calls to a primitivef of n-bit input, then a collision forF' can be obtained (with high probability) using
r2(nr=m)/(r+1) queries tof. For example, &n-bit to n-bit compression function making two calls to a random figrct

of n-hit input cannot have collision security exceediitf®. We prove this conjecture up to a constant multiplicative
factor and under the condition’ := (2m — n(r — 1))/(r + 1) > log,(17). This covers nearly all cases= 1 of the
conjecture and the aforementioned example fdit to n-bit compression function making two calls to a primitive of
n-bit input.

1 Introduction

A popular paradigm for security proofs in the field of hashdiion design is to assume that some primitive used
by the hash function, such as a blockcipher, is “ideal”, ngiperfectly random subject to the constraints of the
type of primitive concerned, and then to bound the chancei@fess of some adversary given oracle access to
this primitive in terms of the number of queries allowed te #uversary. In this “ideal primitive” model (or IPM,
as we will call it) adversaries are usually informationdregic: their only obstacle to achieving an attack is the
randomness of the query responses.

Because the IPM considers information-theoretic adviersarertain limitations naturally arise as to what
kind of security can be achieved for a certain functionalityng a certain primitive a certain number of times.
For example, consider the task of constructingnabit to n-bit compression functio’ using a randorm-bit
to n-bit permutationf as a primitive. There arg*” inputs toF but only 2" inputs to f. Thus each input tgf
corresponds on average2® inputs toF’, so with just two calls tgf we can learn to evaluate on at leas® - 2™
inputs. But this is more than the number of outputsftfso a collision can be obtained with probability 1 in
just two queries. (Note that determining which tfqueries to make is no problem for an information-theoretic
adversary, nor is “finding the collision” among tBe 2™ mapped values.) Thus it is not possible to design a
compression function with these parameters that is coflisgsistant in the IPM.

In the same vein as the above argument, this paper pursueskhef determining the limits of IPM security.
Specifically, we tackle the following question: givea n,r,s > 1, what is the maximum collision security of
a compression functiof’ : {0,1}™*% — {0,1}* that makes- calls to an ideal primitivef of domain{0, 1}"?
(The range off is not specified because it turns out to be immatkjiglere “collision security” means the largest
number off-queries the best information-theoretic adversary carbafke achieving probabilitg of obtaining
a collision.

Since it costs at most queries to evaluate any point in the domain, a birthday lattaplies that collision
security cannot exceed= 21/2r2/2 queries (cf Proposition 1 Section 5). However other attacks may be more
constraining than birthday attacks. In particular Stancpfjjectured that

q= T[2(nr—m)/(r+l)'| +1 (l)

* Supported by the National Natural Science Foundation oh&I@rant 60553001 and by the National Basic Research Progfram
China Grant 2007CB807900, 2007CB807901.

! Immaterial to proving our upper bound; better upper bountsecurity should be provable jf has sufficiently small range, see
comments by Stam [7].

2 stam’s wording is not quite as precise, as he omits the gefiliackets, the ‘+1’ term, and the fact that a collision caly twe found
with “sufficient” probability, but it is easy to see these nbas are necessary for correctness of the conjecture.



gueries should always suffice for finding a collision with lpability at Ieast%. This bound becomes more con-
straining than the birthday attack whef2 > (nr —m)/(r + 1). This occurs for example whem, n,r, s) =
(n,n,2,n), the case of &n-bit to n-bit compression function making two calls to a primitiverebit input,
for which Stam’s bound forecasts a maximum collision resiseé 0f2"/3 whereas a birthday attack caps the
collision resistance &"/2. It is noteworthy that Stam’s bound is independent.diVe explain later the intuition
behind the exponeritar — m)/(r + 1).

Stam’s conjecture is particularly appealing because ibepyly constitutes theptimal upper bound on
collision resistance for all cases for which it beats thénhbimy bound, while the birthday bound can apparently
be achieved in all other cases. In other words, to the beafiroémt understanding, it seems that the maximum
collision resistance of a compression functiBn {0,1}™** — {0,1}* makingr calls to a random functionf
of n-bit input in fact equals

IHiIl(T‘2S/2, r (2(nr—m)/(r+1)'|)

up to possible lower order terms. This thesis is supportead tiymber of constructions [4, 6, 7].

So far, however, Stam’s bound has not been proved for anyafaséerest (cases of “non-interest” being
those for whichs/2 < (nr —m)/(r + 1) or nr — m < 0; see Section 2). Here we try to remedy this situation.
We show there is an absolute constéht 1 such that if

m' = (2m —n(r —1))/(r +1) > 4.09 (2)
then
qg=Cr (2(nr—m)/(r+1)'| (3)

queries suffice in order to obtain a collision with probdpikt Ieast% (see Corollary 3 in Section 5 for a tighter
statement). In other words, we prove Stam’s conjecture up ¢tonstant multiplicative factor as long as (2)
holds. To get a better handle on the restriction (2) note ith&duces ton = m’ > 4.09 for »r = 1 and to
2m — in > 4.09 for r = 2. Forr = 2 settingm = n reduces the condition to > 12.27. Our result is partly
based on the observation that Stam'’s conjecture reducks tase = 1 whenm’ > 1; see Section 4 for details.
We emphasize that our result holds for arbitrary primitifeJhat is, if f has rangg0, 1}, then f may be
sampled with any distribution from all functions of domdii 1} and rang€/0, 1}°. Thus our result covers not
only perfectly random primitives but also random permotagi and ideal ciphetsMoreover, in the case where
r > 1, F may callr distinct primitives (of potentially different distribuths) rather than the same primitive

times.

