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Abstract. Many cryptographic applications of hash functions are an-
alyzed in the random oracle model. Unfortunately, most concrete hash
functions, including the SHA family, use the iterative (strengthened)
Merkle-Damg̊ard transform applied to a corresponding compression func-
tion. Moreover, it is well known that the resulting “structured” hash
function cannot be generically used as a random oracle, even if the com-
pression function is assumed to be ideal. This leaves a large disconnect
between theory and practice: although no attack is known for many
concrete applications utilizing existing (Merkle-Damg̊ard based) hash
functions, there is no security guarantee either, even by idealizing the
compression function.

Motivated by this question, we initiate a rigorous and modular study of
developing new notions of (still idealized) hash functions which would
be (a) natural and elegant; (b) sufficient for arguing security of impor-
tant applications; and (c) provably met by the (strengthened) Merkle-
Damg̊ard transform, applied to a “strong enough” compression function.
In particular, we develop two such notions satisfying (a)-(c): a preim-
age aware function ensures that the attacker cannot produce a “useful”
output of the function without already “knowing” the corresponding
preimage, and a public-use random oracle, which is a random oracle that
reveals to attackers messages queried by honest parties.

1 Introduction

The primary security goal for cryptographic hash functions has historically been
collision-resistance. Consequently, in-use hash functions, such as the SHA fam-
ily of functions [28], were designed using the (strengthened4) Merkle-Damg̊ard

4 We do not mean to imply that there is a weak MD transform, but this name seems
to be in common use.



(MD) transform [27, 17]: the input message M is suffix-free encoded (e.g. by ap-
pending a message block containing the length of M) and then digested by the
cascade construction using an underlying fixed-input-length (FIL) compression
function. The key security feature of the strengthened MD transformation is
that it is collision-resistance preserving [17, 27]. Namely, as long as the FIL com-
pression function is collision-resistant, the resulting variable-input-length (VIL)
hash function will be collision-resistant too.

Random oracle model. Unfortunately, the community has come to under-
stand that collision-resistance alone is insufficient to argue the security of many
important applications of hash functions. Moreover, many of these applications,
like Fiat-Shamir [22] signatures or RSA [4] encryption, are such that no standard
model security assumption about the hash function appears to suffice for proving
security. On the other hand, no realistic attacks against these applications have
been found. Motivated in part by these considerations, Bellare and Rogaway [4]
introduced the Random Oracle (RO) model, which models the hash function as
a public oracle implementing a random function. Using this abstraction, Bellare
and Rogaway [4–6] and literally thousands of subsequent works managed to for-
mally argue the security of important schemes. Despite the fact that a proof in
the RO model does not always guarantee security when one uses a real (standard
model) hash function [13], such a proof does provide evidence that the scheme
is structurally sound.

Is Merkle-Damg̊ard a good design? Given the ubiquity of MD-based hash
functions in practice, and the success of the RO model in provable security, it
is natural to wonder if a MD-based hash function H is reasonably modeled as
a RO, at least when the compression function is assumed to be ideal. But even
without formalizing this question, one can see that the answer is negative. For
example, the well-known extension attack allows one to take a value H(x) for
unknown x, and then compute the value H(x, 〈`〉, y), where ` is the length of
x and y is an arbitrary suffix. Clearly, this should be impossible for a truly
random function. In fact, this discrepancy leads to simple attacks for natural
schemes proven secure in the random oracle model (see [16]).

Consequently, Coron et al. [16] adapted the indifferentiability framework of
Maurer et al. [26] to define formally what it means to build a secure VIL-RO from
smaller (FIL) idealized components (such as an ideal compression function or
ideal cipher). Not surprisingly, they showed that the strengthened MD transform
does not meet this notion of security, even when applied to an ideal compres-
sion function. Although [16] (and several subsequent works [2, 3, 25]) presented
straightforward fixes to the MD paradigm that yield hash functions indifferen-
tiable from a VIL-RO, we are still faced with a large disconnect between theory
and practice. Namely, many applications only enjoy proofs of security when the
hash function is modeled as a “monolithic” VIL-RO, while in practice these
applications use existing MD-based hash functions which (as we just argued)
are demonstrably differentiable from a monolithic RO (even when compression
functions are ideal). Yet despite this gap, no practical attacks on the MD-based
design (like the extension attack) seem to apply for these important applications.
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“Salvaging” Merkle-Damg̊ard. The situation leads us to a question not
addressed prior to this work: given a current scheme that employs an MD-based
hash function H and yet does not seem vulnerable to extension-type attacks, can
we prove its security (at least if the compression function f is assumed to be
ideal)? The most direct way to answer this question would be to re-prove, from
scratch, the security of a given application when an MD-based hash function
is used. Instead, we take a more modular approach consisting of the following
steps:

(1) Identify a natural (idealized) property X that is satisfied by a random oracle.
(2) Argue that X suffices for proving the security of a given (class of) applica-

tion(s), originally proved secure when H is modeled as a monolithic RO.
(3) Argue that the strengthened MD-transform is property-preserving for X; that

is, as long as the compression function f satisfies X, then the VIL hash H
satisfies X.

(4) Conclude that, as long as the compression function f satisfies X, the given
(class of) application(s) is secure with an MD-based hash function H.

