
Universally ComposableQuantum Multi-Party Computation⋆Dominique UnruhSaarland UniversityAbstra
t. The Universal Composability model (UC) by Canetti (FOCS2001) allows for se
ure 
omposition of arbitrary proto
ols. We present aquantum version of the UC model whi
h enjoys the same 
ompositional-ity guarantees. We prove that in this model statisti
ally se
ure oblivioustransfer proto
ols 
an be 
onstru
ted from 
ommitments. Furthermore,we show that every statisti
ally 
lassi
ally UC se
ure proto
ol is also sta-tisti
ally quantum UC se
ure. Su
h impli
ations are not known for otherquantum se
urity de�nitions. As a 
orollary, we get that quantum UCse
ure proto
ols for general multi-party 
omputation 
an be 
onstru
tedfrom 
ommitments.1 Introdu
tionSin
e the in
eption of quantum key distribution by Bennett and Brassard [4℄, ithas been known that quantum 
ommuni
ation permits to a
hieve proto
ol tasksthat are impossible given only a 
lassi
al 
hannel. For example, a quantum keydistribution s
heme [4℄ permits to agree on a se
ret key that is statisti
ally se-
ret, using only an authenti
ated but not se
ret 
hannel. (By statisti
al se
uritywe mean se
urity against 
omputationally unbounded adversaries, also knownas information-theoreti
al se
urity.) In 
ontrast, when using only 
lassi
al 
om-muni
ation, it is easy to see that su
h a se
ret key 
an always be extra
ted bya 
omputationally su�
iently powerful adversary. Similarly, based on an ideaby Wiesner [25℄, Bennett, Brassard, Crépeau, and Skubiszewska [5℄ presented aproto
ol that was supposed to 
onstru
t a statisti
ally se
ure oblivious transfer1proto
ol from a 
ommitment, another feat that is easily seen to be impossible
lassi
ally.2 Oblivious transfer, on the other hand, has been re
ognized by Kilian[15℄ to se
urely evaluate arbitrary fun
tions. Unfortunately, the proto
ol of Ben-nett et al. 
ould, at the time, not be proven se
ure, and the �rst 
omplete proof
⋆ Funded by the Cluster of Ex
ellen
e �Multimodal Computing and Intera
tion�.1 In an oblivious transfer proto
ol, Ali
e holds two bitstrings m0, m1, and Bob a bit c.Bob is supposed to get mc but not m1−c, and Ali
e should not learn c.2 We remark that, on the other hand, Mayers [16℄ shows that also in the quantum 
ase,
onstru
ting a statisti
ally se
ure 
ommitment s
heme without any additional as-sumption is impossible. However, under additional assumptions like in the quantumbounded storage model by Damgård, Fehr, Salvail, and S
ha�ner [10℄, statisti
allyse
ure bit 
ommitment is possible. See Se
tion 1.1 for a dis
ussion of the impli
ationsof Mayers' impossibility result for our result.



of (a variant of) that proto
ol was given almost two de
ades later by Damgård,Fehr, Lunemann, Salvail, and S
ha�ner [9℄.Yet, although the oblivious transfer proto
ol satis�es the intuitive se
re
yrequirements of oblivious transfer, in 
ertain 
ases the proto
ol might lose itsse
urity when used in a larger 
ontext. In other words, there are limitations onhow the proto
ol 
an be 
omposed. For example, no se
urity guarantee is givenwhen several instan
es of the proto
ol are exe
uted 
on
urrently (see the fullversion [21℄ for a more detailed explanations of the various restri
tions).The problem of 
omposability has been intensively studied by the 
lassi
al
ryptography 
ommunity (here and in the following, we use the word 
lassi
alas opposed to quantum). To deal with this problem in a general way, Canetti [7℄introdu
ed the notion of Universal Composability, UC for short (P�tzmann andWaidner [19℄ independently introdu
ed the equivalent Rea
tive Simulatabilityframework). The UC framework allows to express the se
urity of a multitudeof proto
ol tasks in a uni�ed way, and any UC-se
ure proto
ol automati
allyenjoys strong 
omposability guarantees (so-
alled universal 
omposability). Inparti
ular, su
h a proto
ol 
an be run 
on
urrently with others, and it 
an beused as a subproto
ol of other proto
ols in a general way. Ben-Or and Mayers [3℄and Unruh [20℄ have shown that the idea of UC-se
urity 
an be easily adaptedto the quantum setting and have independently presented quantum variants ofthe UC notion. These notions enjoy the same strong 
ompositionality guaran-tees. Shortly afterwards, Ben-Or, Horode
ki, Leung, Mayers, and Oppenheim [2℄showed that many quantum key distribution proto
ols are quantum-UC-se
ure.Our 
ontribution. In this work, we use the UC framework to show the exis-ten
e of a statisti
ally se
ure and universally 
omposable oblivious transfer pro-to
ol that uses only a 
ommitment s
heme. Towards this goal, we �rst present anew de�nition of quantum-UC-se
urity. In our opinion, our notion is te
hni
allysimpler than the notions of Ben-Or and Mayers [3℄ and Unruh [20℄. We believethat this may also help to in
rease the popularity of this notion in the quantum
ryptography 
ommunity and to show the potential for using UC-se
urity in thedesign of quantum proto
ols. Se
ond, we show that a variant of the proto
ol byBennett et al. [5℄ is indeed a UC-se
ure oblivious transfer proto
ol. By 
omposingthis proto
ol with a UC-se
ure proto
ol for general multi-party 
omputations byIshai, Prabhakaran, and Sahai [13℄, we get UC-se
ure proto
ols for general multi-party 
omputations using only 
ommitments and a quantum 
hannel � this iseasily seen to be impossible in a purely 
lassi
al setting.UC-se
ure quantum oblivious transfer. The oblivious transfer (OT) pro-to
ol used in this paper is essentially the same as the proto
ol proposed byDamgård et al. [9℄ whi
h in turn is based on a proto
ol by Bennett et al. [5℄.The basi
 idea of the proto
ol is that Ali
e en
odes a random sequen
e x̃ of bitsas a quantum state, ea
h bit randomly either in the 
omputational basis or inthe diagonal basis.3 Then Bob is supposed to measure all qubits, this time in3 If we were to use photons for transmission, in the 
omputational basis we mighten
ode the bit 0 as a verti
ally polarized photon and the bits 1 as a horizontally



random bases of his 
hoosing. Then Ali
e sends the bases she used to Bob. Let
I= denote the set of indi
es of the bits x̃i where Ali
e and Bob 
hose the samebasis, and I6= the set of indi
es of the bits where Ali
e and Bob 
hose di�erentbases. Assume that Bob wants to re
eive the message mc out of Ali
e's messages
m0,m1. Then Bob sets Ic := I= and I1−c := I6= and sends (I0, I1) to Ali
e. Ali
ewill not know whi
h of these two sets is whi
h and hen
e does not learn c. Bobwill know the bits x̃i at indi
es i ∈ Ic. But even a dishonest Bob, assuming thathe measured the whole quantum state, will not know the bits at indi
es i ∈ I1−csin
e he used the wrong bases for these bits. Thus Ali
e uses the bits at I0 tomask her messagem0, and the bits at I1 to mask her messagem1. Then Bob 
anre
overmc but notm1−c. (To deal with the fa
t that a mali
ious Bob might havepartial knowledge about the bits at I1−c, we use so-
alled priva
y ampli�
ationto extra
t a near uniformly mask from these bits.)The problem with this analysis is that we have assumed that a mali
ious Bobmeasures the whole quantum state upon re
eption. But instead, Bob 
ould storethe quantum state until he learns the bases that Ali
e used, and then use thesebases to measure all bits x̃i a

