
Universally ComposableQuantum Multi-Party Computation⋆Dominique UnruhSaarland UniversityAbstrat. The Universal Composability model (UC) by Canetti (FOCS2001) allows for seure omposition of arbitrary protools. We present aquantum version of the UC model whih enjoys the same ompositional-ity guarantees. We prove that in this model statistially seure oblivioustransfer protools an be onstruted from ommitments. Furthermore,we show that every statistially lassially UC seure protool is also sta-tistially quantum UC seure. Suh impliations are not known for otherquantum seurity de�nitions. As a orollary, we get that quantum UCseure protools for general multi-party omputation an be onstrutedfrom ommitments.1 IntrodutionSine the ineption of quantum key distribution by Bennett and Brassard [4℄, ithas been known that quantum ommuniation permits to ahieve protool tasksthat are impossible given only a lassial hannel. For example, a quantum keydistribution sheme [4℄ permits to agree on a seret key that is statistially se-ret, using only an authentiated but not seret hannel. (By statistial seuritywe mean seurity against omputationally unbounded adversaries, also knownas information-theoretial seurity.) In ontrast, when using only lassial om-muniation, it is easy to see that suh a seret key an always be extrated bya omputationally su�iently powerful adversary. Similarly, based on an ideaby Wiesner [25℄, Bennett, Brassard, Crépeau, and Skubiszewska [5℄ presented aprotool that was supposed to onstrut a statistially seure oblivious transfer1protool from a ommitment, another feat that is easily seen to be impossiblelassially.2 Oblivious transfer, on the other hand, has been reognized by Kilian[15℄ to seurely evaluate arbitrary funtions. Unfortunately, the protool of Ben-nett et al. ould, at the time, not be proven seure, and the �rst omplete proof
⋆ Funded by the Cluster of Exellene �Multimodal Computing and Interation�.1 In an oblivious transfer protool, Alie holds two bitstrings m0, m1, and Bob a bit c.Bob is supposed to get mc but not m1−c, and Alie should not learn c.2 We remark that, on the other hand, Mayers [16℄ shows that also in the quantum ase,onstruting a statistially seure ommitment sheme without any additional as-sumption is impossible. However, under additional assumptions like in the quantumbounded storage model by Damgård, Fehr, Salvail, and Sha�ner [10℄, statistiallyseure bit ommitment is possible. See Setion 1.1 for a disussion of the impliationsof Mayers' impossibility result for our result.



of (a variant of) that protool was given almost two deades later by Damgård,Fehr, Lunemann, Salvail, and Sha�ner [9℄.Yet, although the oblivious transfer protool satis�es the intuitive sereyrequirements of oblivious transfer, in ertain ases the protool might lose itsseurity when used in a larger ontext. In other words, there are limitations onhow the protool an be omposed. For example, no seurity guarantee is givenwhen several instanes of the protool are exeuted onurrently (see the fullversion [21℄ for a more detailed explanations of the various restritions).The problem of omposability has been intensively studied by the lassialryptography ommunity (here and in the following, we use the word lassialas opposed to quantum). To deal with this problem in a general way, Canetti [7℄introdued the notion of Universal Composability, UC for short (P�tzmann andWaidner [19℄ independently introdued the equivalent Reative Simulatabilityframework). The UC framework allows to express the seurity of a multitudeof protool tasks in a uni�ed way, and any UC-seure protool automatiallyenjoys strong omposability guarantees (so-alled universal omposability). Inpartiular, suh a protool an be run onurrently with others, and it an beused as a subprotool of other protools in a general way. Ben-Or and Mayers [3℄and Unruh [20℄ have shown that the idea of UC-seurity an be easily adaptedto the quantum setting and have independently presented quantum variants ofthe UC notion. These notions enjoy the same strong ompositionality guaran-tees. Shortly afterwards, Ben-Or, Horodeki, Leung, Mayers, and Oppenheim [2℄showed that many quantum key distribution protools are quantum-UC-seure.Our ontribution. In this work, we use the UC framework to show the exis-tene of a statistially seure and universally omposable oblivious transfer pro-tool that uses only a ommitment sheme. Towards this goal, we �rst present anew de�nition of quantum-UC-seurity. In our opinion, our notion is tehniallysimpler than the notions of Ben-Or and Mayers [3℄ and Unruh [20℄. We believethat this may also help to inrease the popularity of this notion in the quantumryptography ommunity and to show the potential for using UC-seurity in thedesign of quantum protools. Seond, we show that a variant of the protool byBennett et al. [5℄ is indeed a UC-seure oblivious transfer protool. By omposingthis protool with a UC-seure protool for general multi-party omputations byIshai, Prabhakaran, and Sahai [13℄, we get UC-seure protools for general multi-party omputations using only ommitments and a quantum hannel � this iseasily seen to be impossible in a purely lassial setting.UC-seure quantum oblivious transfer. The oblivious transfer (OT) pro-tool used in this paper is essentially the same as the protool proposed byDamgård et al. [9℄ whih in turn is based on a protool by Bennett et al. [5℄.The basi idea of the protool is that Alie enodes a random sequene x̃ of bitsas a quantum state, eah bit randomly either in the omputational basis or inthe diagonal basis.3 Then Bob is supposed to measure all qubits, this time in3 If we were to use photons for transmission, in the omputational basis we mightenode the bit 0 as a vertially polarized photon and the bits 1 as a horizontally



