
Plaintext-Dependent Decryption:
A Formal Security Treatment of SSH-CTR⋆

Kenneth G. Paterson⋆⋆ and Gaven J. Watson⋆ ⋆ ⋆

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, U.K.
kenny.paterson@rhul.ac.uk, g.watson@rhul.ac.uk

Abstract. This paper presents a formal security analysis of SSH in
counter mode in a security model that accurately captures the capabil-
ities of real-world attackers, as well as security-relevant features of the
SSH specifications and the OpenSSH implementation of SSH. Under rea-
sonable assumptions on the block cipher and MAC algorithms used to
construct the SSH Binary Packet Protocol (BPP), we are able to show
that the SSH BPP meets a strong and appropriate notion of security:
indistinguishability under buffered, stateful chosen-ciphertext attacks.
This result helps to bridge the gap between the existing security analysis
of the SSH BPP by Bellare et al. and the recently discovered attacks
against the SSH BPP by Albrecht et al. which partially invalidate that
analysis.

Keywords: SSH; counter mode; security proof

1 Introduction

SSH is one of the most widely used secure network protocols. Originally
designed as a replacement for insecure remote login procedures which sent
information in plaintext, it has since become a general purpose tool for
securing Internet traffic. The current version of SSH, SSHv2, was designed
in 1996, and it is this version to which we refer throughout this paper.
The SSHv2 protocols are defined in a collection of RFCs [4, 11–14].

The SSH Binary Packet Protocol (BPP), as specified in [13], is the
component of SSH that is responsible for providing confidentiality and in-
tegrity services to all messages exchanged over an SSH connection. It was

⋆ This research was supported in part by the European Commission under contract
ICT-2007-216676 (ECRYPT-II).

⋆⋆ This author supported by an EPSRC Leadership Fellowship, EP/H005455/1.
⋆ ⋆ ⋆ This author supported by an EPSRC Industrial CASE studentship sponsored by

BT Research Laboratories.

subjected to a formal cryptographic security analysis using the methods
of provable security by Bellare et al. [3]. Bellare et al. introduced a stateful
security model and notion for SSH-style protocols. They also proved that
several minor variants of the SSH BPP meet their security notion, given
reasonable assumptions about the cryptographic primitives. In particular,
they showed that, while the SSH BPP using CBC mode encryption with
IV chaining (SSH-IPC) is insecure, the SSH BPP using either CBC mode
encryption with explicit random IVs and random padding (SSH-$NPC),
or counter mode encryption (SSH-CTR), is secure in their model.

However, the recent work of Albrecht et al. [1] has demonstrated plain-
text recovery attacks against both SSH-IPC and SSH-$NPC, despite the
proof of security for SSH-$NPC in [3]. The attacks in [1] exploit several
features that are intrinsic to the SSH specification and to implementa-
tions, but that are not captured in the security model of [3]: firstly, the
decryption process depends on the packet length field, which itself forms
part of the plaintext data; secondly, data can be delivered to the de-
crypting party in a byte-by-byte manner by an attacker, allowing the
attacker to observe the behaviour of the decrypting party after each byte
is received; and, thirdly, the attacker can distinguish various kinds of de-
cryption failure (most importantly, the attacker can tell exactly when a
MAC fails to verify). As a consequence of these attacks, versions 5.2 and
higher of OpenSSH, the leading implementation of SSH, now negotiate
the selection of counter mode in preference to CBC mode. This follows the
recommendation of the CPNI vulnerability announcement [7]. OpenSSH
versions 5.2 and higher also include specific counter-measures for CBC
mode to frustrate the CBC-specific attacks of [1].

No attacks are known against the SSH BPP using counter mode, and
the security model and proof for the relevant scheme SSH-CTR provided
in [3] does rule out many classes of attack. Yet it is evident, in view
of the attacks in [1], that the current formal security analysis of SSH-
CTR in [3] is inadequate. In particular, the current analysis of SSH-
CTR does not take into account the plaintext-dependent nature of the
decryption process, nor the ability of the attacker to interact in a byte-by-
byte manner with the decryption process. Indeed, the length field which
turns out to be so critical to breaking SSH in [1] is ignored in the security
analysis of [3], while it is assumed in [3] that ciphertexts are processed in
an atomic fashion. Moreover, while the model of [3] does include errors
arising from cryptographic processing, it does not do so in a way that
accurately reflects the reality of SSH implementations such as OpenSSH –
in the model of [3], any error condition leads to an identical error message,

while in reality, the error type and the timing of the error can both leak
to the adversary. This additional information was also exploited in the
attacks of [1].

1.1 Our contribution

This paper aims to bridge the gap between the current security analy-
sis of the SSH-CTR in [3] on the one hand, and the reality of the SSH
specifications in the RFCs and the OpenSSH implementation of the SSH
BPP using counter mode on the other. We develop a security model for
the SSH BPP that extends the stateful model introduced in [3] and that
is driven by our desire to more closely align the security model with the
SSH specifications and the OpenSSH implementation. We focus on the
OpenSSH implementation in preference to any of the many other SSH im-
plementations available because of its widespread use [10]. A novel aspect
of our security model is its ability to allow the attacker to interact with
the decryption oracle in a byte-by-byte fashion, with ciphertext bytes be-
ing buffered until they can be processed. Novel aspects of our description
of the SSH BPP using counter mode include its provision for plaintext-
dependent decryption, and accurate modeling of all the error events that
arise during decryption in the OpenSSH implementation of the SSH BPP
in counter mode. We prove that the SSH BPP using counter mode is
secure in our model, under standard assumptions concerning the cryp-
tographic components used in the construction. This requires significant
reworking of the security analysis for counter mode in [3] to take account
of the new features of our model and our description of the SSH BPP.
Our analysis is sufficient to show that the SSH BPP using counter mode
is immune to the type of attacks reported in [1].