PROBLEM HISTORY. The first authors to consider the limits of IPM security ie thformation-theoretic setting
were Black, Cochran and Shrimpton [2], who showed that argtied hash function usinga-bit to n-bit com-
pression functiort” making a single call to one efdifferent idealn-bit permutations would have (unacceptably
low) collision security ofr(n + log(n)) queries. Rogaway and Steinberger [5] generalized thidtf@gghowing
that collisions could be found with probability 1 in89s2"(1~) queries for any permutation-based hash func-
tion of ratea: and output lengths (the rate being the number atbit message blocks processed per application
of the n-bit primitive). The latter result is somewhat noteworthgchuse it does not make any assumption on
the structure (iterated, etc) of the hash function, and do¢®ven restrict the number of different independent
permutations used by the hash function—moreover the rese generally holds (with the same proof) if the
permutations are replaced by any primitives of dom{@int }".

Rogaway and Steinberger also considered the IPM securitgrapression functions instantiated frembit
random permutations (like above, their proofs in fact agptyany primitive of domain{0, 1}"). They showed
that with r(2”‘m/7" + 1) queries an adversary could find a collision with probabilitfor any compression

3 A blockcipher ofk-bit key andl-bit word is modeled as a primitive & k-bit input; note the absence of inverse queries does typical
not affect the task of provingpper bound®n security, though if desired one may even emulate bidaeat blockcipher queries with
an extra bit of input specifying forward or inverse queries.



function F : {0,1}™*5 — {0,1}* that makeg calls to ann-bit permutation. They also noted that, for com-
pression functiond” meeting a certain reasonable-looking heuristic assumputidbbed “collision uniformity”,
r2n=(m+3)/ queries suffice for finding a collision with probability. Stam [7] subsequently found examples
of non-collision-uniform compression functions havingler collision security than2”—("+3)/" and posited
that collision security could not exceed2(™—™)/(*+1)] independently of any heuristic assumption. This is the
bound we discuss in this paper.

ON 'OPTIMALITY’. Security upper bounds are useful as benchmarks for desigin this area, though, the
situation isn't so simple: whep(™—™)/(r+1)  95/2 (namely when Stam’s bound becomes more constraining
than the birthday attack upper bound) then the only consbne which can achieve the best-possible collision
security are non-uniform constructions, implying a quasble non-random behavior. The “better” construction
may then be a uniform construction of lower collision setyu®n the other hand, some non-collision-uniform
constructions have been proposed, for example the JHagbression function [9]. The non-uniformity of these
compression functions is usually belied by the fact thatyranllisions are obtained whenever a single collision
is obtained. (Uniformity is explained in more detail in Sent3.)

Regarding this issue, Stam has suggested that \ifver- m)/(r + 1) < s/2 one should consider lowering
the state size until s/2 = (nr — m)/(r + 1), so that one may (at least theoretically) achieve the optimu
collision resistance with a uniform construction, as oggbt achieving the same collision resistance with a
non-uniform construction or a lower collision resistanagwa uniform construction. This makes sense from the
point of view of compression function design, though desigrshould bear in mind the hash function obtained
by iterating the compression function will probably be wesadd by lowering the state size at the same time the
compression function is strengthened (the collision taste of the hash function being typically higher than
that of the compression function); for example, while a omif 2n-bit to n-bit compression functio; making
two calls to am-bit input random functiorf may have onl\2"/4 collision security against™/* collision security
fora uniformgn-bit to %n-bit compression functio’, also making two calls to a randombit input functionf,
the iteration ofF; may have2™/2 collision securitf whereas the iteration df, will be “stuck” at 2"/ collision
security.

Finally, the usual caveats regarding the ideal primitivedeicapply to this paper: as the IPM considers
information-theoretic adversaries, our results do notlyngecurity upper bounds with respect to real-world,
computationally bounded adversaries.

ORGANIZATION. In the next section we give some background of results olaRR@ag and Steinberger. Section
3 is an optional section giving some intuition about Stanosjecture forr > 1. Section 4 examines the case
r = 1 and how certain cases of Stam’s conjecture witly 1 reduce to the case= 1. Section 5 contains the
main proof and the formal statement of our result, which immarized by Corollary 3. Appendix A discusses
an alternate approach to our main result for the special @assadom primitives.

2 Basicresults

We first formalize the notion of a compression functiBrmakingr calls to a primitivef. In fact we allowF' to
call potentially distinct primitivesfy, .. ., f, in fixed order modemeaningf; is called beforef; for ¢ < j.

Let f1,..., f. be (not necessarily distinct) functions of domdin 1}™ and range{0, 1}°, whereb is ar-
bitrary. The compression functioR : {0,1}™*5 — {0,1}* is defined byr functionsgs,..., g, whereg; :
{0,1}mFs % {0,1}*G=1) — {0, 1} and a functionh : {0,1}"*+* x {0,1}*" — {0,1}*. We then define
F(v) = h(v,y1,...,yr) Wherey; = fi(gj(v,y1,...,y;—1)) for j = 1...r. We call the valueg, ..., vy,
“intermediate chaining variables”.

