
Realizing Hash-and-Sign Signatures under
Standard Assumptions

Susan Hohenberger1,? and Brent Waters2,??

1 Johns Hopkins University, susan@cs.jhu.edu
2 University of Texas at Austin, bwaters@cs.utexas.edu

Abstract. Currently, there are relatively few instances of “hash-and-
sign” signatures in the standard model. Moreover, most current instances
rely on strong and less studied assumptions such as the Strong RSA and
q-Strong Diffie-Hellman assumptions. In this paper, we present a new
approach for realizing hash-and-sign signatures in the standard model.
In our approach, a signer associates each signature with an index i that
represents how many signatures that signer has issued up to that point.
Then, to make use of this association, we create simple and efficient
techniques that restrict an adversary which makes q signature requests
to forge on an index no greater than 2dlg(q)e < 2q. Finally, we develop
methods for dealing with this restricted adversary. Our approach requires
that a signer maintains a small amount of state — a counter of the
number of signatures issued. We achieve two new realizations for hash-
and-sign signatures respectively based on the RSA assumption and the
Computational Diffie-Hellman assumption in bilinear groups.

1 Introduction

Digital signatures are a fundamental cryptographic primitive and a key building
block in many larger systems. Typically, known constructions fall into one of two
categories: the “tree”-based approach or the “hash-and-sign” approach. This lat-
ter paradigm generally yields more efficient constructions and shorter signatures,
and represents what practitioners have come to expect. While many realizations
of hash-and-sign signatures exist in the random oracle model (e.g., [16, 33, 28, 4,
29, 7, 19, 18]), efficient schemes in the standard model are rare. Moreover, ran-
dom oracle model schemes can be based on well-studied assumptions such as the
discrete logarithm problem, Computational Diffie-Hellman and RSA. However,
known standard model schemes are often based on much stronger assumptions,
? Supported by NSF CNS-0716142 and a Microsoft New Faculty Fellowship.

?? Supported by NSF CNS-0524252, CNS-0716199, CNS-0749931; the US Army Re-
search Office under the CyberTA Grant No. W911NF-06-1-0316; and the U.S. De-
partment of Homeland Security under Grant Award Number 2006-CS-001-000001.
The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either ex-
pressed or implied, of the U.S. Department of Homeland Security. Portions of this
work were done while this author was at SRI International.

such as Strong RSA [17, 13], q-Strong Diffie-Hellman [6] and LRSW [10].3 These
assumptions allow the adversary a significant amount of flexibility in his ability
to win, such as allowing him to choose a signing exponent (Strong RSA), com-
pute a value relative to a chosen constant (q-Strong Diffie Hellman), or choose
a random base value (LRSW). In each case, there are many possible correct
answers to the adversary’s challenge; in fact, exponentially many. This stands
in high contrast to weaker, more studied assumptions, such as the discrete log-
arithm problem, Computational Diffie-Hellman and RSA, where there is only
one correct answer for a given challenge. These assumptions which restrict the
adversary to a single correct response seem inherently more reliable than their
flexible counterparts. Thus, an important direction, in our opinion, is to push
forward to practical, standard model schemes under standard assumptions.

One challenging aspect is that the security definition of signatures [21] in-
herently allows the adversary a great deal of flexibility; she wins if she outputs
a forgery on any message not previously signed. Likewise, most existing “hash-
and-sign” standard model schemes inherently enable the adversary a good deal
of flexibility on which forgeries it can output and then the security is based on
the hardness of a problem where there are many possible solutions. For exam-
ple, consider the construction of Cramer and Shoup [17, 13]; since the legitimate
signer chooses a random prime from an exponentially large range, any proof
must consider a forger that has the same flexibility in choosing the exponent
and therefore the reduction is to the Strong RSA assumption (i.e, given (N, y),
it is hard to produce any pair (e, x) such that e > 1 and xe ≡ y mod N).

In this work, we present a new avenue: design the scheme in such a way that
enforces that any adversary output forgeries in some small set of categories that
roughly grows with the number of signatures created so far. (E.g., A category
could correspond to an RSA exponent used for verification in a prior signature.)
Once the forger is restricted to a small set of categories, the simulator can guess
where to program the challenge within this set. Alternatively, one can view our
approach as restricting the adversary to a small forgery set and then employing
selectively-secure techniques. The primary contribution of this work is the new
method for restricting a forger.

Our Approach. Let us give the intuition behind our two constructions. At the
core of our method, we associate with each signature an index i representing
the number of signatures previously issued by the signer. The actual signer will
only issue one signature per index. Roughly, the idea is to efficiently force the
adversary to forge on a previously seen index value. To restrict the adversary,
each signature is comprised of two logical components: a “core” signature on
the message under index i and a second component that bounds the highest
index number that the adversary might use. The most naive method would be
to create a separate signature that signs the current index being used; however,

3 One recent exception is the signature scheme due to Waters [34], which is provably
secure under the CDH assumption in bilinear groups. However, this scheme suffers
from a large public key size.

this would itself demand a secure signature scheme and lead to a circularity. To
avoid this, the second component for a signature on index i will be a “signature”
on dlg(i)e. If we allow at most 2λ signatures, then there are at most λ possible
values for this second component and realizing it becomes simple. Moreover; the
set of “allowable” indices is at most a factor of 2 times the number of signatures
given out so far. It follows that any adversary must forge on a index set of
roughly the same size as the number of signatures he has seen (or break the
second component). Once we apply these techniques to force the adversary into
this small index set, we are in a position to create a system based on weaker
assumptions.