Although this approach might not be applicable to all scenarios, when it is ap-
plicable it has several obvious advantages over direct proofs. First, it supports
proofs that are easier to derive, understand, and verify. Second, proving that
a hash function satisfying X alone is enough (as opposed to being like a “full-
blown” RO) for a given application elucidates more precisely which (idealized)
property of the hash function is essential for security. Third, if the property X
is natural, it is interesting to study in its own right. Indeed, we will show several
applications of our notions which are quite general and not necessarily moti-
vated by salvaging the MD transform. Finally, due to point (4), it suffices to
argue/assume “only” that the compression function f — a smaller and much-
better-studied object — satisfies property X.

So which properties X? We introduce two: preimage awareness and indiffer-
entiability from a public-use random oracle.

1.1 Preimage Aware Functions

Intuitively, a function being Preimage Aware (PrA) means that if an attacker
is able to find a “later useful” output y of the hash function H, then it must
“already know” a corresponding preimage x. A bit more precisely, assume we
build H using some ideal primitive P (which could be a compression function or
a block cipher). Then, if the attacker A produces a value y at some point in time,
either one can immediately “extract” the corresponding (unique) preimage x of y
from the transcript of calls that A made to P so far, or, if one fails to do so,
A is exceedingly unlikely to find a valid preimage of y even with the benefit
of additional calls to P . Our notion is very similar in spirit to the notion of
plaintext awareness for encryption schemes [4, 1] and the notion of extractability
for perfectly one-way functions [11, 12]; we discuss these further below.

We notice that random oracles are clearly PrA. In fact, preimage awareness
precisely captures the spirit behind a common proof technique used in the RO
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model, often referred to as extractability, making it an interesting notion to
consider. We also show that preimage awareness is a natural strengthening of
collision-resistance (CR). That preimage awareness lies between being a RO and
CR turns out to be quite useful: informally, a PrA function is “strong enough” to
be a good replacement for a RO in some applications (where CR is insufficient),
and yet the notion of preimage awareness is “weak enough” to be preserved by
strengthened MD (like CR).
Merkle-Damg̊ard preserves preimage awareness. We show that the
(strengthened) MD transform preserves preimage awareness, in stark contrast
to the fact that it does not preserve indifferentiability from a RO [16]. Thus,
to design a variable-input-length preimage aware (VIL-PrA) function, it is suf-
ficient to construct a FIL-PrA function, or, even better, argue that existing
compression functions are PrA, even when they are not necessarily (indifferen-
tiable from) random oracles. The proof of this is somewhat similar to (but more
involved than) the corresponding proof that MD preserves collision-resistance.
Application: domain extension for ROs. A PrA hash function is exactly
what is needed to argue secure domain extension of a random oracle. More pre-
cisely, assuming h is a FIL-RO, and H is a VIL-PrA hash function (whose output
length matches that of the input of f), then F (x) = h(H(x)) is indifferentiable
from a VIL-RO. Ironically, when H is just CR, the above construction of F was
used by [16] to argue that CR functions are not sufficient for domain extension
of a RO. Thus, the notion of PrA can be viewed simultaneously as a non-trivial
strengthening of CR, which makes such domain extension work, while also a
non-trivial weakening of RO, which makes it more readily achieved.
Recipe for hash design. The previous two properties of PrA functions give a
general recipe for how to construct hash functions suitable for modeling as a VIL-
RO. First, invest as must as needed to construct a strong FIL function h (i.e. one
suitable for modeling as a FIL-RO.) Even if h is not particularly efficient, this is
perhaps acceptable because it will only be called once per message (on a short
input). Second, specify an efficient construction of a VIL-PrA hash function
built from some cryptographic primitive P . But for this we use the fact that
MD is PrA-preserving; hence, it is sufficient to focus on constructing a FIL-PrA
compression function f from P , and this latter task could be much easier than
building from P an object suitably like a FIL-RO.

Adopting our more modular point-of-view, several existing hash construc-
tions in the literature [16, 2, 3, 30, 19] enjoy an easier analysis. For example, the
NMAC construction of [16] becomes an example of our approach, where the
outer h and the inner f are both implemented to be like (independent) FIL-
ROs. In [16] it is argued directly, via a difficult and long argument, that the
inner f can be replaced by the Davies-Meyer construction (in the ideal-cipher
model), despite the fact that Davies-Meyer is not itself indifferentiable from a
FIL-RO. We can instead just prove that Davies-Meyer is PrA (which requires
only a few lines due to the existing proof of CR [7]) and then conclude.
Lifting from CR to PrA. Another important aspect of preimage awareness
is that, for many important constructions, it gives a much more satisfactory
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security target than collision resistance. Indeed, there exists a large body of
work [29, 7, 23, 24, 32, 33, 31, 19] building FIL-CR hash functions from idealized
block ciphers and permutations. On the one hand, it seems very hard to prove the
security of such schemes in the standard model, since there exists a black-box
separation [34] between collision-resistant hash functions and standard-model
block ciphers (which are equivalent to one-way functions). On the other hand,
it seems quite unsatisfactory that one starts with such a “powerful” idealized
primitive (say, an ideal cipher), only to end up with a much “weaker” standard
model guarantee of collision resistance (which is also insufficient for many appli-
cations of hash functions). The notion of preimage awareness provides a useful
solution to this predicament. We show that all the constructions proven CR
in [29, 7, 33, 31, 19] are provably PrA. This is interesting in its own right, but
also because one can now use these practical constructions within our aforemen-
tioned recipe for hash design. We believe (but offer no proof) that most other
CR ideal-primitive-based functions, e.g. [23, 24, 32], are also PrA.
Other applications/connections? We believe that PrA functions have
many more applications than the ones so far mentioned. As one example, PrA
functions seem potentially useful for achieving straight-line extractability for
various primitives, such as commitments or zero-knowledge proofs. These, in
turn, could be useful in other contexts. As already mentioned, preimage aware-
ness seems to be quite related to the notion of plaintext awareness in public-key
encryption schemes [5, 1], and it would be interesting to formalize this poten-
tial connection. PrA functions are also very related to so called extractable hash
functions (EXT) recently introduced by Canetti and Dakdouk [11, 12]. However,
there are some important differences between EXT and PrA, which appear to
make our respective results inapplicable to each other: (a) EXT functions are
defined in the standard model, while PrA functions in an idealized model; (b)
EXT functions are keyed (making them quite different from in-use hash func-
tions), while PrA functions can be keyed or unkeyed; (c) EXT functions do not
permit the attacker to sample any “unextractable” image y, while PrA functions
only exclude images y which could be later “useful” to the attacker; (d) EXT
functions allow the extractor to depend on the attacker, while PrA functions
insist on a universal extractor.