We say an adversary with oracle access tfy, . . ., f “knows the firstk chaining variables” for some input

CAS {07 1}m+s whenA has made the queriﬁ(gl(v)) = Y1, f2(g2(vv yl)) =Y2y.., fk(gk(v> Yi, - .- 7yk—1)) =
yr, WhereQ < k < r. We start with the following basic observation of Rogawayg &teinberger [5]:

4 This is indeed conjectured for a number of two-call constoms, such as the Gragstl compression function [3].



Lemmal. LetF : {0,1}"** — {0,1}* be a compression function calling primitives, ..., f, : {0,1}" —
{0,1}? in fixed-order mode and lét < k& < r. Then with at mosy queries to each of the functiorfs, .. ., fx
an adversary can learn the firétchaining variables for at least

e (L)
2n
inputs.

Proof. We proceed by induction ok, with the result obviously holding fat = 0. Now assuméd < k < r. By
the induction hypothesis, the adversary can mgffeeries to each ofy, . . ., fx_1 So that it knows the firgt — 1
chaining variables for at least
k—1
2 (£)

27L

inputs. LetX be the set of these inputs, and for eack {0,1}" let X, be the set of inputs € X such that
gk (v,y1,. .., yk—1) = z whereyy, ..., y,_1 are the firstt — 1 chaining variables fop. Because{ X, : z €
{0,1}"} are disjoint and have unioR there exist distinct values;, . .., z, € {0,1}" such thaty_"7 | | X,,| >
q|X|/2™. By queryingfi(z1), ..., fx(zq) the adversary thus learns the fiksintermediate variables for at least

x|z > 2 (L)
> e (L

inputs. O

Rogaway and Steinberger originally stated this obsemdtoprimitivesf,. .., f. : {0,1}" — {0,1}", but the
output length of thef;’s does not in fact play any role. Stam [7] subsequently gdizexd Lemma 1 to the case of
compressing primitiveg; : {0,1}""¢ — {0,1}", but this generalization is equivalent to Lemma 1 for theesam
reason (namely it can be obtained by substituting ¢ for n andn for b, the latter with no effect).

As a direct corollary of Lemma 1, we have the following:

Corollary 1. LetF' : {0,1}""% — {0,1}* be a compression function calling primitivés, ..., f. : {0,1}" —
{0, 1}? in fixed-order mode. Then withqueries to eacly;, an adversary can learn to evaluaféon at least

+s (4"
gm+s <2_n)
inputs.

In particular, if

Qmts (%)T > 28

then an adversary can obtain a collision fowith probability 1 inrq queries. Solving this inequality fergives
q> 2n—m/r

so that
r([277m ]+ 1)

queries suffice to find a collision with probability 1 (when— m/r = 0 one can improve this bound to+ 1
gueries). This proves Stam’s conjecture for the ease m < 0. (In fact (1) is one more query than needed when
nr—m <0.)



3 Intuition for Stam’s bound: thecaser > 1

In this section we explain where Stam'’s bound “comes from& &¥sume- > 1; the caser = 1, which has
certain peculiarities, is discussed in the next sectiorr. &uount of the intuition behind the conjecture gives a
different viewpoint than Stam’s own, so readers will find ddiional perspective by consulting [7]. The rest of
the paper does not rely on this section’s discussion.

We keep the definitions df, f1,..., f. asin Section 2. Let

Yield(q) = 2™+ (%)

ThusYield(g) is a lower bound for the number @f-inputs an adversary can learn to evaluate witjueries to
each primitivef; (Corollary 1). Howeveryield(q) may badly underestimate this number of inputs. For example
an adversary can always learn to evaluate at lpagtuts ing queries to each of thg’s, whereasyield(q) goes
to zero for large- as long as (say) < 2"~!. A better (and in fact fairly accurate) lower bound is

BYield(¢) = max (q, Yield(q))

where B’ is for ‘better’. Since
q

Yield(q) > ¢ «= 2™+ <2n

)r >q = q> 2(nr—m—s)/(r—1)

(where we use > 1) we have more exactly that

. fq if ¢ < 2(nr—m—s)/(r—1)’
BYield(q) = {Yield(q) if ¢ > g(r-m=s)/0-1),

Notice® that as long ag < 2(""—™=5)/("=1) gne may increase: or s without affectingBYield(¢), whereas if
q > 2r=m=s)/(r=1) increasing2™** by a factorc increase®Yield(q) by that much; for example increasing
by 1, which doubles the size of the range, also doubles teso$BYield(q).

