
Practical Chosen Ciphertext Secure Encryption
from Factoring

Dennis Hofheinz? and Eike Kiltz??

Cryptology & Information Security Group
CWI Amsterdam, The Netherlands

{hofheinz,kiltz}@cwi.nl

Abstract. We propose a practical public-key encryption scheme whose
security against chosen-ciphertext attacks can be reduced in the standard
model to the assumption that factoring is intractable.
Keywords: public-key encryption, chosen-ciphertext security, factoring.

1 Introduction

The security of almost any cryptographic primitive (such as public-key encryp-
tion or digital signatures) has to rely on the computational hardness of a cer-
tain number-theoretic problem. Unfortunately, since there are currently no tools
available to rigorously prove lower bounds on the complexity of such problems,
one has to base security on (unproven) cryptographic hardness assumptions. The
only confidence we have in such assumptions is that after a sufficiently large
period of time, nobody could successfully refute them. The most established
cryptographic hardness assumption is without doubt the so called factoring as-
sumption which states that, given the product of two distinct large primes,
it is computationally infeasible to reconstruct the primes. Despite of intensive
research, no algorithm has been found that can efficiently factor composite num-
bers.

Main result. In this paper we propose a new public-key encryption scheme that
is based on Rabin’s trapdoor one-way permutation [35]. We can prove that the
security of our scheme against adaptive chosen-ciphertext attacks (CCA security)
is equivalent to the factoring assumption. Furthermore, the scheme is practical
as its encryption performs only roughly two, and its decryption roughly one
modular exponentiation. To the best of our knowledge, this is the first scheme
that simultaneously enjoys those two properties.

History. The notion of CCA security is due to Rackoff and Simon [36] and
is now widely accepted as the standard security notion for public-key encryp-
tion schemes. In contrast to security against passive adversaries (security against
? Supported by the Dutch Organization for Scientific Research (NWO).

?? Supported by the research program Sentinels (http://www.sentinels.nl). Sentinels
is being financed by Technology Foundation STW, the Netherlands Organization for
Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

http://www.sentinels.nl

chosen-plaintext attacks aka semantic security), in a chosen-ciphertext attack the
adversary plays an active role by obtaining the decryptions of ciphertexts (or
even arbitrary bit-strings) of his choosing. The practical significance of such at-
tacks was demonstrated by Bleichenbacher [4] by means of a CCA attack against
schemes following the encryption standard PKCS #1.

Historically, the first scheme that was provably secure against CCA attacks
is due to Dolev, Dwork, and Naor [17] (building on an earlier result by Naor
and Yung [31]). Their generic construction is based on enhanced trapdoor per-
mutations and therefore (using the enhanced trapdoor permutations from [20,
App. C]) yields a scheme CCA secure under the factoring assumption. However,
in practice these schemes are prohibitively impractical, as they rely on expensive
non-interactive zero-knowledge proofs. The first practical schemes provably CCA
secure under standard cryptographic hardness assumptions were due to Cramer
and Shoup [15,14]. However, their framework of “hash proof systems” inherently
relies on decisional assumptions such as the assumed hardness of deciding if a
given integer has a square root modulo a composite number with unknown fac-
torization (DQR assumption), or of deciding if a given tuple is a Diffie-Hellman
tuple or not (DDH assumption). Until today, Cramer and Shoup’s framework of
hash proof systems (with its variations from [29,19,11,28,24,27]) and the recent
concept of lossy trapdoor functions [33] yield the only known CCA secure prac-
tical encryption schemes based on an assumption related to factoring: the DQR
assumption and Paillier’s decisional composite residuosity (DCR) assumption.
Currently, no practical scheme is known that is CCA secure solely under the
factoring assumption (or even under the potentially stronger RSA assumption).

In general, decisional assumptions are a much stronger class of assumptions
than computational assumptions. For example, deciding if a given integer has
a modular square root or not may be much easier than actually computing a
square root (or, equivalently, factoring the modulus). It is noteworthy that there
are known ways to achieve CCA security that do not inherently rely on deci-
sional assumptions (e.g., [9,13,23]). In particular, the first practical encryption
scheme CCA secure under the Computational Diffie-Hellman (CDH) assump-
tion was only recently proposed by Cash, Kiltz, and Shoup [13] and improved
by Hanaoka and Kurosawa [23]. On the other hand, [9] provide a practical en-
cryption scheme CCA secure under the Bilinear Computational Diffie-Hellman
(BCDH) assumption.