1.2 Public-Use Random Oracles

Next, we consider applications that never evaluate a hash function on secret data
(i.e. data that must be hidden from adversaries). This means that whenever the
hash function is evaluated on some input x by an honest party C, it is safe
to immediately give x to the attacker A. We model this by formalizing the
notion of a public-use random oracle (pub-RO); such a RO can be queried by
adversaries to reveal all so-far-queried messages. This model was independently
considered, under a different motivation, by Yoneyama et al. [36] using the name
leaky random oracle. Both of our papers observe that this weakening of the RO
model is actually enough to argue security of many (but, certainly, not all)
classical schemes analyzed in the random oracle model. In particular, a vast
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majority of digital signature schemes, including Full Domain Hash (FDH) [4],
probabilistic FDH [15], Fiat-Shamir [22], BLS [10], PSS [6] and many others,
are easily seen secure in the pub-RO model. For example, in the FDH signature
scheme [4], the RO H is only applied to the message m supplied by the attacker,
to ensure that the attacker cannot invert the value H(m) (despite choosing m).
Other applications secure in the pub-RO model include several identity-based
encryption schemes [9, 8], where the random oracle is only used to hash the user
identity, which is public.

We go on to formalize this weakening of ROs in the indifferentiability frame-
work of Maurer et al. [26]. This allows us to define what it means for a hash func-
tion H (utilizing some ideal primitive P ) to be indifferentiable from a public-use
random oracle (pub-RO). As our main technical result here, we argue that the
MD transform preserves indifferentiability from a pub-RO, even though it does
not preserve general indifferentiability from a (regular) RO. To get some intu-
ition about this fact, it is instructive to examine the extension attack mentioned
earlier, which was the root of the problem with MD for general indifferentiabil-
ity. There one worried about adversaries being able to infer the hash output on
a message with unknown prefix. In the public-use setting, this is not an issue
at all: the security of a public-use application could never be compromised by
extension attacks since all messages are known by the attacker.

As a corollary of this result (and the composition theorem of [26]), we’ll
see that if the compression function f is indifferentiable from a FIL pub-RO,
we can immediately give a security proof for the above-mentioned public-use
applications. In particular, this is true when f is modeled as an ordinary FIL-
RO.

2 Preliminaries

When S is a set, x←$ S means to sample uniformly from S and assign the value
to x. When Dom and Rng are non-empty sets, let RFDom,Rng be the algorithm
that implements a lazily-sampled random oracle mapping from Dom to Rng . We
shorten this to RFDom,n or RFN,n when the range (resp.) domain and range are bit
strings of fixed lengths N,n > 0; RF∗,τ is a random oracle with constant output
stretch τ . Let κ, n > 0 be integers. A block cipher is a map E : {0, 1}κ×{0, 1}n →
{0, 1}n such that E(k, ·) is a permutation for all k ∈ {0, 1}κ. Let BC(κ, n) be the
set of all such block ciphers.

For any algorithm f that accepts inputs from Dom ⊆ {0, 1}∗, we write
Time(f,m) to mean the maximum time to run f(x) for any input x ∈ {0, 1}m ⊆
Dom. When f is a function with domain Dom ⊆ {0, 1}∗, we define Time(f,m) to
be the minimum, over all programs Tf that implement the mapping f , of the size
of Tf plus the worst case running time of Tf over all elements x ∈ {0, 1}m ⊆ Dom.
In either case, when we suppress the second argument, writing just Time(f), we
mean to maximize over all strings in the domain. Running times are relative
to some fixed underlying RAM model of computation, which we do not specify
here.
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As a small abuse of standard notation, we write O(X) to hide fixed, absolute
constants that are much smaller than the argument X.

Interactive TMs. An Interactive Turing Machine (ITM) accepts inputs via an
input tape, performs some local computation using internal state that persists
across invocations, and replies via an output tape. An ITM might implement
various distinct functionalities f1, f2, . . . that are to be exposed to callers. We
write P = (f1, f2, . . .) for an ITM implementing f1, f2, · · · . When functionalities
fi, fj (say) do not share state, we say that fi and fj are independent functional-
ities; these will be explicitly noted. We write MP if an ITM M has access to all
interfaces of P and write Mfi if M has access only to a particular interface fi
of P . We sometimes use the moniker ideal primitive to refer to an ITM; this is
to emphasize the use of an ITM as building block for some larger functionality.
We write F = RFDom,Rng to signify that F is the ideal primitive that implements
the algorithm RFDom,Rng .

