
Adaptively Secure Broadcast

Martin Hirt and Vassilis Zikas

Department of Computer Science, ETH Zurich
{hirt,vzikas}@inf.ethz.ch

Abstract. A broadcast protocol allows a sender to distribute a message through a
point-to-point network to a set of parties, such that (i) all parties receive the same
message, even if the sender is corrupted, and (ii) this is the sender’s message, if he
is honest. Broadcast protocols satisfying these properties are known to exist if and
only if t < n/3, where n denotes the total number of parties, and t denotes the
maximal number of corruptions. When a setup allowing signatures is available to
the parties, then such protocols exist even for t < n.
Since its invention in [LSP82], broadcast has been used as a primitive in nu-
merous multi-party protocols making it one of the fundamental primitives in the
distributed-protocols literature. The security of these protocols is analyzed in a
model where a broadcast primitive which behaves in an ideal way is assumed.
Clearly, a definition of broadcast should allow for secure composition, namely, it
should be secure to replace an assumed broadcast primitive by a protocol satis-
fying this definition. Following recent cryptographic reasoning, to allow secure
composition the ideal behavior of broadcast can be described as an ideal func-
tionality, and a simulation-based definition can be used.
In this work, we show that the property-based definition of broadcast does not
imply the simulation-based definition for the natural broadcast functionality. In
fact, most broadcast protocols in the literature do not securely realize this func-
tionality, which raises a composability issue for these broadcast protocols. In
particular, we do not know of any broadcast protocol which could be securely
invoked in a multi-party computation protocol in the secure-channels model. The
problem is that existing protocols for broadcast do not preserve the secrecy of
the message while being broadcasted, and in particular allow the adversary to
corrupt the sender (and change the message), depending on the message being
broadcasted. For example, when every party should broadcast a random bit, the
adversary could corrupt those parties who intend to broadcast 0, and make them
broadcast 1.
More concretely, we show that simulatable broadcast in a model with secure
channels is possible if and only if t < n/3, respectively t ≤ n/2 when a sig-
nature setup is available. The positive results are proven by constructing secure
broadcast protocols.

1 Introduction

Broadcast is one of the most fundamental primitives in distributed cryptography. It is
used in almost any task that involves multiple players, like, e.g., voting, bidding, secure
function evaluation, threshold key generation, multi-party computation, etc — just to
mention a few. The security of these protocols inherently relies on the security of the

underlying broadcast protocol. Informally, broadcast allows a sender to distribute his
input among a set of players, such that every player gets the same value, even if the
sender is dishonest.

1.1 Summary of Known Results

Broadcast was introduced by Pease, Shostak, and Lamport [LSP82] who showed
that an adversary who can corrupt up to t players can be tolerated for perfectly
secure Broadcast if and only if 3t < n. This model has been extensively stud-
ied [DFF+82, TPS87, FM88, CW89, BGP89, BDDS92, GM93] and protocols with
optimal resiliency and complexity (communication and computation) polynomial in the
number of players were suggested.1 Other solutions [DS82, PW92] considered a setting
where a setup allowing digital signatures is available, and showed that Broadcast tol-
erating an arbitrary number of cheaters (t < n) is possible. The suggested protocols
are polynomial in the number of players and are as secure as the underlying signature
scheme.2

Recently, Lindell, Lysyanskaya, and Rabin [LLR02] proved that, unless unique
session identifiers are available, the bound t < n/3 is necessary for feasibility of
concurrently composable Broadcast, even when a setup allowing digital signatures
is given. To the positive side, they showed that when unique session IDs are avail-
able, then the protocols which achieve Broadcast and use signatures for authentication,
e.g., [DS82, PW92] can be be transformed to concurrently composable Broadcast pro-
tocols.

1.2 Property-based vs. Simulation-based Definition

Intuitively, one could think of broadcast as a megaphone given to the sender, which
every player can hear. More formally, this megaphone can be modeled as a functionality
(in the sense of [Can00, Can01]), which receives an arbitrary message from the sender,
and forwards this message to all players. The goal of a broadcast protocol is to realize
this functionality, in the sense that in any context the abstract broadcast functionality
can safely be replaced by the broadcast protocol. However, in the big body of broadcast
literature, protocols are not proven to securely realize the above functionality; rather,
they are shown to satisfy the following properties:

– Consistency: There exists some y such that every player outputs y.
– Validity: If the sender is honest and has input x then y = x.
– Termination: For every honest player the protocol terminates after a finite number

of rounds.
Of course, the hope is that these properties imply security of a broadcast protocol

in a simulation-based sense (i.e., any protocol satisfying these properties is expected

1 Many of these protocols are actually Consensus protocols, from which a Broadcast protocol
can be build by having the sender send his input to everybody and then invoke Consensus on
the received values.

2 In fact, feasibility of Broadcast for t < n when a setup is available was also proved in [LSP82]
but the suggested protocol has exponential communication complexity.

2

to securely realize the above broadcast functionality). However, this is not the case, as
the property-based definition has a major flaw: the validity condition does not take into
account the point in time when the sender gets corrupted. In particular, the definition
does not rule out that the adversary can corrupt the sender depending on the message
which the sender intends to broadcast. In fact, a broadcast protocol can satisfy the
above three properties, and still allow the adversary to first learn the sender’s message,
and then to decide whether or not to corrupt the sender and make him broadcast a
different message. This clearly contradicts the simulation-based definition, as well as
the intuition with the megaphone. We stress that it is perfectly legal that the adversary
can change the broadcasted message by corrupting the sender, and also it is perfectly
legal that she learns the broadcasted message; however, it is counter-intuitive that she
can first learn the message, without corrupting the sender, and then still be able to
corrupt the sender and change it.

We give two examples to demonstrate the relevance of this problem: First, consider
the following process for 10 players: Each player pi (i = 1, . . . , 10) in turn chooses
a bit bi ∈R {0, 1} uniformly at random and announces it using ideal broadcast (e.g.,
using a megaphone), i.e., first p1 selects b1 ∈R {0, 1} and announces it, subsequently
p2 selects b2 ∈R {0, 1} and announces it, etc. Consider an adversary who can corrupt
at most three of the players, and her goal is to have only 1’s broadcasted. Clearly, the
probability that the output sequence consists only of 1’s is at most 2−7, as each of the
seven bits chosen by the honest players are 1 with probability 1/2. However, when
we replace the ideal broadcast with some broadcast protocol satisfying the above three
properties, then the adversary might be able to bring this probability to 46 · 2−9, which
is more than ten times bigger. She can achieve this by only corrupting those players pi

who intend to broadcast 0. With the mentioned probability, there are at most three such
players, and the adversary can corrupt each of them and make them broadcast 1.