urately. Hen
e, we need to for
e a dishonest Bobto measure all bits before Ali
e sends the bases. The idea of Bennett et al. [5℄is to introdu
e the following test: Bob has to 
ommit to the bases he used andto his measurement out
omes. Then Ali
e pi
ks a random subset of the bits,and Bob opens the 
ommitments on his bases and out
omes 
orresponding tothis subset of bits. Ali
e then 
he
ks whether Bob's measurement out
omes are
onsistent with what Ali
e sent. If Bob does not measure enough bits, then hewill 
ommit to the wrong values in many of the 
ommitments, and there will bea high probability that Ali
e dete
ts this.It was a long-standing open problem what kind of a 
ommitment needs tobe used in order for this proto
ol to be se
ure. Damgård et al. [9℄ give 
rite-ria for the 
ommitment s
heme under whi
h the OT proto
ol 
an be proven tohave so-
alled stand-alone se
urity; stand-alone se
urity, however, does not giveas powerful 
ompositionality guarantees as UC-se
urity. In order to a
hieve UC-se
urity, we assume that the 
ommitment is given as an ideal fun
tionality. Thenwe have to show UC-se
urity in the 
ase of a 
orrupted Ali
e, and UC-se
urityin the 
ase of a 
orrupted Bob. The 
ase of a 
orrupted Ali
e is simple, as one
an easily see that no information �ows from Bob to Ali
e (the 
ommitmentfun
tionality does, by de�nition, not leak any information about the 
ommittedvalues). The 
ase of a 
orrupted Bob is more 
omplex and requires a 
arefulanalysis about the amount of information that Bob 
an retrieve about Ali
e'sbits. Su
h an analysis has already been performed by Damgård et al. [9℄ in theirsetting. Fortunately, we do not need to repeat the analysis. We show that un-der 
ertain spe
ial 
onditions, stand-alone se
urity already implies UC-se
urity.Sin
e in the 
ase of a 
orrupted Bob, these 
onditions are ful�lled, we get these
urity in the 
ase of a 
orrupted Bob as a 
orollary from the work by Damgårdet al. [9℄.polarized photon. In the diagonal basis we might en
ode the bit 0 as a 45◦-polarizedphoton, and the bit 1 as a 135◦-polarized photon.



In Se
tion 4, we show that the OT proto
ol by Damgård et al. [9℄, whenusing an ideal fun
tionality for the 
ommitment, is statisti
ally quantum-UC-se
ure. Furthermore, the universal 
omposition theorem guarantees that we 
anrepla
e the 
ommitment fun
tionality by any quantum-UC-se
ure 
ommitmentproto
ol.Quantum lifting and multi-party 
omputation.We are now equipped witha statisti
ally quantum-UC-se
ure OT proto
ol πQOT in the 
ommitment-hybridmodel. As noted �rst by Kilian [15℄, OT 
an be used for se
urely evaluating arbi-trary fun
tions, short, OT is 
omplete for multi-party 
omputation. Furthermore,Ishai, Prabhakaran, and Sahai [13℄ showed that for any fun
tionality G (even in-tera
tive fun
tionalities that pro
eed in several rounds), there is a 
lassi
al pro-to
ol ρFOT in the OT-hybrid model that statisti
ally 
lassi
al-UC-emulates G.Thus, to get a proto
ol for G in the 
ommitment-hybrid model, we simply re-pla
e all invo
ations to FOT by invo
ations of the subproto
ol πQOT, resulting ina proto
ol ρπQOT . We then expe
t that the se
urity of ρπQOT follows dire
tly usingthe universal 
omposition theorem (in its quantum variant). There is, however,one di�
ulty: To show that ρπQOT statisti
ally quantum-UC-emulates G, theuniversal 
omposition theorem requires that the following premises are ful�lled:
πQOT statisti
ally quantum-UC-emulates FOT, and ρFOT statisti
ally quantum-UC-emulates G. But from the result of Ishai et al. [13℄ we only have that ρFOTstatisti
ally 
lassi
al -UC-emulates G. Hen
e, we �rst have to show that the sameresult also holds with respe
t to quantum-UC-se
urity. Fortunately, we do nothave to revisit the proof of Ishai et al., be
ause we show the following generalfa
t:Theorem 1 (Quantum lifting theorem � informal). If the proto
ols πand ρ are 
lassi
al proto
ols, and π statisti
ally 
lassi
al-UC-emulates ρ, then πstatisti
ally quantum-UC-emulates ρ.Combining this theorem with the universal 
omposition theorem, we immedi-ately get that ρπQOT statisti
ally quantum-UC-emulates G. In other words, anymulti-party 
omputation 
an be performed se
urely using only a 
ommitmentand a quantum-
hannel. In 
ontrast, we show that in the 
lassi
al setting a
ommitment is not even su�
ient to 
ompute the AND-fun
tion.We stress that a property like the quantum lifting theorem should not betaken for granted. For example, for the so-
alled stand-alone model as 
onsideredby Fehr and S
ha�ner [11℄, no 
orresponding property is known. A spe
ial 
ase ofse
urity in the stand-alone model is the zero-knowledge property: The questionwhether proto
ols that are statisti
al zero-knowledge with respe
t to 
lassi
aladversaries are also zero-knowledge with respe
t to quantum adversaries hasbeen answered positively by Watrous [23℄ for parti
ular proto
ols, but is stillopen in the general 
ase.1.1 How to interpret our resultWe show that we 
an perform arbitrary statisti
ally UC-se
ure multi-party 
om-putations, given a quantum 
hannel and a 
ommitment. However, Mayers [16℄



has shown that, even in the quantum setting, statisti
ally se
ure 
ommitments
hemes do not exist, not even with respe
t to se
urity notions mu
h weakerthan quantum-UC-se
urity. In the light of this result, the reader may wonderwhether our result is not va
uous. To illustrate why our result is useful evenin the light of Mayers' impossibility result, we present four possible appli
ations
enarios.Weaker 
omputational assumptions. The �rst appli
ation of our resultwould be to 
ombine our proto
ols with a 
ommitment s
heme that is only
omputationally quantum-UC-se
ure. Of 
ourse, the resulting multi-party 
om-putation proto
ol would then not be statisti
ally se
ure any more. However, sin
e
ommitment intuitively seems to be a simpler task than oblivious transfer, 
on-stru
ting a 
omputationally quantum-UC-se
ure 
ommitment s
heme might bepossible using simpler 
omputational assumptions, and our result then impliesthat the same 
omputational assumptions 
an be used for general multi-party
omputation.Physi
al setup. One might seek a dire
t physi
al implementation of a 
om-mitment, su
h as a lo
ked strongbox (or an equivalent but te
hnologi
ally moreadvan
ed 
onstru
t). With our result, su
h a physi
al implementation would besu�
ient for general multi-party 
omputation. In 
ontrast, in a 
lassi
al settingone would be for
ed to try to �nd physi
al implementations of OT. It seems thata 
ommitment might be a simpler physi
al assumption than OT (or at leastan in
omparable one). So our result redu
es the ne
essary assumptions whenimplementing general multi-party 
omputation proto
ols based on physi
al as-sumptions. Also, Kent [14℄ proposes to build 
ommitments based on the fa
tthat the speed of light is bounded. Although it is not 
lear whether his s
hemesare UC-se
ure (and in parti
ular, how to model his physi
al assumptions in theUC framework), his ideas might lead to a UC-se
ure 
ommitment s
heme thatthen, using our result, gives general UC-se
ure multi-party 
omputation basedon the limitation of the speed of light.Theoreti
al separation.Our result 
an also be seen from the purely theoreti
alpoint of view. It gives a separation between the quantum and the 
lassi
al settingby showing that in the quantum setting, 
ommitment is 
omplete for generalstatisti
ally se
ure multi-party 
omputation, while in the 
lassi
al world it isnot. Su
h separations � even without pra
ti
al appli
ations � may in
rease ourunderstanding of the relationship between the 
lassi
al and the quantum settingand are therefore arguably interesting in their own right.Long-term se
urity. Müller-Quade and Unruh [17℄ introdu
e the 
on
ept oflong-term UC-se
urity. In a nutshell, long-term UC-se
urity is a strengthening of
omputational UC-se
urity that guarantees that a proto
ol stays se
ure even ifthe adversary gets unlimited 
omputational power after the proto
ol exe
ution.This 
aptures the fa
t that, while we might 
on�dently judge today's te
hnology,we 
annot easily make predi
tions about whi
h 
omputational problems will behard in the future. Müller-Quade and Unruh show that (
lassi
ally) long-term



