
Secure Obfuscation for Encrypted Signatures

Satoshi Hada

IBM Research - Tokyo, satoshih@jp.ibm.com

Abstract. Obfuscation is one of the most intriguing open problems in
cryptography and only a few positive results are known. In TCC’07, Ho-
henberger et al. proposed an obfuscator for a re-encryption functionality,
which takes a ciphertext for a message encrypted under Alice’s public
key and transforms it into a ciphertext for the same message under Bob’s
public key [24]. It is the first complicated cryptographic functionality
that can be securely obfuscated, but obfuscators for such cryptographic
functionalities are still elusive. In this paper, we consider obfuscation for
encrypted signature (ES) functionalities, which generate a signature on a
given message under Alice’s secret signing key and encrypt the signature
under Bob’s public encryption key. We propose a special ES function-
ality, which is the sequential composition of Waters’s signature scheme
[33] and the linear encryption scheme proposed by Boneh, Boyen, and
Shacham [5], and construct a secure obfuscator for it. We follow the
security argument by Hohenberger et al. to prove that our proposed ob-
fuscator satisfies a virtual black-box property (VBP), which guarantees
that the security of the signature scheme is preserved even when adver-
saries are given an obfuscated program. Our security argument is in the
standard model.

Keywords: Obfuscation, encrypted signatures, signcryption, bilinear map

1 Introduction

An obfuscator is a tool to convert a program into a new unintelligible program
while preserving the functionality. Several formal definitions have been proposed
so far [22, 3, 27, 34, 20, 23, 24, 21, 9, 12]. Informally, obfuscators should satisfy the
following two requirements: (1) functionality: the obfuscated program has the
same functionality as the original one and (2) virtual black-box property (VBP):
whatever one can efficiently compute given the obfuscated program can be com-
puted given black-box access to the functionality. The functionality requirement
is the syntactic requirement while the VBP is the security requirement to capture
the unintelligibility of obfuscated programs.

As discussed in [3], obfuscators, if they exist, would have a wide variety
of cryptographic applications including software protection, fully homomorphic
encryption, removing random oracles, and transforming private-key encryption
schemes into public-key encryption schemes. Unfortunately, the impossibility of
generic obfuscation have been shown in [3, 20] even under very weak VBP defini-
tions, which require that any predicate that can be efficiently computed from an



obfuscated program can also be efficiently computed given black-box access to
the functionality. Specifically, they showed the existence of (contrived) function-
alities for which no obfuscator can satisfy the weak VBPs. However, the negative
results do not rule out the possibility that there exists an obfuscator for a spe-
cific functionality. Indeed, some positive results are known for point functions
[8, 11, 27, 34, 20, 16, 23, 9, 12]. In spite of these positive results, obfuscators for
traditional cryptographic functionalities have remained elusive.

In TCC’07, Hohenberger et al. proposed an obfuscator for a re-encryption
functionality [24]. It is the first complicated cryptographic functionality that can
be securely obfuscated. A re-encryption functionality for Alice and Bob takes
a ciphertext for a message encrypted under Alice’s public key and transforms
it into a ciphertext for the same message under Bob’s public key. The naive
program contains both Alice’s secret key and Bob’s public key, and it simply
decrypts the input ciphertext and encrypts the plain message. Clearly, this pro-
gram reveals Alice’s secret key to any party executing the program. If Alice can
securely obfuscate the program, the VBP ensures that any party learns no more
from the obfuscated program than it does from black-box access to the function-
ality. In particular, the obfuscated program does not reveal Alice’s secret key
and cannot be used for eavesdropping. Hohenberger et al. constructed a special
encryption scheme and a secure obfuscator for the re-encryption functionality.
Their security argument is based on a new VBP definition suitable for crypto-
graphic functionalities. It ensures that the security of cryptographic function-
alities can be preserved even when adversaries are given obfuscated programs
(See the discussion in [24]). They showed that the security of their proposed
encryption scheme is preserved even when adversaries are given an obfuscated
re-encryption program.

From both the theoretical and practical perspectives, it is important to inves-
tigate the possibility of secure obfuscation for more cryptographic functionalities.
In this paper, we consider obfuscation for encrypted signature (ES) functional-
ities. An ES functionality for Alice and Bob generates a signature on a given
message under Alice’s secret signing key and then encrypts the signature under
Bob’s public encryption key. As in re-encryption, the naive program contains
Alice’s secret key and Bob’s public key, and reveals Alice’s secret key. If Alice
can securely obfuscate the program, the VBP ensures that any party executing
the obfuscated program cannot forge Alice’s signature. We propose a special
pair of signature and encryption schemes and construct a secure obfuscator for
the ES functionality. Also, we follow the security argument by Hohenberger et
al. in [24] to show that the security of signature scheme is preserved even when
adversaries are given an obfuscated ES program.

We believe that there are many useful applications of our proposed obfus-
cation. We informally describe an application to secure Webmail services. ES
should not be confused with Signature-then-Encryption or Sign-then-Encrypt
(StE). The StE functionality signs a given message and then encrypts both the
message and signature. StE is the most widely-used approach to constructing a



signcryption scheme [2, 35]1. On the other hand, the ES functionality does not
encrypt the message itself and we can not necessarily use it as a signcryption
scheme. However, as shown in Appendix A, we believe that one can use an ES
functionality as a building block to construct a signcryption functionality and
that an obfuscator for the ES functionality can be used to obfuscate the sign-
cryption functionality. Potential target applications include Webmail services
such as Yahoo! Mail and Google’s Gmail where users use e-mail services via
Web browsers. If users want to signcrypt their messages and their Web browsers
do not have the required capability then their Webmail providers need to sign-
crypt their messages on behalf of them. This means that users need to securely
delegate their signing capability to the Webmail providers. The combination of
the proposed obfuscation for an ES functionality presented in this paper and
the obfuscation for the signcryption scheme constructed in Appendix A would
provide a solution. For example, even if a malicious operator inside Webmail
providers is given an obfuscated signcryption program for Alice-to-Bob, he/she
can neither forge Alice’s signatures nor perform the signcryption operation for
Alice-to-Carol. However, we must be careful. The obfuscation does not prevent
the malicious operator from performing the signcryption for Alice-to-Bob. Also,
if the malicious operator has access to Bob’s secret decryption key, he/she can
forge Alice’s signatures (In the case of our proposed obfuscations, what is worse is
that he/she can extract Alice’s secret signing key from the obfuscated program).
The formal security argument for the signcryption and obfuscation outlined in
Appendix A is outside the scope of this proceedings version.

1.1 Basic Idea

Our obfuscation is based on the following basic idea: We construct a special
pair of signature and encryption schemes such that generating a signature on a
message and then encrypting the signature is functionally equivalent to encrypt-
ing the signing key and then generating a signature on the message under the
encrypted signing key. The former process is the ES functionality. In the latter
process, “encrypting the signing key” can be viewed as an obfuscation of the ES
functionality and “generating a signature on the message under the encrypted
signing key” corresponds to executing the obfuscated program.