Empirically, one might estimate that the chance of findinglasson for a given value of is lower bounded
by

BYield?(q)/2¢

since a birthday attack which learh®utputs in a range of siz&¥ has chance approximatety/2¢ of yielding
a collision. This is correct wheBYield(q) = ¢, since then the adversary can independently sample eagh inp
point for which it chooses to learn the output, but wiield(q) > ¢ the inputs for which the adversary learns
the output are not independently sampled, and, hence, dtislear the attack works (indeed it is in fact easy
to construct an artificial compression functiéhthat will fool the deterministic adversary of Lemma 1 in this
regard). Roughly speaking, Rogaway and Steinberger [S{tsdya compression functiaf is collision uniform
if learning to evaluatg” on anyt inputs gives chance: ¢2/2° of obtaining a collision. Since a randof has
this property, they argue that so should most cryptogratiifigood constructions (i.e€onstructions of interest).
So far this thesis seems to bear out for all real-world cantitns withr > 1. The 1.5n-bit to n-bit JHash
compression function (Fidl) is a nice example of a non-collision-uniform compresdionction withr = 1: a
single query to the underlying permutation already alldvesdvaluation of = 2"/2 inputs, but one must actually
makeg = 2"/* queries on average to the permutation before finding a inilig@t which point2”/2 different
collisions are found at once). One can also note the JHaspression function is quite “non-random”, 2&/2
input-output pairs can be deduced from any single inputaypair.

S It is also instructive to note that the threshald= 2(""~™~#)/("=1) occurs when the adversary of Lemma 1 learns on average the
value of exactly one input with each query it makegtolndeed,

T r—1
() =g e e ()

meaning that witly = 2(""=™==)/("=1 queries tof1, . . ., f~_1 the adversary will have™ “surviving inputs” for which it knows the
firstr — 1 intermediate chaining values, or on average one input fcn paint in the domain of;.
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Fig. 1: The JH compression function frofd, 1}':°™ to {0, 1}™. All wires carryn /2-bit values.

In any case, let us momentarily (and heuristically) assumae adversaries have chanB¥ield?(q)/2° of
obtaining a collision ing queries. If so, the collision resistance Bfwill be (r times) the leasy such that
BYield(g) = 2°/2. If 25/2 < 2(nr—m—s)/(r=1) this is2%/2, otherwise it is the solution to

+s (AN _ o5s/2
() -
which is ¢ = 20" =m=32)/" Thus, notingHeuristicSec(m,n,r, s) this “heuristic maximum collision security”,

we have
795/2 if 25/2 < 2(nr—m—s)/(r—1)’

HeuristicSec(m,n,r, S) = {T2(nr—m—%)/r if 25/2 > o(nr—m—s)/(r—1)

Now considerm, n, r as fixed ands as variable. Note that for sufficiently largewe will be in the second
case2s/2 > o(nr—m=s)/(r=1) Also note that if we increasewhile in the second caskleuristicSec decreases
However, as noted by Stam, increasing the statessst®uld never decrease the best-possible collision sgcurit
of a compression function, as additional input bits can géaze forwarded to the output as the identity without
affecting collision security. This shows thidturisticSec is provably notthe correct maximum collision security
for the range2s/2 > 2(nr—m=s)/(r—1)
This leaves us with the question of determining the “realfision security whers/2 > 2(nr—m=s)/(r—1),
Still thinking of m, n, r as fixed and as variable, Stam conjectured thatsaacreases collision security simply
“tops off” when 25/2 reache2(""——5)/("—1) and remains constant afterwards. We ha{fg—"—5)/(—1) —
25/2 whens = sy = 2(nr — m)/(r + 1), meaning that collision security can never exceeth —™)/("+1)
according to this conjecture (or more precisely, sipaaust be kept integer, that collision security can never
exceed-[2("—™)/("+1)7), Succinctly put, while the heuristic attack gives an imeot bound, it still manages to
“freeze” collision security at the point where the attackngs into effect.
Summarizing, Stam’s conjecture for> 1 stipulates the “true maximum collision securitffueSec(m, n,r, s)
is
7023/2 if 23/2 < 2(nr—m—s)/(r—1)
TrueSec(m,n,r, 8) = {T[2(nr—m)/(r+l)‘| if 25/2 ; 9(nr—m—s)/(r—1)
_ min(r28/2’T[2(nr—m)/(r+l)'|)

up to some small multiplicative constant. Sinex/2 queries obviously do suffice for finding a collision with
probability  (up to said small multiplicative constant), the problemuees to showing that[2("r—m)/(r+1)]
queries also always sulffice.

4 Intuition for » = 1 and reductiontor = 1
Forr = 1 the conjectured maximum collision security is again
min(r25/2, 7‘(2("’"_’”)/(’"“)]) = min(2s/2, (2("_’”)/2])

® This can be seen as a consequence of the facBttietd (q) is proportional t@2® wheng > 2(""~™=#)/("=1) ‘and that the chance of
obtaining a collision is estimated &ield?(¢)/2°, so that increasing actually increases this ratio.



but a separate explanation is required. Note that when1 an adversary can learn to evaludfeon at least
2mTs=ng inputs ing < 2™ queries to the (unique) primitivg . If m > n this gives a 2-query attack, so we may
assumen < n. If n > m + s then2(®~™)/2 > 95/2 js more than the cost of a birthday attack, so we may also
assumen < m + s.