A more cryptography-related example is the following: Consider a prover p who
uses the Fiat-Shamir (interactive) protocol to publicly prove to n players (verifiers) that
he knows the square root of some publicly known y (in an RSA group). In order to do
that, p executes one round of the Fiat-Shamir protocol with each verifier pi in sequence.
All executions are public, in the sense that all the messages are exchanged using ideal
broadcast. Each verifier accepts if all rounds are accepting. Assume that the adversary
can corrupt up to t = n/2 of the verifiers. Then in this protocol the probability that a
malicious prover can make the players accept when he does not know the square root is
negligible in n. However, along the lines of the above example, when the ideal broadcast
is replaced by a broadcast protocol satisfying the above properties, a malicious prover
might be able to corrupt only those verifiers who intend to challenge the bit the prover
is not prepared to, which allows a malicious prover to cheat with probability 1/2.

1.3 Broadcast in the Literature

As mentioned in the previous section, the big body of broadcast protocols in the litera-
ture are proven secure with respect to the mentioned properties, rather than with respect
to a broadcast functionality. This would be only a minor issue if these protocols would
securely realize the broadcast functionality. However, in the following we show that (at
least most of them) fail to do so.

3

Most broadcast protocols in the literature [LSP82, DS82, BPW91, PW92, BHR07]
proceed as follows:3 First the sender sends the message to the players, possibly along
with a signature; then, the players try to establish a consistent view on the sender’s input.
Obviously, any protocol following this approach cannot be secure against an adaptive
adversary: Unless some kind of simultaneous multi-send assumption on the communi-
cation channels is made (see below), some corrupted player can happen to be the first to
receive the message from the sender, and depending on this message, the adversary can
decide whether or not to corrupt the sender (and change the message to be broadcast).
Clearly, this behavior is not allowed when the above mentioned broadcast functional-
ity is used, because as soon as some corrupted player receives (from the functionality)
the broadcasted value, it is guaranteed that the honest players will also receive it (the
functionality also sends it to them). Note that we do not need to assume a fully rushing
adversary for the above behavior; we simply do not exclude that some corrupted player
might get the message first, before it is sent to other players.

Note that many broadcast protocols can apparently be turned secure when the net-
work offers a simultaneous multi-send operation. Such an operation is atomic and al-
lows the sender to distribute an n-ary vector such that every player pi receives the
i-th component of the vector. More precisely, the operation is atomic in the sense
that as soon as some player obtains some information about his component, then all
other player must be guaranteed to receive their respective component as well. Such
a network-operation is of course quite a strong assumption. Indeed, assuming such
an operation implies that a player who honestly behaves at a specific point in time
can broadcast a message (by multi-sending it) which seems to be closer to a broadcast
channel than to a point-to-point communication network. In fact, the Universal Com-
position framework [Can01] which is the most widely accepted framework for arguing
about the security of protocols, explicitly excludes such a simultaneous multi-send as-
sumption. Furthermore, for broadcast protocols using signatures and tolerating t ≥ n/3
[DS82, PW92], even this assumption does not help, as still the adversary can learn the
message in the first phase of the protocol, and make the broadcast fail afterwards by
corrupting the sender and introducing signatures for different messages.4

The major problem is that in the broadcast literature, protocols are proven secure
with respect to properties, but in the cryptographic protocols literature (VSS, MPC, etc),
protocols are proven secure in a hybrid world with access to an ideal broadcast func-
tionality (e.g., “secure-channels model with broadcast”). The security of these crypto-
graphic protocols, when the broadcast functionality is instantiated with some broadcast
protocol from the literature, is doubtful.

1.4 Contributions

We show that the property-based definition of broadcast does not imply simulation-
based security with the natural functionality, not even in a stand-alone setting, not even

3 This also includes any broadcast protocol which first has the sender send his input to every-
body and then invokes a Consensus protocol, e.g. [DFF+82, TPS87, FM88, CW89, BGP89,
BDDS92, GM93], on the received values.

4 This would essentially correspond to a Broadcast functionality with partial fairness and unan-
imous abort [GL02].

4

in the secure-channels model with perfect security. We also describe a weaker function-
ality which is realized by the known broadcast protocols, and, under certain conditions,
can instantiate a broadcast primitive within a high level protocol. These conditions are,
for example, satisfied by the VSS protocol from [BGW88]. Note however, that in many
of the known protocols which assume broadcast, e.g., [CDD+99], these conditions are
not guaranteed. Hence, if one would be willing to make a compromise and accept the
weaker functionality as the ideal functionality for broadcast, then he would need to
(re-)prove the security of such protocols with this functionality in mind.

Furthermore, we give broadcast protocols with simulation-based security in the
secure-channels model that tolerate t < n/3 (with perfect security, without further
assumptions), respectively t ≤ n/2 (with statistical resp. cryptographic security, when
a secure signature functionality is available). Both bounds are tight. We stress that in
the secure channels model, no protocol exists that securely realizes the natural broad-
cast functionality when t > n/2 (although property-based security is possible for
t < n [DS82, PW92]).

The negative result can easily be illustrated in the following broadcast protocol:
First, the sender transmits the message to all players. Then, the players run a perfectly
secure consensus protocol on the received values [BGP89]. The resulting broadcast pro-
tocol satisfies the consistency and validity property with perfect security when t < n/3.
However, it is not a secure realization of the above natural functionality for broadcast.
The main problem is that an adaptive adversary might first learn the message to be
broadcasted, and then, depending on the learned message, still can corrupt the sender
and make him broadcast a different message. The authors are not aware of any broad-
cast protocol in the literature that does not suffer from this problem (but see related
work below).

The positive result for perfect security with t < n/3 is rather straight-forward:
First, the sender secret-shares the message among the players. Then, the sharing is
reconstructed. The only issue is how to do a secret-sharing without having a composable
broadcast primitive. The second positive result, namely statistical and computational
security for t ≤ n/2, it more involved, a verifiable secret-sharing exists only for t <
n/2 (but not for t = n/2).

The tightness of the bound for perfect security (t < n/3) follows directly from the
impossibility of property-based broadcast. The tightness of t ≤ n/2 is proven indi-
rectly: we show that in any “broadcast protocol” for 2t = n + 1, there exists a round in
which the adversary (not corrupting the sender) obtains noticeable (i.e., not negligible)
information about the message, but still can corrupt the sender and change the message.

1.5 Comparison with Previous Work

The idea to use VSS to get more out of a broadcast protocol was used in the con-
text of simultaneous broadcast [CGMA85, CR87, Gen95, Gen00, HM05]. However,
the goal of these works is to satisfy an additional property, namely to allow different
parties to broadcast values in parallel while guaranteeing mutual independence of the
broadcast values. This does not imply simulation-based composable security. Recently,
Hevia [Hev06] proposed a simultaneous broadcast protocol which he proved to be uni-
versally composable. However, as all previous protocols in this line of research, also

5

this protocol uses “normal” broadcast as sub-protocol, and the security analysis relies
on the hope that this securely composes, which, as we show here, in general is not
the case. In fact, the protocol in [Hev06] employs the verifiable secret-sharing scheme
from [CDD+99], which in turn employs some broadcast primitive which (hopefully)
securely composes in the secure-channels model for t < n/2. To our knowledge, our
work is the first to present such a composable broadcast protocol.