While our analysis is quite specific to the SSH BPP in counter mode,
we believe that the modeling and proof techniques developed here should
be much more widely applicable: all reasonably complex secure com-
munication protocols involve handling of error and other management
messages, and many such protocols allow for the adversary to interact
with the decryption process in a fine-grained manner (rather than in a
“ciphertext-atomic” manner). More generally, we hope that our practice-
driven, provable security analysis of the SSH BPP will serve as an example
to show that provable security techniques have an important role to play
in analyzing protocols that are used in the real world, whilst taking into
account low-level, code-oriented behaviours of the cryptographic elements
of the protocols.

1.2 Paper Organisation

We begin by giving a description of the SSH Binary Packet Protocol in
Section 2, using this to identify the key features required in our modeling
of the SSH BPP and its security. In Section 3 we define the building
blocks that we use to define the SSH BPP’s Encode-then-Encrypt&MAC
encryption scheme. Section 4 gives the definitions of our new security
models. Section 5 contains our proof of security for SSH using counter
mode encryption. Section 6 presents our conclusions.

2 SSH Binary Packet Protocol

The SSH Binary Packet Protocol (BPP) is defined in RFC 4253 [13]. The
SSH BPP provides both confidentiality and integrity of messages sent over
an SSH connection using an encode-then-encrypt&MAC construction. A
message is first encoded by prepending a 4 byte packet length field and 1
byte padding length field and appending a minimum of 4 bytes of random
padding. The packet length field specifies the total length of the encoded
message excluding the packet length field itself. This encoded message
is then encrypted. There are various algorithms supported for encryp-
tion, but here, in the light of the attacks in [1], we only consider stateful
counter mode encryption, as specified for SSH in RFC 4344 [4]. Since the
SSH BPP is specified in a blockwise manner, SSH still appends padding
even when using counter mode encryption. The final ciphertext is the
concatenation of the encoded-then-encrypted message and a MAC value.
The MAC value is computed over the concatenation of a 32-bit packet
sequence number and the encoded (but not encrypted) message. The se-
quence number is not sent over the channel but is maintained separately
by both communicating parties.

2.1 Modeling the SSH BPP and its Security

We now give a high-level description of the main features of our model for
the SSH BPP and its security, explaining how these arise from features
of the SSH BPP specification and specific implementations.

As with the model of [3], our model for the SSH BPP is a stateful one,
reflecting the protocol’s use of per-packet sequence numbers. We also wish
to give the adversary access to encryption and decryption oracles in a
left-or-right indistinguishability game. We next discuss how these oracles
should be defined, with further details to follow in the sections ahead. At

this point, our model begins to significantly diverge from the model of
[3].

When decrypting a ciphertext, the receiver should first decrypt the
first block received and retrieve the packet length field in order to de-
termine how much more data must be received before the MAC tag is
obtained. According to RFC 4253 [13]:

“Implementations SHOULD decrypt the length after receiving the
first 8 (or cipher block size, whichever is larger) bytes of a packet.”

Thus we may expect that an SSH implementation will enter into a wait
state, awaiting further data, unless sufficient data has already arrived to
complete the packet. Informally speaking, this renders the entire decryp-
tion process plaintext-dependent, in the sense that the number of cipher-
text bytes required before the decryption process can complete (possibly
with an error message because of a MAC verification failure) is deter-
mined by the initial bytes of the plaintext. Moreover, because SSH is
implemented over TCP, the attacker can deliver as few or as many bytes
of ciphertext at a time as he wishes to the decrypting party. These facts
are exploited in the attacks against the SSH BPP in CBC mode in [1].
Thus our security analysis for the SSH BPP needs to consider the length
field and how its processing affects security, as well as allowing the adver-
sary to deliver data to the decryption oracle in a byte-by-byte manner in
the security model. However, it should be noted that the plaintext mes-
sage is not made available to the adversary in a byte-by-byte manner as
it is decrypted. Instead, in implementations, the plaintext is buffered un-
til sufficient data has arrived that the MAC can be checked. Our model,
therefore, needs to allow byte-by-byte delivery of ciphertext data, but also
to include a buffered decryption process.

In fact, the situation is more complicated than this because imple-
mentations of SSH also follow the advice in RFC 4253 [13] to perform
sanity checking of the length field as soon as it is obtained from the first
block of ciphertext:

“. . . implementations SHOULD check that the packet length is rea-
sonable in order for the implementation to avoid denial of service
and/or buffer overflow attacks.”

What is “reasonable” is not defined in the RFCs, and specific implemen-
tations adopt various practices. Version 5.2 of OpenSSH implements a
particular set of checks, and tries to tear down the SSH connection with
an error message in the event that these checks fail. This error condition

is generally quite easy to distinguish from a MAC failure in an attack be-
cause an SSH implementation can be made to pass through a wait state
before the MAC failure. The distinguishability of these different error con-
ditions is used in the attacks against OpenSSH in CBC mode in [1]. So a
security model for the SSH BPP should include errors arising from length
checking as well as from MAC failures, and should report these errors in
such a way that they can be distinguished by the adversary. Additional
errors may arise after MAC checking, because of a failure of the decoding
algorithm applied to the recovered, encoded message. Again, the model
should reflect this possibility. To comply with the SSH specifications, all
of these errors should be “fatal”, leading to the destruction of the SSH
connection. However, note that an adversary may be able to prevent such
error messages from reaching the peer of party initiating the tear-down.
We handle this aspect by having separate states for the encryption and
decryption oracles in our model, and with an error arising during decryp-
tion leading to the loss of the decryption oracle, but not the encryption
oracle, and vice-versa.