Hash Functions and Merkle-Damg̊ard. Let Dom ⊆ {0, 1}∗ be a non-empty
set of strings, and Rng be a non-empty set (typically {0, 1}n for some integer
n > 0). A hash function is then a map H : Dom → Rng . We will be con-
cerned with hash functions that use (oracle access to) an underlying ideal prim-
itive P . We write HP when we want to make this dependency explicit. When
the primitive is clear from context, we will sometimes suppress reference to it.
When computing Time(H, ·), calls to P are unit cost. Similar to our definition of
Time(H,m), we write NumQueries(H,m) for the minimum, over all programs TH
that compute H, of the maximum number of queries to P required to compute
HP (x) for any x ∈ {0, 1}m ⊆ Dom.

The primary method by which hash functions are constructed from under-
lying primitives is the strengthened Merkle-Damg̊ard transform (SMD). For in-
tegers n, d > 0, let fP : {0, 1}n × {0, 1}d → {0, 1}n be a compression func-
tion (using idealized primitive P ). Let y0 = IV , a fixed constant. We write
SMD[fP ] for the algorithm that works on input M ∈ {0, 1}∗ by first comput-
ing m1 · · ·m` ← sfpad(M), running yi ← fP (yi−1,mi) for each i ∈ [1 .. `] and
returning y`. Here sfpad(·) is a function that returns a suffix-free encoding of M
that is parsed into ` blocks of d-bits each, where ` ≥ d|M |/de is defined by the
encoding. A suffix-free encoding has the property that for any M,M ′ such that
|M | < |M ′| the string returned by sfpad(M) is not a suffix of sfpad(M ′). (For
example, appending to a message its length.) Similarly, we write MD[fP ] for the
algorithm that splits input M ∈ ({0, 1}d)+ into blocks m1, · · · ,m`, each of size
d bits, then runs yi ← fP (yi−1,mi) for each i ∈ [1 .. `], and returns y`. When
the underlying compression function is itself an idealized primitive provided as
an oracle, the algorithms SMD and MD work in the obvious manner.

Pseudorandom oracles. Following [16], we utilize the indifferentiability frame-
work [26] to formalize the notion of “behaving like a random oracle”, which we
call being a pseudorandom oracle (PRO) following [2, 3]. Fix non-empty sets
Dom,Rng . Let P be an ideal primitive and let F = RFDom,Rng . A simulator S is
an ITM that matches the number of interfaces of P and has oracle access to F .
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A PRO adversary A has access to oracles and outputs a bit. We define the pro
advantage of a PRO adversary A against a function HP mapping from Dom to
Rng by

Advpro
H,S(A) = Pr

[
AH,P ⇒ 1

]
− Pr

[
AF,S ⇒ 1

]
where the first probability is over the coins used by A and primitive P , and the
second is over the coins used by A, F , and S. Note that a crucial aspect of the
definition is that the simulator, while able to query F itself, does not get to see
the queries made by the adversary to F .

3 Preimage Awareness

Suppose H is a hash function built from an (ideal) primitive P . We seek to,
roughly speaking, capture a notion which states that an adversary who knows a
“later useful” output z of HP must “already know” (be aware of) a particular
corresponding preimage x. We can capture the spirit of this notion using a
deterministic algorithm called an extractor. Consider the following experiment.
An adversary A initially outputs a range point z. The extractor is run on two
inputs: z and an advice string α. The latter contains a description of all of
A’s queries so far to P and the corresponding responses. The extractor outputs
a value x in the domain of H. Then A runs again and attempts to output
a preimage x′ such that HP (x) = z but x 6= x′. Informally speaking, if no
adversary can do so with high probability, then we consider H to be preimage
aware. We now turn to formalizing a notion based on this intuition, but which
allows multiple, adaptive attempts by the adversary to fool the extractor.

Fix sets Dom ⊆ {0, 1}∗ and Rng , and let A be an adversary that outputs a
string x ∈ Dom. In the preimage awareness (pra) experiment defined in Figure 1,
the adversary is provided with two oracles. First, an oracle P that provides
access to the (ideal) primitive P , but which also records all the queries and
their responses in an advice string α. (We assume that when P is providing
an interface to multiple primitives, it is clear from the advice string to which
primitive each query was made.) Second, an extraction oracle Ex. The extraction
oracle provides an interface to an extractor E , which is a deterministic algorithm
that takes as input a point z ∈ Rng and the advice string α, and returns a point
in Dom ∪ {⊥}.

For hash function H, adversary A, and extractor E , we define the advantage
relation

Advpra
H,E(A) = Pr

[
Exppra

H,E,A ⇒ true
]

where the probabilities are over the coins used in running the experiments. We
will assume that an adversary never asks a query outside of the domain of the
queried oracle. We use the convention that the running time of the adversary A
does not include the time to answer its queries (i.e. queries are unit cost). When
there exists an efficient extractor E such that Advpra

H,E(A) is small for all reason-
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Exppra
H,E,A

x←$ AP,Ex

z ← HP (x)
Ret (x 6= V[z] ∧ Q[z] = 1)

oracle P(m):
c← P (m)
α← α ‖ (m, c)
Ret c

oracle Ex(z):
Q[z]← 1
V[z]← E(z, α)
Ret V[z]

Fig. 1. (Left) Experiment for defining preimage awareness (PrA) for hash func-
tion H, extractor E and adversary A. (Right) Description of the oracles used
in the PrA experiment extractor E . The (initially empty) advice string α, the
(initially empty) array V, and the (initially everywhere ⊥) array Q are global.

able adversaries A, we say that the hash function H is preimage aware (PrA).
(Here “efficient”, “small”, and “reasonable” are meant informally.)