random bases of his hoosing. Then Alie sends the bases she used to Bob. Let
I= denote the set of indies of the bits x̃i where Alie and Bob hose the samebasis, and I6= the set of indies of the bits where Alie and Bob hose di�erentbases. Assume that Bob wants to reeive the message mc out of Alie's messages
m0,m1. Then Bob sets Ic := I= and I1−c := I6= and sends (I0, I1) to Alie. Aliewill not know whih of these two sets is whih and hene does not learn c. Bobwill know the bits x̃i at indies i ∈ Ic. But even a dishonest Bob, assuming thathe measured the whole quantum state, will not know the bits at indies i ∈ I1−csine he used the wrong bases for these bits. Thus Alie uses the bits at I0 tomask her messagem0, and the bits at I1 to mask her messagem1. Then Bob anreovermc but notm1−c. (To deal with the fat that a maliious Bob might havepartial knowledge about the bits at I1−c, we use so-alled privay ampli�ationto extrat a near uniformly mask from these bits.)The problem with this analysis is that we have assumed that a maliious Bobmeasures the whole quantum state upon reeption. But instead, Bob ould storethe quantum state until he learns the bases that Alie used, and then use thesebases to measure all bits x̃i aurately. Hene, we need to fore a dishonest Bobto measure all bits before Alie sends the bases. The idea of Bennett et al. [5℄is to introdue the following test: Bob has to ommit to the bases he used andto his measurement outomes. Then Alie piks a random subset of the bits,and Bob opens the ommitments on his bases and outomes orresponding tothis subset of bits. Alie then heks whether Bob's measurement outomes areonsistent with what Alie sent. If Bob does not measure enough bits, then hewill ommit to the wrong values in many of the ommitments, and there will bea high probability that Alie detets this.It was a long-standing open problem what kind of a ommitment needs tobe used in order for this protool to be seure. Damgård et al. [9℄ give rite-ria for the ommitment sheme under whih the OT protool an be proven tohave so-alled stand-alone seurity; stand-alone seurity, however, does not giveas powerful ompositionality guarantees as UC-seurity. In order to ahieve UC-seurity, we assume that the ommitment is given as an ideal funtionality. Thenwe have to show UC-seurity in the ase of a orrupted Alie, and UC-seurityin the ase of a orrupted Bob. The ase of a orrupted Alie is simple, as onean easily see that no information �ows from Bob to Alie (the ommitmentfuntionality does, by de�nition, not leak any information about the ommittedvalues). The ase of a orrupted Bob is more omplex and requires a arefulanalysis about the amount of information that Bob an retrieve about Alie'sbits. Suh an analysis has already been performed by Damgård et al. [9℄ in theirsetting. Fortunately, we do not need to repeat the analysis. We show that un-der ertain speial onditions, stand-alone seurity already implies UC-seurity.Sine in the ase of a orrupted Bob, these onditions are ful�lled, we get theseurity in the ase of a orrupted Bob as a orollary from the work by Damgårdet al. [9℄.polarized photon. In the diagonal basis we might enode the bit 0 as a 45◦-polarizedphoton, and the bit 1 as a 135◦-polarized photon.



In Setion 4, we show that the OT protool by Damgård et al. [9℄, whenusing an ideal funtionality for the ommitment, is statistially quantum-UC-seure. Furthermore, the universal omposition theorem guarantees that we anreplae the ommitment funtionality by any quantum-UC-seure ommitmentprotool.Quantum lifting and multi-party omputation.We are now equipped witha statistially quantum-UC-seure OT protool πQOT in the ommitment-hybridmodel. As noted �rst by Kilian [15℄, OT an be used for seurely evaluating arbi-trary funtions, short, OT is omplete for multi-party omputation. Furthermore,Ishai, Prabhakaran, and Sahai [13℄ showed that for any funtionality G (even in-terative funtionalities that proeed in several rounds), there is a lassial pro-tool ρFOT in the OT-hybrid model that statistially lassial-UC-emulates G.Thus, to get a protool for G in the ommitment-hybrid model, we simply re-plae all invoations to FOT by invoations of the subprotool πQOT, resulting ina protool ρπQOT . We then expet that the seurity of ρπQOT follows diretly usingthe universal omposition theorem (in its quantum variant). There is, however,one di�ulty: To show that ρπQOT statistially quantum-UC-emulates G, theuniversal omposition theorem requires that the following premises are ful�lled:
πQOT statistially quantum-UC-emulates FOT, and ρFOT statistially quantum-UC-emulates G. But from the result of Ishai et al. [13℄ we only have that ρFOTstatistially lassial -UC-emulates G. Hene, we �rst have to show that the sameresult also holds with respet to quantum-UC-seurity. Fortunately, we do nothave to revisit the proof of Ishai et al., beause we show the following generalfat:Theorem 1 (Quantum lifting theorem � informal). If the protools πand ρ are lassial protools, and π statistially lassial-UC-emulates ρ, then πstatistially quantum-UC-emulates ρ.Combining this theorem with the universal omposition theorem, we immedi-ately get that ρπQOT statistially quantum-UC-emulates G. In other words, anymulti-party omputation an be performed seurely using only a ommitmentand a quantum-hannel. In ontrast, we show that in the lassial setting aommitment is not even su�ient to ompute the AND-funtion.We stress that a property like the quantum lifting theorem should not betaken for granted. For example, for the so-alled stand-alone model as onsideredby Fehr and Sha�ner [11℄, no orresponding property is known. A speial ase ofseurity in the stand-alone model is the zero-knowledge property: The questionwhether protools that are statistial zero-knowledge with respet to lassialadversaries are also zero-knowledge with respet to quantum adversaries hasbeen answered positively by Watrous [23℄ for partiular protools, but is stillopen in the general ase.1.1 How to interpret our resultWe show that we an perform arbitrary statistially UC-seure multi-party om-putations, given a quantum hannel and a ommitment. However, Mayers [16℄



has shown that, even in the quantum setting, statistially seure ommitmentshemes do not exist, not even with respet to seurity notions muh weakerthan quantum-UC-seurity. In the light of this result, the reader may wonderwhether our result is not vauous. To illustrate why our result is useful evenin the light of Mayers' impossibility result, we present four possible appliationsenarios.Weaker omputational assumptions. The �rst appliation of our resultwould be to ombine our protools with a ommitment sheme that is onlyomputationally quantum-UC-seure. Of ourse, the resulting multi-party om-putation protool would then not be statistially seure any more. However, sineommitment intuitively seems to be a simpler task than oblivious transfer, on-struting a omputationally quantum-UC-seure ommitment sheme might bepossible using simpler omputational assumptions, and our result then impliesthat the same omputational assumptions an be used for general multi-partyomputation.Physial setup. One might seek a diret physial implementation of a om-mitment, suh as a loked strongbox (or an equivalent but tehnologially moreadvaned onstrut). With our result, suh a physial implementation would besu�ient for general multi-party omputation. In ontrast, in a lassial settingone would be fored to try to �nd physial implementations of OT. It seems thata ommitment might be a simpler physial assumption than OT (or at leastan inomparable one). So our result redues the neessary assumptions whenimplementing general multi-party omputation protools based on physial as-sumptions. Also, Kent [14℄ proposes to build ommitments based on the fatthat the speed of light is bounded. Although it is not lear whether his shemesare UC-seure (and in partiular, how to model his physial assumptions in theUC framework), his ideas might lead to a UC-seure ommitment sheme thatthen, using our result, gives general UC-seure multi-party omputation basedon the limitation of the speed of light.Theoretial separation.Our result an also be seen from the purely theoretialpoint of view. It gives a separation between the quantum and the lassial settingby showing that in the quantum setting, ommitment is omplete for generalstatistially seure multi-party omputation, while in the lassial world it isnot. Suh separations � even without pratial appliations � may inrease ourunderstanding of the relationship between the lassial and the quantum settingand are therefore arguably interesting in their own right.Long-term seurity. Müller-Quade and Unruh [17℄ introdue the onept oflong-term UC-seurity. In a nutshell, long-term UC-seurity is a strengthening ofomputational UC-seurity that guarantees that a protool stays seure even ifthe adversary gets unlimited omputational power after the protool exeution.This aptures the fat that, while we might on�dently judge today's tehnology,we annot easily make preditions about whih omputational problems will behard in the future. Müller-Quade and Unruh show that (lassially) long-term