In [LLR02] a broadcast protocol for t < n was described, which is concurrently
composable when unique session IDs are available. This result does not contradict
ours, as it implicitly assumes that the players can simultaneously multi-send mes-
sages (c.f. [LLR02, Sect. 2.1]). In fact, this protocol is a “transformation from almost
any Broadcast protocol to a protocol that concurrently composes”. Because all known
broadcast protocols have the above mentioned problem, also this construction has it
when run in a model without simultaneous multi-send.

2 The Model

We consider the well-known secure channels model introduced in [BGW88, CCD88],
where the players inP = {p1, . . . , pn} are connected by a complete network of bilateral
secure channels. In such a network the only way that the adversary can get information
on a sent message is by corrupting the sender or the receiver.

2.1 Synchronous Communication (no multi-send)

The communication is synchronous, i.e., all players have synchronized clocks and there
is a known upper bound on the delivery time of any sent message. In such a synchronous
model, the protocols proceed in rounds, where in each round every player can send a
message to every other player.

There are several variations of the synchronous channels model suggested in the
literature. In some works [Nie03, LLR02] it is implicitly assume that honest players
can simultaneously multi-send messages, i.e, simultaneously send messages to several
recipients. Such a multi-send operation is atomic and guarantees that for a sender who
is honest upon sending, if one of the messages is delivered to its recipient then all the
messages will be delivered (unchanged) to the corresponding recipients. As we already
pointed out, such a simultaneous multi-send operation is a quite strong assumption on
the communication network.

In this work we only assume bilateral communication and, in particular, we do not
assume simultaneous multi-send: a player who is instructed to send a message to more
than one players can do so one player at a time. This is consistent with the formulation
of [Can01] where it is required that the processes are activated in turns, where at any
point only a single process can be active, and it can send a message to one other process
which becomes now the active process, and so on.

2.2 The Adversary

We consider a threshold adversary who can actively corrupt up to t players (we refer
to this adversary as t-adversary). When some player pi is corrupted then the adversary

6

has full control on pi. A player who is not corrupted is called uncorrupted or honest.
Analogously, the corrupted players are also called dishonest.

There are several adversarial models in the literature which restrict the power of the
adversary. For example a static adversary is one who chooses the players to corrupt at
the beginning of the protocol.

In this work we do not put any such restrictions on the adversary’s corruption power.
In particular, the assumed adversary is adaptive, i.e., in contrast to a static adversary,
she can corrupt additional players in the flow of the protocol depending on messages
seen so far, with the only restriction that the total number of players she corrupts has to
be at most t. Because no simultaneous multi-send is assumed, it might happen that some
corrupted player receives his message from an honest player p in some round, before p
has finished sending all his messages for this round.5 If this happens, the adversary can
corrupt p after learning the message which was sent to the corrupted player, and force
him change the remaining messages which he intended to send in that round.

2.3 Security Definition

Following the [Can00, Can01] methodology security of protocols is argued via the
ideal-world/real-world paradigm. In the real-world the players execute the protocol.
The ideal-world is a specification of the task which we want the protocol to implement.
More concretely, in the ideal-world the players can invoke a fully trusted party, called
the functionality, denoted as F , in the following way: the player sends their input(s)
to F ; F runs its program on the received inputs (while running the program, F might
receive additional inputs from the players or the adversary or send values to the ad-
versary), and returns to the players their specified outputs. The specification of F is
such that this ideal-evaluation captures, as good as possible, the goals of the designed
protocol.

Intuitively, a protocol securely realizes a functionalityF , when the adversary cannot
achieve more in the protocol than what she could achieve in an ideal-evaluation of F .
To formalize this statement, we assume an environment Z which decides the inputs of
all players, and also sees their outputs. Z also sees the full view of the adversaryA who
is attacking the protocol. We denote the view of Z for an invocation of protocol π with
adversary A as EXECπ,A,Z . A protocol π t-securely realizes functionality F when for
any t-adversary A attacking protocol π, there exists an ideal-world adversary S (also
called the simulator) such that no environment Z cannot tell whether it is interacting
with A and the players running π or with S and the players running the ideal-world
protocol (we denote the view of Z in an ideal-evaluation of F as EXECF,S,Z).

The three typical security notions are: perfect security (A is computationally un-
bounded, and the random variables EXECπ,A,Z and EXECF,S,Z are identically dis-
tributed), statistical security (A is computationally unbounded, and EXECπ,A,Z and
EXECF,S,Z are statistically close), and computational security (A is efficient, and
EXECπ,A,Z and EXECF,S,Z are computationally indistinguishable)

5 Note that if one would assume a rushing adversary then this would be the case “by definition”.

7

The F-hybrid model The power of the simulation-based definition is that it allows to
argue about security of protocols in a composable way. In particular, let π1 be a protocol
which securely realizes a functionality F1. If we can prove that π2 securely realizes a
functionality F2 using ideal-calls to F1, then it follows automatically that the protocol
which results by replacing, in π2, the calls to F1 by invocations of π1 also securely
realizes F2. Therefore we only need to prove the security of π2 in the so-called F1-
hybrid model, where the players run π2 and are allowed to make ideal-calls to F1. For
more details on composability of protocols and a formal handling of both sequential
and parallel composition (and also of universal composability), the reader is referred
to [Can00, Can01].

3 Perfect Security (no setup)

In this section we consider the case of perfect security, i.e., information theoretic
(i.t.) with no error probability. We show that perfectly secure broadcast tolerating a
t-adversary is possible if and only if t < n/3. Although this bound already appears in
the literature, to the best of our knowledge, none of the suggested synchronous broad-
cast protocols for perfect security satisfies the simulation-based definition when secure-
channels and an adaptive adversary are considered. Also, in addition to handling the
perfect security case, this section serves as a good way to introduce some of our ideas.

The ideal functionality for broadcast FBC when synchronous secure channels are
assumed is quite intuitive; nevertheless, to keep our analysis complete, in the following
we give a description. For simplicity we describe the functionality in terms of an ideal-
world protocol. A UC-type version of this functionality can be found in the full version
of this paper.

Functionality FBC

1. ps sends his input xs to the functionality FBC.
2. FBC sends xs to every p ∈ P .

To show that the above functionality is not realized by known protocols, we ob-
serve that known broadcast protocols have the following pattern: At the beginning of
the protocol the sender ps sends his input xs to the players in P \ {ps}; in a second
phase the players try to establish a consistent view on the sender’s input. Clearly all
protocols which start by the sender sending his input to everybody and then invoke a
consensus protocol on the received value, e.g., [CW89, BGP89, BDDS92], are of the
above type. However, even the protocols where the second phase is not a self-contained
consensus protocol, e.g., the broadcast protocols from [DS82, PW92], also follow the
above paradigm.