Remarks. As mentioned, the above formalization allows multiple, adaptive chal-
lenge queries to the extraction oracle. This notion turned out to be most con-
venient in applications. One can instead restrict the above notion to a single
query (or to not allow adaptivity) resulting in a definition with slightly simpler
mechanics. In the full version [21] we discuss such alternative formulations of
preimage awareness.

4 Relationships between PrA, CR, and Random Oracles

Our new notion preimage awareness is an interesting middle point in the contin-
uum between objects that are CR (on one end) and those that are random ora-
cles (on the other). More formally speaking, we’ll see in a moment that preimage
awareness is a strictly stronger notion than CR while it is easy to see that it is a
strictly weaker notion than indifferentiability from a random oracle. This is inter-
esting for several reasons. First, we show that a PrA function is a secure domain
extender for fixed-input-length random oracles, unlike CR functions [16]. (This
already suggests that CR does not necessarily imply PrA.). Preimage awareness
is consequently a very useful strengthening of CR, not to mention that it pro-
vides rigor to the folklore intuition that CR functions are insufficient for this
application due to a lack of extractability. Second, the MD transform preserves
preimage awareness. This is in stark contrast to the fact that MD (even if one
uses strengthening) does not preserve indifferentiability from a random oracle
(i.e. PRO-Pr). In the rest of this section, we explore these facts in more detail.

One can view preimage awareness as a strengthening of collision resistance in
the following way. Say that queries to P allow the adversary to compute distinct
domain points x, x′ such that HP (x) = HP (x′) = z. The adversary can make an
extraction query on z, and then succeed in the PrA game by returning whichever
of x and x′ is not extracted from (z, α) by the extractor.

On the other hand, it is not hard to see that a RO is a PrA function. (con-
sider an extractor that simply scans the advice string looking for the challenge
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point z). We now turn to the two claims mentioned above. The next theorem
captures that any PrA function is a good domain extender for an FIL random
oracle. The proof is given in the full version [21].

Theorem 1. [RO domain extension via PrA] Let P be an ideal primitive
and HP : Dom→ Rng be a hash function. Let R be an ideal primitive with two
interfaces that implements independent functionalities P and R = RFRng,Rng .
Define FR(M) = R(HP (M)). Let F = RFDom,Rng . Let E be an arbitrary ex-
tractor for H. Then there exists a simulator S = (S1,S2) such that for any PRO
adversary A making at most (q0, q1, q2) queries to its three oracle interfaces,
there exists a PrA adversary B such that

Advpro
F,S(A) ≤ Advpra

H,E(B) .

Simulator S runs in time O(q1 +q2·Time(E)). Let `max the the length (in bits) of
the longest query made by A to it’s first oracle. Adversary B runs in time that
of A plus O(q0 ·Time(H, `max) + q1 + q2), makes q1 + q0 ·NumQueries(H, `max)
primitive queries, q2 extraction queries, and outputs a preimage of length at
most `max. �

Theorem 1 shows that preimage awareness is a strong enough notion to pro-
vide secure domain extension for random oracles. At the same time, the next
theorem shows that it is “weak” enough to be preserved by SMD. We consider
SMD based on any suffix-free padding function sfpad : {0, 1}∗ → ({0, 1}d)+ that
is injective. Further we assume it is easy to strip padding, namely that there ex-
ists an efficiently computable function unpad : ({0, 1}d)+ → {0, 1}∗ ∪ {⊥} such
that x = unpad(sfpad(x)) for all x ∈ {0, 1}∗. Inputs to unpad that are not valid
outputs of sfpad are mapped to ⊥ by unpad.

Theorem 2. [SMD is PrA-preserving] Fix n, d > 0 and let P be an ideal
primitive. Let hP : {0, 1}n+d → {0, 1}n be a compression function, and let H =
SMD[hP ]. Let Eh be an arbitrary extractor for the PrA-experiment involving h.
Then there exists an extractor EH such that for all adversaries A making at
most qp primitive queries and qe extraction queries and outputting a message of
at most `max ≥ 1 blocks there exists an adversary B such that

Advpra
H,EH

(A) ≤ Advpra
h,Eh

(B) .