UC-seure ommitment protools exist given ertain pratial infrastruture as-sumptions, so-alled signature ards. It is, however, likely that their results an-not be extended to ahieve general multi-party omputation. Our result, on theother hand, might allow to overome this limitation: Assume that we show thatthe ommitment protool of Müller-Quade and Unruh is also seure in a quantumvariant of long-term UC-seurity. Then we ould ompose that ommitment pro-tool with the protools presented here, leading to long-term UC-seure generalmulti-party protools from signature ards.1.2 Related workSeurity models. General quantum seurity models based on the stand-alonemodel have �rst been proposed by van de Graaf [22℄. His model omes without aomposition theorem. The notion has been re�ned by Wehner and Wullshleger[24℄ and by Fehr and Sha�ner [11℄ who also prove sequential omposition theo-rems. Quantum seurity models in the style of the UC model have been proposedby Ben-Or and Mayers [3℄ and by Unruh [20℄. The original idea behind the UCframework in the lassial setting was independently disovered by Canetti [7℄and by P�tzmann and Waidner [19℄ (the notion is alled Reative Simulatabilityin the latter paper).Quantum protools. The idea of using quantum ommuniation for ryp-tographi purposes seems to originate from Wiesner [25℄. The idea gainedwidespread reognition with the BB84 quantum key-exhange protool by Ben-nett and Brassard [4℄. A statistially hiding and binding ommitment shemewas proposed by Brassard, Crépeau, Jozsa, and Langlois [6℄. Unfortunately, thesheme was later found to be inseure; in fat, Mayers [16℄ showed that statis-tially hiding and binding quantum ommitments are impossible without usingadditional assumptions. Kent [14℄ irumvents this impossibility result by propos-ing a statistially hiding and binding ommitment sheme that is based on thelimitation of the speed of light. Bennett, Brassard, Crépeau, and Skubiszewska[5℄ present a protool for statistially seure oblivious transfer in the quantumsetting. They prove their protool seure under the assumption that the adver-sary annot store qubits and measures eah qubit individually. They also skethan extension that uses a ommitment sheme to make their OT protool seureagainst adversaries that an store and ompute on quantum states. The protoolanalyzed in the present paper is, in its basi idea, that extension. Yao [26℄ gavea partial proof of the extended OT protool. His proof, however, is inompleteand refers to a future omplete paper whih, to the best of our knowledge, neverappeared. As far as we know, the �rst omplete proof of a variant of that OTprotool has been given by Damgård, Fehr, Lunemann, Salvail, and Sha�ner [9℄;their protool is seure in the stand-alone model. Hofheinz and Müller-Quade[12℄ onjetured that the extended OT protool by Bennett et al. [5℄ is indeedUC-seure; in the present paper we prove this laim. Damgård, Fehr, Salvail, andSha�ner [10℄ have presented OT and ommitment protools whih are statisti-ally seure under the assumption that the adversary has a bounded quantum



storage apaity. [1℄ (extended abstrat only) give a protool for performingquantum-UC multi-party omputation given an honest majority. Their protooleven allows to ompute funtions whih have quantum output.Classial vs. quantum seurity. To the best of our knowledge, van de Graaf[22℄ was the �rst to notie that even statistially seure lassial protools arenot neessarily seure in a quantum setting. The reason is that the powerful teh-nique of rewinding the adversary is not available in the quantum setting. Watrous[23℄ showed that in partiular ases, a tehnique similar to lassial rewinding anbe used. He uses this tehnique to onstrut quantum zero-knowledge proofs. Nogeneral tehnique relating lassial and quantum seurity is known; to the bestof our knowledge, our quantum lifting theorem is the �rst suh result (althoughrestrited to the statistial UC model).Misellaneous. Kilian [15℄ �rst noted that OT is omplete for general multi-party omputation. Ishai, Prabhakaran, and Sahai [13℄ prove that this also holdsin the UC setting. Computationally seure UC ommitment shemes have beenpresented by Canetti and Fishlin [8℄.1.3 PreliminariesGeneral. A nonnegative funtion µ is alled negligible if for all c > 0 andall su�iently large k, µ(k) < k−c. A nonnegative funtion f is alled over-whelming if f ≥ 1 − µ for some negligible µ. Keywords in typewriter font (e.g.,environment) are assumed to be �xed but arbitrary distint non-empty wordsin {0, 1}∗. ε ∈ {0, 1}∗ denotes the empty word. Given a sequene x = x1, . . . , xn,and a set I ⊆ {1, . . . , n}, x|I denote the sequene x restrited to the indies i ∈ I.Quantum systems.We an only give a terse overview over the formalism usedin quantum omputing. For a thorough introdution, we reommend the text-book by Nielsen and Chuang [18, Chap. 1�2℄. A (pure) state in a quantum systemis desribed by a vetor |ψ〉 in some Hilbert spae H. In this work, we only useHilbert spaes of the formH = CN for some ountable set N , usually N = {0, 1}for qubits orN = {0, 1}∗ for bitstrings. We always assume a designated orthonor-mal basis {|x〉 : x ∈ N} for eah Hilbert spae, alled the omputational basis.The basis states |x〉 represent lassial states (i.e., states without superposition).Given several separate subsystems H1 = CN1 , . . . ,Hn = CNn , we desribe thejoint system by the tensor produt H1⊗· · ·⊗Hn = CN1×···×Nn . We write 〈Ψ | forthe linear transformation mapping |Φ〉 to the salar produt 〈Ψ |Φ〉. Consequently,
|Ψ〉〈Ψ | denotes the orthogonal projetor on |Ψ〉. We set |0〉+ := |0〉, |1〉+ := |1〉,
|0〉× := 1√