The fact that any protocol following the above paradigm is insecure against an adap-
tive adversary can be seen as follows: In any such protocol, there is a good probability
that a corrupted player is the first to receive the input xs from ps and the adversary can,
depending on the received value, decide whether or not to corrupt the sender ps (and

8

possibly change the broadcasted value).6 However, this behavior cannot be simulated,
as by the time the simulator learns xs from the functionality it is already too late to
change it (the functionality also sends it to all honest players).

A direct way to deal with the above problem is to make sure that before any player
(or the adversary) learns any information on xs, the value xs is secret-shared in a ro-
bustly reconstructible way. More concretely, when a secure Verifiable Secret Sharing
(VSS) scheme is given, then one can easily construct a secure broadcast protocol (i.e.,
a protocol realizing FBC) by having ps share his input xs, and, subsequently, having the
players publicly reconstruct the sharing.

It might look that we are done, as one could use the perfectly secure VSS from
[BGW88] to achieve broadcast. But this is not quite true. The reason is that [BGW88]
(and all other known VSS schemes with perfect security) use broadcast as a primitive.
If we instantiate this primitive by one of the known broadcast protocols then we can no
longer argue about the security of the full construction using composition. Nevertheless,
we show in the following that replacing all broadcast invocations in the [BGW88] VSS
scheme by executions of the [BGP89] broadcast protocol7 does not cause any loss of
security; we denote this VSS scheme by VSS(BGP)

BGW .
The security of VSS(BGP)

BGW is argued in two steps. In a first step, we show that al-
though the [BGP89] broadcast protocol, denoted in the following as BCBGP, does not
securely realize FBC, it does realize a weaker functionality, denoted as FUBC (we refer
to this functionality as unfair broadcast). In a second step, we show that under certain
conditions (which are satisfied by the [BGW88] VSS protocol) , we can replace FBC by
FUBC without loosing security.

The functionality FUBC is described in the following. Intuitively, the difference to
the functionality FBC is that FUBC allows the adversary to first receive the sender’s ps

input (even without corrupting ps) and then, depending on the received value, decide
whether or not she wants to corrupt ps and possibly modify the broadcasted value.

Functionality FUBC

1. ps sends his input xs to the functionality FUBC.
2. FUBC sends xs to the adversary.
3. If ps is corrupted then the adversary sends a value to FUBC; FUBC denotes the

received value by x′s (if ps is not corrupted then FUBC sets x′s := xs).
4. FUBC sends x′s to every p ∈ P

Lemma 1. Protocol BCBGP perfectly t-securely realizes the functionality FUBC for t <
n/3.

Proof. (sketch) As shown in [BGP89], the protocol BCBGP satisfies the property-based
definition of broadcast (i.e., it satisfies validity, consistency, and termination). We show

6 In fact, if one assumes a rushing adversary then she can, by definition, always perform such an
attack, as she first learns the messages sent to corrupted recipients.

7 In fact [BGP89] describes a consensus protocol. A protocol for broadcast can be constructed
by having the sender send his value to everybody and then invoke consensus on the received
values.

9

that it perfectly securely realizes FUBC. Let A be an adversary attacking BCBGP; a cor-
responding simulator S can be built as follows: First S waits for the input xs from
FUBC. Note that, because BCBGP is fully deterministic and the players in P \ {ps} have
no input, knowing xs allows S to perfectly simulate all the messages sent by honest
players.8 S invokes A and does the following:

1. S simulates all the players in the computation.
2. Whenever A requests to corrupt some pi ∈ P , S corrupts pi and sends (the simu-

lated) internal state of pi to A. From that point on, S has (the simulated) pi follow
A’s instruction.

3. WheneverA sends a message to the environment Z , S forwards this message to Z .
4. At the end of the simulation, if some (simulated) uncorrupted player pi outputs

xi = xs, then in the ideal evaluation ps sends xs to FUBC (even when he is cor-
rupted). Otherwise, i.e., if xi 6= xs, S instructs ps to send xi to the functionality
FUBC in Step 3 (the correctness property of BCBGP implies xi 6= xs only when ps

is actively corrupted.).

It is easy to verify that EXECFUBC,S,Z ≡ EXECπ,A,Z , i.e., the protocol perfectly se-
curely realizes FUBC. ut

Remark 1. One can verify that most broadcast protocols in the literature, including
those that assume a setup and tolerate t < n corrupted players, securely realize the ideal
functionality FUBC. The proof is along the lines of the above proof. One might even be
willing to make a compromise and accept this functionality as a tight description of what
one would expect from broadcast. However, we point out that this functionality allows
the counter-intuitive behavior explained in the introduction. Furthermore, the security
of protocols which assume broadcast should be (re-)analyzed with this functionality in
mind.

For the second step, we show that if a protocol Π (which assumes broadcast) sat-
isfies an appropriate pre-condition, then it is safe to instantiate broadcast in Π by calls
to FUBC. The pre-condition is the following: For any value v which is supposed to be
broadcasted, the adversary “knows v in advance”, i.e., there exists a deterministic strat-
egy for this adversary to compute v based on the contents of her view before the call to
the broadcast primitive. We formalize this in the following lemma. Note that the lemma
holds for any security level and is not restricted to perfect security.9

Lemma 2. Let Π be an FBC-hybrid protocol which securely realizes a given function-
ality F , and let Π ′ denote the protocol which results by replacing in Π all the calls
to FBC with calls to FUBC. If Π uses calls to FBC only to broadcast values which the
adversary knows in advance, then Π ′ securely realizes F .

8 In fact, for any adversary A, S can generate exactly the same messages as the uncorrupted
players would if the protocol would be run with this adversary.

9 However, for the case of computational security we will have to require that the strategy of the
adversary to compute the value which is to be broadcasted is efficient.

10

Proof. (sketch) Let A′ be an adversary attacking Π ′ in the FUBC-hybrid model. We
show how to construct an adversary A attacking Π in the FBC-hybrid model such that
ExecZ,A′,Π′ ≡ ExecZ,A,Π . This is sufficient as then we can use the simulator for A
(which is guaranteed to exist by the security of Π) as a simulator for A′. A behaves
exactly as A′ except in the invocations of FUBC: when FUBC is to be called, in order
to simulate the first message of FUBC towards A′ (corresponding to the broadcasted
value) A computes the value to be broadcasted (using the deterministic strategy on his
view which is guaranteed to exist by the fact that she knows the broadcasted value in
advance)10 and sends this value to A′. A′ is now allowed to corrupt the sender and
(possibly) change the value he is supposed to broadcast. A acts accordingly and then
invokes FBC. It is straightforward to verify that ExecZ,A′,Π′ ≡ ExecZ,A,Π . ut

We point out that the [BGW88] VSS protocol satisfies the pre-condition of
Lemma 2. Indeed, the protocol uses broadcast only for the complaints and the accu-
sations issued by players and for the dealer to reply to them. By careful inspection of
the protocol one can verify that all these broadcasted values can be computed from
the view of the adversary before they are broadcasted. Because this VSS is secure for
t < n/3, combining Lemmas 1 and 2 we get the following corollary.