UC-se
ure 
ommitment proto
ols exist given 
ertain pra
ti
al infrastru
ture as-sumptions, so-
alled signature 
ards. It is, however, likely that their results 
an-not be extended to a
hieve general multi-party 
omputation. Our result, on theother hand, might allow to over
ome this limitation: Assume that we show thatthe 
ommitment proto
ol of Müller-Quade and Unruh is also se
ure in a quantumvariant of long-term UC-se
urity. Then we 
ould 
ompose that 
ommitment pro-to
ol with the proto
ols presented here, leading to long-term UC-se
ure generalmulti-party proto
ols from signature 
ards.1.2 Related workSe
urity models. General quantum se
urity models based on the stand-alonemodel have �rst been proposed by van de Graaf [22℄. His model 
omes without a
omposition theorem. The notion has been re�ned by Wehner and Wulls
hleger[24℄ and by Fehr and S
ha�ner [11℄ who also prove sequential 
omposition theo-rems. Quantum se
urity models in the style of the UC model have been proposedby Ben-Or and Mayers [3℄ and by Unruh [20℄. The original idea behind the UCframework in the 
lassi
al setting was independently dis
overed by Canetti [7℄and by P�tzmann and Waidner [19℄ (the notion is 
alled Rea
tive Simulatabilityin the latter paper).Quantum proto
ols. The idea of using quantum 
ommuni
ation for 
ryp-tographi
 purposes seems to originate from Wiesner [25℄. The idea gainedwidespread re
ognition with the BB84 quantum key-ex
hange proto
ol by Ben-nett and Brassard [4℄. A statisti
ally hiding and binding 
ommitment s
hemewas proposed by Brassard, Crépeau, Jozsa, and Langlois [6℄. Unfortunately, thes
heme was later found to be inse
ure; in fa
t, Mayers [16℄ showed that statis-ti
ally hiding and binding quantum 
ommitments are impossible without usingadditional assumptions. Kent [14℄ 
ir
umvents this impossibility result by propos-ing a statisti
ally hiding and binding 
ommitment s
heme that is based on thelimitation of the speed of light. Bennett, Brassard, Crépeau, and Skubiszewska[5℄ present a proto
ol for statisti
ally se
ure oblivious transfer in the quantumsetting. They prove their proto
ol se
ure under the assumption that the adver-sary 
annot store qubits and measures ea
h qubit individually. They also sket
han extension that uses a 
ommitment s
heme to make their OT proto
ol se
ureagainst adversaries that 
an store and 
ompute on quantum states. The proto
olanalyzed in the present paper is, in its basi
 idea, that extension. Yao [26℄ gavea partial proof of the extended OT proto
ol. His proof, however, is in
ompleteand refers to a future 
omplete paper whi
h, to the best of our knowledge, neverappeared. As far as we know, the �rst 
omplete proof of a variant of that OTproto
ol has been given by Damgård, Fehr, Lunemann, Salvail, and S
ha�ner [9℄;their proto
ol is se
ure in the stand-alone model. Hofheinz and Müller-Quade[12℄ 
onje
tured that the extended OT proto
ol by Bennett et al. [5℄ is indeedUC-se
ure; in the present paper we prove this 
laim. Damgård, Fehr, Salvail, andS
ha�ner [10℄ have presented OT and 
ommitment proto
ols whi
h are statisti-
ally se
ure under the assumption that the adversary has a bounded quantum



storage 
apa
ity. [1℄ (extended abstra
t only) give a proto
ol for performingquantum-UC multi-party 
omputation given an honest majority. Their proto
oleven allows to 
ompute fun
tions whi
h have quantum output.Classi
al vs. quantum se
urity. To the best of our knowledge, van de Graaf[22℄ was the �rst to noti
e that even statisti
ally se
ure 
lassi
al proto
ols arenot ne
essarily se
ure in a quantum setting. The reason is that the powerful te
h-nique of rewinding the adversary is not available in the quantum setting. Watrous[23℄ showed that in parti
ular 
ases, a te
hnique similar to 
lassi
al rewinding 
anbe used. He uses this te
hnique to 
onstru
t quantum zero-knowledge proofs. Nogeneral te
hnique relating 
lassi
al and quantum se
urity is known; to the bestof our knowledge, our quantum lifting theorem is the �rst su
h result (althoughrestri
ted to the statisti
al UC model).Mis
ellaneous. Kilian [15℄ �rst noted that OT is 
omplete for general multi-party 
omputation. Ishai, Prabhakaran, and Sahai [13℄ prove that this also holdsin the UC setting. Computationally se
ure UC 
ommitment s
hemes have beenpresented by Canetti and Fis
hlin [8℄.1.3 PreliminariesGeneral. A nonnegative fun
tion µ is 
alled negligible if for all c > 0 andall su�
iently large k, µ(k) < k−c. A nonnegative fun
tion f is 
alled over-whelming if f ≥ 1 − µ for some negligible µ. Keywords in typewriter font (e.g.,environment) are assumed to be �xed but arbitrary distin
t non-empty wordsin {0, 1}∗. ε ∈ {0, 1}∗ denotes the empty word. Given a sequen
e x = x1, . . . , xn,and a set I ⊆ {1, . . . , n}, x|I denote the sequen
e x restri
ted to the indi
es i ∈ I.Quantum systems.We 
an only give a terse overview over the formalism usedin quantum 
omputing. For a thorough introdu
tion, we re
ommend the text-book by Nielsen and Chuang [18, Chap. 1�2℄. A (pure) state in a quantum systemis des
ribed by a ve
tor |ψ〉 in some Hilbert spa
e H. In this work, we only useHilbert spa
es of the formH = CN for some 
ountable set N , usually N = {0, 1}for qubits orN = {0, 1}∗ for bitstrings. We always assume a designated orthonor-mal basis {|x〉 : x ∈ N} for ea
h Hilbert spa
e, 
alled the 
omputational basis.The basis states |x〉 represent 
lassi
al states (i.e., states without superposition).Given several separate subsystems H1 = CN1 , . . . ,Hn = CNn , we des
ribe thejoint system by the tensor produ
t H1⊗· · ·⊗Hn = CN1×···×Nn . We write 〈Ψ | forthe linear transformation mapping |Φ〉 to the s
alar produ
t 〈Ψ |Φ〉. Consequently,
|Ψ〉〈Ψ | denotes the orthogonal proje
tor on |Ψ〉. We set |0〉+ := |0〉, |1〉+ := |1〉,
|0〉× := 1√