EH runs in time at most `max (Time(Eh) + Time(unpad)). B runs in time at most
that of A plus O(qe`max), makes at most `max · NumQueries(h, `max) + qp, and
makes at most qe`max extraction queries. �

Proof. We start by defining the adversary B; the extractor EH is implicit in its
description.
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adversary BP,Ex(ε):

x∗←$ AP,SimEx

x∗` · · ·x∗1
d← sfpad(x∗) ; c∗`+1 ← IV

For i = ` down to 1 do
c∗i ← hP(c∗i+1 ‖ x∗i )
If Q[c∗i ] = 1 and E[c∗i ] 6= c∗i+1 ‖ x∗i then

Ret c∗i+1 ‖ x∗i
Ret ⊥

subroutine SimEx(z, α):
i← 1 ; c1 ← z
While i ≤ `max do

ci+1 ‖ xi ← Ex(ci, α)
Q[ci]← 1 ; E[ci]← ci+1 ‖ xi
If ci+1 = ⊥ then Ret ⊥
x← unpad(xi · · ·x1)
If ci+1 = IV and x 6= ⊥ then

Ret x
i← i+ 1

Ret ⊥

Adversary B answers A’s primitive queries by forwarding to its own oracle P. It
answers A’s extraction queries using the subroutine SimEx (which makes use of
B’s extraction oracle). The code ci+1 ‖ xi ← Ex(ci, α) means take the string
returned from the query and parse it into an n-bit string ci+1 and a d-bit
string xi. If the oracle returns ⊥, then ci+1 and xi are both assigned ⊥. The
code x∗` · · ·x∗1

d← sfpad(x∗) means take the output of sfpad(x∗) and parse it into
` d-bit blocks x∗` , . . . , x

∗
1. The tables Q and E, which record if a value was queried

to Ex and the value returned by the query, are initially everywhere ⊥.
The extractor EH works exactly the same as the code of SimEx except that

queries to Ex are replaced by directly running Eh and the tables Q and E can be
omitted. Loosely, extractor EH , when queried on a challenge image z, uses Eh to
compute (backwards) the preimages of each iteration of h leading to z. When a
chaining variable equal to IV is extracted, the function unpad is applied to the
extracted message blocks. If it succeeds, then the result is returned.

Note that we reverse the (usual) order of indices for message blocks and
chaining variables (starting high and counting down, e.g. x∗` · · ·x∗1) for both the
extractor and B due to the extractor working backwards.

To lower bound B’s advantage by the advantage of A we first point out that,
by construction of EH , the values returned by the simulated SimEx are distributed
identically to the values returned during execution of Exppra

H,EH ,A
. Thus we have

that Advpra
H,EH

(A) = Pr[x∗ satisfies] where the event “x∗ satisfies”, defined over
the experiment Exppra

h,EB ,B
, occurs when the message x∗ satisfies the conditions

of winning for A. Namely that HP (x∗) was queried to SimEx and the reply given
was not equal to x∗. We call x∗ a satisfying preimage for A. We will show that
whenever x∗ is a satisfying preimage for A, with x∗` · · ·x∗1

d← sfpad(x∗), there
exists a k with 1 ≤ k ≤ ` for which adversary B returns the string c∗k+1 ‖x∗k and
this string is a satisfying preimage for B (i.e. one that wins the PrA experiment
against h for B). This will establish that

Pr [ x∗ satisfies ] ≤ Advpra
h,Eh

(B) . (1)

Consider the query SimEx(HP (x∗)) necessarily made byA. Let cj+1‖xj , . . . , c2‖x1

be the sequence of values returned by the Ex queries made by SimEx in the course
of responding to A’s query. Necessarily 1 ≤ j ≤ `max and 1 ≤ ` ≤ `max .
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We will show that there exists a k such that 1 ≤ k ≤ min{j, `} and ck+1‖xk 6=
c∗k+1 ‖ x∗k. (This includes the possibility that ck+1 = ⊥ and xk = ⊥.) First we
use this fact to conclude. Since k ≤ j it means that ck was queried to Ex. If
ck = c∗k = HP (c∗k+1 ‖ x∗k) we are done, because then c∗k+1 ‖ x∗k is a satisfying
preimage for B. Otherwise, ck 6= c∗k and we can repeat the reasoning for k − 1.
At k = 1 we have that, necessarily, ck = c∗k since this was the image queried by
A. Thus there must exist a satisfying preimage, justifying (1).

We return to showing the existence of k such that 1 ≤ k ≤ min{j, `} and
ck+1 ‖ xk 6= c∗k+1 ‖ x∗k. Assume for contradiction that no such k exists, meaning
that c∗i+1 ‖ x∗i = ci+1 ‖ xi for 1 ≤ i ≤ min{j, `}. If j > `, then since cj = IV
and x∗` · · ·x∗1 = x` · · ·x1 we have a contradiction because in such a situation the
loop in SimEx would have halted at iteration `. If j = `, then having x∗` · · ·x∗1 =
x` · · ·x1 and c`+1 = c∗`+1 = IV would imply that SimEx returned x = x∗,
contradicting that x∗ is a satisfying preimage for A. If j < `, then the loop in
SimEx must have stopped iterating because cj+1 = IV (if cj+1 = ⊥ we would
already have contradicted our assumption regarding k) and x 6= ⊥. But by
assumption we have that x∗j · · ·x∗1 = xj · · ·x1 and so there exist two strings x
and x∗ for which sfpad(x) is a suffix of sfpad(x∗). This contradicts that sfpad
provides a suffix-free encoding.

Recall that if a compression function h is both CR and hard to invert for
range point the IV , then the plain MD iteration of h is a CR function [17, 20].
We prove an analogous theorem for plain MD and preimage awareness in [21].
This is particularly useful in our context, because for the compression functions
we will consider (e.g. a FIL random oracle or an ideal cipher based compression
function) it is easy to verify that it is difficult to invert a fixed range point. Note
that this extra property on h (difficulty of inverting IV ) is, in fact, necessary
for plain MD to provide preimage awareness.