It is notable that SSH attempts to hide the packet length field by
encrypting it. However, a simple extension of the attacks in [1] shows
that this is futile: an attacker who can detect the start of a new packet
simply needs to flip a bit somewhere in the ciphertext after the length
field and wait for a MAC failure. Simple arithmetic involving the number
of ciphertext bytes delivered before the MAC failure is seen then tells
the attacker what the content of the packet length field was. Of course,
the cost of this attack is to lose the SSH connection. However, it shows
that the length field cannot be hidden from an active attacker. For this
reason, we will insist that, in our left-or-right indistinguishability game,
all pairs of messages submitted to the encryption oracle should have the
same length when encoded, so that they cannot be trivially distinguished
using the above attack.

3 Definitions

3.1 Notation

First let us begin by defining some notation. For a string x, let |x| de-
note the length of x in bytes, and let x[i] denote the i-th block of x,
where, throughout, blocks consist of L bytes. Let x[1. . .n] denote the
concatenation of the blocks x[1], x[2], . . ., x[n] of x and let x∥y denote the
concatenation of strings x and y. Let ε denote the empty string. Let ⟨i⟩t
denote the t-byte binary representation of integer i, where 0 ≤ i < 28t.

3.2 Building Blocks

Based on the discussion in the previous section, we now define the primi-
tives which form the building blocks in our description of the SSH BBP’s
encode-then-encrypt&MAC construction. These building blocks are an
encoding scheme EC, an encryption scheme (we consider only counter
mode encryption) and a message authentication schemeMA.

Encoding Scheme: The encoding scheme EC = (enc, dec) used in SSH
consists of an encoding algorithm enc and a decoding algorithm dec. The
encoding algorithm enc is stateful and randomised, takes as input a mes-
sage m and outputs two messages (me,mt). Here as in [3], me denotes
the encoded message which will be used by any future encryption pro-
cess and mt denotes the encoded message which will be used by a MAC
tagging algorithm. As required by the SSH BPP, the encoding algorithm
prepends some length information about the message and appends some
padding.

The decoding algorithm dec is stateful and deterministic. It takes as
input the full encoded message me = me[1. . .n], strips off all length fields
and outputs the decoded message m. However, if it is unable to parse the
message correctly an error message ⊥P is output. Note that our definition
of dec is slightly different to that in [3] which had two outputs m and mt.
Note also that dec will only be called during the decryption process for
SSH if both length checking and MAC checking have not returned errors.
For correctness of the encoding scheme, we require that for any m with
enc(m) = (me,mt) ̸= (⊥,⊥), we have dec(me) ̸=⊥P .

The specific encoding scheme used by the SSH BPP specification is
shown in Figure 1. Here, L denotes the block-size in bytes of the block
cipher in use (or the default value of 8 if a stream cipher such as AR-
CFOUR is being used), LF denotes the length field, PL denotes the
padding length and PD denotes the padding bytes. The padding bytes
are assumed to be random in our security analysis, though our security
results also hold for any distribution on the padding bytes (including fixed
bytes). We test that the message m submitted for encoding contains at
most 232 − 6 bytes, so that the length of the encoded message can be
recorded in the 4-byte length field. Each of the two algorithms enc, dec
maintains a separate state of the form (st, SN), initially set to (ε, 0). In
each case, the first component st maintains the status of the algorithm,
i.e. if the algorithm is in an error state or not. This is used to model the
effect of an SSH connection tear-down when an error occurs. The second
component SN denotes a 32-bit sequence number. Note that RFC 4344

Algorithm enc(m)
if ste =⊥ then

return (⊥,⊥)
end if
if SNe ≥ 232 or |m| ≥ 232 − 5 then

ste ←⊥
return (⊥,⊥)

else
PL← L− ((|m|+ 5) mod L)
if PL < 4 then

PL← PL+ L
end if
PD

r← {0, 1}8·PL

LF ← (1 + |m|+ PL)
me ← ⟨LF ⟩4∥⟨PL⟩1∥m∥PD
mt ← SNe∥me

SNe ← SNe + 1
return (me,mt)

end if

Algorithm dec(me)
if std =⊥ then

return ⊥
end if
if SNd ≥ 232 then

std ←⊥
return ⊥

else
Attempt to parse me as:
⟨LF ⟩4∥⟨PL⟩1∥m∥PD where
PL ≥ 4, |PD| = PL and |m| ≥ 0.
if parsing fails then

std ←⊥
return ⊥P

else
SNd ← SNd + 1
return m

end if
end if

Fig. 1. Encoding Scheme for SSH

[4] states that when the sequence number SN wraps around, new keys
must be negotiated. For simplicity in our analysis, we model this by forc-
ing ste (or std) to ⊥ when SNe (or SNd) reaches 2

32. In our full model of
the SSH BPP, this has the effect of removing the adversary’s access to the
encryption or decryption oracle. This ensures that each value of SNe or
SNd is used only once, and is equivalent to enforcing rekeying when the
relevant sequence number wraps around. Note that in [3], the equivalent
state consists of a single value which is “over-loaded” to carry both the
algorithm status and sequence number. For concreteness, Figure 1 shows
the specific parsing steps carried out by OpenSSH during decoding. Other
implementations may perform different checks here.