Let us illustrate this by describing a simplified version of our RSA-based
construction. Let N be a Blum-Williams integer. The signer publishes a modulus
N , a random value v ∈ Z∗N and a hash function that enumerates a sequence of
primes, i.e., let H(i) = ei. To generate a signature using index i on message m,
the signer creates a “core” signature on m using the signing exponent e−1

i and
then also gives out i and the dlg(i)e-th square root of v. This ensures that an
adversary that makes at most q queries must sign using one of the first 2dlg(q)e <
2q values of ei (i.e., the output of H(j) on j = 1 to 2dlg(q)e); otherwise, the
adversary can take square roots and thereby factor N . Now that the adversary
is restricted to forging using a small set of ei values, we can use a combination of
previous techniques and new ideas to reduce from the standard RSA assumption.

Outline. We realize two new hash-and-sign signatures under the RSA assump-
tion and the Computational Diffie-Hellman assumption in bilinear groups, in
Sections 3 and 4 respectively. In Section 5, we discuss how to manage the signer’s
state in practice, including across multiple machines.

1.1 Related Work

The related work on designing secure signature schemes is vast and long standing.
We provide only a brief summary.

Tree-Based. Many of the earliest provably-secure constructions used the design
paradigm of a tree. Here a bound on the number of signatures to be issued is
first established, and then the efficiency of the signatures (i.e., their size and the
size of the public key) is in some way proportional to this bound. From gen-
eral assumptions, a series of works including Bellare-Micali [2], Naor-Yung [27],
and Rompel [32] established that signatures can be based on one-way functions.
From general and concrete assumptions, another series of works sought more ef-
ficient solutions, such as those of Goldwasser-Micali-Rivest [21], Goldreich [20],
Merkle [24], Dwork-Naor [15], Cramer-Damg̊ard [11, 12] and many more. While
these works are fundamental to our understanding of provably secure signatures,
the tree-based constructions are often passed over in practice due to the compu-
tation and memory requirements.

Hash-and-Sign. In the search for more efficient constructions, many schemes
in the random oracle model were proposed, such as those of El Gamal [16],

Schnorr [33], Okamoto [28], Bellare-Rogaway [4], Pointcheval-Stern [29] and
more recent short signatures by Boneh-Lynn-Shacham [7], signatures with tight-
reductions to Diffie-Hellman by Goh-Jarecki-Katz-Wang [19], and the recent
lattice-based signatures of Gentry-Peikert-Vaikuntanathan [18]. Unfortunately,
the schemes are only known to be secure relative to the random oracle heuristic.

Drawing closer to our objective, some prior works have explored secure hash-
and-sign signatures in the standard model. In 1999, Gennaro, Halevi and Ra-
bin [17] introduced the first hash-and-sign construction secure in the standard
model; its security depends on the Strong RSA assumption. Subsequent works
also based on Strong RSA of Cramer-Shoup [13] and Camenisch-Lysyanskaya [9]
improved the efficiency and added efficient protocols, respectively. (We will make
use of a key reduction technique due to Cramer and Shoup later on.)

More recent works pushed for shorter signatures in the standard model, mov-
ing away from Strong RSA to more complex bilinear assumptions. Two such ex-
amples are the Boneh-Boyen [6] signatures based on q-Strong Diffie-Hellman (i.e.,
given a generator g of prime order p and the tuple (gx, gx

2
, . . . , gx

q

), it is hard
to compute (c, g1/(x+c)) for any c ∈ Z∗p) and the Camenisch-Lysyanskaya [10]
signatures based on the interactive LRSW assumption.

While these standard model schemes are useful and efficient, their security
depends on strong assumptions. In Strong RSA, q-Strong Diffie-Hellman and
LRSW, there are many correct answers to any given challenge, allowing the
adversary a significant amount of flexibility. This stands in sharp contrast to
mild and restricted assumptions such as RSA and CDH.

To our knowledge, the only example prior to this work of a practical signature
scheme secure in the standard model and under a mild complexity assumption
is due to Waters [34], whose scheme is based on CDH in bilinear groups. The
drawback of Waters’ scheme compared to our scheme under the same assumption
in Section 4 is that the public key requires O(λ) group elements, where λ is the
security parameter, whereas our public key requires O(1) group elements. There
exist variants of the Waters scheme (e.g., [26]) offering tradeoffs between the
public key size and the concrete security level, but the asymptotic behavior
remains the same.

Interpretting our Results. In this work, we limit ourselves to the standard
practice of polynomial-time reductions. If we allowed super-polynomial reduc-
tions, it seems possible to interpret the Gennaro-Halevi-Rabin [17] and Cramer-
Shoup [13] solutions as provably secure under RSA and the selectively-secure
signatures of Boneh-Boyen [5] (as derived from their selectively-secure identity-
based encryption scheme) as provably secure under CDH. Indeed, one alternative
way of viewing our techniques is as a method for restricting a signature adversary
so that selectively-secure schemes become (fully) adaptively-secure.

One can also view our results as a step toward realizing practical, standard
model signatures under standard assumptions in a stateless manner. We remind
the reader that many of the early tree-based signatures, such as the GMR signa-
tures [21], also required the signer to keep a counter on the number of signatures

issued. Subsequently, Goldreich [20] showed how to remove this dependence on
state. We believe that a parallel outcome is possible here.

2 Background

2.1 Signature Schemes

Since we consider stateful signers, we slightly alter the signature algorithm spec-
ifications as follows:

KeyGen(1λ) : the key generation algorithm outputs a keypair (PK,SK) and
an initial state s.

Sign(SK, s,M) : the signing algorithm takes in a secret key SK, a state s, and
a message M , and produces a signature σ.