Random oracle schemes. In a different line of research, Bellare and Rog-
away [2,3] presented practical schemes for which they give heuristic proofs of
CCA security under standard computational hardness assumptions. Their proofs
are in the so-called random oracle model [2] where a hash function is treated as
an ideal random function. We stress that although a proof in the random oracle
model has a certain value it is still only a heuristic security argument for any
implementation of the scheme. In particular, there exist cryptographic schemes
that are provably secure in the random oracle model yet that are insecure with
any possible standard-model instantiation of the hash function [12].

Details of our construction. In 1979 Rabin [35] proposed an encryp-
tion scheme based on the “modular squaring” trapdoor permutation whose
one-wayness is equivalent to the factoring assumption. A semantically secure
variant was later proposed by Goldwasser and Micali [22]. Our construction
is based on the latter scheme [22] in its more efficient variant by Blum and
Goldwasser [6] (which uses the Blum-Blum-Shub pseudorandom generator [5]
to obtain an efficient hard-core function with linear output length). The Blum-
Goldwasser scheme can easily be shown insecure against a CCA attack. Our main
contribution consists of modifying the Blum-Goldwasser scheme such that it is
provably CCA secure under the same hardness assumption yet it retains its high
efficiency. Surprisingly, it is sufficient to add one additional group element to the
ciphertexts that is then used for a consistency check in the decryption algorithm.
For the consistency check itself, we also need to add two group elements to the
public key.

Note that Paillier and Villar [32] (building on work of Williams [38]) show
that the CCA security of schemes which only include an RSA modulus in the
public key cannot be proven (using a black-box reduction) equivalent to factor-
ing. In particular, this applies to the Blum-Goldwasser scheme [6] from which
we start, so we have to modify the scheme’s public key (and not only the ci-
phertexts). And indeed, given our modifications, our scheme’s CCA security is
equivalent to the factoring problem.

Proof Details. At a more technical level, the additional group elements in
the public key can be set up by a simulator such that it is possible to decrypt
(without the knowledge of the scheme’s secret key) all consistent ciphertexts,
except the ciphertext that is used to challenge the adversary. This “all-but-one”
simulation technique can be traced back at least to [30], where it was used in the
context of pseudorandom functions.1 In the encryption context, “all-but-one”
simulations have been used in identity-based encryption [8] and were already
applied to several encryption schemes in [9,10,13,24,25].

The main novelty is that our proof makes direct use of the fact that the
underlying primitive is a trapdoor one-way permutation, rather than the Diffie-
Hellman problem. Therefore, the scheme’s consistency check can be directly im-
plemented by the simulator without having access to some external gap-oracle (as
in [9,10,25]) or using other extrinsic rejection techniques (such as “hash proof sys-
tems” [15,14], “twinning” [13], or authenticated symmetric encryption [28,24]2).
Thus, our proof technique is fundamentally different from all known approaches

1 We stress that our use of the term “all-but-one” refers to the ability to generate a
secret key that can be used to decrypt all consistent ciphertexts except for an exter-
nally given ciphertext. This is very different from the techniques of, e.g., [31,16,15]:
in these latter frameworks, the first step in the proof consists in making the challenge
ciphertext inconsistent, and then constructing a secret key that can be used to con-
struct all consistent ciphertexts. Hence, “all-but-one” really refers to an “artificially
punctured” secret key.

2 As opposed to generic CCA-secure symmetric encryption, a potentially weaker prim-
itive.

to obtain CCA security. This also includes the recent class of schemes based on
lossy trapdoor functions [33].

Efficiency. The resulting encryption scheme (which is actually a key encapsu-
lation mechanism, see [15]) is very efficient: encryption needs roughly two, and
decryption roughly one modular exponentiations; the public-key contains the
modulus plus two group elements. (The modulus and one element can be viewed
as systems parameters shared among all parties). To the best of our knowledge
this is much more efficient than all known CCA-secure schemes based on an
assumption related to factoring, even the ones based on a decisional assumption.