Encryption Scheme: The construction of SSH that we consider uses
counter mode encryption of a block cipher, and is called SSH-CTR in
[3]. When we come to formally analyze the security of SSH-CTR, we will
regard the block cipher as being a pseudorandom function (prf) family
rather than as a pseudorandom permutation family. This allows us to
directly use some of the results from [2]. Our definition for a prf family
can be found in the full version of this paper [9].

We give a formal definition for counter mode encryption based on a prf
family F , CTR[F] = (K-CTR, E-CTR,D-CTR) in [9]. The key generation
algorithm K-CTR outputs a random k-bit key Ke for the underlying prf

family F , therefore specifying a function FKe having l-bit inputs and
L-byte outputs. Note that in practice we have l = 8L since all block
ciphers have equal input and output size. The key generation algorithm
also outputs a random l-bit initial counter ctr, which is used to initialise
counters in the encryption and decryption algorithms E-CTR, D-CTR.

We also define the scheme CTREC [F] to be a combination of counter
mode encryption and the encoding/decoding scheme from Figure 1. Full
details of this scheme appear in [9]. This construction is not used in SSH,
but is needed as a step in our security analysis in Section 5.

Message Authentication Scheme: A message authentication scheme
(MAC)MA = (Kt, T ,V) consists of three algorithms. The key generation
algorithm Kt returns a key Kt. The tag algorithm T , which may be state-
ful and randomised, takes as input the keyKt and an encoded message mt

and returns a tag τ . The verification algorithm V, which is deterministic
and stateless, takes as finput the key Kt and an encoded message mt and
a candidate tag τ ′ and outputs a bit. For any key Kt, message mt and
internal state of TKt , we require that VKt(mt, TKt(mt)) = 1.

3.3 Encode-then-Encrypt&MAC

With the above components defined, we are now ready to define SSH-
CTR. Note that our version is significantly different from that considered
in [3] because of the new features that we discussed in Section 2.1.

Our construction of SSH-CTR is an Encode-then-Encrypt&MAC con-
struction with plaintext-dependent decryption. We define SSH-CTR =
(K-SSH-CTR, E-SSH-CTR,D-SSH-CTR) in Figure 2. This makes use of
the encoding scheme EC described in Section 3.2, the encryption scheme
CTR[F] and a message authentication schemeMA, where the length of
the MAC tag is maclen. It also makes use of a length checking algorithm
len that we discuss below. Note that this construction is stateful. The en-
cryption state arises from the counter mode state ctre combined with the
state (ste, SNe) of the algorithm enc. The decryption state arises from the
counter mode state ctrd, the state (std, SNd) of the algorithm dec, and the
ciphertext buffer cbuff. We will refer to the scheme SSH-CTR[F] when-
ever we wish to highlight the scheme’s reliance on a particular function
family F in the encryption component.

The key generation algorithm K-SSH-CTR selects keys for counter
mode encryption and the MAC algorithm uniformly at random from the
relevant key-spaces. This represents a significant abstraction from reality

Algorithm K-SSH-CTR(k)
Ke

r← Ke(k)
Kt

r← Kt(k)
ctr

r← {0, 1}l
return Ke,Kt

Algorithm E-SSH-CTRKe,Kt(m)
if ste =⊥ then

return ⊥
end if
(me,mt)← enc(m)
if me =⊥ then

ste ←⊥
return ⊥

else
c← E-CTRKe(me)
τ ← TKt(mt)
return c∥τ

end if

Algorithm len(m) (|m| = L)
Parse m as ⟨LF ⟩4∥R
if LF ≤ 5 or LF ≥ 218 then

return ⊥L

else if LF + 4 mod L ̸= 0 then
return ⊥L

else
return LF

end if

Algorithm D-SSH-CTRKe,Kt(c)
if std =⊥ then

return ⊥
end if
{Stage 1}
cbuff← cbuff∥c
{Stage 2}
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃∥A (where |c̃| = L)
me[1]← D-CTRKe(c̃)
LF ← len(me[1])
if LF =⊥L then

std ←⊥
return ⊥L

else
need = 4 + LF + maclen

end if
end if
{Stage 3}
if |cbuff| ≥ L then

if |cbuff| ≥ need then
Parse cbuff as c̄[1. . .n]∥τ∥B,
where |c̄[1. . .n]∥τ | = need,
and |τ | = maclen

me[2. . .n]← D-CTRKe(c̄[2. . .n])
me ← me[1]∥me[2. . .n]
mt ← SNd∥me

v ← VKt(mt, τ)
if v = 0 then

std ←⊥
return ⊥A

else
m← dec(me)
me ← ε, cbuff← B
return m

end if
end if

end if

Fig. 2. SSH-CTR, SSH using counter mode encryption

in our description of SSH-CTR, since in practice these keys and the initial
counter value ctr are derived in a pseudorandom manner from the keying
material established during SSH’s key exchange protocol. The decryption
algorithm D-SSH-CTR is considerably more complex than one might ex-
pect. This complexity is required to accurately model all the features of
the SSH specification and the OpenSSH implementation. D-SSH-CTR
operates in 3 distinct stages.