Verify(PK,M, σ): the verification algorithm takes in a public key PK, a mes-
sage M , and a purported signature σ, and returns 1 if the signature is valid
and 0 otherwise.

We use the standard security notion of existential unforgeability with respect
to chosen-message attacks as formalized by Goldwasser, Micali and Rivest [21].
Here the adversary is given the public key and access to a signing oracle. The
adversary is considered to be successful if she is able to produce a valid signature
on any message not queried to the oracle.

2.2 Chameleon Hash Functions

A chameleon hash function H(m, r) has the usual collision-resistant hash prop-
erties with the additional feature that, given some special trapdoor information,
any target y and any message m′, it is possible to efficiently find a value r′ such
that H(m′, r′) = y. Chameleon hash functions were formalized by Krawczyk and
Rabin [23], who also presented a discrete-logarithm-based construction, derived
from the chameleon commitments of Boyar et al. [8]. We employ this hash in
Section 4 for our CDH-based signatures. In our RSA-based signatures in Sec-
tion 3, we can employ any chameleon hash function. Secure constructions exist
in the standard model under the discrete-logarithm assumption [23], the hard-
ness of factoring [23], and the RSA assumption [1]. See Appendix A for more on
RSA-based chameleon hashes.

2.3 RSA Assumption and other Facts

We begin by recalling (one of the) standard versions of the RSA assumption [31].

Assumption 1 (RSA) Let k be the security parameter. Let positive integer N
be the product of two k-bit, distinct odd primes p, q. Let e be a randomly chosen
positive integer less than and relatively prime to φ(N) = (p − 1)(q − 1). Given
(N, e) and a random y ∈ Z∗N , it is hard to compute x such that xe ≡ y mod N .

We remind the reader that in the Strong RSA assumption the adversary is
given (N, y) and succeeds by producing any integer pair (e, x) such that e > 1
and xe ≡ y mod N . The standard RSA version is much more restrictive on the
adversary.

We will make use of the following additional facts.
In our RSA-based scheme, we will require a primality test. Fortunately, for

our purposes, it will be sufficient to use the efficient Miller-Rabin test [25, 30].

Lemma 1 (Cramer-Shoup [13]). Given x, y ∈ Zn together with a, b ∈ Z such
that xa = yb and gcd(a, b) = 1, there is an efficient algorithm for computing
z ∈ Zn such that za = y.

Later on, we will choose our RSA moduli from the set of Blum-Williams
integers, since we will require that each square has a unique square root which
is itself a square. Formally, we will use:

Lemma 2 (Bellare-Miner [3]). Suppose n is a Blum-Williams integer. Sup-
pose a, a1, . . . , at ∈ Z∗n and a is a square modulo n. Suppose x, x1, . . . , xt are
integers such that x1, . . . , xt > x ≥ 0. Suppose

a2x =
t∏

j=1

a2xj
j mod n , then a =

t∏
j=1

a2xj−x

j mod n.

Theorem 2 (Prime Number Theorem). Define π(x) as the number of primes
≤ x. For x > 1,

π(x) >
x

ln x
.

2.4 Bilinear Groups and the CDH Assumption

Let G and GT be groups of prime order p. A bilinear map is an efficient mapping
e : G×G→ GT which is both: (bilinear) for all g ∈ G and a, b← Zp, e(ga, gb) =
e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) 6= 1.

Assumption 3 (Computational Diffie-Hellman [14]) Let g generate a group
G of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability
is negligible in λ:

Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].

3 Our RSA Realization

In our later CDH construction, the signer’s state of i will directly correspond
to the ith signature. This will not be true here. In our simplified scheme in
the introduction, we assumed the existence of a function that maps states to
different prime exponents. Our first challenge is to realize this function in a way
that allows us a means in the proof for embedding our RSA challenge exponent.

Our realization of this function, denoted H below, will require that we skip over
some states. Tantamount to our success will be the ability to maintain a correct
distribution in our reduction.

To gain some intuition into the construction, let us begin by describing a
publicly-computable hash function H : Z → {0, 1}k, which will be used to link
exponents to states. Let F : Z → {0, 1}k be a pseudorandom function family.
Next, let c be a random value in {0, 1}∗. For a random PRF key K, we define
our corresponding hash function as HK(x) := c⊕ FK(x).

While it is unusual to publicly release a PRF key, we do so because we only
require some weaker properties from our hash function for which this construc-
tion will be sufficient. Specifically, we require that the hash function HK : (1)
outputs large primes with sufficient probability, and (2) on the first polynomial
inputs to the hash, all prime outputs are distinct with high probability. We will
later show that if the function HK does not meet these requirements then F
could not have been a PRF family.

Let us now turn to how the hash function HK is used in the system. The
signer keeps state as before and when signing with state s, if HK(s) is not prime,
the signer will skip over it and increment its state until it reaches some s′ such
that HK(s′) is prime. It will then sign using this prime and state s′. Thus, it
will be important to guarantee that the signer not have to skip over too many
indices when issuing signatures.

Now, we present our core construction and then remark on some different
possible optimizations. The construction here already reduces the public key
and signature size by one element in Z∗N over the simplified RSA construction
described in the introduction.

3.1 RSA Construction

Setup(1λ) The setup algorithm chooses a Blum-Williams integer N , such that
2` < φ(N) < 2`+2, where ` is another security parameter derived from 1λ. It
then chooses two random quadratic residues u, h ∈ QRN .

Next, it establishes a hash function H : Z → {0, 1}` by choosing a random
key K for the PRF function F : Z→ {0, 1}`, a random c ∈ {0, 1}`, and defining
HK(x) = c⊕ FK(x).