2
(|0〉+ |1〉), and |1〉× := 1√

2
(|0〉−|1〉). For x ∈ {0, 1}n and θ ∈ {+,×}n,we de�ne |x〉θ := |x1〉θ1

⊗ · · · ⊗ |xn〉θn
.Mixed states. If a system is not in a single pure state, but instead is in thepure state |Ψi〉 ∈ H with probability pi (i.e., it is in a mixed state), we desribethe system by a density operator ρ =
∑

i pi|Ψi〉〈Ψi| over H. This representationontains all physially observable information about the distribution of states,



but some distributions are not distinguishable by any measurement and thus arerepresented by the same mixed state. The set of all density operators is the set ofall positive4 operators H with trae 1, and is denoted P(H). Composed systemsare desibed by operators in P(H1 ⊗ · · · ⊗Hn). In the following, when speakingabout (quantum) states, we always mean mixed states in the density operatorrepresentation. A mapping E : P(H1) → P(H2) represents a physially possibleoperation (realizable by a sequene of unitary transformations, measurements,and initializations and removals of qubits) i� it is a ompletely positive traepreserving map.5 We all suh mappings superoperators. The superoperator Em
initon P(H) with H := C{0,1}∗ and m ∈ {0, 1}∗ is de�ned by Em

init (ρ) := |m〉〈m| forall ρ.Composed systems. Given a superoperator E on P(H1), the superoperator
E ⊗ id operates on P(H1 ⊗ H2). Instead of saying �we apply E ⊗ id �, we say�we apply E to H1�. If we say �we initialize H with m�, we mean �we apply
Em
init to H�. Given a state ρ ∈ P(H1 ⊗ H2), let ρx := (|x〉〈x| ⊗ id)ρ(|x〉〈x| ⊗

id). Then the outome of measuring H1 in the omputational basis is x withprobability tr ρx, and after measuring x, the quantum state is ρx

tr ρx
. Sine wewill only perform measurements in the omputational basis in this work, wewill omit the quali�ation �in the omputational basis�. The terminology in thisparagraph generalizes to systems omposed of more than two subsystems.Classial states. Classial probability distributions P : N → [0, 1] overa ountable set N are represented by density operators ρ ∈ P(CN ) with

ρ =
∑

x∈N P (x)|x〉〈x| where {|x〉} is the omputational basis. We all a statelassial if it is of this form. We thus have a anonial isomorphism between thelassial states over CN and the probability distributions over N . We all a su-peroperator E : P(CN1) → P(CN2) lassial i� if there is a randomized funtion
F : N1 → N2 suh that E(ρ) =

∑
x∈N1,y∈N2

Pr[F (x) = y] · 〈x|ρ|x〉 · |y〉〈y|. Classi-al superoperators desribe what an be realized with lassial omputations. Anexample of a lassial superoperator on P(CN ) is Eclass : ρ 7→
∑

x〈x|ρ|x〉 · |x〉〈x|.Intuitively, Eclass measures ρ in the omputational basis and then disards theoutome, thus removing all superpositions from ρ.2 Quantum Universal ComposabilityWe now present our quantum-UC-framework. The basi idea of our de�nitionis the same as that underlying Canetti's UC-framework [7℄. The main hange isthat we allow all mahines to perform quantum omputations and to send quan-tum states as messages. For a gentler introdution into the ideas and intuitionsunderlying the UC-framework, we refer to [7℄.Mahine model. A mahine M is desribed by an identity idM in {0, 1}∗ anda sequene of superoperators E
(k)
M (k ∈ N) on Hstate ⊗ Hclass ⊗ Hquant with4 We all an operator positive if it is Hermitean and has only nonnegative eigenvalues.5 A map E is ompletely positive i� for all Hilbert spaes H′, and all positive operators

ρ on H1 ⊗H′, (E ⊗ id)(ρ) is positive.



Hstate ,Hclass ,Hquant := C{0,1}∗ (the state transition operators). The index kin E
(k)
M denotes the seurity parameter. The Hilbert spae Hstate represents thestate kept by the mahine between invoations, and Hclass and Hquant are usedboth for inoming and outgoing messages. Any message onsists of a lassialpart stored in Hclass and a quantum part stored in Hquant . If a mahine id senderwishes to send a message with lassial part m and quantum part |Ψ〉 to amahine idrcpt , the mahine id sender initializes Hclass with (id sender , id rcpt ,m)and Hquant with |Ψ〉. (See the de�nition of the network exeution below fordetails.) The separation of messages into a lassial and a quantum part is forlarity only, all information ould also be enoded diretly in a single register.If a mahine does not wish to send a message, it initializes Hclass and Hquantwith ε.A network N is a set of mahines with pairwise distint identities ontaininga mahine Z with idZ = environment. We write idsN for the set of the identitiesof the mahines in N.We all a mahine M quantum-polynomial-time if there is a uniform6 se-quene of quantum iruits Ck suh that for all k, the iruit Ck implements thesuperoperator E(k)

M .Network exeution. The state spae HN of a network N is de�ned as HN :=
Hclass ⊗ Hquant ⊗

⊗
id∈idsN

Hstate
id with Hstate

id ,Hclass ,Hquant := C{0,1}∗ . Here
Hstate

id represents the loal state of the mahine with identity id and Hclass and
Hquant represent the state spaes used for ommuniation. (Hclass and Hquantare shared between all mahines. Sine only one mahine is ative at a time, noon�its our.)A step in the exeution of N is de�ned by a superoperator E := E

(k)
N

operatingonHN. This superoperator performs the following steps: First, E measuresHclassin the omputational basis and parses the outome as (id sender , id rcpt ,m). LetMbe the mahine in N with identity id rcpt . Then E applies E(k)
M toHstate

idrcpt
⊗Hclass⊗

Hquant . Then E measures Hclass and parses the outome as (id ′
sender , id

′
rcpt ,m

′).If the outome ould not be parsed, or if id
′
sender 6= id rcpt , initialize Hclass with

(ε, environment, ε) and Hquant with ε. (This ensures that the environment isativated if a mahine sends no or an ill-formed message.)The output of the network N on input z and seurity parameter k is de-sribed by the following algorithm: Let ρ ∈ P(HN) be the state that is initializedto (ε, environment, z) in Hclass , and to the empty word ε in all other registers.Then repeat the following inde�nitely: Apply E
(k)
N

to ρ. Measure Hclass . If theoutome is of the form (environment, ε, out), return out and terminate. Other-wise, ontinue the loop. The probability distribution of the return value out isdenoted by ExecN(k, z).Corruptions. To model orruptions, we introdue orruption parties , speialmahines that follow the instrutions given by the adversary. When invoked, the6 A sequene of iruits Ck is uniform if a deterministi Turing mahine an outputthe desription of Ck in time polynomial in k.



orruption party PC
id with identity id measures Hclass and parses the outomeas (id sender , id rcpt ,m). If id sender = adversary, Hclass is initialized with m. (Inthis ase,m spei�es both the message and the sender/reipient. Thus the adver-sary an instrut a orruption party to send to arbitrary reipients.) Otherwise,