2
(|0〉+ |1〉), and |1〉× := 1√

2
(|0〉−|1〉). For x ∈ {0, 1}n and θ ∈ {+,×}n,we de�ne |x〉θ := |x1〉θ1

⊗ · · · ⊗ |xn〉θn
.Mixed states. If a system is not in a single pure state, but instead is in thepure state |Ψi〉 ∈ H with probability pi (i.e., it is in a mixed state), we des
ribethe system by a density operator ρ =
∑

i pi|Ψi〉〈Ψi| over H. This representation
ontains all physi
ally observable information about the distribution of states,



but some distributions are not distinguishable by any measurement and thus arerepresented by the same mixed state. The set of all density operators is the set ofall positive4 operators H with tra
e 1, and is denoted P(H). Composed systemsare des
ibed by operators in P(H1 ⊗ · · · ⊗Hn). In the following, when speakingabout (quantum) states, we always mean mixed states in the density operatorrepresentation. A mapping E : P(H1) → P(H2) represents a physi
ally possibleoperation (realizable by a sequen
e of unitary transformations, measurements,and initializations and removals of qubits) i� it is a 
ompletely positive tra
epreserving map.5 We 
all su
h mappings superoperators. The superoperator Em
initon P(H) with H := C{0,1}∗ and m ∈ {0, 1}∗ is de�ned by Em

init (ρ) := |m〉〈m| forall ρ.Composed systems. Given a superoperator E on P(H1), the superoperator
E ⊗ id operates on P(H1 ⊗ H2). Instead of saying �we apply E ⊗ id �, we say�we apply E to H1�. If we say �we initialize H with m�, we mean �we apply
Em
init to H�. Given a state ρ ∈ P(H1 ⊗ H2), let ρx := (|x〉〈x| ⊗ id)ρ(|x〉〈x| ⊗

id). Then the out
ome of measuring H1 in the 
omputational basis is x withprobability tr ρx, and after measuring x, the quantum state is ρx

tr ρx
. Sin
e wewill only perform measurements in the 
omputational basis in this work, wewill omit the quali�
ation �in the 
omputational basis�. The terminology in thisparagraph generalizes to systems 
omposed of more than two subsystems.Classi
al states. Classi
al probability distributions P : N → [0, 1] overa 
ountable set N are represented by density operators ρ ∈ P(CN ) with

ρ =
∑

x∈N P (x)|x〉〈x| where {|x〉} is the 
omputational basis. We 
all a state
lassi
al if it is of this form. We thus have a 
anoni
al isomorphism between the
lassi
al states over CN and the probability distributions over N . We 
all a su-peroperator E : P(CN1) → P(CN2) 
lassi
al i� if there is a randomized fun
tion
F : N1 → N2 su
h that E(ρ) =

∑
x∈N1,y∈N2

Pr[F (x) = y] · 〈x|ρ|x〉 · |y〉〈y|. Classi-
al superoperators des
ribe what 
an be realized with 
lassi
al 
omputations. Anexample of a 
lassi
al superoperator on P(CN ) is Eclass : ρ 7→
∑

x〈x|ρ|x〉 · |x〉〈x|.Intuitively, Eclass measures ρ in the 
omputational basis and then dis
ards theout
ome, thus removing all superpositions from ρ.2 Quantum Universal ComposabilityWe now present our quantum-UC-framework. The basi
 idea of our de�nitionis the same as that underlying Canetti's UC-framework [7℄. The main 
hange isthat we allow all ma
hines to perform quantum 
omputations and to send quan-tum states as messages. For a gentler introdu
tion into the ideas and intuitionsunderlying the UC-framework, we refer to [7℄.Ma
hine model. A ma
hine M is des
ribed by an identity idM in {0, 1}∗ anda sequen
e of superoperators E
(k)
M (k ∈ N) on Hstate ⊗ Hclass ⊗ Hquant with4 We 
all an operator positive if it is Hermitean and has only nonnegative eigenvalues.5 A map E is 
ompletely positive i� for all Hilbert spa
es H′, and all positive operators

ρ on H1 ⊗H′, (E ⊗ id)(ρ) is positive.



Hstate ,Hclass ,Hquant := C{0,1}∗ (the state transition operators). The index kin E
(k)
M denotes the se
urity parameter. The Hilbert spa
e Hstate represents thestate kept by the ma
hine between invo
ations, and Hclass and Hquant are usedboth for in
oming and outgoing messages. Any message 
onsists of a 
lassi
alpart stored in Hclass and a quantum part stored in Hquant . If a ma
hine id senderwishes to send a message with 
lassi
al part m and quantum part |Ψ〉 to ama
hine idrcpt , the ma
hine id sender initializes Hclass with (id sender , id rcpt ,m)and Hquant with |Ψ〉. (See the de�nition of the network exe
ution below fordetails.) The separation of messages into a 
lassi
al and a quantum part is for
larity only, all information 
ould also be en
oded dire
tly in a single register.If a ma
hine does not wish to send a message, it initializes Hclass and Hquantwith ε.A network N is a set of ma
hines with pairwise distin
t identities 
ontaininga ma
hine Z with idZ = environment. We write idsN for the set of the identitiesof the ma
hines in N.We 
all a ma
hine M quantum-polynomial-time if there is a uniform6 se-quen
e of quantum 
ir
uits Ck su
h that for all k, the 
ir
uit Ck implements thesuperoperator E(k)

M .Network exe
ution. The state spa
e HN of a network N is de�ned as HN :=
Hclass ⊗ Hquant ⊗

⊗
id∈idsN

Hstate
id with Hstate

id ,Hclass ,Hquant := C{0,1}∗ . Here
Hstate

id represents the lo
al state of the ma
hine with identity id and Hclass and
Hquant represent the state spa
es used for 
ommuni
ation. (Hclass and Hquantare shared between all ma
hines. Sin
e only one ma
hine is a
tive at a time, no
on�i
ts o

ur.)A step in the exe
ution of N is de�ned by a superoperator E := E

(k)
N

operatingonHN. This superoperator performs the following steps: First, E measuresHclassin the 
omputational basis and parses the out
ome as (id sender , id rcpt ,m). LetMbe the ma
hine in N with identity id rcpt . Then E applies E(k)
M toHstate

idrcpt
⊗Hclass⊗

Hquant . Then E measures Hclass and parses the out
ome as (id ′
sender , id

′
rcpt ,m

′).If the out
ome 
ould not be parsed, or if id
′
sender 6= id rcpt , initialize Hclass with

(ε, environment, ε) and Hquant with ε. (This ensures that the environment isa
tivated if a ma
hine sends no or an ill-formed message.)The output of the network N on input z and se
urity parameter k is de-s
ribed by the following algorithm: Let ρ ∈ P(HN) be the state that is initializedto (ε, environment, z) in Hclass , and to the empty word ε in all other registers.Then repeat the following inde�nitely: Apply E
(k)
N

to ρ. Measure Hclass . If theout
ome is of the form (environment, ε, out), return out and terminate. Other-wise, 
ontinue the loop. The probability distribution of the return value out isdenoted by ExecN(k, z).Corruptions. To model 
orruptions, we introdu
e 
orruption parties , spe
ialma
hines that follow the instru
tions given by the adversary. When invoked, the6 A sequen
e of 
ir
uits Ck is uniform if a deterministi
 Turing ma
hine 
an outputthe des
ription of Ck in time polynomial in k.




orruption party PC
id with identity id measures Hclass and parses the out
omeas (id sender , id rcpt ,m). If id sender = adversary, Hclass is initialized with m. (Inthis 
ase,m spe
i�es both the message and the sender/re
ipient. Thus the adver-sary 
an instru
t a 
orruption party to send to arbitrary re
ipients.) Otherwise,