We now argue the bound @t"~")/2 queries “by example” for the case < n < m + s by showing a
construction collision secure up to that many queries. Asheaput to f; corresponds on average 268:"5—"
inputs from the domaid0,1}™*"%, it is natural to write the domain ag, 1}™**~™ x {0,1}", and to have
g1(z|ly) = y foranyz € {0,1}™ 5™ andy € {0,1}" (this at least “balances}, across the domain). Since we
do not want the adversary to obtain a collision from a singlery f1(y), we “reserve”m + s — n output bits
for the portion of the domain which does not affgcthamely we sef’(z||y) = z||z wherez is the truncation
tos — (m + s —n) = n — m bits of f;(y), where we can assumfg has output lengtth > n — m. To find a
collision the adversary only needs to find a collision in theth — m bits of output (and can then adjust the first
m + s — n bits as it wants), leading to collision resistance@f"")/2,

Crucially to the results of this paper, certain cases 1 of the conjecture reduce to the case- 1. Assume
r > 1. By Lemma 1, an adversary making= 2(""—™)/("+1) queries to eaclfi, ..., f,_; can learn the first
r — 1 chaining variables for at least

m+s (4 r—lz m+s o(nr—m)/(r+1)—n\r—1
s () e
_ 2m+8(2—(n+m)(r—1)/(r+1))

_ 2s+(2m—n(r—1))/(r+1)

inputs to F. Let A be the set of these inputs. Consider the compression funétio. A — {0,1}* defined
by F'(v) = F(v). Letm’ = (2m — n(r — 1))/(r + 1). If m’ > 1 then we may viewF’ as a compression
function from{0, 1} ** bits to {0, 1}* making a single call to a primitive of-bit input, namelyf,. (whenm' is
non-integral we simply mean that’ has domain of size at lea®t” +5). According to the case = 1 of Stam’s
conjecture2(™~")/2 queries tof, should suffice for finding a collision i&”. However,

on—m’)/2 _ on=2"20=0) /2 o(nr—m)/(r+1) _ g,
the number of queries allotted 13, ..., f.—1. Thus if Stam’s conjecture holds fer= 1 and for non-integral
m > 1 (to allow non-integrahn’) then it more generally holds whenev@m —n(r —1))/(r +1) > 1. We make
this idea more formal in the next section.

5 Main Result

We first prove Stam’s conjecture for= 1 andm > log,(17) =~ 4.09. The more general result will follow as a
corollary via the reduction outlined at the end of the prasisection.

Clearly the fact that the compression functibhmanipulates bit strings is unimportant: the determining
factors are the size of the domain, the size of the range hansize off’s domain. We let the size df’s domain
and range bé/.S and .S, respectively, wheré' is a positive integer and/ > 2. If M S is non-integral then
our meaning is that’ has domain of sizat least M S (so [M.S] or more). The size of’s domain will be
N. Thus under our original notatiod/ = 2™, S = 2% and N = 2". Forr = 1, the object is to show that
~ 2(n=m)/2 — | /N/M queries tof suffice for finding a collision irF".

Our collision attack ultimately reduces to a birthday dttd® make fully precise what we mean by a “birth-
day attack” letB : Dg — Rp be any fixed function of finite domaif’ 5 and finite rangd? 5. Then performing a
g-query birthday attack o means evaluating atq points of D g sampled uniformly without replacement, halt-
ing when a collision is found. We use the following propasitdue to Wiener [8] lower bounding the probability
of success of a birthday attack:



Proposition 1. (cf. [8] Theorem 7)Let B : Dg — Rp such thatDg, Rp are finite andDp > 2Rp. Then a
g-query birthday attack o3 has chance at leadt— 3e=2 > 0.5 of success whep> 2v/2Rp + 1.

We can now state and prove our main technical result:

Theorem 1. LetS, N be positive integers and léif > 17 be a real number such tha{/M > 128. Let F be a
compression function of domain of size at led&$ and range of siz& making a single call to a primitivg of
domain of sizéV. Then a collision can be found fdr with probability at leas.5 in ¢ = [4,/8N /M| queries

to f.

Proof. Letw = M S/2N and letb = [4S/w| = [8N/M].

Let Dr, Rr denote the domain and range Bfand letD; denote the domain of. For eachr € Dy let
T, ={y € Dr : g1(y) = z} (namelyT, is the set ofF-inputs that can be evaluated ontés queried atr). Let
W = {z € Dy : |T;| > w}. Note the adversary can compuité.

For eachz € W the adversary divideg), into setsT?, ..., T4* such that eachw < |Ti| < 2w for i =
1...j.. LetU be the set of all these sets, namély: {T : z € W,1 < i < j,}. The adversary’s attack will
consist in repeatedly choosing without replacement a ranglementr’ from U uniformly among the elements
of U that have not yet been chosen and queryfireg x if f has not yet been queried at that point, until eithher
gueries have been made or until no elements are Iéft in

We lower bound the adversary’s chance of finding a collisigth this attack. In fact, we will only give the
adversary credit if it finds a collision for inputs that bajoto sets that it chose froiti, so we more precisely
lower bound the probability of the latter event happening.

LetU; = {T¢ € U : |F(TY)| = |T:|} and letUs = U\U; = {T: € U : |F(T%)| < |T:|}. ThusU is the
disjoint union ofU; andUs. ForT}. € U; consider the evemlTi‘ thatb random elements d® » chosen uniformly
with replacement do not interseBY{ 7). Since|F(T:)| = |T¢| > w and|Rr| = S, we have

b
Pr[Ag:] < (1 - %) < et <0.02.

Thus there exists some setiofalues{ry,...,r,} C Rr such that at least.98 of the sets irl/; contain one of
the values, ..., .