In Stage 1, a sequence of ciphertext bytes c of arbitrary length is
received and appended to the ciphertext buffer cbuff.

In Stage 2 of D-SSH-CTR, once sufficient bytes have arrived to pro-
cess the first block of ciphertext, the packet length field is extracted, and
length checking is performed by making a call to the function len. This
accords with our discussion in Section 2.1. The function len is shown as
part of Figure 2. It takes as input a single block of plaintext, and returns
either the content of the length field (as an integer) or a failure symbol
⊥L. The exact details of length checking, and how to behave if length
checking fails, is implementation-specific and not specified in the RFCs.
Figure 2 shows the exact checks carried out by OpenSSH version 5.2 in
counter mode; our subsequent analysis still holds so long as the algorithm
at a minimum checks that the total number of encrypted bytes (i.e. ex-
cluding the MAC tag) indicated by the length field is a multiple of the
block-size L, and fails if this is not the case. For further discussion, see the
full version [9]. Note that when length checking fails in OpenSSH version
5.2 in counter mode, an error message is sent and the SSH connection is
torn down. We model this by outputting a length error ⊥L and setting
the state std to ⊥. Because the first action of D-SSH-CTR is to simply
return ⊥ if std is already equal to ⊥, our description of SSH-CTR mod-
els the subsequent connection tear-down seen in OpenSSH. If the length
checks pass, then D-SSH-CTR proceeds to use the returned value of LF
to determine the value of need, which is the number of additional cipher-
text bytes that are needed before the entire ciphertext (including MAC
tag) is adjudged to have arrived. This makes the decryption algorithm
plaintext-dependent and no further output is produced by D-SSH-CTR
until the complete ciphertext has arrived and its MAC has been checked.

In Stage 3 of D-SSH-CTR, ciphertext bytes that have been buffered
in cbuff during Stage 1 are processed. Note that our model allows the
recipient to receive more data than he expects; this data is denoted by
B in Stage 3. This data is assumed to be the start of the next ciphertext
message and so we reinitialise cbuff with this data at the end of Stage
3. Once the buffer contains sufficient data (as determined by the variable
need), the decryption algorithm uses counter mode to obtain the encoded
plaintext me and the message mt to be verified by the MAC algorithm
(this consists of me with the sequence number prepended). The MAC tag
is then checked, and, if it verifies successfully, the encoded plaintext me

is passed to the dec algorithm (as defined in Figure 1). Notice that three
types of error can arise during this stage: a failure of the MAC verification,
resulting in output ⊥A, a failure of parsing during decoding, resulting

in output ⊥P , or a wrap-around of the sequence number SNd during
decoding, resulting in output ⊥. When any of these errors arises, the state
std of the decryption algorithm is set as ⊥. This state is checked at the
start of every oracle query and if it equals ⊥, then an error message ⊥ is
returned. In this way, our description of SSH-CTR models the subsequent
connection tear-down seen in OpenSSH.

This description of SSH-CTR faithfully models OpenSSH in counter
mode, in the sense of having buffered, plaintext-dependent decryption,
and with errors arising at exactly the same points during decryption and
based on the same failure conditions that are tested in OpenSSH. There
are other ways in which to implement SSH and still be RFC-compliant.
For example, the full decoding of the message, and hence parsing checks,
could be performed before the MAC verification, as is the case in the
construction of SSH-CTR given in [3].

4 Security Models

4.1 Chosen Plaintext Security

We begin by extending the usual left-or-right (LOR) indistinguishability
game for a CPA adversary from [2] to handle stateful encryption and leak-
age of length information. This extension is only needed at intermediate
steps in our security analysis, while we are primarily interested in the se-
curity of the SSH BPP under chosen ciphertext attacks. For this reason,
we content ourselves with chosen plaintext security definitions that are
tied to the particular schemes SSH-CTR[F] and CTREC [F] that we need
to analyze.

In the usual LOR-CPA model the adversary is given access to a left-or-
right encryption oracle E(LR(·, ·, b)), where b ∈ {0, 1}. This oracle takes
as input two messages m0 and m1. If b = 0 it outputs the encryption of
m0 and if b = 1 it outputs the encryption of m1. It is the adversary’s
challenge to determine the bit b. The advantage of such an adversary is
defined in the usual way. Our extension of the LOR-CPA model makes
it stateful and incorporates leakage of a length field. To achieve the for-
mer, we incorporate explicit sequence numbers in the model. To achieve
the latter, we provide the adversary with access to a length revealing
oracle L(·) whose operation is specific to the particular scheme under
study. For the schemes SSH-CTR[F] and CTREC [F], the oracle takes as
input a block c which is treated as the first block of a new message; the
oracle decrypts this block to retrieve the length field and performs the
required length checking functions, and then outputs either the length

field LF or the symbol ⊥L signifying an invalid length field. We require
that L(·) maintains its own view of any internal state of the underlying
encryption scheme, according to the queries it receives. For the schemes
we consider, this is done by increasing a counter value ctrl by a number
that is determined by the length field, and increasing a sequence number
SNl by 1, each time the oracle is called; at the start of the security game,
ctrl and SNl are set to the corresponding values held at the encryption
oracle. The detailed operation of the length oracle associated with the
schemes SSH-CTR[F] and CTREC [F] can be found in the full version
[9]. We name our new model LOR-LLSF-CPA, where “LLSF” stands for
“length leaking stateful”.