It publishes the parameters L of some Chameleon Hash scheme ChamHash :
{0, 1}`′×{0, 1}`′′ → {0, 1} 2`

3 . (We note that such schemes in the standard model
exist under the hardness of factoring [23] and RSA [1]; see Appendix A.)

Finally, the public key consists of

N, u, h, c,K,L.

Anyone can compute HK() using these parameters. The setup algorithm sets its
state counter s = 0 and keeps the factorization of N as the secret key SK.

Sign(SK, s,M ∈ {0, 1}`′) The signer first increments its counter s by one as
s = s + 1. The algorithm then chooses a random r ∈ {0, 1}`′′ from the ap-
propriate range dictated by the choice of ChamHash. It then computes x =

ChamHash(M, r). Next, it checks if HK(s) is a prime. If not it increments
s = s+1 and tries again until es = HK(s) is a prime. Then the signer computes:

B = (uxh)(
1
2)dlg(s)e mod N

Note that we abuse notation here when taking square roots. When working
modulo Blum-Williams integers, let X

1
2 represent the unique square root of X

which is itself also a square. (See Lemma 2.) The signature is output as:

σ1 = B
1
es , r, s.

Conceptually, s is an index, but we will skip over many s values where HK(s) is
not a prime.

Verify(PK,M, σ = (σ1, r, i)) The verification algorithm first makes sure that
i < 2λ. If it is greater, then it rejects. Second, the verifier checks that HK(i) is
a prime. If not, it rejects.

Next, it squares σ1 a total of dlg(s)e times yielding the value Y = (σ1)2
dlg(s)e

.
Finally, it computes x = ChamHash(M, r) and ei = HK(i), and rejects unless it
verifies that

Y ei ≡ (uxh) mod N.

Comments. The above scheme is geared to showcase the main ideas, however,
one might consider different variants that allow for faster signature generation
and faster verification. One area for improvement is in the way that prime ex-
ponents are generated and linked to states.

As a first variant, instead of having the signer skip over an index i if HK(i)
is not prime (and thus, update and write to memory a state change), consider
a scheme that allows the signer to search for a prime in a small range around
the value HK(i). This option would require a more detailed analysis of the
probability of a collision among the prime exponents used as well as a more
complicated method for plugging in the RSA challenge.

As a second variant, consider a scheme that uses the first q primes starting
with 3 to sign q messages. This variant would enable both faster generation (via
a prime number seive to find the primes) and faster verification since we’d be
using small prime exponents. Unfortunately, this appears to require a reduction
from an assumption different than standard RSA; in particular, one might con-
sider reducing from an assumption that the adversary can’t take a root chosen
randomly from the first q odd prime roots. For any polynomial q, this assump-
tion is weaker than Strong RSA; however, we cannot reduce it to the standard
RSA assumption.

A third avenue for optimization, focusing on the size of N and the chameleon
hash parameters, is to note that our setting of {0, 1} 2`

3 as the chameleon hash
range is somewhat arbitrary. It can be set to any constant fraction of ` bits
or any range R such that for a random prime e ∈ {0, 1}` the probability that
e 6∈ R is non-negligible (we achieve e 6∈ {0, 1} 2`

3 with high probability). In other

words, there can be a tradeoff here between the size of the parameters and the
concrete security. We also remind the reader that one can enlarge the domain of a
chameleon hash by first applying a normal collision-resistant hash function [23].

A fourth avenue for optimization, this time focusing on the number of ele-
ments in the public key, is to find a method for directly embedding the chameleon
hash function into the signature itself (as we do in our CDH scheme in Section 4).

3.2 Proof of Security

Theorem 4. If the RSA assumption holds when N is a Blum-Williams integer,
then the above construction is a secure signature scheme.

Proof. Our reduction will only work on certain types of RSA challenges. We first
describe this challenge set and then describe the reduction.

Our reduction will “throw out” all RSA challenges (N, e∗, y) where e∗ is not
an odd prime less than 2`. Fortunately, good challenges will occur with polyno-
mial probability. By construction, φ(N) < 2`+2. We also know, by Theorem 2,
that the number of primes ≤ 2` is ≥ 2`

` . Thus, a loose bound on the probability
of e∗ being a prime in the proper range is (2`

`)/2`+2 = 1
4` .

Now, we describe the reduction. Suppose we have an adversary that makes
at most q(λ) queries where q() is a polynomial. (We say q queries where it is
clear from context.) We show that this adversary breaks RSA, on challenges
(N, e∗, y) where N is a Blum-Williams integer and e∗ is an odd prime < 2`. An
adversary can have two types of forgeries. Let x be the highest index on which
the adversary obtains a signature from the signer (i.e., the index at which the
qth prime appears).

Type I The adversary forges for a message with index i greater than 2dlg(x)e.
Type II The adversary forges for a message with index i less than or equal to

2dlg(x)e.

In Lemma 3, we show that a type I adversary can be used to break factoring
with a loss of a λ factor in the reduction. In Lemma 4, we show that a type II
adversary can be used to break RSA with a loss of a t factor in the reduction,
where t is a polynomial-size “bound on 2dlg(x)e” set to 4`[q + λ]. The value t is
established to avoid a circularity. In the proof of Lemma 4, the simulator would
like to guess the index of the adversary’s forgery in the range 1 to 2dlg(x)e, so that
it can set the function HK accordingly. However, the simulator cannot compute
x until it sets HK . To avoid this circularity, we bound t ≥ 2dlg(x)e. We want that
for a random function R, there are at least q primes in the set of {R(i)}i∈[1,x]

with high probability. Lemma 5 in Appendix B guarantees that this occurs for
x = 2`[q + λ] with probability 1− e−[q+λ](1

2)2 . Thus, we set t = 2x = 4`[q + λ],
which establishes that t ≥ 2dlg(x)e. This concludes the proof.