5 Applying Preimage Awareness

The results of the previous section allow us to more elegantly and modularly
prove that a hash function construction is a pseudorandom oracle (PRO). Par-
ticularly, Theorems 1 and 2 mean that the task of building a PRO is reduced to
the significantly simpler task of building a compression function that is PrA. For
example, in the case that the compression function is itself suitable to model as
an FIL-RO, then it is trivially PrA and so one is finished. However, even if the
compression function has some non-trivial structure, such as when based on a
block cipher, it is still (relatively) straightforward to prove (suitable compression
functions) are PrA. In the rest of this section we show that most CR functions
built from an ideal primitive are, in fact, PrA.

Are there applications of preimage awareness beyond analysis of hash func-
tions? We believe the answer is yes. For example, one might explore applications
of CR functions, instead analyzing these applications assuming a PrA function.
(As one potential application, the CR-function using statistically hiding com-
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mitment scheme of [18] conceivably achieves straight-line extractability given
instead a PrA function.) We leave such explorations to future work.

PrA for CR constructions. There is a long line of research [29, 7, 23, 24,
32, 33, 31, 19] on building compression functions (or full hash functions) that
are provably collision-resistant in some idealized model, e.g. the ideal cipher
model. We show that in most cases one can generalize these results to showing
the constructions are also PrA. We start by showing that the Davies-Meyer
and other so-called “type-1” PGV compression functions [29, 7] are not only
CR but PrA. We also give bounds on the PrA-security of the Shrimpton-Stam
compression function [33] (see Theorem 4) and the first two steps of the MCM
construction [30] (see Theorem 5); previously these were only known to be CR.

Let us begin by examining the Davies-Meyer compression function, which is
defined by DME(c,m) = Em(c)⊕ c where E is a block cipher. This compression
function and the rest of the 12 “type-1” PGV [29] block cipher-based compres-
sion functions were proved to be collision-resistant (to the birthday bound) in
the ideal-cipher model in [7]. We leverage their results in the proof of the follow-
ing theorem, given in the full version [21] where results for the other “type-1”
functions also appear.

Theorem 3. [Davies-Meyer is PrA.] Fix κ, n > 0, let E←$ BC(κ, n). Let P
be an oracle providing an interface to E and E−1. Let HP (c,m) = DME(c,m).
There exists an extractor E such that for any adversary A making at most qp
queries to P and qe extraction queries we have

Advpra
H,E(A) ≤ qeqp

2n−1
+
qp(qp + 1)

2n

where E runs in time at most O(qp). �

Next we show that it is possible to build a PrA compression function from
non-compressing random functions5. In particular, we examine the compression
function recently designed by Shrimpton and Stam [33]. They proved that this
compression function is nearly optimally collision resistant (i.e. to the birthday
bound), and we will now show that it is also PrA. The proof of the following is
in [21].

Theorem 4. [Shrimpton-Stam is PrA] Fix n > 0. Let P = (f1, f2, f3)
be an ideal primitive providing interfaces to independent functionalities f1 =
RFn,n, f2 = RFn,n and f3 = RFn,n. Define a compression function HP (c,m) =
f3(f1(m)⊕ f2(c))⊕ f1(m). Then there exists an extractor E such that for any
adversary A making qp queries to each of f1, f2, f3 (via P ) and qe extraction
query, we have

Advpra
H,E(A) = O(qeq2p/2

n)

where the extractor runs in time O(q2p). �

5 One can view a block cipher as a compressing primitive, since it takes k +n bits and
produces n bits.
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Dodis et al. [19] also offer a compression function from non-compressing prim-
itives, this being f(c,m) = f1(c) ⊕ f2(m). A straightforward extension of the
argument in [19] shows that this function is PrA for ideal f1 and f2. See [21].

Finally, we show that the “mix-compress” portion of the “mix-compress-
mix” construction from [30] is PrA as long as the compress step is CR and
relatively balanced. First we must define a measure of balance. Associated to any
function F : {0, 1}∗ → {0, 1}n is the set PreImF (`, z) = {y | y ∈ {0, 1}∗ ∧ |y| =
` ∧ F (y) = z} for all ` > 0 and z ∈ {0, 1}n. That is, PreImF (`, z) contains
the length ` preimages of z under F . We also define the function δF (`, z) =
|(|PreImF (`, z)| − 2`−n)/2`| related to F . The δF function measures how far
a particular preimage set deviates from the case in which F is regular. Let
∆F = max{δF (`, z)}, where the maximum is taken over all choices of ` and z.
The proof of the following is given in [21].

Theorem 5. [Mix-Compress is PrA.] Fix τ, n > 0, let F : {0, 1}∗ → {0, 1}n
and let P be an ideal primitive implementing RF∗,τ . Let HP (m) = F (P (m)).
Let A be a PrA adversary making qp primitive queries and qe extraction queries.
Then there exists a CR adversary B and an extractor E such that

Advpra
H,E(A) ≤ qeqp(

1
2n

+∆F ) + Advcr
H,F (B)

E runs in time at most O(qp). B runs in time at most that of A plus O(qp). �

6 Indifferentiability for Public-Use Random Oracles

In numerous applications, hash functions are applied only to public messages.
Such public-use occurs in most signature schemes (e.g. full-domain-hash [4],
probabilistic FDH [15], Fiat-Shamir [22], BLS [10], PSS [6]) and even some en-
cryption schemes (e.g. a variant of Boneh-Franklin IBE [14] and Boneh-Boyen
IBE [8]). It is easy to verify that the provable security of such schemes is re-
tained even if all hashed messages are revealed to adversaries. We introduce the
notion of a public-use random oracle (pub-RO). This is an ideal primitive that
exposes two interfaces: one which performs the usual evaluation of a random
oracle on some domain point and a second which reveals all so-far evaluated
domain points. All parties have access to the first interface, while access to the
latter interface will only be used by adversaries (and simulators).