We informally describe how to construct such a special pair using the BLS
signature scheme proposed by Boneh et al. [7]. Let (q,G,GT , e, g) be a parameter
for a bilinear map, where both G and GT are cyclic groups of prime order q, e
is an efficient bilinear mapping from G×G to GT , and g is a generator of G. A
public verification and secret signing key pair is (v, s) such that v = gs, where s
is a random number in Z∗q . Given a message m, the signature σ is calculated as
H(m)s, where H : {0, 1}∗ → G is a hash function. We can verify the signature by
checking the equality e(g, σ) = e(H(m), v). If the computational Diffie-Hellman
problem is hard, the scheme is secure in the random oracle model [4], where H is

1 Following [2], we use the term “signcryption” for any scheme achieving both privacy
and authenticity in the public key setting.



modeled as a random oracle. Also, we use a secure key encapsulation mechanism
(KEM) to encrypt the signature value σ = H(m)s. Let KEM.Enc(pk) be the
encryption algorithm of the secure KEM. Given a public encryption key pk,
it generates a pair of a random key r and its ciphertext c. Given KEM.Enc,
we define an encryption algorithm Enc, which takes as input a plaintext p(=
H(m)s) ∈ G and a public key pk, generates (r, c)← KEM.Enc(pk), and outputs
(c, pr) as the ciphertext. The key and message spaces of KEM.Enc and Enc are
Z∗q and G, respectively. The decryption is straightforward (You can decrypt c
to recover r and then p). Then we consider the ES functionality defined as
the sequential composition of the BLS signing algorithm and the encryption
algorithm Enc. That is, given a message m, it computes the signature H(m)s,
generates (r, c) ← KEM.Enc(pk), and outputs (c,H(m)sr). The naive program
implementing the ES functionality contains (s, pk) and reveals s. Our goal is to
obfuscate it.

Approach 1. Given the naive program, we extract (s, pk) and encrypt s using
KEM.Enc. Specifically, we generate (r, c)← KEM.Enc(pk) and compute sr mod q,
where (c, sr) is an encryption of the secret signing key s. It reveals no information
on s since KEM.Enc is secure. However, using it, we can still compute an encryp-
tion of the valid signature of a given message m. That is, we can construct an
obfuscated program Cc,sr containing (c, sr), which takes as input m and outputs
(c,H(m)sr). Note that the output is an encryption of the valid signature H(m)s

by Enc. The problem here is that Cc,sr does not preserve the probabilistic ES
functionality since it is deterministic. If Enc is rerandomizable with pk2, we can
fix the problem simply by rerandomizing (c,H(m)sr). That is, we can construct
a new obfuscated program Cc,sr,pk containing (c, sr, pk), which takes as input
m, computes (c,H(m)sr), rerandomizes it using pk, and outputs the rerandom-
ized ciphertext. The contained information (c, sr, pk) reveals no information on
s because it is a ciphertext. It is not difficult to see that the obfuscation satisfies
a VBP under the assumption that KEM.Enc is secure. In other words, the VBP
simply reduces to the security of KEM.Enc.

Approach 1′ (A special case of Approach 1). We describe a sufficient condition
under which Enc is rerandomizable with pk. If KEM.Enc satisfies a scalar homo-
morphic property (and is rerandomizable with pk), then Enc is rerandomizable
with pk. By the scalar homomorphic property, we mean that, given a KEM ci-
phertext c, we can compute (r′, c′) such that r′ is a new random key and c′ is
a ciphertext of rr′ mod q. We denote the operation by (r′, c′) ← multiplypk(c).
In this approach, a modified obfuscated program C ′c,sr,pk computes (c,H(m)sr),
generates (r′, c′) ← multiplypk(c), and outputs (c′, H(m)srr

′
), which is a reran-

domization of (c,H(m)sr). Bob can decrypt c′ to recover rr′ and then H(m)s.
We are done if C ′c,sr,pk preserves the probabilistic functionality. However, we still

2 We mean that anybody having the public key can convert a ciphertext of a message
into a different ciphertext that is distributed identically to a fresh encryption of the
same message.



have a potential problem. The distribution of c′ may be different from the orig-
inal distribution produced by KEM.Enc. If KEM.Enc is rerandomizable with pk,
we can fix it simply by rerandomizing c′. That is, a modified program C ′′c,sr,pk
computes (c′, H(m)srr

′
), rerandomizes c′ as c′′, and outputs (c′′, H(m)srr

′
). For

example, we can use the Paillier encryption scheme as KEM.Enc [31]. However,
since its message (key) space is Zn such that n is the product of two large primes,
we need to define the bilinear group for the BLS scheme as having order n.

Approach 2. When Enc cannot be rerandomizable and we can not take Ap-
proaches 1 and 1′, we can consider a new ES functionality. The new ES func-
tionality is the sequential composition of the BLS signing algorithm and a new
encryption algorithm Enc′. Enc′ takes as input a plaintext p(= H(m)s) ∈ G
and a public key pk, runs KEM.Enc twice ((r1, c1) ← KEM.Enc(pk), (r2, c2) ←
KEM.Enc(pk)), and outputs (c1, c2, pr1r2). Clearly, the use of two random keys
(r1, r2) is redundant, but we can obfuscate the naive program as follows: Given
the naive program, we extract (s, pk), generate (r1, c1) ← KEM.Enc(pk), and
compute sr1 mod q. Then, we construct an obfuscated program Cc1,sr1,pk con-
taining (c1, sr1, pk), which takes as input m, generates (r2, c2)← KEM.Enc(pk),
and outputs (c1, c2, H(m)sr1r2). The contained information (c1, sr1, pk) is the
same as in the previous approaches and reveals no information on s. Note that
the Cc1,sr1,pk does not preserve the probabilistic ES functionality since the value
of c1 is always the same. However, if KEM.Enc is rerandomizable with pk, then
it is easy to fix the problem by rerandomizing c1. In this approach, we can use
any rerandomizable encryption scheme as KEM.Enc.

Comparison. Let us briefly compare the above three approaches. Approaches 1
and 2 require that Enc and KEM.Enc are rerandomizable, respectively. Approach
1′ is a special case of Approach 1 and requires that a scalar homomorphic prop-
erty (and rerandomizability) of KEM.Enc, which is a strong requirement. Note
that we may be able to take Approach 1 without using the scalar homomorphic
property required by Approach 1′ (although we don’t have a concrete example).
Approach 2 requires a redundancy of ciphertexts. Therefore, Approach 1 seems
to be the best approach.

1.2 Our Contributions

In this paper, we will use the pair of Waters’s signature scheme [33] and the
linear encryption scheme proposed by Boneh, Boyen, and Shacham [5] to take
Approach 1′ and propose a secure obfuscator for the ES functionality. Following
the security definition and argument by Hohenberger et al. in [24], we present a
security analysis of our proposed obfuscation. Waters’s signature scheme is more
complicated than the BLS scheme, but it is provably secure in the standard
model. All security arguments in this paper are in the standard model.

Our contributions are summarized as follows: In Section 3, we propose two
security definitions of digital signature schemes in the context of ES. One re-
quires that no adversary can existentially forge a signature even if it is given



black-box access to the ES functionality. The other requires the same even if
it is given an obfuscated program for the ES functionality. We expect that the
former/weaker definition implies the latter/stronger definition if the obfuscator
satisfies a VBP. In Section 4, we propose a natural generalization of the VBP
definition proposed by Hohenberger et al. in [24] so that we can show that the
weaker existential unforgeability implies the stronger one. As stated in [24], their
proposed VBP provides a meaningful security for cryptographic schemes if they
satisfy a special property called distinguishable attack property. Unfortunately,
digital signature schemes do not have this property in the context of ES. This is
the reason why we need to introduce the generalized VBP definition. In Section
5, we propose a special ES functionality, which is the sequential composition
of Waters’s signature scheme and the linear encryption scheme, and construct
an obfuscator for it. We prove that the obfuscator is secure under the general-
ized VBP definition and that Waters’s signature scheme satisfies the stronger
existential unforgeability with the obfuscator.