Let D = U ew To- Sincey_ gy |T:| < Nw we have|D| > MS — Nw. Since each element &6f is a
set of size at mostw and sinceDy. = Uricy 15, We have

1%

, [e—
| D | L MS - Nu :%<MS_N>

2w 2w w

and s00.98|U| > 2b, since

98 (M
0.98|U| > 2b «— g <7S —N> > 48/w + 2

<= 0.49N > 8N/M + 2
< 0.49M > 8+ 2M/N

4
= M(O'%_N) > 16
~— M>17

usingN > 128M > 128 - 17 for the last implication.



We say that a séf’ chosen by the adversary during its attack (as describedeqigtliost” if 7 € U; and
Tin{ry,...,rp} = 0. Since|U| > 2bandg < 4v/b + 1, any set chosen by the adversary has probability at most

0.02|U| 0.02(2b)
<
Ul—q = 26—4vb—1

B 0.04
2—-4/Vb—1/b

- 0.04
©2-4/32-1/1024
< 0.0214

of being lost independently of the result of previous chejagsingb > 8N/M > 1024. By a multiplicative
Chernoff bound, the probability that total number of nostlgets is less thah8(1 —0.0214)qg = 0.8-0.9786¢q =
0.78288¢ is therefore at most

_ 0.978640.22 _
e o < 2505

usingg > 4,/8N/M > 128. Thus with chance at least— =259 > (0.918, the adversary chooses at least
0.78288¢ > 3v/b non-lost sets.

The theorem follows by ascribing to each non-lost elemerif;oén element of 1, ..., 7} that it contains
and to each element @f, an arbitrary element ofry,...,r}, and noting that the adversary wins if it ever
chooses two (non-lost) elementsiothat are ascribed the same elemenfiaf . . ., 7, }. (Indeed, if the adversary
ever chooses an element(df, it finds a collision automatically.) Thus the adversanjtaek becomes a birthday
attack on a function of domain at leas98|U| > 2b and range, in which the adversary queries at leastb >
2v/2b + 1 independent domain points of the function with probabitityeast.918. By Proposition 1 the latter
number of queries is sufficient to find a collision with proltigpat least1 — 3e=2 > 0.5/0.918, thus concluding
the proof. O

Corollary 2. Let S, N be positive integers and l&t/ > 17. Let F' be a compression function of domain of size
at least)M S and range of siz& making a single call to a primitivg’ of domain of sizeV. Then a collision can
be found forF' with probability at least.5 in

2175 if N/17 < 128
g =1 128 if N/17 > 128 and N/M < 128

[4\/8N/M] if N/M > 128
gueries tof.

Proof. The last case is Theorem 1 and the first case is obvious 8incel7 - 128 = 2176 when N/17 < 128,
and f has domain of sizeV. For the second case, it suffices to observe that we can apuyprém 1 to a
restricted version®” of F, where F’ is the restriction off' to a domainD%, C Dp, |D},| = M'S where
M’ = N/128 > 17. In the latter case, the cost of the Theorem 1 attack™ois ¢ = 4[/8N/M’'] = 128. O

The next corollary is the paper’s main result:

Corollary 3. LetF' : {0,1}"""% — {0,1}* be a compression function calling primitivés, ..., f. : {0,1}" —
{0,1}* in fixed-order mode. Thenif’ = (2m — n(r — 1))/(r + 1) > log,(17), an adversary making

2175 if 27 /17 < 128
q=(r— 1)[2(nr—m)/(r+1)] +{ 1928 if 27 /17 > 128 andn — m/ < 7
{8\/5 . 2(nr—m)/(r+1)‘| if n—m' > 7

queries to thef;’s can find a collision forf” with probability > 0.5.



Proof. As shown at the end of section 4, an adversary making= [2(""—")/("+1)] queries to each of the
functions/fi, . .., f,_1 can learn the intermediate chaining valyes. . . , y,_; for at leas2s*" inputs. We then

consider the restrictiod” of F' to those inputs as a single-call compression functithhas a domain of size
M S and arange of siz8 whereS = 25, M = 2m" > 17, and uses a primitive of domaiN = 2™. The result

then follows from Corollary 2 by noting thay N/M = 2(n=m")/2 = o(nr=—m)/(r+1) O
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A An alternate approach for random primitives

In this section we give an alternate proof of (a version ofediiem 1 when the primitivg = f; of the com-
pression functior¥' is random, or more exactly when its outputs are indepengeligtributed from each other
(though not necessarily uniformly distributed across @ngge off). This alternate version implies corollaries
similar to corollaries 2 and 3, which we do not list. We préghis alternate proof partly because some may find
it more intuitive than the proof of Theorem 1 and partly bessaaf the intrinsic interest of a supporting lemma,
whose content and proof technique are of independent sitemn the rest of the paper.

We start by stating this lemma, which we dub the ‘MECMAC’ lemfor ‘Many Expected Collisions Means
A Collision’.