In [3], decryption queries are defined to be either “in-sync” or “out-of-
sync” with respect to the sequence number at the encryption oracle. We
introduce a similar concept for length oracle queries in our next definition:

Definition 1. [LOR-LLSF-CPA]
Consider the stateful encryption scheme SE = (K, E ,D) with an associ-
ated length oracle L(·). Let b ∈ {0, 1} and k ∈ N. Let A be an attacker
that has access to the oracles EK(LR(·, ·, b)) and L(·) The game played is
as follows:

Explor-llsf-cpa-b
E,A (k)

K
r← K(k)

b′ ← AEK(LR(·,·,b)),L(·)

return b′

For all queries (m0,m1) to EK(LR(·, ·, b)), we require that |enc(m0)| =
|enc(m1)|. In this model the adversary has the possibility of making three
different types of query to L. Let SNe denote the sequence numbers at the
encryption oracle and let SNl denote the sequence numbers at the length
oracle.

– A query c to L when the length oracle has sequence number SNl is
said to be in-sync if c is equal to the first block of ciphertext output by
the encryption oracle when it had sequence number SNe = SNl.

– A query c to L when the length oracle has sequence number SNl is
said to be an out-of-sync current state query if c is not equal to the
first block of ciphertext output by the encryption oracle when it had
sequence number SNe = SNl.

– A query to L when the length oracle has sequence number SNl is said
to be an out-of-sync future state query if SNl > SNe, where SNe is
the sequence number used by the encryption oracle when responding
to its most recent query.

We require that the response to any further length oracle queries following
the first out-of-sync query is ⊥.

The attacker wins when b′ = b, and its advantage is defined to be:

Advlor-llsf-cpaSE,A (k) = Pr[Explor-llsf-cpa-1
SE,A (k) = 1]−Pr[Explor-llsf-cpa-0

SE,A (k) = 1].

The advantage function of the scheme is defined to be

Advlor-llsf-cpaSE (k, t, qe, µe, ql) = max
A
{Advlor-llsf-cpaSE,A (k)}

for any integers t, qe, µe, ql. The maximum is over all adversaries A with
time complexity t, making at most qe queries to the encryption oracle,
totalling at most µe bits in each of the left and right inputs, and ql queries
to the length revealing oracle.

4.2 Chosen Ciphertext Security

Now we consider chosen ciphertext attackers. We introduce a new security
notion for left-or-right indistinguishability against chosen-ciphertext at-
tackers for buffered, stateful decryption (LOR-BSF-CCA). In this model,
which extends the IND-SFCCA model of [3], the adversary is given ac-
cess to an encryption oracle and to a buffered decryption oracle. The
model applies for any encryption scheme in which the decryption oracle
maintains a buffer of as-yet-unprocessed ciphertext bytes cbuff and in
which encryption and decryption states include sequence numbers which
are incremented after each successful operation. For reasons explained in
Section 2.1, we need to limit the attacker’s queries to the encryption oracle
to pairs of messages (m0,m1) having the same length when encoded.

Definition 2. [LOR-BSF-CCA]
Consider the symmetric encryption scheme SE = (K, E ,D) with buffered,
stateful decryption. Let b ∈ {0, 1} and k ∈ N. Let A be an attacker that
has access to the oracles EK(LR(·, ·, b)) and DK(·). The game played is
as follows:

Explor-bsf-cca-b
SE,A (k)

K
r← K(k)

b′ ← AEK(LR(·,·,b)),DK(·)(k)
return b′

We require that for all queries (m0,m1) to EK(LR(·, ·, b)), |enc(m0)| =
|enc(m1)|. In this model the adversary has the possibility of making three

different types of decryption query. Let SNe denote the sequence numbers
at the encryption oracle and let SNd denote the sequence numbers at the
decryption oracle. Recall that, since the adversary can deliver ciphertexts
in a byte-wise fashion to the decryption oracle, the same value of SNd

may be involved in processing a sequence of ciphertext queries.

– The sequence of decryption queries corresponding to the sequence num-
ber SNd is said to be in-sync if, after input of the final query in the
sequence, the ciphertext buffer cbuff has as a prefix the output from
the encryption oracle for sequence number SNe = SNd. The response
from an in-sync query is not returned to the adversary.

– The sequence of decryption queries corresponding to the sequence num-
ber SNd is said to be an out-of-sync current state query if, after input
of the final query in the sequence, the ciphertext buffer cbuff does
not have the output from the encryption oracle for sequence number
SNe = SNd as a prefix.

– The sequence of decryption queries corresponding to the sequence num-
ber SNd is said to be an out-of-sync future state query if SNd > SNe,
where SNe is the sequence number used by the encryption oracle when
responding to its most recent query.

The response to any further decryption queries following an out-of-sync
query is the ⊥ symbol.

The attacker wins when b′ = b, and its advantage is defined to be:

Advlor-bsf-ccaSE,A (k) = Pr[Explor-bsf-cca-1
SE,A (k) = 1]− Pr[Explor-bsf-cca-0

SE,A (k) = 1].

The advantage function of the scheme is defined to be

Advlor-bsf-ccaSE (k, t, qe, µe, qd, µd) = max
A
{Advlor-bsf-ccaSE,A (k)}

for any integers t, qe, µe, qd, µd. The maximum is over all adversaries A
with time complexity t, making at most qe queries to the encryption oracle,
totalling at most µe bits in each of the left and right inputs, and at most
qd series of queries to the decryption oracle, totalling at most µd bits.