1.3 Related Works

Some related works are already mentioned in the previous sections. In particular,
our work is inspired by the secure obfuscation for re-encryption in [24]. Both re-
encryption and ES functionalities output a ciphertext and this common property
enables us to simulate real obfuscated programs by randomly generating junk
programs to prove the VBPs.

Our proposed obfuscation can be viewed as public-key obfuscation for signing
functionalities [30, 1]. A generic construction of public key obfuscations with a
fully homomorphic encryption scheme is discussed in [18].

There are some different definitional approaches than VBPs to capture the
unintelligibility of obfuscation, e.g., indistinguishability of obfuscation [3], best-
possible obfuscation [21], and non-malleable obfuscation [12].

2 Preliminaries

Given a positive integer n, we denote by [n] the set {1, 2, · · · , n}. We say that a
function ν(·) : IN→ IR+ is negligible in n if for every polynomial p(·) and all suf-
ficiently large n’s, it holds that ν(n) < 1/p(n). Given a probability distribution
S, we denote by x← S the operation of selecting an element according to S. If A
is a probabilistic machine then A(x1, x2, . . . , xk) denotes the output distribution
of A on inputs (x1, x2, . . . , xk). Let Pr[x← S1;x2 ← S2; . . . ;xk ← Sk : E] denote
the probability of the event E after the processes x1 ← S1, x2 ← S2, . . . , xk ← Sk
are performed in order. PPT stands for “probabilistic polynomial time”. All PPT
machines in this paper run in probabilistic polynomial-time in the security pa-
rameter denoted by n. Also, some PPT machines (e.g., representing adversaries)
are allowed to take non-uniform auxiliary input of polynomial length in n, which
is denoted by z.



2.1 Circuit Obfuscators

A class of circuits is of the form C = {Cn}n∈IN, where Cn is a set of polynomial-
size circuits with input length lin(n) and output length lout(n), where lin(n) and
lout(n) are polynomials. It has an associated PPT generation algorithm which
takes as input 1n and generates a random circuit C from Cn. In this paper, it
corresponds to the random selection of information such as cryptographic keys
on security parameter 1n. We denote the generation process by C ← Cn. When
a circuit is used as an input or an output argument of an algorithm, we assume
that an encoding of circuits is used implicitly (e.g., obfuscators take as input a
circuit and output a circuit). The results of this paper are independent of any
particular encoding method.

Let C(x, r) be a probabilistic circuit which takes the regular input x and the
random input r. Given a regular input x, we can view C(x, ·) as a sampling
algorithm for the distribution obtained by evaluating C(x, r) on random coins
r. Given two probabilistic circuits (C1, C2) whose regular inputs are of the same
length, we denote by (C1(x), C2(x)) the two distributions produced by C1(x, ·)
and C2(x, ·) and by StaDiff(C1(x), C2(x)) the statistical difference between them,
i.e., StaDiff(C1(x), C2(x)) = 1

2

∑
y∈{0,1}lout(n) |Pr[o ← C1(x) : o = y] − Pr[o ←

C2(x) : o = y]|.
When we say that a machine M has black-box access to a probabilistic circuit

C, we have two different meanings: oracle access and sampling access. Oracle
access is such that M is allowed to set both regular and random inputs. We
denote it by MC . Sampling access is such that M is allowed to set only the
regular input, but not the random input. That is, when M makes an oracle
query x, M obtains a uniform and independent sample from the distribution
produced by C(x, ·). We denote it by M�C�.

An obfuscator for a class of circuits C = {Cn}n∈IN is a PPT machine which
takes as input a circuit C ∈ Cn and outputs an unintelligible circuit C ′ which
preserve the functionality. In this paper, we require that the functionality should
be perfectly preserved.

Definition 1. A PPT machine Obf is a circuit obfuscator for a class of prob-
abilistic circuits C = {Cn}n∈IN if, for every probabilistic circuit C ∈ Cn, the
following holds: Pr[C ′ ← Obf(C) : ∀x, StaDiff(C(x), C ′(x)) = 0] = 1.

Remark 1. We can relax the functionality requirement by allowing a negligible
statistical difference and a negligible error probability as in [23, 24]. In this paper,
we use this stronger definition because our proposed obfuscator can satisfy it.

Definition 1 says nothing about the security requirement and we will formu-
late it based on VBPs in Section 4.

2.2 Public-Key Encryption and Digital Signatures

We review the security notions of public-key encryption (PKE) and digital signa-
ture (DS) schemes (Our definitions are based on [19]). Let Setup be an algorithm



which, on security parameter 1n, generates a parameter to be used commonly
by multiple users in a pair of PKE and DS schemes.

A PKE scheme consists of three algorithms (EKG,E,D). The key generation
algorithm EKG is a probabilistic algorithm which takes as input a common pa-
rameter p and returns a public-secret key pair (pk, sk). The encryption algorithm
E is a probabilistic algorithm which takes a common parameter p, a public key
pk, and a plaintext m ∈ MS(p, pk) to return a ciphertext c, where MS(p, pk)
is the message space defined by (p, pk). The encryption process is denoted by
c← E(p, pk,m). The decryption algorithm D is a deterministic algorithm which
takes a common parameter p, a secret key sk, and a ciphertext c to return the
plaintext m, and the decryption process is denoted by m = D(p, sk, c). When
the given ciphertext is invalid, the decryption algorithm produces a special sym-
bol ⊥ to indicate that the ciphertext was invalid. It is required that, for every
key information (p, pk, sk) and every message m ∈ MS(p, pk), the decryption
always succeeds, i.e., Pr[c← E(p, pk,m) : D(p, sk, c) = m] = 1. The following is
the standard indistinguishability requirement against chosen plaintext attacks
(CPAs). The definition is for a single message, but implies the indistinguishabil-
ity requirement for polynomially multiple messages [19].

Definition 2 (Indistinguishability of Encryptions against CPAs). A PKE
scheme (EKG,E,D) satisfies the indistinguishability if the following condition
holds: For every PPT machine pair (A1, A2) (adversary), every polynomial p(·),
all sufficiently large n ∈ IN, and every z ∈ {0, 1}poly(n),

2 · Pr


p← Setup(1n); (pk, sk)← EKG(p);
(m1,m2, h)← A1(p, pk, z); b← {0, 1}; c← E(p, pk,mb);
d← A2(p, pk, (m1,m2, h), c, z) :
b = d

− 1 <
1

p(n)
,

where we assume that A1 produces a valid message pair m1 and m2 ∈MS(p, pk).
A DS scheme consists of three algorithms (SKG,S,V). The key generation

algorithm SKG is a probabilistic algorithm which takes as input a common pa-
rameter p and returns a public-secret key pair (pk, sk). The signing algorithm S is
a probabilistic algorithm which takes a common parameter p, a secret key sk, and
a plaintext m ∈MS(p, pk) to return a signature σ, where MS(p, pk) is the mes-
sage space defined by (p, pk). The signing process is denoted by σ ← S(p, sk,m).
The verification algorithm V is a deterministic algorithm which takes a com-
mon parameter p, a public key pk, a message m, and a signature σ to return
Accept if σ is a valid signature of m, and the verification process is denoted
by d = V(p, pk,m, σ). It is required that, for every key information (p, pk, sk)
and every message m ∈ MS(p, pk), the verification of valid signatures always
succeeds, i.e., Pr[σ ← S(p, sk,m) : V(p, pk,m, σ) = Accept] = 1. The following is
the standard existential unforgeability (EU) requirement against chosen-message
attacks (CMAs).