Corollary 1. Protocol VSS(BGP)
BGW perfectly t-securely realizes the functionality FBC for

t < n/3.

Remark 2. Although replacing FBC by FUBC did not affect the security of [BGW88]
VSS, this is not necessarily true for other protocols using broadcast. For example, the
VSS in [CDD+99] does not satisfy the pre-condition of Lemma 2. In fact, in [CDD+99]
uniformly random values are broadcasted. As demonstrated in the examples given in the
introduction, broadcasting random values by a protocol which only securely realizes
FUBC can have unexpected results. In fact, it is unclear whether or not [CDD+99] is
secure if we instantiate the assumed broadcast-channel by calls to FUBC.

To complete this section we show that t < n/3 is tight for perfectly secure broad-
cast. We use the following impossibility result from [LSP82, KY84, FLM86] (for a nice
proof see also [Fit03]).

Lemma 3 ([LSP82, KY84, FLM86, Fit03]). For t ≥ n/3 there exists no protocol
which simultaneously satisfies correctness, consistency, and termination, even in the
presence of a non-adaptive adversary.

The impossibility proof for the functionality FBC follows directly from the above
lemma and the fact that any protocol securely realizing FBC satisfies the given three
properties.

Corollary 2. For t ≥ n/3 there exists no protocol which perfectly t-securely realizes
the functionality FBC.

We point out that Lemma 3, hence also the impossibility for FBC, holds even for the
cases of computational and statistical security when no setup is available. This implies
the following:
10 Wlog we can assume that A′ forwards his entire view to A [Can00, Can01].

11

Corollary 3. When t ≥ n/3 and no setup is available then there exists no protocol
which computationally t-securely realizes the functionality FBC. The statement holds
also for statistical security.

4 Statistical and Computational Security (with a trusted setup)

In this section we consider the cases of statistical security, i.e., information theoretic
with negligible error-probability, and computational security. For these security no-
tions, it is widely believed that when a setup allowing digital signatures is assumed,
then broadcast is possible for an arbitrary number of cheaters (i.e., t < n), e.g., by
using the Dolev-Strong broadcast protocol [DS82] for computational security or us-
ing [PW92] for statistical security. We show that this folklore belief is wrong when an
adaptive adversary is considered. We already argued in the previous section that the
Dolev-Strong broadcast protocol, denoted in the following as ΠDS, is not adaptively
secure. In this section we show that the condition t ≤ n/2 is necessary and sufficient
for broadcast both for computational and statistical security.

We start by proving the sufficiency of the condition t ≤ n/2; this is done by pro-
viding a protocol which securely realizes FBC. We handle the two security notions, i.e.,
computational and statistical, in parallel. In our protocol, the players will need to digi-
tally sign messages they send. This is modeled by assuming that the protocol has access
to an ideal functionality for digital signatures FSIG (for definition and properties of such
a functionality see [Can03]).

Analogously to the case of perfect security, our approach proceeds in two steps,
namely we first show that there exists a secure realization of FUBC for t ≤ n/2, and
then use Lemma 2 to derive a protocol forFBC from anFUBC-hybrid protocol. However,
this last step is more involved than simply using a statistically secure VSS protocol
satisfying the preconditions of Lemma 2. Indeed, on the one hand, all known protocols
for statistical VSS are only secure for t < n/2 which is stronger than t ≤ n/2. On
the other hand, these protocols do not satisfy the pre-condition of Lemma 2. Before
describing how to overcome these difficulties we state the following lemma which will
allow us to use ΠDS as a secure realization of FUBC. The proof is along the lines of the
proof of Lemma 1; the only difference is that the simulator needs also to simulate the
digital signatures of honest players in a run of the protocol, which is guaranteed to be
possible by the definition of FSIG.11

Lemma 4. Protocol ΠDS perfectly t-securely realizes FUBC for t < n in the FSIG-
hybrid model, where the signatures are replaced by calls to an ideal signature function-
ality FSIG.

To implement the second step, namely construct the FUBC-hybrid protocol realizing
FBC, we use as starting point the VSS from [CDD+99]. In [CDD+99] IC-signatures are
used to ensure that some pj who receives a value v from some pi can, at a later point,
publicly prove that pi indeed send him v. Because IC-signatures are secure only when

11 The idea of using [DS82] with i.t. secure signatures to get an i.t. secure broadcast protocol
appears also in [PW92, Fit03].

12

t < n/2, in this work we use digital signatures for the same purpose. The signatures
are generated and verified by calls to the assumed digital signatures functionality FSIG.
We point out that the signed message should include enough information to uniquely
identify for which message in the flow of the protocol the signature was issued (e.g.,
a unique message ID associated with every message sent in the protocol). Depending
on whether the calls to FSIG are instantiated by a computationally or an i.t. secure
signature-scheme, our broadcast protocol will achieve computational or i.t. security,
respectively.

In the following, we first describe our sharing, which is along the lines of
[CDD+99], and specify some useful security properties, and then we describe and ana-
lyze our broadcast protocol.

Secret Sharing Following the terminology of [CDD+99], we say that a vector v =
(v1, . . . , vm) ∈ Fm is d-consistent, if there exists a polynomial p(·) of degree d such
that p(i) = vi for i = 1, . . . ,m. A value s is said to be d-shared among the players
in P when every (honest) player pi ∈ P holds a degree-d polynomial gi(·) and for
each pj ∈ P pi also holds pj’s signature on gi(j), where the following condition holds:
there exists a degree-d polynomial q(·) with q(0) = s and gi(0) = q(i) for all pi.
The polynomials g1(·), . . . , gn(·) along with the corresponding signatures constitute a
d-sharing of s.

We describe the protocols HD-Share (the HD stands for Honest Dealer) and
Reconstruct which allow for a dealer pD to d-share a value s, and for public recon-
struction of a shared value, respectively.

The protocol HD-Share is along the lines of the sharing protocol from [CDD+99].
The main difference from a standard sharing protocol is that the correctness of the
output-sharing is guaranteed only when the dealer is honest until the end of the pro-
tocol. We describe HD-Share (see next page) in the {FSIG,FBC}-hybrid model, i.e.,
HD-Share uses calls to FBC for broadcasting and calls to FSIG for signature generation
and verification. To ensure that the output of HD-Share matches the form of our shar-
ing, i.e., every honest pi holds a degree-d polynomial gi(·) and signatures from all other
players, we do the following: for every message transmission, the receiver pj confirms
when he receives a well-formed message from pi or, otherwise, pj complains and pi is
expected to answer the complaint by broadcasting the message. If some pi is publicly
caught to misbehave, e.g., by broadcasting a malformed message, then pi is disqual-
ified. Because dishonest players cannot be forced to sign the messages they send, we
make the following convention: when pi is disqualified, then every player takes a default
value, denoted as ⊥, to be pi’s signature on any message (⊥ will always be accepted as
valid signature of disqualified players on any message).