In the model above, the response from an in-sync decryption query
is not returned to the adversary. This is required in order to prevent
the obvious and trivial attack in which the adversary simply queries the
decryption oracle with the output from the encryption oracle. We include
in-sync decryption queries in order to permit the adversary to observe
the system’s behaviour in encrypting messages of its choice and to let the

adversary advance the sequence numbers maintained at the encryption
and decryption oracles to values of its choice. We make the restriction
that only one out-of-sync query is allowed for the same reason that this
restriction is made in [3]: if the first out-of-sync query does not decrypt
successfully, the decryption oracle enters a halting state anyway, while
if it does, then our security analysis will show that the adversary has
broken the strong unforgeability of the MAC scheme. Our security model
and analysis can be extended to handle multiple out-of-sync decryption
queries.

The specific decryption oracle we consider when analyzing the security
of SSH-CTR operates exactly as the decryption algorithm D-SSH-CTR in
Section 3.3: the oracle takes as input an arbitrary number of bytes which
is then added to cbuff; the decryption process uses the first plaintext
block to determine how many bytes of ciphertext are needed to complete
the packet; and the decryption process involves length checking, MAC
checking, and decoding, with each of these steps potentially outputting
a distinct error message. Also note that for SSH-CTR, the decryption
oracle acts as a “bomb” oracle: when an error of any type occurs this
oracle simply outputs ⊥ in response to any further query. This models
an attempt by the decrypting party to initiate an SSH connection tear-
down. However, note that our model for SSH-CTR has separate states
for encryption and decryption, so that the encryption oracle is not “lost”
if the decryption oracle is. This allows us to model an adversary that
outputs the relevant error messages. This description of SSH-CTR in
the context of the LOR-BSF-CCA model is sufficiently rich to give the
attacker all the capabilities exploited in the attacks of Albrecht et al. [1].
Thus, if we can prove SSH-CTR to be secure in the LOR-BSF-CCA sense,
then attacks of the kind developed in [1] will be prevented.

4.3 Integrity of Ciphertexts

We next extend the INT-SFCTXT model from [3] to include buffered
decryption. We call our new model “integrity of ciphertexts for buffered,
stateful decryption” or INT-BSF-CTXT. The model again applies for any
encryption scheme in which the decryption oracle maintains a buffer of
as-yet-unprocessed ciphertext bytes cbuff and in which encryption and
decryption states include sequence numbers which are incremented after
each successful operation.

In this INT-BSF-CTXT model, the adversary has access to encryption
and decryption oracles, and is considered successful if it is able to make an
out-of-sync sequence of decryption queries that results in an output from

the decryption oracle that is not a member of the set {⊥L,⊥A,⊥P ,⊥}.
Again, the specific decryption oracle that we consider when analyzing
the security of SSH-CTR operates exactly as the decryption algorithm
D-SSH-CTR in Section 3.3. The formal definition of the INT-BSF-CTXT
model can be found in the full version of this paper [9].

4.4 Security of Message Authentication Schemes

Finally, we define two security notions for MACs. We will use the LOR-
DCPA notion from [3], for distinct plaintext privacy of message authenti-
cation schemes. We will also use the standard SUF-CMA model for strong
unforgeability of MACs. The formal definitions for these notions can also
be found in the full version [9].

5 Security Analysis

We will now present our main result, Theorem 1. This theorem provides
a concrete security guarantee for the scheme SSH-CTR[F] in terms of
security properties of the prf family F and MAC scheme MA used in
its construction. The structure of our proof follows that in [3], but with
significant modifications being needed to handle the new features of our
security model and adversary. Our proof is valid no matter what length
checks are performed by the encoding scheme, so long as the minimal
length check described previously is included. Our proof is also valid (and
in fact can be tightened slightly) if the random padding bytes in the
encoding scheme are replaced by fixed bytes. It is also valid no matter
what specific parsing checks are carried out, provided that the encoding
scheme is correct. With the exception of our main result, the proofs are
given in the full version of this paper [9].

Theorem 1. Let SSH-CTR[F] be the combined encryption scheme for
the encoding scheme EC, counter mode encryption CTR[F] and a message
authentication schemeMA. Then for qe, qd ≤ 232, µe ≤ 8L2l−8qe(8+L)
and any t, k, µd, we have:

Advlor-bsf-ccaSSH-CTR[F](k, t, qe, µe, qd, µd)

≤ 2Advsuf-cma
MA (k, t, qt, µt, qv, µv) + 2AdvprfF (k, t′, qF) + 4AdvprfT (k, t′′, qt)

where qt = qe, µt ≤ µe + 8(L + 12)qe, qv = qd, µv ≤ µd + 32qd, qF ≤
ql + µe/8L+ qe(1 + 8/L), t′ = O(t) and t′′ = O(t).

Proof of Theorem 1: This follows from Theorem 2 and Lemmas 1, 2,
3, 4 and 5. �

The following is an extension of a result of Bellare and Namprempre
[5]; here we consider buffered, stateful decryption and include in our model
potential errors arising from length checking, MAC failures and parsing
failures.

Theorem 2. Let SSH-CTR[F] be the combined encryption scheme for
the encoding scheme EC, counter mode encryption CTR[F] and a message
authentication schemeMA. Then for any k, t, qe, µe, qd, µd, we have:

Advlor-bsf-ccaSSH-CTR[F](k, t, qe, µe, qd, µd)

≤ 2Advint-bsf-ctxtSSH-CTR[F](k, t, qe, µe, qd, µd) +Advlor-llsf-cpaSSH-CTR[F](k, t, qe, µe, ql)

where ql = qd.