Hclass is initialized with (id , adversary, (id sender , idrcpt ,m)). (The message isforwarded to the adversary.) Note that, sine PC
id does not touh the Hquant ,the quantum part of the message is forwarded. Given a network N, and a setof identities C, we write N

C for the set resulting from replaing eah mahine
M ∈ N with identity id ∈ C by PC

id .Seurity model. A protool π is a set of mahines with environment,
adversary /∈ ids(π). We assume a set of identities partiesπ ⊆ ids(π) to beassoiated with π. partiesπ denotes whih of the mahines in the protool areatually protool parties (as opposed to inorruptible entities suh as ideal fun-tionalities).An environment is a mahine with identity environment, an adversary or asimulator is a mahine with identity adversary (there is no formal distintionbetween adversaries and simulators, the terms refer to di�erent intended roles ofa mahine). We all two networks N,N′ indistinguishable if there is a negligiblefuntion µ suh that for all z ∈ {0, 1}∗ and k ∈ N, |Pr[ExecN(k, z) = 1] −
Pr[ExecN′(k, z) = 1]| ≤ µ(k). We speak of perfet indistinguishability if µ = 0.De�nition 2 (Statistial quantum-UC-seurity). Let protools π and ρ begiven. We say π statistially quantum-UC-emulates ρ i� for every set C ⊆
partiesπ and for every adversary Adv there is a simulator Sim suh that forevery environment Z, the networks πC ∪ {Adv,Z} (alled the real model) and
ρC ∪ {Sim,Z} (alled the ideal model) are indistinguishable. We furthermorerequire that if Adv is quantum-polynomial-time, so is Sim.De�nition 3 (Computational quantum-UC-seurity). Let protools π and
ρ be given. We say π omputationally quantum-UC-emulates ρ i� for ev-ery set C ⊆ partiesπ and for every quantum-polynomial-time adversary Advthere is a quantum-polynomial-time simulator Sim suh that for every quantum-polynomial-time environment Z, the networks πC ∪{Adv,Z} and ρC ∪{Sim,Z}are indistinguishable.Note that although ExecπC∪{Adv,Z}(k, z) may return arbitrary bitstrings, weonly ompare whether the return value of Z is 1 or not. This e�etively restrits
Z to returning a single bit. This an be done without loss of generality (see [7℄for a disussion of this issue; their arguments also apply to the quantum ase)and simpli�es the de�nition.In our framework, any ommuniation between two parties is perfetly seuresine the network model guarantees that they are delivered to the right partyand not leaked to the adversary. To model a protool with inseure hannelsinstead, one would expliitly instrut the protool parties to send all messagesthrough the adversary. Authentiated hannels an be realized by introduing anideal funtionality (see the next setion) that realizes an authentiated hannel.For simpliity, we only onsider protools with seure hannels in this work.



Ideal funtionalities. In most ases, the behavior of the ideal model is de-sribed by a single mahine F , the so-alled ideal funtionality. We an thinkof this funtionality as a trusted third party that perfetly implements the de-sired protool behavior. For example, the funtionality FOT for oblivious transferwould take as input from Alie two bitstrings m0,m1, and from Bob a bit c, andsend to Bob the bitstringmc. Obviously, suh a funtionality onstitutes a seureoblivious transfer. We an thus de�ne a protool π to be a seure OT protool if
π quantum-UC-emulates FOT where FOT denotes the protool onsisting onlyof one mahine, the funtionality FOT itself. There is, however, one tehnial dif-�ulty here. In the real protool π, the bitstring mc is sent to the environment
Z by Bob, while in the ideal model, mc is sent by the funtionality. Sine everymessage is tagged with the sender of that message, Z an distinguish betweenthe real and the ideal model merely by looking at the sender of mc. To solve thisissue, we need to ensure that F sends the message mc in the name of Bob (andfor analogous reasons, that F reeives messages sent by Z to Alie or Bob). Toahieve this, we use so-alled dummy-parties [7℄ in the ideal model. These areparties with the identities of Alie and Bob that just forward messages betweenthe funtionality and the environment.De�nition 4 (Dummy-party). Let a mahine P and a funtionality F begiven. The dummy-party P̃ for P and F is a mahine that has the same identityas P and has the following state transition operator: Let idF be the identity of
F . When ativated, measure Hclass . If the outome of the measurement is of theform (environment, idP ,m), initialize Hclass with (idP , idF ,m). If the outomeis of the form (idF , idP ,m), initialize Hclass with (idP , environment,m). In allases, the quantum ommuniation register is not modi�ed (i.e., the message inthat register is forwarded).Note the strong analogy to the orruption parties (page 2).Thus, if we write π quantum-UC-emulates F , we mean that π quantum-UC-emulates ρF where ρF onsists of the funtionality F and the dummy-partiesorresponding to the parties in π. More preisely:De�nition 5. Let π be a protool and F be a funtionality. We saythat π statistially/omputationally quantum-UC-emulates F if π statisti-ally/omputationally quantum-UC-emulates ρF where ρF := {P̃ : P ∈
partiesπ} ∪ {F}.For more disussion of dummy-parties and funtionalities, see [7℄.Using the onept of an ideal funtionality, we an speify a range of pro-tool tasks by simply de�ning the orresponding funtionality. Below, we givethe de�nitions of various funtionalities. All these funtionalities are lassial,we therefore do not expliitly desribe when the registers Hclass and Hquantare measured/initialized but instead desribe the funtionality in terms of themessages sent and reeived.De�nition 6 (Commitment). Let A and B be two parties. The funtionality
FB→A,ℓ

COM behaves as follows: Upon (the �rst) input (commit, x) with x ∈ {0, 1}ℓ(k)



from B, send committed to A. Upon input open from B send (open, x) to A.All ommuniation/input/output is lassial. We all B the sender and A thereipient.De�nition 7 (Oblivious transfer (OT)). Let A and B be two parties. Thefuntionality FA→B,ℓ
OT behaves as follows: When reeiving input (s0, s1) from Awith s0, s1 ∈ {0, 1}ℓ(k) and c ∈ {0, 1} from B, send s := sc to B. All ommuni-ation/input/output is lassial. We all A the sender and B the reipient.7De�nition 8 (Randomized oblivious transfer (ROT)). Let A and B betwo parties. The funtionality FA→B,ℓ