Lemma 5. Protocol HD-Share invoked in the {FBC,FSIG}-hybrid model achieves the
following: The view of any d-adversary attacking the protocol can be perfectly simu-
lated (privacy);12 When the dealer is honest until the end of HD-Share then the output
is a d-sharing of s (honest-dealer correctness). Furthermore, in all calls to FBC, the
adversary “knows in advance” the value to be broadcasted.

12 This ensures that no information about s leaks to a d-adversary.

13

Protocol HD-Shared (pD, s)
1. The dealer pD chooses a uniformly random bivariate polynomial f(·, ·) of degree

d in each variable, such that f(0, 0) = s. For each pi ∈ P :
(a) For j = 1, . . . , n : pD sends pi the values si,j = f(i, j) and sj,i =

f(j, i) along with his signature on them; pi denotes the received values as
s
(i)
i,j , s

(i)
j,i , sigpD

(s(i)
i,j), and sigpD

(s(i)
j,i).

(b) pi broadcasts a complaint if any of the vectors
(
s
(i)
i,1, . . . , s

(i)
i,n

)
and(

s
(i)
1,i, . . . , s

(i)
n,i

)
is not d-consistent or if for some value no valid signature was

received.
(c) pD answers each complaint by broadcasting the values he sent to pi in Step 1a.

If pD broadcasts a message of the wrong form or invalid signatures then pD

is disqualified; otherwise pi adopts the broadcasted messages as the messages
he should have received in Step 1a.

2. For each pi ∈ P:
(a) For j = 1, . . . , n : pi sends s

(i)
i,j to pj along with his signature sigpi

(s(i)
i,j) and

the dealer’s signature sigpD
(s(i)

i,j).
(b) Each pj ∈ P broadcasts a complaint if he did not receive a message along

with valid signatures from pi and pD in Step 2a.
(c) pi answers each complaint by broadcasting (s(i)

i,j , sigpD
(s(i)

i,j), sigpi
(s(i)

i,j)). If
pi does not broadcast a message or any of the signatures is invalid then pi

is disqualified, every player replaces all pi’s signatures by ⊥, and pj adopts
s
(j)
i,j as the value he should have received in Step 2a; otherwise pj adopts the

broadcasted messages as the messages he should have received in Step 2a.
3. Every pi checks if he received a s

(j)
i,j from some pj in Step 2 which is in-

consistent with his own view of si,j , i.e., s
(j)
i,j 6= s

(i)
i,j , and if so, broadcasts(

s
(i)
i,j , s

(j)
i,j , sigpD

(s(i)
i,j), sigpD

(s(j)
i,j)

)
; every player verifies that s

(j)
i,j 6= s

(i)
i,j and that

the signatures are valid and if so pD is disqualified.a

a Recall that the signature includes information to uniquely identify for which message in the
flow of the protocol it was generated, e.g. a unique message ID, and also includes a unique
session ID.

Proof. (sketch) Clearly the adversary “knows in advance” all the values to be broad-
casted, as these are accusations and replies which might only occur if at least one of
the disputing players is corrupted. The privacy of HD-Share can be argued along the
lines of [CDD+99]. Nevertheless we sketch how the simulator S simulates the view of
the adversary A: The simulation of the signatures is trivial, as the functionality FSIG
allows S to choose the actual signature. As long as A does not corrupt pD, the simula-
tor proceeds as follows: whenever A requests to corrupt some pi, S creates a simulated
view for pi (up to the current simulated round) by choosing all the values in pi’s view
uniformly at random except those that have already appeared in the view of A (e.g.,
if pj has been already corrupted then the values s(i)

i,j = s(j)
i,j and s(i)

j,i = s(j)
j,i have been

already given to the adversary). Note that, because the sharing polynomial is of de-

14

gree d, from the point of view of the d-adversary A the simulated views are distributed
as in a real run of the protocol HD-Share. If at some point A requests to corrupt pD,
then at that point S learns pD’s input s and, can simulate the view of all the remaining
players while making sure that all simulated values are consistent with some degree-d
polynomial f ′(·, ·) with f ′(0, 0) = s. Honest-dealer correctness is proved as follows:
When the dealer is honest at the end of HD-Share, then only values which lie on the
actual polynomial f(·, ·) appear in the output of honest players. Moreover, every honest
pi holds all the signatures he should hold, as otherwise pi would have complained in
Step 5 and exposed the inconsistency. Therefore, the output will be a d-sharing of the
dealer’s value. ut

To reconstruct a sharing the protocol Reconstruct is invoked (see below). The idea
is the following: every pi broadcasts his share and the corresponding signatures from the
players in P; if some signature is invalid or the the announced share is not d-consistent,
then pi is excluded from the reconstruction, otherwise his share-polynomial is interpo-
lated; The zero-coefficients of the share-polynomials of the players that have not been
excluded are used to reconstruct the shared value. Depending on the actual choice of d
and the number of corrupted parties, the sharing might not uniquely define a value. In
any case the players adopt the value which is output by the interpolation algorithm. The
consistency of the output is guaranteed as it is decided on publicly seen values.

Protocol Reconstruct
1. Each pi ∈ P broadcasts (si,1, . . . , si,n) along with the corresponding signatures

sigp1
(si,1), . . . , sigpn

(si,n); if any of the broadcasted signatures is invalid or if the
broadcasted vector is not d-consistent, then pi is disqualified. Otherwise a polyno-
mial gi(·) is defined by interpolating the components of the vector.

2. Let P“ok” = {pi1 , . . . , pi`
} denote the set of non-disqualified players. The values

gi1(0), . . . , gi`
(0) are used to interpolate a polynomial g′(·) and every player out-

puts g′(0).

Lemma 6. Protocol Reconstruct invoked to the {FBC,FSIG}-hybrid model outputs (the
same) y ∈ F towards every player. Furthermore, if d < n− t (where t is the number of
corrupted players) and the input is a d-consistent sharing of some s, then y = s.

Proof. (sketch) As the output is decided based on values which are agreed upon using
FBC, all players output the same value y. Furthermore, when d < n− t then there are at
least t+1 honest players. When additionally the input is a d-consistent sharing then the
values which the honest players have signed uniquely define all the share-polynomials
gi(·). Because FSIG never verifies as valid a signature on a value which was not signed
by the corresponding player, the adversary cannot announce a polynomial other than
gi(·) for any pi ∈ P . Hence, every corrupted pi either announces the correct value or
is disqualified. However, the honest players always announce the correct values, hence
the correct polynomials are interpolated. Because there are at least d+1 honest players
there will always be at least d + 1 values to interpolate the correct g′(·) and recover the
shared value. ut

15

We next describe our broadcast protocol for t ≤ n/2. The idea is to have the sender
ps share his input xs by a degree-(t − 1) sharing using HD-Share with d = t − 1
and subsequently invoke Reconstruct on the output of HD-Share. The intuition is the
following: When ps is honest until the end of HD-Share, then HD-Share outputs a
(t − 1)-sharing of xs (Lemma 5: honest-dealer correctness); as t ≤ n/2 implies d =
t − 1 < n − t, Lemma 6 guarantees that Reconstruct will output xs. Hence, the only
way the adversary can change the output to some s′ 6= s is by corrupting ps during (or
before) protocol HD-Share. As there are at most t corrupted players, if the adversary
wishes to corrupt ps then she can corrupt at most t − 1 of the remaining players; as a
(t− 1)-adversary gets no information on xs (Lemma 5: privacy), the decision whether
or not to corrupt ps has to be taken independently of xs, which is a behavior that can be
easily simulated.