Lemma 1. Let SSH-CTR[F] be the combined encryption scheme for the
encoding scheme EC, counter mode encryption CTR[F] and a message
authentication schemeMA. Then for qe, qd ≤ 232 and any k, t, µe, µd, we
have:

Advint-bsf-ctxtSSH-CTR[F](k, t, qe, µe, qd, µd) ≤ Advsuf-cma
MA (k, t, qt, µt, qv, µv)

where qt = qe, µt ≤ µe + 8(L+ 12)qe, qv = qd, and µv ≤ µd + 32qd.

Lemma 2. Let SSH-CTR[F] be the combined encryption scheme for the
encoding scheme EC, counter mode encryption CTR[F] and a message
authentication scheme MA. Then for qe, ql ≤ 232 and any k, t, µe, we
have:

Advlor-llsf-cpaSSH-CTR[F](k, t, qe, µe, ql)

≤ Advlor-llsf-cpa
CTREC [F]

(k, t′, qe, µe, ql) + 2Advlor-dcpaMA (k, t′′, qt, µt)

where qt = qe, t
′ = O(t), t′′ = O(t), and µt ≤ µe + 16(L+ 12)qe.

Lemma 3. Suppose F is a prf family with input length l bits and output
length L bytes. Let R = Randl→L be the set of all functions mapping l-bit
strings to L-byte strings. Then for any k, t, qe, µe, ql, we have:

Advlor-llsf-cpa
CTREC [F]

(k, t, qe, µe, ql)

≤ 2AdvprfF (k, t′, qF) +Advlor-llsf-cpa
CTREC [R]

(k, t, qe, µe, ql)

where qF ≤ ql + µe/8L+ qe(40 + 8(3 + L))/8L and t′ = O(t).

Lemma 4. For any k, t, ql, qe and µe ≤ 8L2l − 8qe(8 + L) we have:

Advlor-llsf-cpa
CTREC [R]

(k, t, qe, µe, ql) = 0.

Lemma 5. Let MA be a message authentication scheme. Then for any
k, t and qt, we have:

Advlor-dcpaMA (k, t, qt, µt) ≤ 2AdvprfT (k, t′, qt)

where t′ = O(t).

6 Conclusion

We have extended the security model of Bellare et al. [3] to develop a
model suited to analyzing the SSH BPP. We gave a description of SSH-
CTR that is closely linked to the specification of SSH in the RFCs and
the OpenSSH implementation of SSH. We then proved the security of
SSH-CTR in the extended model. Our approach is sufficiently powerful
to incorporate the attacks of Albrecht et al. [1]. This helps to close the
gap that exists between the formal security analysis of SSH and the way
in which SSH should be (and is in practice) implemented.

Our approach can be seen as an attempt to expand the scope of prov-
able security to incorporate the fine details of cryptographic implemen-
tations. We grant the attacker a much wider and more realistic set of
ways of interacting with the SSH protocol than in the previous analysis
of [3]. We believe that our approach captures more of the cryptograph-
ically relevant features of the SSH BPP, including plaintext-dependent,
byte-wise decryption and detailed modeling of the errors that can arise
during cryptographic processing in the SSH BPP.

References

1. M.R. Albrecht, K.G. Paterson and G.J. Watson. Plaintext recovery attacks against
SSH. In IEEE Symposium on Security and Privacy, pages 16–26. IEEE Computer
Society, 2009.

2. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. In Proceedings of 38th Annual Symposium on Foundations
of Computer Science (FOCS ’97), pages 394–403. IEEE, 1997.

3. M. Bellare, T. Kohno, and C. Namprempre. Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the encode-then-encrypt-
and-MAC paradigm. ACM Transactions on Information and Systems Security,
7(2):206–241, 2004.

4. M. Bellare, T. Kohno, and C. Namprempre. The Secure Shell (SSH) Transport
Layer Encryption Modes. RFC 4344, January 2006. http://www.ietf.org/rfc/

rfc4344.txt.
5. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-

tions and analysis of the generic composition paradigm. In T. Okamoto, ed., Asi-
acrypt 2000, volume 1976 of Lecture Notes in Computer Science, pages 531–545.
Springer, 2000.

6. B. Canvel, A.P. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password interception
in a SSL/TLS channel. In D. Boneh, ed., CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 583–599, 2003.

7. CPNI Vulnerability Advisory. Plaintext recovery attack against SSH, 14/11/2008
(revised 17/11/2008). http://www.cpni.gov.uk/Docs/Vulnerability_Advisory_
SSH.txt

8. H. Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In J. Kilian, ed., CRYPTO 2001, volume 2139
of Lecture Notes in Computer Science, pages 310-331, 2001.

9. K.G. Paterson and G.J. Watson. Plaintext-Dependent Decryption: A Formal Secu-
rity Treatment of SSH-CTR. Cryptology ePrint Archive, Report 2010/095, 2010.
http://eprint.iacr.org/2010/095

10. SSH usage profiling, http://www.openssh.org/usage/index.html.
11. T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC

4251, January 2006. http://www.ietf.org/rfc/rfc4251.txt.
12. T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol. RFC

4252, January 2006. http://www.ietf.org/rfc/rfc4252.txt.
13. T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol.

RFC 4253, January 2006. http://www.ietf.org/rfc/rfc4253.txt.
14. T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol. RFC

4254, January 2006. http://www.ietf.org/rfc/rfc4254.txt.