Definition 3 (Existential Unforgeability against CMAs). A DS scheme
(SKG,S,V) is existentially unforgeable if the following condition holds: For every



PPT oracle machine A (adversary), every polynomial p(·), all sufficiently large
n ∈ IN, and every z ∈ {0, 1}poly(n),

Pr

p← Setup(1n); (pk, sk)← SKG(p);
(m,σ,Q)← A�Sp,sk�(p, pk, z) :
V(p, pk,m, σ) = Accept and m /∈ Q

 < 1
p(n)

,

where Sp,sk is the signing oracle (circuit) and Q is the set of messages queried
by A adaptively.

3 Security of Digital Signatures in the Context of ES

In this section, we re-define the EU requirement on DS schemes in the context
of ES. Let (EKG,E,D) and (SKG,S,V) be a pair of PKE and DS schemes. We
consider the ES functionality FES = {Fn}n∈IN for the two schemes. Given a
common parameter p, a secret signing key sk, and a public encryption key pke
generated with the security parameter 1n, the ES functionality Fp,sk,pke ∈ Fn is
defined as follows:

1. When Fp,sk,pke is run on a message m, it generates a signature on m under
sk (σ ← S(p, sk,m)), encrypts σ under pke (c ← E(p, pke, σ)), and outputs
c.

2. When Fp,sk,pke
is run on the special input keys, it outputs (p, pk, pke), where

pk is the public verification key corresponding to sk.

Also, we define a corresponding class of circuits CES = {Cn}n∈IN which im-
plements FES . Cn is a set of circuits Cp,sk,pke implementing Fp,sk,pke . The as-
sociated generation algorithm takes as input 1n, generates p ← Setup(1n),
(sk, pk)← SKG(p) and (ske, pke)← EKG(p), and outputs Cp,sk,pke

.
The following is the EU requirement re-defined in the context of ES. The

difference from Definition 3 is that A is given the public encryption key pke.
However, it is still equivalent to Definition 3.

Definition 4 (EU w.r.t. ES Functionality). Let (EKG, E, D) and (SKG,S,V)
be a pair of PKE and DS schemes. The DS scheme is existentially unforgeable
w.r.t. the ES functionality if the following condition holds: For every PPT ma-
chine A (adversary), every polynomial p(·), all sufficiently large n ∈ IN, and
every z ∈ {0, 1}poly(n),

Pr

p← Setup(1n); (pk, sk)← SKG(p); (pke, ske)← EKG(p);
(m,σ,Q)← A�Sp,sk�(p, pk, pke, z) :
V(pk,m, σ) = Accept and m /∈ Q

 < 1
p(n)

.

Note that the adversary A implicitly has sampling access to Fp,sk,pke
because

it has sampling access to the signing oracle Sp,sk and takes as input the public
encryption key (p, pke). In this sense, Definition 4 requires that the signature
scheme is still existentially unforgeable even when A is given sampling access to
Fp,sk,pke .



Next, we consider a stronger EU, which requires that the signature scheme
is still existentially unforgeable even when A is given an obfuscated circuit for
Fp,sk,pke . The following is the strengthened definition and the difference from
Definition 4 is that A is given an obfuscated circuit for Fp,sk,pke

.

Definition 5 (EU w.r.t. ES Obfuscator). Let
(EKG,E,D) and (SKG,S,V) be a pair of PKE and DS schemes. Also, let Obf be a
circuit obfuscator for CES. The DS scheme is existentially unforgeable w.r.t. Obf
if the following condition holds: For every PPT machine A (adversary), every
polynomial p(·), all sufficiently large n ∈ IN, and every z ∈ {0, 1}poly(n),

Pr


p← Setup(1n); (pk, sk)← SKG(p); (pke, ske)← EKG(p);
C ′ ← Obf(Cp,sk,pke);
(m,σ,Q)← A�Sp,sk�(p, pk, pke, C ′, z) :
V(pk,m, σ) = Accept and m /∈ Q

 < 1
p(n)

.

We expect that if Obf satisfies a strong VBP, then the EU w.r.t. the ES
functionality implies the (stronger) EU w.r.t. Obf. The question is what VBP
Obf should satisfy for the implication to hold. We will answer it in the next
section.

Remark 2. We can re-define the indistinguishability of encryptions in the con-
text of ES in a similar way. However, we omit it because the main purpose of
obfuscators is to hide Alice’s secret signing key but not Bob’s secret decryption
key. Note that the indistinguishability is preserved even when the distinguisher
D in Definition 2 is given the naive program for ES that reveals the signing key.

4 Virtual Black-Box Properties

In this section, we review average-case VBP (ACVBP) proposed by Hohenberger
et al. in [24], under which the VBP of the re-encryption obfuscator is proved. As
stated in [24], their ACVBP provides a meaningful security for cryptographic
schemes if they satisfy a special property called distinguishable attack property.
Unfortunately, DS schemes do not have this property in the context of ES.
That is, even if Obf satisfies the ACVBP under their ACVBP definition, the
EU w.r.t. the ES functionality does not necessarily imply the stronger EU w.r.t.
Obf. Therefore, we propose a natural generalization of their ACVBP definition
under which we can claim that, if Obf satisfies the (stronger) ACVBP, then the
implication holds.

First of all, we review the definition of ACVBP proposed in [24].

Definition 6 (ACVBP [24]). A circuit obfuscator Obf for C satisfies the
ACVBP if the following condition holds: There exists a PPT oracle machine
S (simulator) such that, for every PPT oracle machine D (distinguisher), every
polynomial p(·), all sufficiently large n ∈ IN, and every z ∈ {0, 1}poly(n),∣∣∣∣∣Pr

C ← Cn;
C ′ ← Obf(C);
b← D�C�(C ′, z)

: b = 1

− Pr

C ← Cn;
C ′′ ← S�C�(1n, z);
b← D�C�(C ′′, z)

: b = 1

 ∣∣∣∣∣ < 1
p(n)

.



It was proposed as a general definition in the sense that it is not specific
to re-encryption. The authors gave an informal discussion that their proposed
ACVBP provides a meaningful security in cryptographic settings [24, Section
2.1]. We briefly review it below. In general, VBPs should guarantee that if a
cryptographic scheme is secure when the adversary is given black-box access to
a program, then it remains secure when the adversary is given the obfuscated
program. The authors claim that for a large class of applications (including re-
encryption), obfuscators satisfying Definition 6 indeed give this guarantee. More
specifically, the authors propose to use the following informal argument: If a
cryptographic scheme has the following three properties:

1. The scheme is secure against black-box adversaries with sampling access to
functionality X selected randomly from a family F ;

2. A distinguisher D with sampling access to X can test whether an adversary
A can break the security guarantee of the scheme (distinguishable attack
property);

3. There exists a circuit obfuscator satisfying ACVBP for a class CF of circuits
implementing F ;

Then the cryptographic scheme is also secure against adversaries who are given
an obfuscation of a circuit selected at random from the class CF .