In the above, we managed to tweak the VSS protocol from [CDD+99] (which is se-
cure if and only if t < n/2) so that we can use it for broadcast when t ≤ n/2. However,
as already mentioned, both HD-Share and Reconstruct use calls to FBC for broadcast-
ing. In order to replace FBC by FUBC, we need to make sure that the precondition of
Lemma 2 is satisfied (i.e., the adversary “knows in advance” all broadcasted values).
For protocol HD-Share this is guaranteed by Lemma 5. However, the values which are
broadcasted in Reconstruct are not necessarily known to the adversary in advance. We
resolve this by a technical trick, namely we introduce a dummy step between HD-Share
and Reconstruct where every player sends to every other player his output from proto-
col HD-Share. Observe that such a modification could potentially give an advantage to
the adversary. But this might only happen in case the adversary has not corrupted ps by
the end of HD-Share, as otherwise she knows all the outputs by then. However, even in
this bad case, because ps is honest until the end of HD-Share, by the time the dummy
step is executed the output is already fixed to xs, and the adversary cannot change it
even with access to the full transcript. For completeness we include a description of our
broadcast protocol and state its achieved security. The proof of the lemma can be found
in the appendix.

Protocol Broadcast (ps, xs)
1. Invoke HD-Sharet−1(ps, xs); if ps is disqualified then every player outputs a de-

fault value, e.g., 0 and halts.
2. Every pi ∈ P sends his output from HD-Share to every pj ∈ P .
3. Invoke Reconstruct on the output of HD-Share.

Lemma 7. Protocol Broadcast perfectly t-securely realizes the functionalityFBC in the
{FUBC,FSIG}-hybrid model, for t ≤ n/2.

Proof. (sketch) By inspection of the protocol one can verify that the pre-conditions
of Lemma 2 are satisfied for every value which is broadcasted, hence using FUBC for
broadcasting values in protocol Broadcast is as secure as using FBC. Therefore, it suf-
fices to argue the security of Broadcast in the {FBC,FSIG}-hybrid model. We sketch
the simulator S for a given adversary A. During the execution of HD-Share, the sim-
ulator behaves as the simulator in the proof of Lemma 5. In the subsequent steps, if A
has already corrupted ps before the end of the simulated run of HD-Share, then at that

16

point S has learned the sender’s input xs and can simulate the remaining transcript as
in the proof of Lemma 5 (S can clearly simulate all the messages exchanged in Steps 2
and 3 as they appear in the transcript of HD-Share). Otherwise, i.e., if by the end of
the simulated run of HD-Share the adversary A has not requested to corrupt ps, then
S allows for the invocation of FBC, where ps gives his input xs; S learns xs from FBC
(as the output of any corrupted player) and can, same as before, simulate the remaining
transcript. ut

Combining the above lemma with Lemma 4 we get the following.

Corollary 4. If t ≤ n/2 and a statistically (resp. computationally) secure signature
scheme is available then the above protocol statistically (resp. computationally) t-
securely realizes the functionality FBC.

To complete this section, we show that the condition t ≤ n/2 is necessary for adap-
tively secure synchronous broadcast both for i.t. and for computational security. The
idea of the proof is the following: Because the adversary can corrupt half of the players
in P \ {ps}, she can be the first to learn noticeable information on the dealers input,
before the honest players in P \ {ps} jointly learn noticeable information. Depend-
ing on this information the adversary can corrupt the sender and, with overwhelming
probability, change the output to some other value. However this behavior cannot be
simulated.

Lemma 8. There exists no protocol which computationally t-securely realizes the func-
tionality FBC for t > n/2, not even in the {FSIG}-hybrid model. The statement holds
also for statistical security.

Proof. To arrive at a contradiction, assume that there exists a computationally (resp.
statistically) t-secure Broadcast protocol Π . Wlog, assume that ps uses Π to broadcast
a uniformly random xs ∈R F. For every round i, protocol Π implicitly assigns to
every set P ′ ⊆ P a probability PrP′,xs,Π,i, which is the probability of the best efficient
adversary corrupting P ′ to output xs based only on her view in Π up to round i. For all
P ′ ⊆ P\{ps} this probability is negligible if i is the first round of Π and overwhelming
if i is the last round of Π . As the total number of rounds in Π is polynomial, for
each P ′ ⊆ P \ {ps} there exists a round, denoted as iP′ , where this probability from
negligible becomes noticeable, i.e., not negligible. The adversary corrupts the set A ⊆
P \ {ps} with |A| = t − 1 such that iA = min{iP′ | P ′ ⊆ P ∧ |P ′| ≤ t −
1}. In round iA, the adversary gets the values which are sent to corrupted players and
runs the best (efficient) strategy to compute xs on input the view of the players in A;
denote by x′ the output of this protocol (by our assumption, x′ = xs with noticeable
probability). Let F1/2 denote the set of first |F|/2 (in any ordering) elements in F. If
x′ ∈ F1/2 then the adversary acts as a passive adversary (i.e., all corrupted players
are instructed to correctly execute their protocol). Otherwise, i.e., if x′ ∈ F \ F1/2,
then the adversary actively corrupts ps and forces all the actively corrupted players
to crash before sending any message in round i; as |P \ A| ≤ t − 1 we know that
iP\A ≥ iA, hence, because the players in P \ A do not get the messages from round
iA, with overwhelming probability the output of the honest players will be in F \ {xs}.

17

With this strategy the adversary achieves that when xs ∈ F \ F1/2, then the output of
the honest players in Π is different than xs with noticeable probability. However the
simulator cannot simulate this behavior as he has to decide whether or not to corrupt ps

and change the output independent of xs. ut

5 Other Models

We presented our solutions in the secure-channels model, because in this model it is
clear that the only way the adversary can learn a transmitted message is by corrupting
the sender or the receiver (after the message has been received). In particular, this im-
plies that for a message sent to the trusted party/functionality, as long as the sender is
honest, the simulator cannot learn the sent message before the functionality learns it.