Lemma2 (MECMAC). Let S be a set and let < |S| be a positive integer. LeX, ..., X,, be independent
random variables whose values are subsetS of size at most. LetX = »"._.|X; N X;| and lety = E[X].
Then

1<j
Pr[X = 0] < 74 eV 4\ Jp e el as Vil

We do not believe the bound of Lemma 2 is sharp; we expect timalupper bound foPr[X = 0] to be closer

to (1 + \/Q,u/c)e_\/m, but we could not achieve this bound with our current proohteque. Note Lemma 2
has a statement of the form: “Léf, ..., X,, be independent random variables, and.et ZK]. [ii (X, X5)
wheref;; : Range(X;) x Range(X;) — [0,c|. Thenifu/cislarge,Pr[ fi;(X;, X;) = 0] is small”. However,
this more general type of statement is not true, as can befsmareasily-constructed counterexamples. Thus
Lemma 2 crucially relies on structural properties of setiigéctions (and in particular on the fact that if many
sets intersect a single one, these are also likely to inteeseh other).

Our alternate version of Theorem 1 for random primitiveh&sfollowing:



Theorem 2. LetS, N be positive integers and I8 > 16 be a real number. Lef’ be a compression function of
domain of size at least/ S and range of siz& making a single call to a primitivg of domain of sizéVv whose
outputs are independently distributed. LE2t> 16 be such thay = 1+ E/N/M is an integer and let) = E /4.
Then ifl + [loglog N| < gM a collision can be found foF" with probability at leastl — g(1)) where

g(p) = e ¥/ e VR L\ S ]ael VY2
by usingq queries tof.

Note: The constrainfloglog N| < %M does not correspond to any constraint in Theorem 1. In pedfiis
around2'?8, say, in which casélog log N < %M becomesV/ > 64/3, which is not much more restrictive than
M > 16.

Proof of Theorem 2Let Dy, Ry be the domain and range 61, and letg, h be the deterministic functions such
that F'(v) = h(v, f(g(v))). Also let D; be the domain of. For eachw € Dy let T, C T be the set of inputs
v € Dp such thay(v) = x. Thus if the adversary makes the qu¢iy) it learns to evaluaté'(v) for all v € T;,.

For eachw € D; we letX, = F(T,). Note X, is a random variable that depends ) and whose value
is a subset of2x. Then{X, : x € Dy} is an independent set of random variables. Celt, be the event that a
collision occurs among the inputs i, namely that X .| < |F(T},)|. If Pr[Coll,] = 1 for somex the adversary
can simply queryf(x), so we may assumer|Coll,] < 1 for all z € Dy. (This poses the question of how the
adversary “knows” the existence of sucharhowever since the adversary is chosen after the parameters
r, s and the distribution foy is fixed, the value o may be hardcoded. Similar remarks apply to further points in
the proof.) LetX, = X ,|-Coll, be the modified random variable whose distribution is comaitd on the event
—Coll,. Thus| X, | = |F(T,)| and{X, : = € D;} is an independent set of random variables. We will exhibit a
setZ C Dy of sizeq such that

PriX,nX, =0forallz,y € Z,x # y] < g(¢).

This will prove the theorem since the adversary can qyeyall the points inZ, and since the adversary obtains
a collision anyway ifColl,, occurs for some: € Z.
Define a sequencéy, 51, 52, ... by
By = B2 '""1MS/N
for k > 0. Note thatBy 1 = B2EN/MS. LetUy = {zx € Dy : B < |Ty| < Br+1} and letXy, = Y
forall k > 0.
Lett > 0 be the least integer such that,; > S. Then

t < [log(1 +log(N/M)/log(E))]
< [loglog N

zeUy |Tm|

usingM, E > 16. Note we cannot havi/,| > 0 for k& > ¢, or elsePr[Coll,] = 1 for x € Uy. If | X)| < 2S5 for
all k > 0 then becaus& = < 2 andl + [loglog N < 2M,

)= ) ITx]

IEDf

t
< Npo+ Z p
k=0
SNﬁo+(t—|—1)2S

<E:MS+ 2(1 + [loglog N1)S

1 3
-M+-M
<S<4 +4 >

=MS



a contradiction. Thus there must exist a valyesuch that¥y,, > 25.
If |Uk,| < ¢ then the adversary can quefyat all points inU, and obtain a collision with probability 1, so
we may assumé/y, | > ¢. Now consider the following two experiments:

(1) query f at all points inUy,, resulting in values o, for € Uy,, then select; distinct setsX,, ,..., X,
uniformly at random from{ X, : = € Uy, }, and remove the other sets

q

(2) queryf atq distinct random points:1, . .., z4 in Uy, resulting ing known setsX,,, ..., X;,

Clearly these two experiments have identical outcomese&oh experiment, let a “collision” be a trip{é j, ¢)
with 7 < j such that € X,, N X,;. We will show that in experiment (1) the expected number difsions is at
leasty 31, +1 and hence that there exists someZedf ¢ distinct valuesry, ..., z, € Uy, such that the expected
number of collisions among.,, ..., X, is at least)B, ;1.

Let X, = aS wherea > 2. After the first stage of experiment (1) it is easy to see (avhana is not an
integer) that there are at Iea‘é(f’;—l)s > a25/4 collisions among the setSX, : = € Uy, }. When selecting
q distinct sets at random from the set |6f;,| sets, each collision remains selected with probabilityeast

% > (q — 1)?/|Uy, |2, so by linearity of expectation the expected number of siolfis in experiment
0 0

(1) is at least?S(q — 1)%/4|Uy, |?. Since|Uy, | Bk, < Tk, = aS, we havelUy,| < aS/By,, SO we have
a?S(g—1)% _ a®S(g—1)°

AUk > = 4a282/67,
_ Blg—1)?
B 48
Br E*N

~ 4MS

= wﬁko-rl
where we usedy,.; = B2EN/MS andy) = E/4.