The argument works for re-encryption functionalities as discussed in [24],
where F is a re-encryption functionality and the cryptographic scheme is the
underlying encryption scheme. However, it does NOT work for ES functionalities,
where the cryptographic scheme is a pair of PKE and DS schemes, F is the
ES functionality FES , and X is Fp,sk,pke

. Let us check whether the argument
goes through for the DS scheme. We have no problem with the first and third
conditions. The first condition requires that the DS scheme satisfies the standard
EU requirement according to Definition 4. The third condition requires that there
exists a circuit obfuscator satisfying ACVBP for CES . The problem is that the
second condition is not satisfied in this case. The reason is that A has sampling
access to the signing oracle, but D does not have.

Remark 3. Readers might ask if Definition 6 still provides a meaningful security
for cryptographic schemes even when they do NOT satisfy the distinguishable
attack property. However, it is not the case. We can show that there exists a
cryptographic functionality using a secret information such that (1) the secret
operation does not satisfy the distinguishable attack property and (2) it has an
obfuscator satisfying the ACVBP under Definition 6, but any obfuscated circuit
reveals the secret information.

As discussed above, Definition 6 is not strong enough for our purpose. In
order to make it stronger, we propose a natural generalization. The generalization
allows distinguishers to have sampling access not only to �C� but also to a
set of oracles dependent on C.

Definition 7 (ACVBP w.r.t. Dependent Oracles). Let T (C) be a set of
oracles dependent on the circuit C. A circuit obfuscator Obf for C satisfies the



ACVBP w.r.t. dependent oracle set T if the following condition holds: There
exists a PPT oracle machine S (simulator) such that, for every PPT oracle
machine D (distinguisher), every polynomial p(·), all sufficiently large n ∈ IN,
and every z ∈ {0, 1}poly(n),∣∣∣∣∣Pr

C ← Cn;
C ′ ← Obf(C);
b← D�C,T (C)�(C ′, z)

: b = 1

− Pr

C ← Cn;
C ′′ ← S�C�(1n, z);
b← D�C,T (C)�(C ′′, z)

: b = 1

 ∣∣∣∣∣ < 1
p(n)

,

where D�C,T (C)� means that D has sampling access to all oracles contained in
T (C) in addition to C.

Clearly, for every T , this generalized ACVBP implies the ACVBP in Defini-
tion 6.

Remark 4. Since T (C) can be viewed as dependent auxiliary-input to adver-
saries, it is natural to allow the simulator S to have access to T (C). However,
we did not allow it because the security proof of our obfuscator does not need
it.

Now we can clarify the condition on Obf under which the EU w.r.t. the ES
functionality implies the EU w.r.t. Obf.

Theorem 1. Let T (Cp,sk,pke) be {Sp,sk}. If an obfuscator Obf for CES satisfies
ACVBP w.r.t. dependent oracle set T , then the EU w.r.t the ES functionality
implies the EU w.r.t. Obf.

Proof. We show that, if the EU w.r.t. the ES functionality is satisfied, but the
stronger EU w.r.t. Obf is NOT satisfied, then it contradicts the ACVBP w.r.t.
dependent oracle set T . Let A be the adversary that breaks the stronger EU.
Consider the following distinguisher D that uses sampling access to T (Cp,sk,pke)
to check whether the adversary A succeeds in breaking the stronger EU.

1. Take as input a circuit C and an auxiliary-input z. (C is either an obfuscated
circuit or a simulated circuit).

2. Use the sampling access to Cp,sk,pke to get (p, pk, pke).
3. Use the sampling access to Sp,sk to simulate (m,σ,Q)← A�Sp,sk�(p, pk, pke, C, z).
4. Output 1 if and only if V(pk,m, σ) = Accept and m /∈ Q.

If C is an obfuscated circuit, then the probability D outputs 1 is equal to the
probability that A breaks the stronger EU, which is not negligible by the as-
sumption. On the other hand, if C is a simulated circuit, then the probability
D outputs 1 is negligible, otherwise, A can be used to break the standard EU
w.r.t. the ES functionality. Therefore, it contradicts the ACVBP w.r.t. depen-
dent oracle set T . ut

Remark 5. Note that the proof argument does not work under the ACVBP
definition (Definition 6), where distinguishers are not allowed to use dependent
oracle set T .



5 Secure Obfuscator for A Special ES Functionality

In this section, we propose an obfuscator for a special ES functionality and
prove the security based on the generalized ACVBP definition. Our proposed
ES functionality is the sequential composition of Waters’s signature scheme and
the linear encryption scheme.

5.1 Algebraic Setting and Complexity Assumptions

First of all, we review the required algebraic setting and complexity assumptions.
Let Setup be an algorithm which, on input the security parameter 1n, randomly
generates the parameters for a bilinear map (q,G,GT , e, g), where q is a prime
of length n, both G and GT are groups of order q, e is an efficient bilinear
mapping from G×G to GT , g is a generator of G (e.g., refer to [6, Section 5]).
The mapping e satisfies the following two properties: (i) Bilinear: for all g ∈ G
and a, b ∈ Zq, e(ga, gb) = e(g, g)ab. (ii) Non-degenerate: if g generates G, then
e(ga, gb) 6= 1.

In this paper, we use the following two Diffie-Hellman assumptions. All as-
sumptions are standard ones which have been used in the literature. The first
one is so-called the Decisional Bilinear Diffie-Hellman (DBDH) assumption (e.g.,
see [25, 33]), which assumes that, given g, ga, gb, gc, e(g, g)d, it is hard to check
whether abc = d. The second one is the Decisional Linear (DL) assumption (e.g.,
see [5, 24]), which assumes that, given g, ga, gb, gt, (ga)r, (gb)s, it is hard to check
whether r + s = t.

Definition 8 (DBDH Assumption). For every PPT machine D, every poly-
nomial p(·), all sufficiently large n ∈ IN, and every z ∈ {0, 1}poly(n),∣∣∣∣∣Pr

p = (q,G,GT , e, g)← Setup(1n);
a← Zq; b← Zq; c← Zq;
decision← D(p, ga, gb, gc, e(g, g)abc, z)

: decision = 1

−
Pr

p = (q,G,GT , e, h)← Setup(1n);
a← Zq; b← Zq; c← Zq; d← Zq;
decision← D(p, ga, gb, gc, e(g, g)d, z)

: decision = 1

 ∣∣∣∣∣ < 1
p(n)

.

Definition 9 (DL Assumption). For every PPT machine D, every polyno-
mial p(·), all sufficiently large n ∈ IN, and every z ∈ {0, 1}poly(n),∣∣∣∣∣Pr

p = (q,G,GT , e, g)← Setup(1n);
a← Zq; b← Zq; r ← Zq; s← Zq;
decision← D(p, (ga, gb), (gr+s, (ga)r, (gb)s), z)

: decision = 1

−
Pr

p = (q,G,GT , e, g)← Setup(1n);
a← Zq; b← Zq; r ← Zq; s← Zq; t← Zq;
decision← D(p, (ga, gb), (gt, (ga)r, (gb)s), z)

: decision = 1

 ∣∣∣∣∣ < 1
p(n)

.