In the authenticated-channels model (without privacy), the same composability is-
sue appears as the one we deal with in this work. However, as it is typically the case,
one could pretend to solve this issue by giving the simulator additional power on the
communication network. For example, if the simulator is allowed to read the sent mes-
sage, delete it from the channel, and then corrupt the sender and re-send the message,
then the above problem disappears “by definition”. It is arguable, however, how consis-
tent such a model is with the synchronicity assumption on the communication network.
Furthermore, when defining such an authenticated communication model which elim-
inates the composability issue presented in this work, one has to keep in mind that the
described protocols typically are not composable when the authenticated-channels are
replaced by secure-channels.

Also, in the case of asynchronous communication, the same problem appears. Take
for example the asynchronous secure-channels model as defined in [BCG93, BKR94].
As in the synchronous case, unless we assume some kind of asynchronous atomic multi-
send, when a player p is instructed to send a message to several other players,13 then
it might happen that the adversary first learns the message by corrupting one of the
receivers, and still is able to corrupt p and change it. In fact, as already mentioned, this is
the case in the UC framework [Can01]. Clearly this behavior cannot be simulated in the
ideal world. As in the synchronous case, one might be willing to make a compromise
and accept an asynchronous version of FUBC to be the desired ideal functionality for
broadcast.

6 Conclusions

We considered the problem of securely realizing broadcast in the secure-channels
model. In this model, it has been shown that there exist protocols satisfying the
property-based definition of broadcast and tolerating a t-adversary, if and only if
t < n/3 when perfect security is considered. For unconditional and computational
security, when a setup allowing digital signatures is given, the corresponding bound is
t < n.
13 Observe that this is the way in which most asynchronous broadcast protocols start,

e.g., [Bra84].

18

We showed that the property-based definition of broadcast does not imply the
simulation-based definition for the natural broadcast functionality. Furthermore, we
showed that most known broadcast protocols do not realize this functionality in the
secure-channels model. As a result, if one replaces the broadcast invocations in any of
the known multi-party protocols for the secure-channels model, e.g., [BGW88, RB89,
CDD+99], by one of the known broadcast protocols, the security of the resulting pro-
tocol cannot be argued using the composition theorems.

We described protocols which securely realize the (natural) ideal functionality for
broadcast for each of the three security notions. For the case of perfect security, we
showed that the tight bound matches the corresponding bound for the property-based
definition, i.e., t < n/3. However, for the cases of statistical and computational security
(with setup assumptions) the necessary and sufficient bound is t ≤ n/2. Furthermore,
we described a weaker ideal functionality for broadcast which is securely realized by
the known protocols but achieves less than what one expects from a broadcast protocol.
Of course, one might be willing to make a compromise and accept this as the desired
ideal functionality for broadcast. But in that case, all known protocols should be (re-
)analyze with this weaker ideal functionality in mind.

References

[BCG93] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In
STOC ’93, pages 52–61, 1993.

[BDDS92] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong. Shifting gears: Changing algo-
rithms on the fly to expedite Byzantine agreement. Information and Computation,
97(2):205–233, 1992.

[BGP89] P. J. Berman, J. Garray, and J. Perry. Towards optimal distributed consensus. In
FOCS ’89, pages 410–415, 1989. Full version in Computer Science Research,
1992.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88, pages 1–10,
1988.

[BHR07] Z. Beerliova-Trubiniova, M. Hirt, and M. Riser. Efficient Byzantine agreement
with faulty minority. In ASIACRYPT 2007, volume 4833 of LNCS, pages 393 –
409, 2007.

[BKR94] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations with
optimal resilience (extended abstract). In PODC ’94, pages 183–192. ACM, 1994.

[BPW91] B. Baum-Waidner, B. Pfitzmann, and M. Waidner. Unconditional Byzantine agree-
ment with good majority. In STAC ’91, volume 480 of LNCS, pages 285–295, 1991.

[Bra84] G. Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In PODC ’84,
pages 154–162, 1984.

[Can00] R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS 2001, pages 136–145, 2001.

[Can03] R. Canetti. Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239, 2003. http://eprint.iacr.org/.

[CCD88] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure proto-
cols (extended abstract). In STOC ’88, pages 11–19, 1988.

19

[CDD+99] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient mul-
tiparty computations secure against an adaptive adversary. In EUROCRYPT ’99,
volume 1592 of LNCS, pages 311–326, 1999.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In FOCS ’85, pages 383–395,
1985.

[CR87] B. Chor and M. O. Rabin. Achieving independence in logarithmic number of
rounds. In PODC ’87, pages 260–268, 1987.

[CW89] B. A. Coan and J. L. Welch. Modular construction of nearly optimal Byzantine
agreement protocols. In PODC ’89, pages 295–305, 1989. Full version in Infor-
mation and Computation, 1992.

[DFF+82] D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch, and H. R. Strong. An efficient al-
gorithm for Byzantine agreement without authentication. Information and Control,
52(3):257–274, 1982.

[DS82] D. Dolev and H. R. Strong. Polynomial algorithms for multiple processor agree-
ment. In STOC ’82, pages 401–407, 1982. Full version in SIAM Journal on Com-
puting, 12(4):656–666, 1983.

[Fit03] M. Fitzi. Generalized Communication and Security Models in Byzantine Agree-
ment. PhD thesis, ETH Zurich, 2003.

[FLM86] M.J. Fischer, N.A. Lynch, and M. Merritt. Easy impossibility proofs for distributed
consensus problems. Distributed Computing, 1:26–39, 1986.

[FM88] P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. In
STOC ’88, pages 148–161, 1988.

[Gen95] R. Gennaro. Achieving independence efficiently and securely. In PODC ’95, pages
130–136, 1995.

[Gen00] R. Gennaro. A protocol to achieve independence in constant rounds. IEEE Trans.
Parallel Distrib. Syst., 11(7):636–647, 2000.

[GL02] S. Goldwasser and Y. Lindell. Secure computation without agreement. In
DISC ’02, volume 2508 of LNCS, pages 17–32, 2002.

[GM93] J. A. Garay and Y. Moses. Fully polynomial Byzantine agreement in t+1 rounds.
In STOC ’93, pages 31–41, 1993.

[Hev06] A. Hevia. Universally composable simultaneous broadcast. In SCN 2006, volume
4116 of LNCS, pages 18–33, 2006.

[HM05] A. Hevia and D. Micciancio. Simultaneous broadcast revisited. In PODC ’05,
pages 324–333, 2005.

[KY84] A. Karlin and A.C. Yao. Manuscript, 1984.
[LLR02] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenticated

Byzantine agreement. In STOC 2002, pages 514–523, 2002.
[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3):382–401, 1982.
[Nie03] J. B. Nielsen. On Protocol Security in the Cryptographic Model. PhD thesis,

BRICS, 2003.
[PW92] B. Pfitzmann and M. Waidner. Unconditional Byzantine agreement for any number

of faulty processors. In STACS ’92, volume 577 of LNCS, pages 339–350, 1992.
[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with

honest majority. In STOC ’89, pages 73–85, 1989.
[TPS87] S. Toueg, K. J. Perry, and T. K. Srikanth. Fast distributed agreement. SIAM J.

Comput., 16(3):445–457, 1987.

20