2 Preliminaries

2.1 Notation

We write [N] = {1, . . . , N}. For group elements g, h, we denote by dloggh the
discrete logarithm of h to the base g, i.e., the smallest i ≥ 0 with h = gi.
A probabilistic polynomial-time (PPT) algorithm is a randomized algorithm
which runs in strict polynomial time. If A is a probabilistic algorithm, we write
y ← A(x) to denote that the random variable y is defined as the output of A
when run on input x and with fresh random coins. On the other hand, if S is a
set, then s← S defines s as being uniformly and independently sampled from S.
By k we denote the security parameter, which indicates the “amount of security”
we desire. Typically, an adversarial advantage should be bounded by 2−k, and a
typical value for k is 80.

2.2 Factoring

A prime number P is called a safe prime iff P = 2p + 1 for a prime p. We
assume a PPT algorithm IGen that, on input a security parameter k in unary,
generates two random safe primes P = 2p+1 and Q = 2q+1 with bitlength(p) =
bitlength(q) = `N(k)/2 − 1. We assume that p and q are odd, such that P and
Q are congruent 3 modulo 4 and N = PQ is a Blum integer. IGen returns N
along with P and Q. Here `N(k) denotes a function that represents, for any given
security parameter k, the recommended (bit-)size of the composite modulus N .
For the rest of the paper, we assume that N is generated by the factoring instance
generator IGen. The set QRN ⊆ Z∗N of quadratic residues modulo N is defined
as QRN := {x ∈ Z∗N : ∃y ∈ Z∗N with y2 = x mod N}. Since Z∗N ∼= Z2×Z2×Zpq,
QRN is a cyclic group of order pq. Note that this implies that a uniformly
chosen element of QRN is a generator (of QRN) with overwhelming probability.
Computations in QRN are computations modulo N . If it is implied by context,
we omit writing explicitly “modN” for calculations modulo N .

Definition 1 (Factoring assumption). For an algorithm F, we define its fac-
toring advantage as

Advfac
IGen,F(k) := Pr

[
(N,P,Q)← IGen(1k) : F(N) = {P,Q}

]
.

We say that F (tfac, εfac)-factors composite integers if F runs in time tfac and
Advfac

IGen,F(k) ≥ ε(k). The factoring assumption (with respect to IGen) states that
Advfac

IGen,F(k) is negligible in k for every PPT F.

The best algorithms currently known for factoring N = PQ of length `N =
bitlength(N) = logN have (heuristic) running time

LN (1/3, (64/9)1/3) = e1.92`N
1/3+o(1)(log `N)2/3

.

Therefore, if we want k bits of security, we need to choose the function `N(k)
such that the above term is lower bounded by 2k. As an example, one commonly
uses `N(80) = 1024.

2.3 Key encapsulation mechanisms

Instead of a public-key encryption scheme we consider the conceptually simpler
KEM framework. It is well-known that an IND-CCA secure KEM combined with
a (one-time-)IND-CCA secure symmetric cipher (DEM) yields a IND-CCA secure
public-key encryption scheme [15]. Efficient one-time IND-CCA secure DEMs can
be constructed even without computational assumptions by using an encrypt-
then-MAC paradigm [15] (or, alternatively, using computational assumptions
such as strong pseudorandom permutations [34]).

A key encapsulation mechanism (KEM) KEM = (Gen,Enc,Dec) consists of
three PPT algorithms. Via (pk , sk) ← Gen(1k), the key generation algorithm
produces public/secret keys for security parameter k ∈ N; via (K,C)← Enc(pk),
the encapsulation algorithm creates a symmetric key3 K ∈ {0, 1}`K together with
a ciphertext C; via K ← Dec(sk , C), the possessor of secret key sk decrypts
ciphertext C to get back a key K which is an element in {0, 1}`K or a special
reject symbol ⊥. For correctness, we require that for all possible k ∈ N, and all
(K,C) ← Enc(pk), we have Pr[Dec(sk , C) = K] = 1, where the probability is
taken over the choice of (pk , sk)← Gen(1k), and the coins of all the algorithms
in the expression above.