Hclass is initialized with (id , adversary, (id sender , idrcpt ,m)). (The message isforwarded to the adversary.) Note that, sin
e PC
id does not tou
h the Hquant ,the quantum part of the message is forwarded. Given a network N, and a setof identities C, we write N

C for the set resulting from repla
ing ea
h ma
hine
M ∈ N with identity id ∈ C by PC

id .Se
urity model. A proto
ol π is a set of ma
hines with environment,
adversary /∈ ids(π). We assume a set of identities partiesπ ⊆ ids(π) to beasso
iated with π. partiesπ denotes whi
h of the ma
hines in the proto
ol area
tually proto
ol parties (as opposed to in
orruptible entities su
h as ideal fun
-tionalities).An environment is a ma
hine with identity environment, an adversary or asimulator is a ma
hine with identity adversary (there is no formal distin
tionbetween adversaries and simulators, the terms refer to di�erent intended roles ofa ma
hine). We 
all two networks N,N′ indistinguishable if there is a negligiblefun
tion µ su
h that for all z ∈ {0, 1}∗ and k ∈ N, |Pr[ExecN(k, z) = 1] −
Pr[ExecN′(k, z) = 1]| ≤ µ(k). We speak of perfe
t indistinguishability if µ = 0.De�nition 2 (Statisti
al quantum-UC-se
urity). Let proto
ols π and ρ begiven. We say π statisti
ally quantum-UC-emulates ρ i� for every set C ⊆
partiesπ and for every adversary Adv there is a simulator Sim su
h that forevery environment Z, the networks πC ∪ {Adv,Z} (
alled the real model) and
ρC ∪ {Sim,Z} (
alled the ideal model) are indistinguishable. We furthermorerequire that if Adv is quantum-polynomial-time, so is Sim.De�nition 3 (Computational quantum-UC-se
urity). Let proto
ols π and
ρ be given. We say π 
omputationally quantum-UC-emulates ρ i� for ev-ery set C ⊆ partiesπ and for every quantum-polynomial-time adversary Advthere is a quantum-polynomial-time simulator Sim su
h that for every quantum-polynomial-time environment Z, the networks πC ∪{Adv,Z} and ρC ∪{Sim,Z}are indistinguishable.Note that although ExecπC∪{Adv,Z}(k, z) may return arbitrary bitstrings, weonly 
ompare whether the return value of Z is 1 or not. This e�e
tively restri
ts
Z to returning a single bit. This 
an be done without loss of generality (see [7℄for a dis
ussion of this issue; their arguments also apply to the quantum 
ase)and simpli�es the de�nition.In our framework, any 
ommuni
ation between two parties is perfe
tly se
uresin
e the network model guarantees that they are delivered to the right partyand not leaked to the adversary. To model a proto
ol with inse
ure 
hannelsinstead, one would expli
itly instru
t the proto
ol parties to send all messagesthrough the adversary. Authenti
ated 
hannels 
an be realized by introdu
ing anideal fun
tionality (see the next se
tion) that realizes an authenti
ated 
hannel.For simpli
ity, we only 
onsider proto
ols with se
ure 
hannels in this work.



Ideal fun
tionalities. In most 
ases, the behavior of the ideal model is de-s
ribed by a single ma
hine F , the so-
alled ideal fun
tionality. We 
an thinkof this fun
tionality as a trusted third party that perfe
tly implements the de-sired proto
ol behavior. For example, the fun
tionality FOT for oblivious transferwould take as input from Ali
e two bitstrings m0,m1, and from Bob a bit c, andsend to Bob the bitstringmc. Obviously, su
h a fun
tionality 
onstitutes a se
ureoblivious transfer. We 
an thus de�ne a proto
ol π to be a se
ure OT proto
ol if
π quantum-UC-emulates FOT where FOT denotes the proto
ol 
onsisting onlyof one ma
hine, the fun
tionality FOT itself. There is, however, one te
hni
al dif-�
ulty here. In the real proto
ol π, the bitstring mc is sent to the environment
Z by Bob, while in the ideal model, mc is sent by the fun
tionality. Sin
e everymessage is tagged with the sender of that message, Z 
an distinguish betweenthe real and the ideal model merely by looking at the sender of mc. To solve thisissue, we need to ensure that F sends the message mc in the name of Bob (andfor analogous reasons, that F re
eives messages sent by Z to Ali
e or Bob). Toa
hieve this, we use so-
alled dummy-parties [7℄ in the ideal model. These areparties with the identities of Ali
e and Bob that just forward messages betweenthe fun
tionality and the environment.De�nition 4 (Dummy-party). Let a ma
hine P and a fun
tionality F begiven. The dummy-party P̃ for P and F is a ma
hine that has the same identityas P and has the following state transition operator: Let idF be the identity of
F . When a
tivated, measure Hclass . If the out
ome of the measurement is of theform (environment, idP ,m), initialize Hclass with (idP , idF ,m). If the out
omeis of the form (idF , idP ,m), initialize Hclass with (idP , environment,m). In all
ases, the quantum 
ommuni
ation register is not modi�ed (i.e., the message inthat register is forwarded).Note the strong analogy to the 
orruption parties (page 2).Thus, if we write π quantum-UC-emulates F , we mean that π quantum-UC-emulates ρF where ρF 
onsists of the fun
tionality F and the dummy-parties
orresponding to the parties in π. More pre
isely:De�nition 5. Let π be a proto
ol and F be a fun
tionality. We saythat π statisti
ally/
omputationally quantum-UC-emulates F if π statisti-
ally/
omputationally quantum-UC-emulates ρF where ρF := {P̃ : P ∈
partiesπ} ∪ {F}.For more dis
ussion of dummy-parties and fun
tionalities, see [7℄.Using the 
on
ept of an ideal fun
tionality, we 
an spe
ify a range of pro-to
ol tasks by simply de�ning the 
orresponding fun
tionality. Below, we givethe de�nitions of various fun
tionalities. All these fun
tionalities are 
lassi
al,we therefore do not expli
itly des
ribe when the registers Hclass and Hquantare measured/initialized but instead des
ribe the fun
tionality in terms of themessages sent and re
eived.De�nition 6 (Commitment). Let A and B be two parties. The fun
tionality
FB→A,ℓ

COM behaves as follows: Upon (the �rst) input (commit, x) with x ∈ {0, 1}ℓ(k)



from B, send committed to A. Upon input open from B send (open, x) to A.All 
ommuni
ation/input/output is 
lassi
al. We 
all B the sender and A there
ipient.De�nition 7 (Oblivious transfer (OT)). Let A and B be two parties. Thefun
tionality FA→B,ℓ
OT behaves as follows: When re
eiving input (s0, s1) from Awith s0, s1 ∈ {0, 1}ℓ(k) and c ∈ {0, 1} from B, send s := sc to B. All 
ommuni-
ation/input/output is 
lassi
al. We 
all A the sender and B the re
ipient.7De�nition 8 (Randomized oblivious transfer (ROT)). Let A and B betwo parties. The fun
tionality FA→B,ℓ