ROT behaves as follows: If A is unorrupted,when reeiving input c ∈ {0, 1} from B, hoose s0, s1 ∈ {0, 1}ℓ(k) uniformly andsend (s0, s1) to A and s := sc to B. If A is orrupted, when reeiving input
(s0, s1) from A with s0, s1 ∈ {0, 1}ℓ(k) and c ∈ {0, 1} from B, send s := sc to B.All ommuniation/input/output is lassial.Dummy-adversary. In the de�nition of UC-seurity, we have three entities in-terating with the protool: the adversary, the simulator, and the environment.Both the adversary and the environment are all-quanti�ed, hene we would ex-pet that they do, in some sense, work together. This intuition is baked by thefollowing fat whih was �rst noted by Canetti [7℄: Without loss of generality, wean assume an adversary that is ompletely ontrolled by the environment. Thisso-alled dummy-adversary only forwards messages between the environmentand the protool. The atual attak is then exeuted by the environment.De�nition 9 (Dummy-adversary Advdummy). When ativated, the dummy-adversary Advdummy measures Hclass ; all the outome m. If m is of the form
(environment, adversary,m′), initialize Hclass with m′. Otherwise initialize
Hclass with (adversary, environment,m). In all ases, the quantum ommu-niation register is not modi�ed (i.e., the message in that register is forwarded).Note the strong analogy to the dummy-parties (De�nition 4) and the orruptionparties (page 2).Lemma 10 (Completeness of the dummy-adversary). Assume that πquantum-UC-emulates ρ with respet to the dummy-adversary (i.e., insteadof quantifying over all adversaries Adv, we �x Adv := Advdummy). Then
π quantum-UC-emulates ρ. This holds both for statistial and omputationalquantum-UC-seurity.The proof of Lemma 10 is very similar to that given in [7℄ and given in the fullversion [21℄.Universal omposition. For some protool σ, and some protool π, by σπ wedenote the protool where σ invokes (up to polynomially many) instanes of π.7 We used A as the sender in the desription of the OT funtionality, and as thereipient in the desription of the ommitment funtionality. We do so to simplifynotation later; our protool for OT from A to B will use a ommitment from B to A.



That is, in σπ the mahines from σ and from π run together in one network,and the mahines from σ aess the inputs and outputs of π. (That is, σ playsthe role of the environment from the point of view of π. In partiular, Z thentalks only to σ and not to the subprotool π diretly.) A typial situation wouldbe that σF is some protool that makes use of some ideal funtionality F , saya ommitment funtionality, and then σπ would be the protool resulting fromimplementing that funtionality with some protool π, say a ommitment pro-tool. (We say that σF is a protool in the F-hybrid model.) One would hopethat suh an implementation results in a seure protool σπ . That is, we hopethat if π quantum-UC-emulates F and σF quantum-UC-emulates G, then σπquantum-UC-emulates G. Fortunately, this is the ase:Theorem 11 (Universal Composition Theorem). Let π, ρ, and σ bequantum-polynomial-time protools. Assume that π quantum-UC-emulates ρ.Then σπ quantum-UC-emulates σρ. This holds both for statistial and ompu-tational quantum-UC-seurity.If we additionally have that σ quantum-UC-emulates G, from the transitivity ofquantum-UC-emulation (shown in the full version [21℄), it immediately followsthat σπ quantum-UC-emulates G.The proof of Theorem 11 is very similar to that given in [7℄ and given in thefull version [21℄.3 Relating lassial and quantum-UCWe all a mahine lassial if its state transition operator is lassial. A protoolis lassial if all its mahines are lassial.Using this de�nition we an reformulate the de�nition of statistial lassialUC in our framework.De�nition 12 (Statistial lassial-UC-seurity). Let protools π and ρbe given. We say π statistially lassial-UC-emulates ρ i� for every set C ⊆
partiesπ and for every lassial adversary Adv there is a lassial simulator Simsuh that for every lassial environment Z, πC∪{Adv,Z} and ρC∪{Sim,Z} areindistinguishable. We furthermore require that if Adv is probabilisti-polynomial-time, so is Sim.Note that lassial statistial UC is essentially the same as the notion of sta-tistial UC-seurity de�ned by Canetti [7℄. Thus, known results for statistialUC-seurity arry over to the setting of De�nition 12.The next theorem guarantees that if a lassial protool is statistially lassi-al UC-seure, then it is also statistially quantum-UC-seure. This allows, e.g.,to �rst prove the seurity of a protool in the (usually muh simpler) lassi-al setting, and then to ompose it with quantum protools using the universalomposition theorem (Theorem 11).



Theorem 13 (Quantum lifting theorem). Let π and ρ be lassial proto-ols. Assume that π statistially lassial-UC-emulates ρ. Then π statistiallyquantum-UC-emulates ρ.Proof. Given a mahine M , let C(M) denote the mahine whih behaves like
M , but measures inoming messages in the omputational basis before proess-ing them, and measures outgoing messages in the omputational basis. Morepreisely, the superoperator E(k)

C(M) �rst invokes Eclass on Hclass ⊗ Hquant , theninvokes E
(k)
M on Hstate ⊗ Hclass ⊗ Hquant , and then again invokes Eclass on

Hclass ⊗ Hquant . Sine it is possible to simulate quantum Turing mahines onlassial Turing mahines (with an exponential overhead), for every mahine
M , there exists a lassial mahine M ′ suh that C(M) and M ′ are perfetlyindistinguishable.8We de�ne the lassial dummy-adversary Advclass

dummy to be the lassial ma-hine that is de�ned like Advdummy (De�nition 9), exept that in eah invoation,it �rst measures Hclass , Hquant , and Hstate in the omputational basis (i.e., itapplies Eclass to Hstate ⊗Hclass ⊗Hquant ) and then proeeds as does Advdummy .Note that Advclass
dummy is probabilisti-polynomial-time.By Lemma 10, we only need to show that for any set C of orrupted parties,there exists a quantum-polynomial-time mahine Sim suh that for every ma-hine Z the real model πC ∪ {Z,Advdummy} and the ideal model ρC ∪ {Z, Sim}are indistinguishable.The protool π is lassial, thus πC is lassial, too, and thus all messagesforwarded by Advdummy from πC to Z have been measured in the omputa-tional basis by πC , and all messages forwarded by Advdummy from Z to πC willbe measured by πC before being used. Thus, if Adv would additionally mea-sure all messages it forwards in the omputational basis, the view of Z wouldnot be modi�ed. More formally, πC ∪ {Z,Advdummy} and πC ∪ {Z,Advclass

dummy}are perfetly indistinguishable. Furthermore, sine both πC and Advclass
dummymeasure all messages upon sending and reeiving, πC ∪ {Z,Advclass

dummy} and
πC ∪ {C(Z),Advclass

dummy} are perfetly indistinguishable. Sine it is possible tosimulate quantum mahines on lassial mahines (with an exponential over-head), there exists a lassial mahine Z ′ that is perfetly indistinguishablefrom C(Z). Then πC ∪ {C(Z),Advclass
dummy} and πC ∪ {Z ′,Advclass

dummy} are per-fetly indistinguishable. Sine Advclass
dummy and Z ′ are lassial and Advclass

dummy ispolynomial-time, there exists a lassial probabilisti-polynomial-time simulator
Sim (whose onstrution is independent of Z ′) suh that πC ∪ {Z ′,Advclass

dummy}and ρC ∪ {Z ′, Sim} are indistinguishable.Then ρC ∪{Z ′, Sim} and ρC ∪{C(Z), Sim} are perfetly indistinguishable byonstrution of Z ′. And sine both ρC and Sim measure all messages they sendand reeive, ρC ∪{C(Z), Sim} and ρC ∪{Z, Sim} are perfetly indistinguishable.8 More preisely, for any set of mahines N , the networks N ∪ {M} and N ∪ {C(M)}are perfetly indistinguishable.