A wide class of schemes that have proofs of security in the traditional random
oracle model can easily be shown secure in this public-use random oracle model.
Consider any scheme and security experiment for which all messages queried to a
RO can be inferred from an adversary’s queries during the experiment. Then one
can prove straightforwardly the scheme’s security in the pub-RO model, using
an existing proof in the full RO model as a “black box”. For example, these
conditions are met for unforgeability under chosen-message attacks of signature
schemes that use the RO on messages and for message privacy of IBE schemes
that use the RO on adversarially-chosen identities. All the schemes listed in the
previous paragraph (and others) fall into these categories.
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The pub-RO model was independently considered by Yoneyama et al. [36]
(there called the leaky random oracle model) under different motivation. They
directly prove some schemes secure when hash functions are modeled as a mono-
lithic pub-RO. They do not analyze the underlying structure of MD-based func-
tions.

We utilize the indifferentiability framework of Maurer et al. [26] to formalize a
new notion of security for hash constructions: indifferentiability from a public-use
RO, which we will call being a public-use pseudorandom oracle (pub-PRO). This
new security property is weaker than that of being a PRO. We show that iterating
a fixed-input-length public-use random oracle (i.e. a compression function) via
MD yields a variable-input-length public-use random oracle. Put another way,
MD preserves the property of being a pub-PRO.

Public-use ROs. Fix sets Dom,Rng . A public-use random oracle (pub-RO) for
domain Dom and range Rng is an ideal primitive F = (Feval ,Freveal) defined as
follows. Let ρ = RFDom,Rng . The evaluation interface Feval , on input M ∈ Dom,
first adds the pair (M,ρ(M)) to an initially-empty setM and then returns ρ(M).
The reveal interface Freveal takes no input and returns M (suitably encoded
into a string). We say that F is a fixed-input-length (FIL) pub-RO if Dom only
includes messages of a single length.

Indifferentiability from a pub-RO. Fix sets Dom,Rng . Let P be an ideal
primitive and let F = (Feval ,Freveal) be a pub-RO for domain Dom and range
Rng . Let S be a simulator with oracle access to (both interfaces of) F . Then we
define the pub-pro advantage of an adversary A against a construction HP by

Advpub-pro
H,S (A) = Pr

[
AH,P ⇒ 1

]
− Pr

[
AFeval ,S ⇒ 1

]
where the first probability is over the coins used by A and primitive P , and
the second is over the coins used by A, F , and S. In the second probability
experiment, while A has access only to Feval , the simulator S has oracle access
to both interfaces of F . The simulator’s ability to call Freveal , thereby seeing all
queries so-far-made by A to Feval , is the crucial difference between pub-PRO
and PRO.

The composition theorem in [26] (recast to use ITMs in [16]) can be applied to
pub-PROs. That is, a cryptographic scheme using a pub-PRO hash construction
HP for some ideal primitive P can have its security analyzed in a setting where
HP is replaced by a monolithic pub-RO F . In this setting, adversaries attacking
the scheme can perform queries to Freveal .

Merkle-Damg̊ard preserves pub-PRO. Let f = (feval , freveal) be a FIL
pub-RO. Then the next theorem statement, whose proof appears in [21], asserts
that MD[feval ] is indifferentiable from a pub-RO. (That SMD[feval ] is a pub-PRO
is an immediate corollary.)

Theorem 6. [MD preserves pub-PRO] Fix n, d > 0. Let f = (feval , freveal)
be a FIL pub-RO for domain {0, 1}n+d and range {0, 1}n. There exists a simu-
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lator S = (Seval ,Sreveal) so that for any adversary A

Advpub-pro
MD,S (A) ≤ (σq0 + q1)2

2n
+
σq0 + q1 + 1

2n
where q0 is the maximal number of queries by A to its first oracle, these of length
at most σ blocks of d bits, and q1 is the maximal number of queries by A to
either feval or Seval . Let q2 be the number of queries by A to either freveal or
Sreveal . Then S runs in time that of A plus O(q0σ(q1 + q2)) and makes at most
2q0 + q0q1σ queries. �

Davies-Meyers compression function. One might hope that the Davies-
Meyers compression function is pub-PRO analogously to the fact that it is PrA.
Unfortunately, this is not the case. Consider the following attack, due to [35].
Let A against DME(c, x) = Ex(c) ⊕ c work as follows. It picks a random z and
m and then queries its third oracle interface on m, z. When interacting with the
pub-RO F and any simulator S, we see that S would need to respond with a
value c such that Feval(c, x) = c ⊕ z. This corresponds to inverting F on some
fixed range point, which is hard. (Note that A has not, before querying the
simulator, submitted any queries to F .) Thus the adversary will win easily. On
the other hand, we conjecture that although DM is not itself pub-PRO, applying
MD to it results in a VIL pub-PRO (in the ideal cipher model). We discuss this
in more detail in the full version [21].
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