5.2 Waters’s Signature Scheme

We recall Waters’s signature scheme [33]. The message space is {0, 1}n.

SKG(p):

1. Parse p = (q,G,GT , e, g).
2. Randomly select α← Zq and compute g1 = gα.
3. Randomly select g2 ← G and u′ ← G.
4. Randomly select ui ← G for every i ∈ [n] and set U = {ui}i∈[n].
5. Output pk = (g1, g2, u′, U) and sk = (gα2 , u

′, U) as public and secret keys,
respectively.

Sign(p, sk,m):

1. Parse p = (q,G,GT , e, g), sk = (gα2 , u
′, {ui}i∈[n]), andm = (m1,m2, · · · ,mn),

where mi denotes the i’th bit of m.
2. Randomly select x← Zq.
3. Compute (σ1, σ2) = (gα2 (u′

∏
i∈M ui)x, gx), where M is the set of all i such

that mi = 1.
4. Output σ = (σ1, σ2).

Verify(p, pk,m, σ):

1. Parse p = (q,G,GT , e, g), pk = (g1, g2, u′, {ui}i∈[n]), m = (m1,m2, · · · ,mn),
and σ = (σ1, σ2).

2. Output Accept if e(σ1, g)/e(σ2, u
′∏

i∈M ui) = e(g1, g2). Output Reject oth-
erwise.

The security is proved under the DBDH assumption.

Theorem 2 ([33]). Under the DBDH assumption, Waters’s signature scheme
is existentially unforgeable.

5.3 Linear Encryption Scheme

We recall the linear encryption scheme [5]. The message space is G.

EKG(p):

1. Parse p = (q,G,GT , e, g).
2. Randomly select a← Zq and b← Zq.
3. Output pke = (ga, gb) and ske = (a, b) as public and secret keys, respectively.

Enc(p, pke,m):

1. Parse p = (q,G,GT , e, g) and pke = (ga, gb).
2. Randomly select r ← Zq and s← Zq.
3. Compute (c1, c2, c3) = ((ga)r, (gb)s, gr+sm).
4. Output c = (c1, c2, c3).



Dec(p, ske, c):

1. Parse p = (q,G,GT , e, g), ske = (a, b), and c = (c1, c2, c3).
2. Output m = c3/(c

1/a
1 · c1/b2 ).

The security is proved under the DL assumption.

Theorem 3 ([5]). Under the DL assumption, the linear encryption scheme sat-
isfies the indistinguishability.

We can view gr+s as a random key generated by a KEM and (c1, c2) as its
ciphertext. Note that the KEM encryption algorithm has the scalar homomor-
phic property described in Section 1.1 and Enc is rerandomizable. Specifically,
given a ciphertext c = (c1, c2, c3) and the public key pke = (ga, gb), we can
rerandomize the ciphertext by computing (c1(ga)r

′
, c2(gb)s

′
, c3g

r′+s′), where r′

and s′ are random numbers in Zq. We denote by ReRand(p, pke, (c1, c2, c3)) the
rerandomization algorithm.

5.4 The Obfuscator for the ES Functionality

Our special ES functionality is the sequential composition of Waters’s signature
scheme and the linear encryption scheme. Given a common parameter p, a secret
signing key sk, and a public encryption key pke, the ES functionality Fp,sk,pke

provides the following two functions:

– ESp,sk,pke(m):
1. Run (σ1, σ2)← Sign(p, sk,m).
2. Run C1 ← Enc(p, pke, σ1).
3. Run C2 ← Enc(p, pke, σ2).
4. Output (C1, C2).

– Keysp,sk,pke
(keys):

1. Output (p, pk, pke), where pk is the public key corresponding to sk.

We define a (naive) class of circuits CES = {Cn}n∈IN for the ES functionality,
which we want to obfuscate. Cn is a set of circuits Cp,sk,pke and each Cp,sk,pke is
a naive implementation of Fp,sk,pke . Without loss of generality, we assume that
we can extract (p, sk, pke) from Cp,sk,pke

. The associated generation algorithm
takes as input 1n, generates a common parameter p← Setup(1n), runs (pk, sk)←
SKG(p), runs (pke, ske) ← EKG(p), and outputs Cp,sk,pke

.
Now, we describe our proposed obfuscator ObfES for CES below. According to

the basic idea in Section 1.1, the obfuscation is done by encrypting the signing
key gα2 and the obfuscated circuit generates a signature using the encrypted
signing key.

Given a circuit Cp,sk,pke
, the obfuscator ObfES

1. Extracts (p, sk, pke).
2. Gets pk using the Keys function.



3. Parses p = (q,G,GT , e, g) and sk = (gα2 , u
′, U).

4. Runs (c1, c2, c3)← Enc(p, pke, gα2 ) to encrypt gα2 . (NOTE: We have (c1, c2, c3) =
((ga)r, (gb)s, gr+sgα2 )).

5. Sets sk′ = (c3, u′, U), which is an encrypted form of the signing key sk.
6. Constructs and outputs an obfuscated circuit that contains the values (p,
pke, pk, sk

′, (c1, c2)) and does the following: (1) On input keys, outputs (p,
pk, pke) and (2) On input a message m ∈ {0, 1}n,
(a) Runs (σ1, σ2)← Sign(p, sk′,m). Note that (c1, c2, σ1) is an encryption of

the first part of a valid signature by Enc. (NOTE: we have (c1, c2, σ1) =
((ga)r, (gb)s, gr+sgα2 (u′

∏
i∈M ui)x)).

(b) Computes C1 = (c′1, c
′
2, c
′
3)← ReRand(p, pke, (c1, c2, σ1)).

(c) Runs C2 ← Enc(p, pke, σ2).
(d) Outputs (C1, C2).

Remark 6. For simplicity, we used Enc to encrypt σ2 in the definition of Fp,sk,pke
.

However, we can use an arbitrary encryption algorithm instead of Enc and it is
easy to modify the obfuscator ObfES . Furthermore, we may want to omit the
encryption of σ2 since it is just a random number and leaks no meaningful
information (as long as σ1 is encrypted). In this case, we have C2 = σ2 in the
both definitions of Fp,sk,pke

and ObfES .

Clearly, it satisfies the functionality requirement according to Definition 1.
We prove that it satisfies ACVBP even though distinguishers are given sampling
access to the signing oracle according to Definition 7.

Theorem 4. Let T (Cp,sk,pke
) be {Sp,sk}. Under the DL assumption, ObfES sat-

isfies ACVBP w.r.t. dependent oracle set T .

Proof. Since we can identify an obfuscated ES circuit with the values (p, pke,
pk, sk′, (c1, c2)) contained in the circuit, it is sufficient to construct a simulator
which simulates the values by the help of sampling access to the original circuit
Cp,sk,pke

. The first three values (p, pke, pk) can be obtained from the sampling
access to Cp,sk,pke

using the Keysp,sk,pke
function and so the question is how

to simulate the last three values (sk′, (c1, c2)). We show that it is sufficient to
generate junk values for them because it is essentially an encryption of the signing
key gα2 .