The common requirement for a KEM is indistinguishability against chosen-
ciphertext attacks (IND-CCA) [15], where an adversary is allowed to adaptively
query a decapsulation oracle with ciphertexts to obtain the corresponding key.
We are using the slightly simpler but equivalent one-phase definition from [26].
Formally:

Definition 2 (IND-CCA security of a KEM). Let KEM = (Gen,Enc,Dec) be a
KEM. For any PPT algorithm A, we define the following experiments ExpCCA-real

KEM,A

and ExpCCA-rand
KEM,A :

Experiment ExpCCA-real
KEM,A (k)

(pk , sk)← Gen(1k)

(K∗, C∗)← Enc(pk)
Return ADec(sk ,·)(pk ,K∗, C∗)

Experiment ExpCCA-rand
KEM,A (k)

(pk , sk)← Gen(1k)
R← {0, 1}`K
(K∗, C∗)← Enc(pk)
Return ADec(sk ,·)(pk , R, C∗)

3 For simplicity we assume that the KEM’s keyspace are bitstrings of length `K.

In the above experiments, the decryption oracle Dec(sk , ·), when queried with a
ciphertext C 6= C∗, returns K ← Dec(sk , C). (Dec(sk , ·) ignores queries C =
C∗.) We define A’s advantage in breaking KEM’s IND-CCA security as

AdvCCA
KEM,A(k) :=

1
2

∣∣∣Pr
[
ExpCCA-real

KEM,A (k) = 1
]
− Pr

[
ExpCCA-rand

KEM,A (k) = 1
]∣∣∣ .

A (tKEM, εKEM)-breaks KEM’s IND-CCA security (short: A (tKEM, εKEM)-breaks
KEM) if A runs in time at most tKEM = tKEM(k) and we have AdvCCA

KEM,A(k) ≥
εKEM(k). We say that KEM has indistinguishable ciphertexts under chosen-cipher-
text attacks (short: KEM is IND-CCA secure) if for all PPT A, the function
AdvCCA

KEM,A(k) is negligible in k.

2.4 Target-collision resistant hashing

Informally, we say that a function T : X → Y is a target-collision resistant
(TCR) hash function (aka universal one-way hash function [31]), if, given a
random preimage x ∈ X, it is hard to find x′ 6= x with T(x′) = T(x).

Definition 3 (TCR hash function). Let T : X → Y be a function. For an
algorithm B, define

AdvTCR
T,B (k) := Pr [x← X,x′ ← B(x) : x′ 6= x ∧ T(x′) = T(x)] .

We say that B (tT, εT)-breaks T’s TCR property (short: B (tT, εT)-breaks T) iff
B’s running time is at most tT(k) and AdvTCR

T,B (k) ≥ εT(k). We say that T is
target-collision resistant if for all PPT B, the function AdvTCR

T,B (k) is negligible
in k.

3 Chosen-ciphertext security from factoring

3.1 The scheme

In this section, we will present our KEM construction. We will make use of two
building blocks: a target collision-resistant hash function, and the Blum-Blum-
Shub (BBS) pseudorandom number generator [5].

Concretely, for a product N = PQ of two primes P,Q and u ∈ ZN , we estab-
lish the following notation: |u| denotes the absolute value of u and LSBN (u) =
u mod 2 the least significant bit of u, where in both cases u is interpreted as a
signed integer with −(N − 1)/2 ≤ u ≤ (N − 1)/2. Furthermore, let

BBSN (u) =
(
LSBN (u), LSBN (u2) . . . , LSBN (u2`K−1

)
)
∈ {0, 1}`K

denote the BBS generator applied to u and modulo N .4

4 For efficiency, and at the price of a worse reduction, one can even simultaneously

extract dlog2 log2 Ne bits of each u2i

instead of only the least significant bit [1].
However, our analysis treats the original BBS generator for simplicity.

Furthermore, for N as above, let T : ZN → {1, . . . , 2`T − 1} be a target-
collision resistant hash function.

The scheme. We are ready to define the following key encapsulation mechanism
KEM = (Gen,Enc,Dec):
Key generation. Gen(1k) chooses uniformly at random

• a modulus N = PQ = (2p+ 1)(2q + 1) (using IGen(1k), cf. Section 2.2),
• a quadratic residue g ∈ QRN ,
• an exponent α ∈ [(N − 1)/4],

Gen then sets X = gα2`K+`T and outputs a public key pk and a secret key sk ,
where

pk = (N, g,X) sk = (N, g, α).