ROT behaves as follows: If A is un
orrupted,when re
eiving input c ∈ {0, 1} from B, 
hoose s0, s1 ∈ {0, 1}ℓ(k) uniformly andsend (s0, s1) to A and s := sc to B. If A is 
orrupted, when re
eiving input
(s0, s1) from A with s0, s1 ∈ {0, 1}ℓ(k) and c ∈ {0, 1} from B, send s := sc to B.All 
ommuni
ation/input/output is 
lassi
al.Dummy-adversary. In the de�nition of UC-se
urity, we have three entities in-tera
ting with the proto
ol: the adversary, the simulator, and the environment.Both the adversary and the environment are all-quanti�ed, hen
e we would ex-pe
t that they do, in some sense, work together. This intuition is ba
ked by thefollowing fa
t whi
h was �rst noted by Canetti [7℄: Without loss of generality, we
an assume an adversary that is 
ompletely 
ontrolled by the environment. Thisso-
alled dummy-adversary only forwards messages between the environmentand the proto
ol. The a
tual atta
k is then exe
uted by the environment.De�nition 9 (Dummy-adversary Advdummy). When a
tivated, the dummy-adversary Advdummy measures Hclass ; 
all the out
ome m. If m is of the form
(environment, adversary,m′), initialize Hclass with m′. Otherwise initialize
Hclass with (adversary, environment,m). In all 
ases, the quantum 
ommu-ni
ation register is not modi�ed (i.e., the message in that register is forwarded).Note the strong analogy to the dummy-parties (De�nition 4) and the 
orruptionparties (page 2).Lemma 10 (Completeness of the dummy-adversary). Assume that πquantum-UC-emulates ρ with respe
t to the dummy-adversary (i.e., insteadof quantifying over all adversaries Adv, we �x Adv := Advdummy). Then
π quantum-UC-emulates ρ. This holds both for statisti
al and 
omputationalquantum-UC-se
urity.The proof of Lemma 10 is very similar to that given in [7℄ and given in the fullversion [21℄.Universal 
omposition. For some proto
ol σ, and some proto
ol π, by σπ wedenote the proto
ol where σ invokes (up to polynomially many) instan
es of π.7 We used A as the sender in the des
ription of the OT fun
tionality, and as there
ipient in the des
ription of the 
ommitment fun
tionality. We do so to simplifynotation later; our proto
ol for OT from A to B will use a 
ommitment from B to A.



That is, in σπ the ma
hines from σ and from π run together in one network,and the ma
hines from σ a

ess the inputs and outputs of π. (That is, σ playsthe role of the environment from the point of view of π. In parti
ular, Z thentalks only to σ and not to the subproto
ol π dire
tly.) A typi
al situation wouldbe that σF is some proto
ol that makes use of some ideal fun
tionality F , saya 
ommitment fun
tionality, and then σπ would be the proto
ol resulting fromimplementing that fun
tionality with some proto
ol π, say a 
ommitment pro-to
ol. (We say that σF is a proto
ol in the F-hybrid model.) One would hopethat su
h an implementation results in a se
ure proto
ol σπ . That is, we hopethat if π quantum-UC-emulates F and σF quantum-UC-emulates G, then σπquantum-UC-emulates G. Fortunately, this is the 
ase:Theorem 11 (Universal Composition Theorem). Let π, ρ, and σ bequantum-polynomial-time proto
ols. Assume that π quantum-UC-emulates ρ.Then σπ quantum-UC-emulates σρ. This holds both for statisti
al and 
ompu-tational quantum-UC-se
urity.If we additionally have that σ quantum-UC-emulates G, from the transitivity ofquantum-UC-emulation (shown in the full version [21℄), it immediately followsthat σπ quantum-UC-emulates G.The proof of Theorem 11 is very similar to that given in [7℄ and given in thefull version [21℄.3 Relating 
lassi
al and quantum-UCWe 
all a ma
hine 
lassi
al if its state transition operator is 
lassi
al. A proto
olis 
lassi
al if all its ma
hines are 
lassi
al.Using this de�nition we 
an reformulate the de�nition of statisti
al 
lassi
alUC in our framework.De�nition 12 (Statisti
al 
lassi
al-UC-se
urity). Let proto
ols π and ρbe given. We say π statisti
ally 
lassi
al-UC-emulates ρ i� for every set C ⊆
partiesπ and for every 
lassi
al adversary Adv there is a 
lassi
al simulator Simsu
h that for every 
lassi
al environment Z, πC∪{Adv,Z} and ρC∪{Sim,Z} areindistinguishable. We furthermore require that if Adv is probabilisti
-polynomial-time, so is Sim.Note that 
lassi
al statisti
al UC is essentially the same as the notion of sta-tisti
al UC-se
urity de�ned by Canetti [7℄. Thus, known results for statisti
alUC-se
urity 
arry over to the setting of De�nition 12.The next theorem guarantees that if a 
lassi
al proto
ol is statisti
ally 
lassi-
al UC-se
ure, then it is also statisti
ally quantum-UC-se
ure. This allows, e.g.,to �rst prove the se
urity of a proto
ol in the (usually mu
h simpler) 
lassi-
al setting, and then to 
ompose it with quantum proto
ols using the universal
omposition theorem (Theorem 11).



Theorem 13 (Quantum lifting theorem). Let π and ρ be 
lassi
al proto-
ols. Assume that π statisti
ally 
lassi
al-UC-emulates ρ. Then π statisti
allyquantum-UC-emulates ρ.Proof. Given a ma
hine M , let C(M) denote the ma
hine whi
h behaves like
M , but measures in
oming messages in the 
omputational basis before pro
ess-ing them, and measures outgoing messages in the 
omputational basis. Morepre
isely, the superoperator E(k)

C(M) �rst invokes Eclass on Hclass ⊗ Hquant , theninvokes E
(k)
M on Hstate ⊗ Hclass ⊗ Hquant , and then again invokes Eclass on

Hclass ⊗ Hquant . Sin
e it is possible to simulate quantum Turing ma
hines on
lassi
al Turing ma
hines (with an exponential overhead), for every ma
hine
M , there exists a 
lassi
al ma
hine M ′ su
h that C(M) and M ′ are perfe
tlyindistinguishable.8We de�ne the 
lassi
al dummy-adversary Advclass

dummy to be the 
lassi
al ma-
hine that is de�ned like Advdummy (De�nition 9), ex
ept that in ea
h invo
ation,it �rst measures Hclass , Hquant , and Hstate in the 
omputational basis (i.e., itapplies Eclass to Hstate ⊗Hclass ⊗Hquant ) and then pro
eeds as does Advdummy .Note that Advclass
dummy is probabilisti
-polynomial-time.By Lemma 10, we only need to show that for any set C of 
orrupted parties,there exists a quantum-polynomial-time ma
hine Sim su
h that for every ma-
hine Z the real model πC ∪ {Z,Advdummy} and the ideal model ρC ∪ {Z, Sim}are indistinguishable.The proto
ol π is 
lassi
al, thus πC is 
lassi
al, too, and thus all messagesforwarded by Advdummy from πC to Z have been measured in the 
omputa-tional basis by πC , and all messages forwarded by Advdummy from Z to πC willbe measured by πC before being used. Thus, if Adv would additionally mea-sure all messages it forwards in the 
omputational basis, the view of Z wouldnot be modi�ed. More formally, πC ∪ {Z,Advdummy} and πC ∪ {Z,Advclass

dummy}are perfe
tly indistinguishable. Furthermore, sin
e both πC and Advclass
dummymeasure all messages upon sending and re
eiving, πC ∪ {Z,Advclass

dummy} and
πC ∪ {C(Z),Advclass

dummy} are perfe
tly indistinguishable. Sin
e it is possible tosimulate quantum ma
hines on 
lassi
al ma
hines (with an exponential over-head), there exists a 
lassi
al ma
hine Z ′ that is perfe
tly indistinguishablefrom C(Z). Then πC ∪ {C(Z),Advclass
dummy} and πC ∪ {Z ′,Advclass

dummy} are per-fe
tly indistinguishable. Sin
e Advclass
dummy and Z ′ are 
lassi
al and Advclass

dummy ispolynomial-time, there exists a 
lassi
al probabilisti
-polynomial-time simulator
Sim (whose 
onstru
tion is independent of Z ′) su
h that πC ∪ {Z ′,Advclass

dummy}and ρC ∪ {Z ′, Sim} are indistinguishable.Then ρC ∪{Z ′, Sim} and ρC ∪{C(Z), Sim} are perfe
tly indistinguishable by
onstru
tion of Z ′. And sin
e both ρC and Sim measure all messages they sendand re
eive, ρC ∪{C(Z), Sim} and ρC ∪{Z, Sim} are perfe
tly indistinguishable.8 More pre
isely, for any set of ma
hines N , the networks N ∪ {M} and N ∪ {C(M)}are perfe
tly indistinguishable.