Consider the following simulator S having sampling access to Cp,sk,pke
.

1. Take as input the security parameter 1n and an auxiliary-input z.
2. Use the sampling access to Cp,sk,pke

to get (p, pk, pke).
3. Parse p = (q,G,GT , e, g) and pk = (g1, g2, u′, U).
4. Randomly select Junk ← G.
5. Run (c1, c2, c3)← Enc(p, pke, Junk).
6. Set sk′ = (c3, u′, U).
7. Output (p, pke, pk, sk′, (c1, c2)).



We need to show that the output distribution of S is indistinguishable from
the real distribution of (p, pke, pk, sk′, (c1, c2)) for any PPT distinguisher even
when it is allowed to have sampling access to CS = {Cp,sk,pke ,Sp,sk}. For contra-
diction, assume that the probability that a distinguisher D�CS� can distinguish
between them is not negligible. That is, the difference between the following two
probabilities is not negligible. They are the probabilities that D outputs 1 given
the real and simulated distributions, respectively. gα2 is encrypted in the real
distribution while Junk is encrypted in the simulated distribution. It is the only
difference.

Pr



p = (q,G,GT , e, g)← Setup(1n);
(pke, ske)← EKG(p);
(pk, sk) = ((g1, g2, u′, U), (gα2 , u

′, U))← SKG(p);
(c1, c2, c3)← Enc(p, pke, gα2 );
sk′ = (c3, u′, U);
b← D�CS�((p, pke, pk, sk′, (c1, c2)), z) :
b = 1



Pr



p = (q,G,GT , e, g)← Setup(1n);
(pke, ske)← EKG(p);
(pk, sk) = ((g1, g2, u′, U), (gα2 , u

′, U))← SKG(p);
Junk ← G;
(c1, c2, c3)← Enc(p, pke, Junk);
sk′ = (c3, u′, U);
b← D�CS�((p, pke, pk, sk′, (c1, c2)), z) :
b = 1


Then we can construct an adversary pair (A1, A2) which breaks the indistin-
guishability of the linear encryption scheme.A1 produces a message pair (m1,m2)
and an associated hint h as follows:

1. Take as input a common parameter p, a public key pke, and auxiliary input
z.

2. Parse p = (q,G,GT , e, g).
3. Randomly generate (pk, sk) = ((g1, g2, u′, U), (gα2 , u

′, U))← SKG(p).
4. Randomly generate Junk ← G.
5. Set m1 = gα2 , m2 = Junk, and h = pk.
6. Output (m1,m2, h).

Given a ciphertext c (of either m1 or m2), A2 can use the distinguisher D to
distinguish between m1 and m2 as follows:

1. Take as input a common parameter p, a public key pke,A1’s output (m1,m2, h),
a ciphertext c, and auxiliary input z.

2. Parse p = (q,G,GT , e, g), h = pk = (g1, g2, u′, U), and c = (c1, c2, c3).
3. Compute sk′ = (c3, u′, U = {ui}i∈[n]).
4. Simulate D�CS�((p, pke, pk, sk′, (c1, c2)), z), where the oracle queries can be

perfectly simulated using p, sk = (m1, u
′, U), and pke.



5. Output the output of D.

If the target ciphertext c is a ciphertext of m1, the probability that A2 outputs 1
is equal to the former probability, otherwise, it is equal to the latter probability.
Since the difference is not negligible, it contradicts Theorem 3. ut

As a corollary, we can conclude that Waters’s signature scheme is existentially
unforgeable even when adversaries are given an obfuscated circuit for FES . It
immediately follows from Theorems 1, 2, and 4.

Corollary 1. Under the DL and DBDH assumptions, Waters’s signature scheme
is existentially unforgeable w.r.t. ObfES.

6 Concluding Remarks

In this paper, we have constructed an obfuscator for a special ES functionality
and presented a security analysis. We can generalize our construction to clarify
the properties that a pair of PKE and DS schemes should satisfy so that the
ES functionality can be securely obfuscated. We omit it due to the space lim-
itation. Here, we list several DS schemes satisfying all the required properties:
Lysyanskaya’s unique signature scheme [28], Dodis’s verifiable random function
(signature scheme) [15], the undeniable signature scheme by Chaum and Antwer-
pen [13], the DDH-based pseudo-random function (MAC) proposed by Naor and
Reingold [29], and Schnorr’s signature scheme [32].

We have proposed generic approaches to obfuscating ES functionalities (Ap-
proaches 1,1′, and 2). We took Approach 1′ using the scalar homomorphic prop-
erty of the linear encryption scheme. If we take Approaches 1 and 2 where the
only requirement on Enc and KEM.Enc is rerandomizability, then we can use
an encryption scheme with a relaxed version of chosen-ciphertext attack (CCA)
security [10]. It is an interesting research issue to investigate what kind of CCA
security we can achieve in the context of ES obfuscation.

Finally, we believe that our proposed obfuscation can be used to securely
obfuscate a signcryption scheme as described in Appendix A. The formal security
argument is a future work item.

Acknowledgments. I would like to thank valuable comments from anonymous
reviewers of TCC’2009, ACM CCS’2009, and Eurocrypt’2010. In particular, I
would like to thank an Eurocrypt reviewer for suggesting the use of the Paillier
encryption scheme as mentioned in Section 1.1, another Eurocrypt reviewer for
suggesting the ES functionality and obfuscator presented in Section 5.4, which
are much simpler than my original ones, and Henri Gilbert for helping me to
revise the submitted version.

References

1. B. Adida, D. Wikstrom, “How to shuffle in public,” Proceedings of TCC 2007, pp.
555-574, 2007.



2. J. H. An, Y. Dodis, and T. Rabin, “On the Security of Joint Signature and En-
cryption,” Proceedings of Eurocrypt’02, pp. 83-107, 2002.

3. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K. Yang,
“On the (Im)possibility of Obfuscating Programs,” ECCC,Report No. 57, 2001.
(A conference version appeared in Proceedings of CRYPTO’2001, pp. 1-18, 2001)

4. M. Bellare and P. Rogaway, “Random Oracles are Practical: a paradigm for de-
signing efficient protocols,” Proceedings of the 1st ACM Conference on Computer
and Communications Security, pp. 62-73, 1993.

5. D. Boneh, X. Boyen, and H. Shacham, “Short Group Signatures,” Proceedings of
CRYPTO’04, pp. 41-55, 2004.

6. D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing, ”
SIAM J. of Computing, Vol. 32, No. 3, pp. 586-615, 2003.

7. D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil Pairing,”
Proceedings of ASIACRYPT’2001, pp. 514-532, 2001.

8. R. Canetti, “Towards Realizing Random Oracles: Hash Functions that Hide All
Partial Information,” Proceedings of CRYPTO’97, pp.455-469, 1997.

9. R. Canetti and R. R. Dakdouk, “Obfuscating Point Functions with Multibit Out-
put,” Proceedings of Eurocrypt’2008, pp. 489-508, 2008.

10. R. Canetti, H. Krawczyk, and J. B. Nielsen, “Relaxing Chosen-Ciphertext Secu-
rity,” Proceedings of CRYPTO’03, pp. 565-582, 2003.