Type I Adversary

Lemma 3. If a type I adversary succeeds with probability ε, then it can be used
to solve factoring with probability ε/(2λ)− negl(λ).

Proof. We provide a reduction showing how to turn a type I adversary into an
simulated adversary against factoring. Intuitively, in the simulation, the simula-
tor takes a guess of k∗ = dlg(i)e, the logarithm of the index i on which the type
I adversary will forge. There are at most λ values of k∗ so the simulator has at
least a 1/λ chance of guessing correctly.

We now describe the simulation. Given a factoring challenge N = p1p2, where
the goal is to produce either p1 or p2, proceed as follows.

Setup The simulator begins by guessing a value k∗ in the range 1 to λ. Next, the
simulator selects a random PRF key K and random c ∈ {0, 1}`, which defines
the hash function HK(). Next, for i = 1 to t, the simulator computes ei = HK(i)
and tests to see if it is prime. If ei is prime, the simulator places i into a set E.
If |E| < q, the simulator aborts. In Lemma 5, we show that due to our choice of
t there will be at least q primes in E with high probability.

The simulator randomly chooses parameters L for a chameleon hash function,
where {0, 1} 2`

3 is the range of the hash. Finally, it chooses a random u′, h′ ∈ Z∗N
and sets

û = (u′)
Q
j∈E ej and ĥ = (h′)

Q
j∈E ej

u = (û)2
k∗

and h = (ĥ)2
k∗

.

Since u′, h′ are independently chosen, this will have the correct distribution.
The simulator outputs the public key as (N, u, h, c,K,L), sets the internal

signing state s = 0 and keeps secret the chameleon hash trapdoor.

Sign When the adversary asks for a signature on message M , the simulator first
updates its state value s = s + 1. Since the adversary is polynomial, we know
that s < 2λ. If dlg(s)e ≥ k∗, the simulator’s guess was incorrect and it aborts.
Otherwise, the simulator selects a random r, computes x = ChamHash(M, r)
and outputs the signature as:

σ1 =
(

(u′xh′)
Qj 6=s
j∈E ej

)2(k∗−dlg(s)e)

, r, s.

Response Eventually, the type I adversary outputs a valid signature σ̃ = (σ̃1, r̃, ĩ)
on a message M̃ . If k∗ 6= dlg(̃i)e, the simulator aborts. Otherwise, the simulator
computes x = ChamHash(M̃, r̃). From the verification equation and simulation
setup, we see that

(σ̃1
e∗)2

k∗

= uxh = (ûxĥ)2
k∗

.

Since N is a Blum-Williams integer, it follows that (σ̃e∗1)2 = (ûxĥ)2. Futher-
more, the fact that h′ was chosen randomly in Z∗N and h′ is raised to a product

of odd primes ei implies that with probability 1
2 the value σ̃1

e∗ is congruent
to ûxĥ modulo p1, but not congruent modulo p2 or vice versa. In this case,
the simulator can factor N in the standard way, i.e., by computing a factor as
gcd(σ̃1

e∗ − ûxĥ, N).

Type II Adversary

Lemma 4. If a type II adversary succeeds with probability ε after making q
signing queries, then it can be used to solve RSA where N is a Blum-Williams
integer with probability ε/(4`[q + λ])− negl(λ).

Proof. We provide a reduction showing how to turn a type II adversary into an
adversary against RSA. Our proof has two components. First, we’ll describe a
simulator and show that any adversary which is successful against the simulation
can be used to break RSA. Second, we’ll show that any adversary successful
against the above signature scheme will also be successful against the simulation.

Intuitively, in the simulation, the simulator takes a guess of i∗, the index on
which the type II adversary will forge, within a small range of 1 to t. We’ll lose
a factor of t here. The simulator will choose public parameters such that it is
straightforward to sign for any index except i∗. If the simulator is asked to sign
for index i∗, we program the Chameleon hash to allow this.

We now describe the simulation. Given an RSA challenge (N, e∗, y), where
the goal is to produce a value w ∈ Z∗N such that we

∗
= y, we proceed as follows.

For notation, let N = p1p2.

Setup The simulator begins by guessing an index i∗ in the range 1 to t. Next,
the simulator selects a random PRF key K. It computes c = FK(i∗)⊕ e∗, which
defines the hash function HK(). Recall that e∗ < 2` since we “threw out” any
other RSA challenge. Next, for i = 1 to t, the simulator computes ei = HK(i)
and tests to see if it is prime. If ei is prime, the simulator places i into a set E.
If |E| < q, the simulator aborts. In Lemma 5, we show that due to our choice of
t there will be at least q primes in E with high probability.

The simulator randomly chooses parameters L for a chameleon hash function,
where {0, 1} 2`

3 is the range of the hash. The simulator then selects a random value
x∗ ∈ {0, 1} 2`

3 .
Finally, it chooses a random d ∈ Z∗N and sets

û = y
Qj 6=i∗
j∈E ej and ĥ = û−x

∗
d

Q
j∈E ej , and then

u = (û)2
λ

and h = (ĥ)2
λ

.

Since y, d are independently chosen, this will have the correct distribution.
The simulator outputs the public key as (N, u, h, c,K,L), sets the internal

signing state s = 0 and keeps secret the chameleon hash trapdoor.