Parameters: Integers n, m > n, ℓ, a family F of universal hash funtions.Parties: The sender Alie and the reipient Bob.Inputs: Alie gets no input, Bob gets a bit c.1. Alie hooses x̃A ∈ {0, 1}m and θ̃A ∈ {+,×}m and sends |x̃A〉θ̃A to Bob.2. Bob reeives the state |Ψ〉 sent by the sender. Then Bob hooses θ̃B ∈ {+,×}mand measures the qubits of |Ψ〉 in the bases θ̃B . Call the result x̃B.3. For eah i, Bob ommits to θ̃B
i and x̃B

i using one instane of FB→A,1
COM eah.4. Alie hooses a set T ⊆ {1, . . . , m} of size m − n and sends T to Bob.5. Bob opens the ommitments of θ̃B

i and x̃B
i for all i ∈ T .6. Alie heks x̃A

i = x̃B
i for all i with i ∈ T and θ̃A

i = θ̃B
i . If this test fails, Alieaborts.7. Let xA be the n-bit string resulting from removing the bits at positions i ∈ Tfrom x̃A. De�ne θA, xB, and θB analogously.8. Alie sends θA to Bob.9. Bob sets Ic := {i : θA

i = θB
i } and I1−c := {i : θA

i 6= θB
i }. Then Bob sends (I0, I1)to Alie.10. Alie hooses s0, s1 ∈ {0, 1}ℓ(k) and f0, f1 ∈ F, output (s0, s1), and omputes

mj := sj ⊕ fj(x
A|Ij ) for j = 0, 1. Then Alie sends f0, f1, m0, m1 to Bob.11. Bob outputs s := mc ⊕ fc(x

B|Ic ).Fig. 1. Protool πQROT for randomized oblivious transfer.Summarizing, we have that πC ∪ {Z,Advdummy} and ρC ∪ {Z, Sim} are in-distinguishable for all quantum-polynomial-time environments Z. Furthermore,
Sim is lassial probabilisti-polynomial-time and hene quantum-polynomial-time and its onstrution does not depend on the hoie of Z. Thus π statisti-ally quantum-UC-emulates ρ. ⊓⊔4 Oblivious transferDe�nition 14 (OT protools). The protool πQROT is de�ned in Figure 1.Fix a ommitment sheme com. The protool πcom

QROT is de�ned like πQROT, butinstead of using the funtionality FCOM, the ommitment sheme com is used.The protool πQOT is de�ned like πQROT, with the following modi�ations: Alietakes as input two ℓ(k)-bit strings v0, v1. In Step 10, Alie additionally sends
t0, t1 with ti := si ⊕ vi. Bob outputs s⊕ tc instead of s in Step 11.We �rst analyze πQROT and will then dedue the seurity of πQOT from thatof πQROT.4.1 Corrupted AlieLemma 15. The protool πQROT statistially quantum-UC-emulates FA→B,ℓ

ROT inthe ase of orrupted Alie.Proof. First, we desribe the struture of the real and ideal model in the asethat the party A (Alie) is orrupted:
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SimFig. 2. Networks ourring in the proof of Lemma 15. The dashed box representsthe mahine Sim that internally simulates Adv, AC , FFakeCOM and B.In the real model, we have the environment Z, the adversary Adv, the or-ruption party AC , the honest party B (Bob), and the 2m instanes of the om-mitment funtionality FCOM. The adversary ontrols the orruption party AC ,so e�etively he ontrols the ommuniation with Bob and the inputs of FCOM.Bob's input (a hoie bit c) is hosen by the environment, and the environmentalso gets Bob's output (a bitstring s ∈ {0, 1}ℓ). See Figure 2(a).In the ideal model, we have the environment Z, the simulator Sim (to bede�ned below), the orruption party AC , the dummy-party B̃, and the random-ized OT funtionality FROT. The simulator Sim ontrols the orruption party
AC and hene e�etively hooses the inputs s0, s1 of FROT.9 The input c of FROTis hosen by the dummy-party B̃ and thus e�etively by the environment Z. Theoutput s := sc of FROT is given to the dummy-party B̃ and thus e�etively tothe environment Z. See Figure 2(b).To show Lemma 15, we need to �nd a simulator Sim suh that, for anyenvironment Z, the real model and the ideal model are indistinguishable. Todo so, we start with the real model, and hange the mahines in the real modelstep-by-step until we end up with the ideal model ontaining a suitable simulator
Sim (whih we de�ne below in the desription of Game 6). In eah step, we showthat network before and after the step are perfetly indistinguishable.Game 1. We replae FCOM by a ommitment funtionality FFakeCOM in whihBob (the sender) an heat. That is, in the ommit phase, FFakeCOM expetsa message commit from B (instead of (commit, x)), and in the open phase,
FFakeCOM expets a message (open, x) (instead of open) and then sends (open, x)to Alie. We also hange Bob's implementation aordingly, i.e., when Bob shouldommit to a bit b, he stores that bit b and gives it to FFakeCOM when opening9 Remember that, if Alie is orrupted, FROT behaves like FOT and takes inputs s0, s1from Alie.