11. R. Canetti, D. Micciancio, and O. Reingold, “Perfectly One-way Probabilistic Hash
Functions,” Proceedings of 30st STOC, 1998.

12. R. Canetti and M. Varia, “Non-malleable Obfuscation,” Proceedings of TCC’09,
pp. 73-90, 2009.

13. D. Chaum, H. van Antwerpen, “Undeniable Signatures,” Proceedings of
CRYPTO’89, 212-216.

14. R. Cramer and V. Shoup, “Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack,” SIAM Journal on
Computing, Vol. 33, No. 11, pp. 167-226, 2003.

15. Y. Dodis, “Efficient Construction of (Distributed) Verifiable Random Functions,”
Proceedings of PKC’02, pp. 1-17, 2002.

16. Y. Dodis and A. Smith, “Correcting Errors without Leaking Partial Information,”
Proceedings of 37th STOC, 2005.

17. T. ElGamal, “A public key cryptosystem and signature scheme based on discrete
logarithms,” IEEE Trans. Inform. Theory, Vol. 31, pp. 469-472, 1985.

18. C. Gentry, “A fully homomorphic encryption scheme,” PhD Thesis, 2009.
19. O. Goldreich, “Foundations of Cryptography: Volume II Basic Applications,” Cam-

bridge University Press, 2004.
20. S. Goldwasser and Y. T. Kalai, “On the Impossibility of Obfuscation with Auxiliary

Input,” Proceedings of FOCS’05, pp. 553-562, 2005.
21. S. Goldwasser and G. N. Rothblum, “On Best-Possible Obfuscation,” Proceedings

of TCC’07, 2007.
22. S. Hada, “Zero-Knowledge and Code Obfuscation, ” Proceedings of Asiacrypt’2000,

pp. 443-457, 2000.
23. D. Hofheinz, J. Malone-Lee, and M. Stam, “Obfuscation for Cryptographic Pur-

poses,” Proceedings of TCC’07, 2007.
24. S. Hohenberger, G. N. Rothblum, a. shelat, and V. Vaikuntanathan, “Securely

Obfuscating Re-Encryption,” Proceedings of TCC’07, 2007.
25. A. Joux, “The Weil and Tate pairings as building blocks for public key cryptosys-

tems,” Proceedings of the Fifth Algorithmic Number Theory Symposium, LNCS
Vol. 2369, pp. 20-32, 2002.



26. A. Joux and K. Nguyen, “Separating Decision Diffie-Hellman from Diffie-Hellman
in Cryptographic Groups,” Journal of Cryptology, Vol. 16, Num. 4, pp. 239-247,
2003.

27. B. Lynn, M. Prabhakaran, and A. Sahai, “Positive Results and Techniques for
Obfuscation,” In Proceedings of Eurocrypt, 2004.

28. A. Lysyanskaya, “Unique Signatures and Verifiable Random Functions from the
DH-DDH Separation,” Proceedings of CRYPTO’02, 2002.

29. M. Naor and O. Reingold, “Number-Theoretic Constructions of Efficient Pseudo-
Random Functions,” Journal of the ACM, Vol. 51, Issue 2, pp. 231-262, 2004.

30. R. Ostrovsky and W. E. Skeith III, “Private searching on streaming data,” Pro-
ceedings of CRYPTO’05, pp. 223-240, 2005.

31. P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes,” Proceedings of Eurocrypt’99, pp. 223-238, 1999.

32. C. P. Schnorr, “Efficient Signature Generation by Smart Cards,” Journal of Cryp-
tology, Vol.4, No.3, pp.161–174, 1991.

33. B. Waters, “Efficient Identity-Based Encryption Without Random Oracles,” Pro-
ceedings of Eurocrypt’2005, pp. 114-127, 2005.

34. H. Wee, “On Obfuscating Point Functions,” Proceedings of STOC’05, pp. 523-532,
2005.

35. Y. Zheng, “Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost (Signature) + Cost (Encryption)”, Proceedings of CRYPTO’97, pp.165-
179, 1997.

A A Relation to Signcryption

In this appendix, we informally describe (1) how to use an ES functionality
as a building block to construct a secure signcryption scheme and (2) how to
obfuscate the resulting signcryption scheme using an obfuscator for the ES func-
tionality.

A.1 EncryptedSignature-then-Encryption

We propose a new composition method which we call EncryptedSignature-then-
Encryption (EStE) as a new approach to constructing a secure signcryption
scheme: To signcrypt a message, we generate an encrypted signature and encrypt
both the message and encrypted signature. More specifically, given a message
m, we compute σ ← S(p, sk,m), c1 ← E1(p, pk, σ), and c2 ← E2(p, pk, (m, c1)),
where the sequential composition of S and E1 is the ES functionality, c1 is the
encrypted signature, and c2 is the resulting signcryption of m. The difference
from the standard StE composition is that the signature σ is doubly encrypted.
The first encryption E1 is by the ES functionality and the second encryption E2

can be done by a standard hybrid encryption as in StE (using the same public
encryption key pk).

We follow the security argument of [2] to show that the EStE-based signcryp-
tion scheme satisfies a meaningful security requirement (privacy and authenticity
properties). In [2], two security formalizations are considered: Outsider security
and insider security. In outsider security, adversaries are outsiders who only know



the public keys (p, pk, pke). On the other hand, in insider security, adversaries are
insiders who know either the signing key sk or the decryption key ske in addition
to the public keys (p, pk, pke). We focus on insider security since it is stronger.
The insider security is defined in terms of induced PKE and DS schemes (See
[2] for the meaning of induced). That is, we say that a signcryption scheme is
insider-secure if the induced PKE and DS schemes are secure. More specifically,
we say that a signcryption scheme is insider-secure against CPAs and CMAs if
the induced PKE and DS schemes satisfy the indistinguishability against CPAs
and the existential unforgeability against CMAs, respectively (For simplicity, we
don’t consider the indistinguishability against chosen-ciphertext attacks). Fol-
lowing the security argument in [2], we can show that (1) if the PKE scheme of
E2 satisfies the indistinguishability against CPAs then the induced PKE scheme
does so (The indistinguishability of E1 does not matter) and (2) if the DS scheme
of S satisfies the existential unforgeability against CMAs then the induced DS
scheme does so. Therefore, we can say that the EStE-based signcryption scheme
provides a meaningful security if E2 and S are secure as in the two statements.
A next question is how to obfuscate the EStE-based signcryption functionality.

A.2 Obfuscation for EStE

A secure obfuscator for an ES functionality can be used to obfuscate the EStE-
based signcryption functionality since the second encryption E2 is just a public
operation. In other words, given an obfuscated ES program, we can append a
program for performing the second encryption to it so that the resulting pro-
gram computes the EStE composition, where we don’t need any extra secret
information. Therefore, by an argument similar to Section 5.4, we can show that
the resulting obfuscator satisfies the ACVBP against distinguishers having sam-
pling access to the signcryption and signing oracles and that the security of the
DS scheme is preserved even when adversaries are given an obfuscated signcryp-
tion program. A question here is what kind of security we can achieve for the
signcryption scheme (rather than the DS scheme) when adversaries are given
an obfuscated signcryption program. This is not a trivial question. For exam-
ple, the insider security of the signcryption scheme is violated when adversaries
have access to the obfuscated program and the secret decryption key. The formal
security argument is outside the scope of this proceedings version.