Sign When the adversary asks for a signature on message M , the simulator first
updates its state value s = s + 1. Clearly, s < 2λ. Now, there are two cases for
computing the signature.

If s = i∗, then the simulator will employ the chameleon hash trapdoor to
find a value r such that ChamHash(M, r) = x∗. The simulator then outputs the
signature:

σ1 = (d
Qj 6=i∗
j∈E ej)2

(λ−dlg(i∗)e)
, r, i∗.

To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = (ûx
∗/e∗ · û−x

∗/e∗ · d
Qj 6=i∗
j∈E ej)2

(λ−dlg(i∗)e)

= (ûx
∗/e∗ · ĥ1/e∗)2

(λ−dlg(i∗)e)

=
(

(ûx
∗
ĥ)1/e

∗
)2(λ−dlg(i∗)e)

= ((ux
∗
h)1/e∗)(

1
2)dlg(i

∗)e

If s 6= i∗, then the simulator chooses a random r and computes the value
x = ChamHash(M, r). The simulator then outputs the signature:

σ1 =
(

(yx
Qj 6=s,j 6=i∗
j∈E ej) · (y−x

∗Qj 6=s,j 6=i∗
j∈E ej) · (d

Qj 6=s
j∈E ej)

)2(λ−dlg(s)e)

, r, s.

To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = ((ûxĥ)1/es)2
(λ−dlg(s)e)

= ((uxh)1/es)(
1
2)dlg(s)e

Response Eventually, the type II adversary outputs a valid signature σ̃ = (σ̃1, r̃, ĩ)
on a message M̃ such that ĩ ≤ t. If ĩ 6= i∗, the simulator’s guess was incorrect
and it aborts.

Otherwise, the simulator computes x = ChamHash(M̃, r̃). If x = x∗, the
simulator aborts. Otherwise, from the verification equation and simulation setup,
we see that

(σ̃1
e∗)2

dlg(ĩ)e
= uxh = (ûxĥ)2

λ

We can see that (σ̃1
e∗)2 = (ûxĥ)2

λ−dlg(ĩ)e+1
via Lemma 2 since λ > dlg(̃i)e

and N is a Blum-Williams integer. Thus, we have two cases to consider regarding
the underlying square roots.

– Case A: σ̃1
e∗ or −σ̃1

e∗ is equal to (ûxĥ)2
λ−dlg(ĩ)e

mod N .
– Case B: σ̃1

e∗ is congruent to (ûxĥ)2
λ−dlg(ĩ)e

mod p1, but not congruent mod
p2 or vice versa.

Case A: Suppose v = σ̃1
e∗ is congruent to (ûxĥ)2

λ−dlg(ĩ)e
mod N . (The case for

−v is analogous.) Clearly, v is a square modulo N . Since λ > dlg(̃i)e, we can
apply Lemma 2 to obtain

σ̃1
e∗ = (ûxĥ)2

λ−dlg(ĩ)e
.

Let v = σ1/(d
Qj 6=i∗
j∈E ej)2

λ−dlg(ĩ)e
. Then substituting into the above equation

we have:
ve
∗

= y2λ−dlg(ĩ)e(x−x∗)
Qj 6=i∗
j∈E ej .

The simulator now runs the algorithm from Lemma 1 to obtain a value w
such that we

∗
= y, and outputs w as the RSA challenge solution. We can

apply Lemma 1 since (1) w, y ∈ ZN , (2) e∗ and 2λ−dlg(̃i)e(x − x∗)
∏j 6=i∗
j∈E ej

are in Z, and (3) e∗ is relatively prime to 2λ−dlg(̃i)e(x − x∗)
∏j 6=i∗
j∈E ej with

high probability as shown in Lemma 6 of Appendix B.
Case B: The simulator computes gcd(σ̃1

e∗− (ûxĥ)2
λ−dlg(ĩ)e

, N) to obtain a fac-
tor of N .

This ends our description of the simulator. Due to space considerations, we
leave to the full version [22] our argument that any successful type II adversary
against our scheme will have success in the game presented by the simulator. To
do this, we first define a sequence of games, where the first game models the real
world and the final game is exactly the view of the adversary when interacting
with our simulator. We then show via a series of claims that if a type II adversary
is successful against Game j, then it will also be successful against Game j + 1.

4 Our CDH Realization

Our CDH construction is both simplier and more efficient than its RSA counter-
part. This is partly due to the fact that here will not need to search for primes
and can instead directly associate the ith state with the ith signature. Here we
will also directly embed the chameleon hash function.

As before, each signature is associated with an index i and a category k =
dlg(i)e. We force the adversary to forge on a previously seen category, which
restricts her to a polynomial-size set from which to choose her forgery index.
Since this remaining set is polynomial in size, we can employ selectively-secure
techniques to obtain an adaptively-secure scheme. Specifically, we make use of
the selectively-secure signatures due to Boneh and Boyen [5] with a twist. Here
our index is like the message in their scheme and our message impacts their
“master key”.

4.1 CDH Construction

Setup(1λ) The setup algorithm selects a bilinear group G of prime order p >
2λ. It chooses a random exponent a ∈ Zp. It chooses random group elements
g, u, v, d, w, z, h ∈ G. The public key is output as:

g, ga, u, v, d, w, z, h.

The setup algorithm sets its state counter s = 0 and keeps a as the secret
key SK.

Sign(SK, s,M ∈ Zp) The message space is treated as Zp; to sign arbitrarily long
messages one could first apply a collision-resistant hash function. The signer first
increments its counter s by one as s = s + 1. If s > 2λ, then abort. Otherwise,
the algorithm chooses random r, t ∈ Zp and then outputs the signature as:

σ1 = (uMvrd)a(wdlg(s)ezsh)t, σ2 = gt, r, s.