Encapsulation. Enc(pk) chooses uniformly r ∈ [(N − 1)/4], sets

R = gr2
`K+`T

t = T(R) ∈ {1, . . . , 2`T − 1} S =
∣∣(gtX)r∣∣

and outputs the key K = BBSN (gr2
`T) ∈ {0, 1}`K and the ciphertext C =

(R,S) ∈ QRN × (Z∗N ∩ [(N − 1)/2]).
Decapsulation. Dec(sk , (R,S)) verifies that (R,S) ∈ Z∗N × (Z∗N ∩ [(N − 1)/2])

and rejects if not. Then, Dec computes t = T(R) ∈ {1, . . . , 2`T − 1}, checks
whether (

S2
)2`K+`T ?=

(
R2
)t+α2`K+`T

(1)

holds, and rejects if not. If (1) holds, Dec computes a, b, c ∈ Z such that

2c = gcd(t, 2`K+`T) = at+ b2`K+`T . (2)

Note that c < `T since 0 < t < 2`T . Then, Dec derives

T =
((
S2
)a · (R2

)b−aα)2`T−c−1

(3)

and from this K = BBSN (T) ∈ {0, 1}`K , which is the output.

We remark that decapsulation (or, rather, generation of the secret keys) does
not require knowledge about the factorization of N . Indeed, the modulus N as
well as the generator g can be viewed as global system parameters shared by
many parties. Then pk only contains the value X ∈ QRN and sk only contains
α ∈ [(N − 1)/4].

Our scheme uses an RSA modulus N that consists of safe primes. In Section 5
we show how to avoid this assumption and allow N to be an arbitrary Blum
integer.

Correctness. The correctness of the scheme might not be obvious, so we prove
it here. Fix a public key pk and a secret key sk as produced by Gen(1k), and
assume that (R,S) is a ciphertext for a key K as generated by Enc(pk). We

have to show that Dec(sk , (R,S)) outputs K. First, it is clear that (R,S) ∈
Z∗N × (Z∗N ∩ [(N − 1)/2]). Also,

(
S2
)2`K+`T

=
(∣∣(gtX)r∣∣2)2`K+`T

= g2(t+α2`K+`T)r2`K+`T (∗)
=
(
R2
)t+α2`K+`T

(where (∗) uses R = gr2
`K+`T), so (1) holds. Hence, (R,S) is not rejected by Dec.

Now (1) implies

S2 =
(
R2
) t+α2`K+`T

2`K+`T =
(
R2
) t

2`K+`T
+α

, (4)

where the division in the exponent is computed modulo pq = |QRN |. (Note that
while S may or may not be a quadratic residue, S2 certainly is.) This gives

T
(3)
=
((
S2
)a · (R2

)b−aα)2`T−c−1

=
((
S2 ·

(
R2
)−α)a · (R2

)b)2`T−c−1

(4)
=
(((

R2
) t

2`K+`T

)a
·
(
R2
)b)2`T−c−1

=

((
R2
)at+b2`K+`T

2`K+`T

)2`T−c−1

(2)
=
(
R2
) 2c

2`K+`T
·2`T−c−1

=
(
R2
) 1

2`K+1 (∗)
= gr2

`T
, (5)

where, again, (∗) uses R = gr2
`K+`T . But (5) shows that Dec outputs BBSN (T) =

BBSN (gr2
`T) = K as desired.

Theorem 1 (IND-CCA security of KEM). Assume T is a target collision resis-
tant hash function and the factoring assumption holds. Then KEM is IND-CCA
secure in the sense of Definition 2.

The proof of Theorem 1 will be given in Section 4.

Efficiency. We claim that, with some trivial optimizations, encapsulation uses
roughly two exponentiations, and decapsulation roughly one exponentiation.
Namely, encapsulation can first compute A = gr and B = Xr, which are two full
exponentiations. Then, the remaining computations require only multiplications
or exponentiations with very small exponents: K = BBSN (A2`T), R = A2`K+`T ,
and S = AtB. (In fact, R is a by-product of computing K.) Similarly, decap-
sulation can first compute D = Rα/S, which requires one full exponentiation.
From D, (1) can be checked with D2`K+`T+1 ?= R2t, which requires only two
exponentiations with very small exponents. The key K can then be computed
as BBSN (T) for T = (RbD−a)2

`T−c

, which requires three exponentiations with
small exponents (note that the bit-length of a and b is at most `K + `T).