Parameters: Integers n, m > n, ℓ, a family F of universal hash fun
tions.Parties: The sender Ali
e and the re
ipient Bob.Inputs: Ali
e gets no input, Bob gets a bit c.1. Ali
e 
hooses x̃A ∈ {0, 1}m and θ̃A ∈ {+,×}m and sends |x̃A〉θ̃A to Bob.2. Bob re
eives the state |Ψ〉 sent by the sender. Then Bob 
hooses θ̃B ∈ {+,×}mand measures the qubits of |Ψ〉 in the bases θ̃B . Call the result x̃B.3. For ea
h i, Bob 
ommits to θ̃B
i and x̃B

i using one instan
e of FB→A,1
COM ea
h.4. Ali
e 
hooses a set T ⊆ {1, . . . , m} of size m − n and sends T to Bob.5. Bob opens the 
ommitments of θ̃B

i and x̃B
i for all i ∈ T .6. Ali
e 
he
ks x̃A

i = x̃B
i for all i with i ∈ T and θ̃A

i = θ̃B
i . If this test fails, Ali
eaborts.7. Let xA be the n-bit string resulting from removing the bits at positions i ∈ Tfrom x̃A. De�ne θA, xB, and θB analogously.8. Ali
e sends θA to Bob.9. Bob sets Ic := {i : θA

i = θB
i } and I1−c := {i : θA

i 6= θB
i }. Then Bob sends (I0, I1)to Ali
e.10. Ali
e 
hooses s0, s1 ∈ {0, 1}ℓ(k) and f0, f1 ∈ F, output (s0, s1), and 
omputes

mj := sj ⊕ fj(x
A|Ij ) for j = 0, 1. Then Ali
e sends f0, f1, m0, m1 to Bob.11. Bob outputs s := mc ⊕ fc(x

B|Ic ).Fig. 1. Proto
ol πQROT for randomized oblivious transfer.Summarizing, we have that πC ∪ {Z,Advdummy} and ρC ∪ {Z, Sim} are in-distinguishable for all quantum-polynomial-time environments Z. Furthermore,
Sim is 
lassi
al probabilisti
-polynomial-time and hen
e quantum-polynomial-time and its 
onstru
tion does not depend on the 
hoi
e of Z. Thus π statisti-
ally quantum-UC-emulates ρ. ⊓⊔4 Oblivious transferDe�nition 14 (OT proto
ols). The proto
ol πQROT is de�ned in Figure 1.Fix a 
ommitment s
heme com. The proto
ol πcom

QROT is de�ned like πQROT, butinstead of using the fun
tionality FCOM, the 
ommitment s
heme com is used.The proto
ol πQOT is de�ned like πQROT, with the following modi�
ations: Ali
etakes as input two ℓ(k)-bit strings v0, v1. In Step 10, Ali
e additionally sends
t0, t1 with ti := si ⊕ vi. Bob outputs s⊕ tc instead of s in Step 11.We �rst analyze πQROT and will then dedu
e the se
urity of πQOT from thatof πQROT.4.1 Corrupted Ali
eLemma 15. The proto
ol πQROT statisti
ally quantum-UC-emulates FA→B,ℓ

ROT inthe 
ase of 
orrupted Ali
e.Proof. First, we des
ribe the stru
ture of the real and ideal model in the 
asethat the party A (Ali
e) is 
orrupted:
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SimFig. 2. Networks o

urring in the proof of Lemma 15. The dashed box representsthe ma
hine Sim that internally simulates Adv, AC , FFakeCOM and B.In the real model, we have the environment Z, the adversary Adv, the 
or-ruption party AC , the honest party B (Bob), and the 2m instan
es of the 
om-mitment fun
tionality FCOM. The adversary 
ontrols the 
orruption party AC ,so e�e
tively he 
ontrols the 
ommuni
ation with Bob and the inputs of FCOM.Bob's input (a 
hoi
e bit c) is 
hosen by the environment, and the environmentalso gets Bob's output (a bitstring s ∈ {0, 1}ℓ). See Figure 2(a).In the ideal model, we have the environment Z, the simulator Sim (to bede�ned below), the 
orruption party AC , the dummy-party B̃, and the random-ized OT fun
tionality FROT. The simulator Sim 
ontrols the 
orruption party
AC and hen
e e�e
tively 
hooses the inputs s0, s1 of FROT.9 The input c of FROTis 
hosen by the dummy-party B̃ and thus e�e
tively by the environment Z. Theoutput s := sc of FROT is given to the dummy-party B̃ and thus e�e
tively tothe environment Z. See Figure 2(b).To show Lemma 15, we need to �nd a simulator Sim su
h that, for anyenvironment Z, the real model and the ideal model are indistinguishable. Todo so, we start with the real model, and 
hange the ma
hines in the real modelstep-by-step until we end up with the ideal model 
ontaining a suitable simulator
Sim (whi
h we de�ne below in the des
ription of Game 6). In ea
h step, we showthat network before and after the step are perfe
tly indistinguishable.Game 1. We repla
e FCOM by a 
ommitment fun
tionality FFakeCOM in whi
hBob (the sender) 
an 
heat. That is, in the 
ommit phase, FFakeCOM expe
tsa message commit from B (instead of (commit, x)), and in the open phase,
FFakeCOM expe
ts a message (open, x) (instead of open) and then sends (open, x)to Ali
e. We also 
hange Bob's implementation a

ordingly, i.e., when Bob should
ommit to a bit b, he stores that bit b and gives it to FFakeCOM when opening9 Remember that, if Ali
e is 
orrupted, FROT behaves like FOT and takes inputs s0, s1from Ali
e.



the 
ommitment. Obviously, this 
hange leads to a perfe
tly indistinguishablenetwork (sin
e Bob still opens the 
ommitment in the same way).Game 2. Sin
e Bob uses FFakeCOM instead of FCOM, he does not use the out-
omes x̃B
i of his measurements before Step 5 (for i ∈ T ) or Step 11 (for i /∈ T )of the proto
ol. Thus, we modify Bob so that he performs the measurementswith out
omes x̃B

i (i ∈ T ) in Step 5 (in parti
ular, after learning T ), and themeasurements with out
omes xB
i in Step 11. Delaying the measurements leadsto a perfe
tly indistinguishable network.Game 3. The bits xB

i with i ∈ I1−c are never used by Bob. Thus we 
an modifyBob to use the bases θA
i instead of θB

i for these bits without 
hanging the outputof Z. Furthermore, sin
e θA
i = θB

i for i ∈ Ic, we 
an modify Bob to also use thebases θA
i instead of θB

i when measuring xB
i with i ∈ Ic. Summarizing, we modifyBob to use θA instead of θB, and we get a perfe
tly indistinguishable network.Game 4. The bases θB are 
hosen randomly by Bob, and they are only used to
ompute the sets I0 and I1. We 
hange Bob to instead pi
k (I0, I1) as a randompartition of {1, . . . , n}. Sin
e this leads to the same distribution of (I0, I1) andsin
e θB is not used elsewhere, this leads to a perfe
tly indistinguishable network.Game 5. In Step 11, we 
hange Bob to 
ompute si := mi ⊕fi(x