the ommitment. Obviously, this hange leads to a perfetly indistinguishablenetwork (sine Bob still opens the ommitment in the same way).Game 2. Sine Bob uses FFakeCOM instead of FCOM, he does not use the out-omes x̃B
i of his measurements before Step 5 (for i ∈ T ) or Step 11 (for i /∈ T )of the protool. Thus, we modify Bob so that he performs the measurementswith outomes x̃B

i (i ∈ T ) in Step 5 (in partiular, after learning T ), and themeasurements with outomes xB
i in Step 11. Delaying the measurements leadsto a perfetly indistinguishable network.Game 3. The bits xB

i with i ∈ I1−c are never used by Bob. Thus we an modifyBob to use the bases θA
i instead of θB

i for these bits without hanging the outputof Z. Furthermore, sine θA
i = θB

i for i ∈ Ic, we an modify Bob to also use thebases θA
i instead of θB

i when measuring xB
i with i ∈ Ic. Summarizing, we modifyBob to use θA instead of θB, and we get a perfetly indistinguishable network.Game 4. The bases θB are hosen randomly by Bob, and they are only used toompute the sets I0 and I1. We hange Bob to instead pik (I0, I1) as a randompartition of {1, . . . , n}. Sine this leads to the same distribution of (I0, I1) andsine θB is not used elsewhere, this leads to a perfetly indistinguishable network.Game 5. In Step 11, we hange Bob to ompute si := mi ⊕fi(x

B |Ii
) for i = 0, 1and to output s := sc. This leads to the same value of s as the original om-putation s := mc ⊕ fc(x

B |Ic
), hene the resulting network is perfetly indistin-guishable from the previous one. Note that now, Bob only uses the hoie bit cto pik whih of the two values s0, s1 to output.Game 6. We now onstrut a mahine Sim that internally simulates the ma-hines Adv, AC , FFakeCOM, and Bob. We let Sim run with an (external) orrup-tion party AC , and when (the simulated) Bob omputes s0, s1 in Step 11, Siminstruts the (external) orruption party AC to input s0, s1 into FROT (insteadof letting Bob output s = sc). Then FROT will, given input c from the dummy-party B̃, output sc to the dummy-party B̃. The dummy-party B̃ then forwards

sc to the environment Z. See Figure 2(). The only di�erene with respet to theprevious network (besides a regrouping of mahines) is that now sc is omputedby FROT from s0, s1. However, FROT omputes sc in the same way as Bob wouldhave done. Thus, the resulting network is perfetly indistinguishable from theprevious one.Sine the network from Game 6 (Figure 2()) is idential to the ideal model(Figure 2(b)), and sine the real model is perfetly indistinguishable from thenetwork from Game 6, we have that the real and the ideal network are perfetlyindistinguishable.Furthermore, Sim is quantum-polynomial-time if Adv is, and the onstru-tion of Sim does not depend on the hoie of the environment Z. Thus theprotool πQROT statistially quantum-UC-emulates FA→B,ℓ
ROT in the ase of or-rupted Alie. ⊓⊔Theorem 16. Fix onstants 0 < α < 1 and 0 < λ < 1
4 . Let m := ⌈n/(1 − α)⌉and ℓ := ⌊λn⌋ and assume that n grows at least linearly in the seurity parameter.Then the protool πQROT statistially quantum-UC-emulates FA→B,ℓ

ROT .



For the ase of orrupted Alie, this is shown in Lemma 15. The ases whereboth parties are honest or both parties are orrupted are trivial. Thus for Theo-rem 16 we are left to analyze the ase where Bob is orrupted. This ase needsa onsiderably more involved analysis than the ase of orrupted Alie beausewe have to onsider the fat that Bob may sueed in Step 6 of πQROT but stillhave a ertain amount of information about the bits xA|I1−c
. A very similaranalysis has already been performed by Damgård, Fehr, Lunemann, Salvail, andSha�ner [9℄ in the so-alled stand-alone model. Fortunately, we do not need toredo their analysis; it turns out that � although the stand-alone model is weakerthan the quantum-UC-model � the partiular simulator onstruted by Damgårdet al. is already strong enough to be used as a simulator in the quantum-UC-model. Thus we an reuse the result of Damgård et al. in our setting and getTheorem 16 without re-analyzing πQROT.10The full proof of Theorem 16 is given in the full version [21℄.Theorem 17. Let 0 < α < 1 and 0 < λ < 1

4 be onstants. Assume m = ⌈n/(1−
α)⌉ and ℓ = ⌊λn⌋ and that n grows at least linearly in the seurity parameter.Then the protool πQOT (Def. 14) statistially quantum-UC-emulates FA→B,ℓ

OT .Proof. Consider the following protool π′
QOT in the FROT-hybrid model. Giveninputs v0, v1 ∈ {0, 1}ℓ(k) for Alie and a bit c for Bob, Bob invokes FROT withinput c. Then Alie gets random s0, s1 ∈ {0, 1}ℓ(k), and Bob gets s = sc. ThenAlie sends t0, t1 with ti := vi ⊕ si to Bob. And Bob outputs s⊕ tc. It is easy tosee that π′

QOT statistially lassial-UC-emulates FOT. Hene, by the quantumlifting theorem (Theorem 13), π′
QOT statistially quantum-UC-emulates FOT.Note that the protool πQOT is the protool resulting from replaing, in π′

QOT,alls to FROT by alls to the subprotool πQROT. Furthermore, πQROT statisti-ally quantum-UC-emulates FROT by Theorem 16. Hene, by the ompositiontheorem (Theorem 11), πQOT statistially quantum-UC-emulates FOT. ⊓⊔5 Multi-party omputationTheorem 18. Let F be a lassial probabilisti-polynomial-time funtionality.11Then there exists a protool π in the FCOM-hybrid model that statistiallyquantum-UC-emulates F . (Assuming the number of protool parties does notdepend on the seurity parameter.)10 One major di�erene between the UC-model and the stand-alone model is that inthe �rst, the honest parties' inputs may depend on messages the adversary intereptsduring the protool run. A simulator onstruted for the stand-alone model usuallyis not able to ope with suh dependenies. Thus, it turns out to be important thatwe �rst onsidered the randomized OT protool πQROT and not immediately the OTprotool πQOT. In πQROT, Alie gets no input, and in partiular her inputs may notdepend on messages interepted by the adversary.11 Subjet to ertain tehnial restritions stemming from the proof by Ishai et al. [13℄:Whenever the funtionality gets an input, the adversary is informed about the lengthof that input. Whenever the funtionality makes an output, the adversary is informedabout the length of that output and may deide when this output is to be sheduled.



Proof. Ishai, Prabhakaran, and Sahai [13℄ prove the existene of a protool ρFOTin the FOT-hybrid model that statistially lassial-UC-emulates F (assuminga onstant number of parties). By the quantum lifting theorem (Theorem 13),
ρFOT statistially quantum-UC-emulates F . By Theorem 17, πQOT statistiallyquantum-UC-emulates FOT. Let π := ρπQOT be the result of replaing invoa-tions to FOT in ρFOT by invoations of the subprotool πQOT (as desribedbefore Theorem 11). Then by the universal omposition theorem (Theorem 11),
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