For concreteness let us assume that one regular exponentiation with an ex-
ponent of length ` requires 1.5 · ` modular multiplications and that one squar-
ing takes the same time as one multiplication. Let us further assume that
`N := bitlength(N) = 1024 and `K = `T = 80. Then encapsulation requires
3`N + `K + 2.5`T = 3352 multiplications; decapsulation requires 1.5`N + 4`K +
6.5`T = 2376 multiplications. In Appendix A we also propose a variant of our

scheme that has slightly more efficient decapsulation but suffers from a compar-
atively large public key size.

We remark that, by adding the prime factors P and Q to the secret-key, we
can further improve the scheme’s efficiency. For example, using Chinese Remain-
dering will speed up decapsulation by a factor between 3 and 4.

4 Proof of security

We split up the proof of Theorem 1 into two parts:
– We first recall that the BBS generator is pseudorandom if factoring Blum

integers is hard. This holds even if the modulus N and the 2`K -th power u2`K

of the BBS seed u are published, as is the case in our KEM. (Theorem 2.)
– We then prove that KEM is IND-CCA secure under the assumption that the

BBS generator is pseudorandom and the employed hash function is target-
collision resistant. This reduction is the heart of our proof. (Theorem 3.)

Combining both parts yields Theorem 1.
We start by recalling that the BBS generator is pseudorandom, in the fol-

lowing sense.

Definition 4 (PRNG experiment for BBS generator). For an algorithm
D, define

AdvBBS
D (k) = Pr [D(N, z,BBSN (u)) = 1]− Pr

[
D(N, z, U{0,1}`K) = 1

]
,

where
– N ∈ N is distributed as IGen(1k),
– u ∈ QRN is uniformly chosen, and z = u2`K ,
– U{0,1}`K ∈ {0, 1}`K is independently and uniformly chosen.

We say that D (t, ε)-breaks BBS if D’s running time is at most t = t(k) and
AdvBBS

D (k) ≥ ε = ε(k).

Concretely, any BBS-distinguisher can be used to factor Blum integers.

Theorem 2 (BBS-distinguisher ⇒ factoring algorithm [7,5,1,18]). For
every algorithm D that (tBBS, εBBS)-breaks BBS, there is an algorithm F that
(tfac, εfac)-factors Blum integers, where

tfac ≈ k4tBBS/ε
2
BBS εfac = εBBS/`K.

Proof. Let D be an algorithm that (tBBS, εBBS)-breaks BBS. [7] show that D
gives rise to an algorithm D′ that (tLSB, εLSB)-distinguishes tuples (N, u2, LSB(u))
from tuples (N, u2, U{0,1}), where u ∈ QRN and U{0,1} ∈ {0, 1} are uniformly
chosen, tLSB ≈ tBBS, and εLSB = εBBS/`K. Building on [1], [18] show how to
transform D′ into an algorithm F that (tfac, εfac)-factors Blum integers, where
tfac ≈ k2tLSB/ε

2
LSB ≈ k4tBBS/ε

2
BBS and εfac = εLSB = εBBS/`K. (We use the inter-

pretation [30, Theorem 6.1] of the results from [18] here.) The claim follows.

The following theorem contains the heart of our proof, namely, a simulation
that shows that any successful IND-CCA adversary on KEM implies a successful
BBS-distinguisher (and hence, using Theorem 2, can be used to factor Blum
integers).

Theorem 3 (IND-CCA adversary ⇒ BBS-distinguisher). For every adver-
sary A that (tKEM, εKEM)-breaks KEM’s IND-CCA property, there exists an algo-
rithm D that (tBBS, εBBS) breaks BBS and an adversary B that (tT, εT)-breaks T,
such that

tBBS ≈ tT ≈ tKEM εBBS + εT + 2−k+3 ≥ εKEM.

Proof. Setting up the variables for simulation. Assume an adversary A on
KEM’s IND-CCA security. We define a BBS-distinguisher D, which acts on input
(N, z, V) as follows. D first uniformly selects a quadratic residue g ∈ QRN , as
well as exponent β ∈ [(N − 1)/4], and sets

R∗ = z t∗ = T(R∗) ∈ {1, . . . , 2`T − 1} X = gβ2`K+`T−t∗ .

The public key used in the simulation is pk = (N, g,X). It will be convenient
to write X = gα2`K+`T as in Gen, for α = β − t∗/2`K+`T unknown to D. (Here
and in the following, a division of exponents is computed modulo pq, the order
of QRN .) Furthermore, in the following, we will silently assume that g generates
QRN , which is very likely, but not guaranteed. A rigorous justification that takes
into account error probabilities follows below.