B |Ii
) for i = 0, 1and to output s := sc. This leads to the same value of s as the original 
om-putation s := mc ⊕ fc(x

B |Ic
), hen
e the resulting network is perfe
tly indistin-guishable from the previous one. Note that now, Bob only uses the 
hoi
e bit cto pi
k whi
h of the two values s0, s1 to output.Game 6. We now 
onstru
t a ma
hine Sim that internally simulates the ma-
hines Adv, AC , FFakeCOM, and Bob. We let Sim run with an (external) 
orrup-tion party AC , and when (the simulated) Bob 
omputes s0, s1 in Step 11, Siminstru
ts the (external) 
orruption party AC to input s0, s1 into FROT (insteadof letting Bob output s = sc). Then FROT will, given input c from the dummy-party B̃, output sc to the dummy-party B̃. The dummy-party B̃ then forwards

sc to the environment Z. See Figure 2(
). The only di�eren
e with respe
t to theprevious network (besides a regrouping of ma
hines) is that now sc is 
omputedby FROT from s0, s1. However, FROT 
omputes sc in the same way as Bob wouldhave done. Thus, the resulting network is perfe
tly indistinguishable from theprevious one.Sin
e the network from Game 6 (Figure 2(
)) is identi
al to the ideal model(Figure 2(b)), and sin
e the real model is perfe
tly indistinguishable from thenetwork from Game 6, we have that the real and the ideal network are perfe
tlyindistinguishable.Furthermore, Sim is quantum-polynomial-time if Adv is, and the 
onstru
-tion of Sim does not depend on the 
hoi
e of the environment Z. Thus theproto
ol πQROT statisti
ally quantum-UC-emulates FA→B,ℓ
ROT in the 
ase of 
or-rupted Ali
e. ⊓⊔Theorem 16. Fix 
onstants 0 < α < 1 and 0 < λ < 1
4 . Let m := ⌈n/(1 − α)⌉and ℓ := ⌊λn⌋ and assume that n grows at least linearly in the se
urity parameter.Then the proto
ol πQROT statisti
ally quantum-UC-emulates FA→B,ℓ

ROT .



For the 
ase of 
orrupted Ali
e, this is shown in Lemma 15. The 
ases whereboth parties are honest or both parties are 
orrupted are trivial. Thus for Theo-rem 16 we are left to analyze the 
ase where Bob is 
orrupted. This 
ase needsa 
onsiderably more involved analysis than the 
ase of 
orrupted Ali
e be
ausewe have to 
onsider the fa
t that Bob may su

eed in Step 6 of πQROT but stillhave a 
ertain amount of information about the bits xA|I1−c
. A very similaranalysis has already been performed by Damgård, Fehr, Lunemann, Salvail, andS
ha�ner [9℄ in the so-
alled stand-alone model. Fortunately, we do not need toredo their analysis; it turns out that � although the stand-alone model is weakerthan the quantum-UC-model � the parti
ular simulator 
onstru
ted by Damgårdet al. is already strong enough to be used as a simulator in the quantum-UC-model. Thus we 
an reuse the result of Damgård et al. in our setting and getTheorem 16 without re-analyzing πQROT.10The full proof of Theorem 16 is given in the full version [21℄.Theorem 17. Let 0 < α < 1 and 0 < λ < 1

4 be 
onstants. Assume m = ⌈n/(1−
α)⌉ and ℓ = ⌊λn⌋ and that n grows at least linearly in the se
urity parameter.Then the proto
ol πQOT (Def. 14) statisti
ally quantum-UC-emulates FA→B,ℓ

OT .Proof. Consider the following proto
ol π′
QOT in the FROT-hybrid model. Giveninputs v0, v1 ∈ {0, 1}ℓ(k) for Ali
e and a bit c for Bob, Bob invokes FROT withinput c. Then Ali
e gets random s0, s1 ∈ {0, 1}ℓ(k), and Bob gets s = sc. ThenAli
e sends t0, t1 with ti := vi ⊕ si to Bob. And Bob outputs s⊕ tc. It is easy tosee that π′

QOT statisti
ally 
lassi
al-UC-emulates FOT. Hen
e, by the quantumlifting theorem (Theorem 13), π′
QOT statisti
ally quantum-UC-emulates FOT.Note that the proto
ol πQOT is the proto
ol resulting from repla
ing, in π′

QOT,
alls to FROT by 
alls to the subproto
ol πQROT. Furthermore, πQROT statisti-
ally quantum-UC-emulates FROT by Theorem 16. Hen
e, by the 
ompositiontheorem (Theorem 11), πQOT statisti
ally quantum-UC-emulates FOT. ⊓⊔5 Multi-party 
omputationTheorem 18. Let F be a 
lassi
al probabilisti
-polynomial-time fun
tionality.11Then there exists a proto
ol π in the FCOM-hybrid model that statisti
allyquantum-UC-emulates F . (Assuming the number of proto
ol parties does notdepend on the se
urity parameter.)10 One major di�eren
e between the UC-model and the stand-alone model is that inthe �rst, the honest parties' inputs may depend on messages the adversary inter
eptsduring the proto
ol run. A simulator 
onstru
ted for the stand-alone model usuallyis not able to 
ope with su
h dependen
ies. Thus, it turns out to be important thatwe �rst 
onsidered the randomized OT proto
ol πQROT and not immediately the OTproto
ol πQOT. In πQROT, Ali
e gets no input, and in parti
ular her inputs may notdepend on messages inter
epted by the adversary.11 Subje
t to 
ertain te
hni
al restri
tions stemming from the proof by Ishai et al. [13℄:Whenever the fun
tionality gets an input, the adversary is informed about the lengthof that input. Whenever the fun
tionality makes an output, the adversary is informedabout the length of that output and may de
ide when this output is to be s
heduled.



Proof. Ishai, Prabhakaran, and Sahai [13℄ prove the existen
e of a proto
ol ρFOTin the FOT-hybrid model that statisti
ally 
lassi
al-UC-emulates F (assuminga 
onstant number of parties). By the quantum lifting theorem (Theorem 13),
ρFOT statisti
ally quantum-UC-emulates F . By Theorem 17, πQOT statisti
allyquantum-UC-emulates FOT. Let π := ρπQOT be the result of repla
ing invo
a-tions to FOT in ρFOT by invo
ations of the subproto
ol πQOT (as des
ribedbefore Theorem 11). Then by the universal 
omposition theorem (Theorem 11),
π statisti
ally quantum-UC-emulates ρFOT . Using the fa
t that quantum-UC-emulation is transitive (shown in the full version [21℄), it follows that π statisti-
ally quantum-UC-emulates F . ⊓⊔We pro
eed to show that the result from Theorem 18 is possible only in thequantum setting. That is, we show that there is a natural fun
tionality that
annot be statisti
ally 
lassi
al-UC-emulated in the 
ommitment-hybrid model.De�nition 19 (AND). The fun
tionality FAND expe
ts an input a ∈ {0, 1}from Ali
e and b ∈ {0, 1} from Bob. Then it sends a · b to Ali
e and Bob.Theorem 20 (Impossibility of 
lassi
al multi-party 
omputation).There is no 
lassi
al probabilisti
-polynomial-time proto
ol π in the FCOM-hybridmodel su
h that π statisti
ally 
lassi
al-UC-emulates FAND.The proof is given in the full version [21℄.A
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