Conceptually, we can think of t as the randomness from the Boneh-Boyen
selectively-secure signature [5] and r as the randomness for a Chameleon hash
function uMvr.

Verify(PK,M, σ = (σ1, σ2, r, i)) The verification algorithm first makes sure that
i < 2λ. If it is greater, then it rejects. Then it uses the bilinear map to verify
the signature by checking that

e(σ1, g) = e(uMvrd, ga)e(σ2, w
dlg(i)ezih).

Theorem 5. If the CDH assumption holds in G, then the above construction is
a secure signature scheme.

Proof of this theorem appears in the full version [22].

Comments. First, the verification cost can be reduced to only two pairings by
publishing or having each verifier do a one-time precomputation of the values
e(u, ga), e(v, ga) and e(d, ga). This is competitive with the most efficient bilinear
schemes in the random oracle model, e.g., Boneh-Lynn-Shacham [7].

Second, we embedded a specific Chameleon hash function into our CDH
scheme, because this appears to be the most efficient construction. We could,
however, have set the signature as:

σ1 = (uxd)a(wdlg(s)ezsh)t, σ2 = gt, r, s.

where x = ChamHash(M, r) for any chameleon hash function mapping into Zp.
However, the public parameters necessary for the chameleon hash would likely
eclipse the gains of removing element v from the public key.

5 Handling State in Practice

One of the challenging issues when using our signature scheme in practice is that
a signer must maintain state. Issues that may arise in practice include multi-
ple (autonomous) machines sharing the same signing key and machine crashes,
among other problems. Fortunately, in our scheme, since the state is a simple
counter, most of these issues can be readily addressed.

Multiple Signers. Administrators often set up multiple machines with the
same signing key (e.g., parallelizing SSL connections at a highly visited site). In
most cases, it is impractical to assume that all of the machines can coordinate

to maintain a shared state. However, in our system, there is a simple solution to
deal with this problem. If n different machines are using the same signing key,
then machine i can give its jth signature with index n · j + i.

Handling Machine Crashes. On an actual implementation, it is important
to commit the counter increment (to persistent memory) before giving out the
signature. Otherwise, a crash might cause two signatures to be given out for the
same counter and thereby compromise security. We observe that it is perfectly
fine to skip over a small (i.e., polynomial) number of counters and recommend
erring on the side of safety.

Using the Machine Clock as a State. Instead of having a signer maintain
a state counter, one interesting alternative is to use the machine clock time as
the signer’s state. This can theoretically work in our system since the clock time
monotonically increases at a polynomial rate. One concern, however, is that the
signer should not issue more than one signature per clock period. Two potential
circumstances where this could arise are either if somehow the clock time was
set backwards or the signing algorithm in two different invocations read the
same clock value. This is especially relevant in the age of dual-core processors,
where mechanisms are in place for managing access to shared memory, but there
are not necessarily guarantees that two cores on the same chip would not read
out the same clock value. Overall, using the clock as the state could be a risky
design choice and a detailed analysis of the system implementation should be
made before applying it.

6 Conclusion and Open Problems

We presented two practical hash-and-sign signatures based on RSA and CDH
in bilinear groups in the standard model. We employed a new technique for re-
stricting any adversary’s ability to forge, which can be alternatively viewed as a
mechanism for transforming selectively-secure techniques into adaptively-secure
constructions. We view our stateful constructions here as a step toward realiz-
ing similar stateless signatures. Recall that early tree-based signatures (e.g., the
GMR signatures [21]) had a stateful signer, until Goldreich [20] showed how to
remove the state. Goldreich’s techniques do not appear to apply directly here,
but we are optimistic that similar progress can be made. While we focused on
RSA and CDH based constructions, it would also be interesting to realize con-
structions under CDH in a non-bilinear group, lattices, or general assumptions.

Finally, we note that hash-and-sign signatures and their extensions with effi-
cient protocols (e.g., [9, 10]) have been useful for integrating into larger systems,
such as anonymous credentials and e-cash. With this new building block and
some additional work, one might be able to base these larger systems on more
standard assumptions.

Acknowledgments

We thank Dan Boneh for valuable discussions, including suggesting the second
variant of our RSA scheme described in Section 3.1. We also thank Giuseppe
Ateniese, Matthew Green and the anonymous reviewers for helpful comments.

References

1. Giuseppe Ateniese and Breno de Medeiros. Identity-based chameleon hash and
application. In Financial Cryptography ’04, volume 3110, pages 164–180, 2004.

2. Mihir Bellare and Silvio Micali. How to sign given any trapdoor function. In Shafi
Goldwasser, editor, Advances in Cryptology — CRYPTO ’88, volume 403, pages
200–215, 1990.

3. Mihir Bellare and Sara Miner. A forward-secure digital signature scheme. In
Advances in Cryptology — CRYPTO ’99, volume 1666, pages 431–448, 1999.

4. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS, pages 62–73, 1993.

5. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryp-
tion without random oracles. In Advances in Cryptology – EUROCRYPT ’04,
volume 3027, pages 223–238, 2004.

6. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Ad-
vances in Cryptology — EUROCRYPT ’04, volume 3027, pages 54–73, 2004.

7. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. Journal of Cryptology, 17(4):297–319, 2004.

8. Joan Boyar, S.A. Kurtz, and Mark W. Krentel. A discrete logarithm implementa-
tion of perfect zero-knowledge blobs. Journal of Cryptology, 2(2):63–76, 1990.

9. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.
In Security in Communication Networks ’02, volume 2576, pages 268–289, 2002.

10. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Advances in Cryptology – CRYPTO ’04, volume
3152, pages 56–72, 2004.

11. Ronald Cramer and Ivan Damg̊ard. Secure signature schemes based on interactive
protocols. In Advances in Cryptology — CRYPTO ’95, pages 297–310, 1995.

12. Ronald Cramer and Ivan Damg̊ard. New generation of secure and practical RSA-
based signatures. In Advances in Cryptology — CRYPTO ’96, pages 173–185,
1996.

13. Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA
assumption. ACM Trans. on Information and System Security, 3(3):161–185, 2000.

14. Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22:644–654, 1976.

15. Cynthia Dwork and Moni Naor. Universal one-way hash functions and their cryp-
tographic applications. In Symposium on the Theory of Computation, pages 33–43,
1989.

16. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology — CRYPTO ’84, volume 196,
pages 10–18, 1984.

17. Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures
without the random oracle. In Advances in Cryptology — EUROCRYPT ’99,
volume 1592, pages 123–139, 1999.

18. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In Symposium on the Theory of Com-
puting, pages 197–206, 2008.

19. Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature
schemes with tight reductions to the Diffie-Hellman problems. J. of Cryptology,
20(4):493–514, 2007.

20. Oded Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In Advances in Cryptology – CRYPTO ’86, volume 263, pages 104–110,
1986.

21. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Computing, 17(2), 1988.

22. Susan Hohenberger and Brent Waters. Realizing hash-and-sign signa-
tures under standard assumptions, 2009. Full version of this paper at
http://eprint.iacr.org/2009/028.

23. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Network and Distributed
System Security Symposium, 2000.

24. Ralph C. Merkle. A certified digital signature. In Advances in Cryptology –
CRYPTO ’89, volume 435, pages 218–238, 1989.

25. Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences, 13:300–317, 1976.

26. David Naccache. Secure and practical identity-based encryption, 2005. Cryptology
ePrint Archive: Report 2005/369.

27. Moni Naor and Moti Yung. An efficient existentially unforgeable signature scheme
and its applications. In Advances in Cryptology – CRYPTO ’94, volume 839, pages
234–246, 1994.

28. Tatsuaki Okamoto. Provably secure and practical identification schemes and cor-
responding signature schemes. In Advances in Cryptology – CRYPTO ’92, volume
740, pages 31–53, 1992.

29. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Advances in Cryptology — EUROCRYPT ’96, volume 1070, pages 387–398, 1996.

30. Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number
Theory, 12:128–138, 1980.

31. Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Comm. of the ACM, 21(2):120–
126, February 1978.

32. John Rompel. One-way functions are necessary and sufficient for secure signatures.
In Symposium on the Theory of Computing, pages 387–394. ACM, 1990.

33. Claus P. Schnorr. Efficient signature generation for smart cards. Journal of Cryp-
tology, 4(3):239–252, 1991.

34. Brent Waters. Efficient identity-based encryption without random oracles. In
Advances in Cryptology – EUROCRYPT ’05, volume 3494, pages 320–329, 2005.

A Chameleon Hash Function based on RSA

While the chameleon hash function based on the hardness of factoring due to
Krawczyk and Rabin [23] would be sufficient to rest our Section 3 construction
entirely on the difficulty of RSA, we now present a more efficient option.

This construction is due to Ateniese and de Mederios [1]. Their work actually
presents an identity-based chameleon hash, which we simplify, since we will not

require the identity-based property. To obtain the identity-based feature, the
authors employed a signature scheme secure in the random oracle model and
proved the security of their scheme within this context. For completeness, we
provide a proof of the basic hash function under RSA in the standard model in
the full version [22], but the credit here should go to the prior work.

Let ` be a security parameter. Let N be an RSA modulus such that 2` <
φ(N) < 2`+2. Choose a random, positive e ∈ {0, 1}` which is relatively prime
to φ(N) and a random J ∈ ZN . Set the public key as (N, e, J) and keep as the
trapdoor the factorization of N as well as a value d such that ed ≡ 1 mod φ(N).

The hash H : {0, 1} 2`
3 × ZN → ZN is computed as

H(m, r) = Jmre mod N.

The holder of the trapdoor can compute a collision for any message m′ by solving
the following equation for r′:

Jmre = Jm
′
r′
e as r′ = r(Jd)m−m

′
mod N.

We note that the choice of {0, 1} 2`
3 is somewhat arbitrary. It could be op-

timized to any constant fraction of ` bits or any range {0, 1}`′ such that the
probability that e 6∈ {0, 1}`′ is non-negligible.

Theorem 6. The above chameleon hash function is secure under the RSA as-
sumption in the standard model.

B Completing the RSA Proof: Lemmas 5 and 6

Lemma 5. The probability that there are less than q prime numbers in a set of
2`[q + λ] independent, randomly chosen `-bit numbers is ≤ e−[q+λ](1

2)2 .

Lemma 6. Assuming that F is a PRF family, then in the proof of Lemma 4,
the challenge exponent e∗ and the simulator-produced value of 2λ−dlg(̃i)e(x −
x∗)

∏j 6=i∗
j∈E ej are relatively prime with high probability.

Proof of these technical lemmas appear in the full version [22]. The proof
of Lemma 5 uses Chernoff bounds (lower tail) to provide the given probability
bound. In the proof of Lemma 6, our argument is based on certain statistical
properties which are necessary, but not sufficient for a PRF. The fact that we
only use these statistical properties and not the full power of the PRF explains
why we are able to give out the seed in the construction.