By the probabilistic argument outlined earlier, there #fiere exist a sef of ¢ distinct pointszy,...,z,

such that the expected number of collisions amang, .. ., X, is at least) 3y, 1. However by the definition
of Uy, we have| X, | < Bi41 fori =1...¢, so, becaus«,,, ..., X,, are independent, Lemma 2 applied with

= Y Pr,+1 ande = B, 41 implies the probability of no collisions among them is at mg3)), as desired. [

Proof of the MECMAC LemmaBecause the bound is void far< 2¢ we can assumg > 2¢. For any patrtition
C,Dof [n] ={1,2,...,n} let

Xep=|{(i,4,s) :s€ XynNXjand (i,7) € (CxD)U (D xC)}|

and letuc p = E[X¢ p]. If C, D are selected at random by independently placing each eteshér in C or D
with probability  then
1

Elpcp] = JH

since for each tripleti, j, s) such thats € X; N X; andi # j there is chancg that (i, j) € (C x D) U (D x C).
Therefore there must exist a partitioh B of [n] such thay:4 3 > %M-

Letk = |A|, ¢ = |B|. WerenameXy, ..., X, astwolistsd;, ..., Ay andBy, ..., Bysuchthaf Ay, ..., Ay} =
{X; :ie Ayand{By,...,B;} ={X; : j € B}.Forl <i < kletY; = [{(j,s) : s € A; N B;}| and let
w; = EY;]. Then

k
> i = pas.
=1

14

Bu =Y _ E[B;nU.

j=1

ForallU C S let



We have

pi =Y BuPr[A; = U] = E[Ba].

ucs

Let M = \/uan/c > \/u/2¢c > 1. Assume first there is some € S such that3; > M. Then letting
a; = Pr[B; = s] = E[|B; N {s}|] we haveo; + --- + ay > M and

l l l
§H(1—ozj)—|—Zozj H (1—ah)
i=1 J=1  h=1.h#j

L
e—al—...—ag + § ajeaj—al—...—al

< M 1 —o—.. —0%2 :ay

<e ™My MM

Ny

where the last two inequalities use the fact that? is a decreasing function gffor y > 1.
Now assume instead that < M for all s € S. Since

ﬁAi: ZﬁsSMcy

SEA;

B4, is a nonnegative r.v. bounded Byc of meany,; for1 <i <k, so
Var(Ba4,) < pi(Me — p;)

forl <i¢<kand

"
= C2 ’U.A,B
Because3y,,, ..., B4, are independent and uniformly bounded bfc, Bernstein’s inequality (see notes at
bottom) then implies
- (1145/2)%/2
Pr [ Ba, < uA,B/2] < exp ( : )
ZZ:; i 1Var (Ba,) + Mcuap/6

§exp< 12 5/8 >

3
¢ itBJFCWAB/ﬁ



Let “>>" be the event tha} ¥ | G4, > 145/2 and let “A." be the event thatl; N A; =  for i # j. We
have

Moreover

¢
PriX = 0] 2> A A < [[PrlBin(A1U-- UAy) = 0] 55 A A
j=1

To upper bound the latter probability, fix any valuesAf, . .., Ay such thatt> A A. Forl < j < /let Bg. be
a new random variable that selects uniformly at random ameté fromB;. Then

l l
[IPriBin(Aru--UA) =0 < J[Pr[B} ¢ Ay U--- U Ay
j=1 Jj=1

4 k
=11 <1 —) Pr[Bj e A,-])
j=1 i=1

< ¢~ Tio1 Tini PrlBjEA]
— o~ Yo i ElBjNA]
<e~ Sk Ba,/c

< e HAB/2¢

< emH/Ae

where A is used going to the second line abd is used in the next-to-last inequality. Thus
PriX =0]X> NAL < e—H/Ac.
Combining these results we have
Pr[X = 0] < e 14 4 emaVH/e

if 3, < Mforall s € S, and
Pr[X = 0] < e”VH2 4 \/ju/2cel=VH/%

if 35 > M for somes € S, so we can conclude that
PI‘[X = 0] < e_l/f/4c + eV w/2c + /,U/QC el—%\/u/Zc

in all cases. O



Bernstein’sinequality

Let Z,..., Z, be independent random variables of mean zero suchAhat M almost surely foll < i < n.
Bernstein’s inequality states that

- t2/2
Pr[ Z‘Zt}gexp(— )
; Z Y1 BZE]+ Mt/3
for all ¢ > 0. Now let7y,...,7T, be independent random variables of nonzero mean suctthat [0, M]

almost surely, and let = E[T} + --- + T,,]. By Bernstein’s inequality applied &, = —(71 — E[TY]), .. .,
Z, = —(T, — E[T,]) (so|Z;| < M a.s.) we have

pr[S 7 < wja] = be [ S5 - BT < 2
i=1

i=1

:Pr[;zizum]

(n/2)%/2
<esp (- S B2+ Mu/6>
_ (n/2)%/2
- P ( TS Var(Ty) + M,u/6)'

This is the form used in the proof of the MECMAC lemma.