Preparation of challenge ciphertext and key. To complete the definition of
the challenge ciphertext C∗ = (R∗, S∗), write R∗ = g2`K+`Tr∗ . Since we assumed
that g is a generator, this is possible, but of course r∗ is unknown. D defines

S∗ =
∣∣∣R∗β∣∣∣ (

=
∣∣∣gr∗β2`K+`T

∣∣∣ =
∣∣∣∣(gt∗X)r∗ ∣∣∣∣) (6)

as Enc would have computed. The (real) corresponding key K∗ is defined as

K∗ = BBSN
(
g2`Tr∗

)
= BBSN

(
R∗

1
2`K

)
= BBSN

(
z

1
2`K

)
= BBSN (u) . (7)

D then invokes A with public key pk = (N, g,X), challenge ciphertext C∗ =
(R∗, S∗), and challenge key V . Note that V is either the real challenge key
BBSN (u), or it is a uniform string.

On the distribution of simulated public key and challenge ciphertext.
We claim that the distribution of public key pk and challenge ciphertext C∗ is
almost identical in simulation and IND-CCA experiment. Concretely, we postpone
the straightforward but somewhat tedious proof of the following lemma until
after the description of our simulation.

Lemma 1. There exists an event badkey such that, conditioned on ¬badkey, pub-
lic key pk and challenge ciphertext C∗ are identically distributed in simulation
and IND-CCA experiment. Also, ¬badkey implies that g is a generator. We have

Pr [badkey] ≤ 2−k+3 (8)

both in the simulation and in the IND-CCA experiment.

Thus, conditioned on ¬badkey, D perfectly simulates A’s input as in the real
IND-CCA experiment if V = BBSN (u) = BBSN (z1/2`K), and as in the ideal
IND-CCA experiment if V is random.

How to handle A’s decryption queries. It remains to describe how D
handles decryption queries of A as in the IND-CCA experiment. So say that
A submits a ciphertext (R,S) for decryption. We may assume that (R,S) ∈
Z
∗
N × (Z∗N ∩ [(N − 1)/2]). Let t = T(R) ∈ {1, . . . , 2`T − 1}. We call a ciphertext

consistent iff the original decryption algorithm would not have rejected it. Hence,
by (1), a ciphertext is consistent iff(

S2
)2`K+`T ?=

(
R2
)t−t∗+β2`K+`T

(
=
(
R2
)t+α2`K+`T

)
. (9)

By our setup of variables, D can check (9) by itself, and hence detect and reject
inconsistent ciphertexts.

How to decrypt consistent ciphertexts. Now assume that C is consistent
and t 6= t∗. Then, (4) and (5) follow (except for the deduction (∗)) just as in the
correctness proof, and we get

T =
(
R2
) 1

2`K+1 (10)

for the raw key T that would have been computed by Dec. We will now show
how D can compute T . Namely, D computes a′, b′, c′ ∈ Z such that

2c
′

= gcd(t− t∗, 2`K+`T) = a′(t− t∗) + b′2`K+`T . (11)

Since 1 ≤ t, t∗ < 2`T and t 6= t∗, we have c′ < `T. Similarly to (4) and (5), we
obtain

S2 =
(
R2
) t−t∗

2`K+`T
+β

, (12)

from (9), and from this

((
S2
)a′ · (R2

)b′−a′β)2`T−c′−1

=
((

S2 ·
(
R2
)−β)a′ · (R2

)b′)2`T−c′−1

(12)
=

(((
R2
) t−t∗

2`K+`T

)a′
·
(
R2
)b′)2`T−c′−1

=

((
R2
)a′(t−t∗)+b′2`K+`T

2`K+`T

)2`T−c′−1

(11)
=
(
R2
) 2c′

2`K+`T
·2`T−c′−1

=
(
R2
) 1

2`K+1 (10)
= T. (13)

Note that from T , the final decryption key can be computed as K = BBSN (T).
Hence, using (13), D can correctly decrypt every consistent ciphertext with t 6=
t∗.

The case t = t∗. So let us turn to the case that t = t∗ and the ciphertext is
consistent. Then, if R = R∗ holds, we have

S2 (9)
=
(
R2
) t−t∗

2`K+`T
+β (∗)

=
(
R∗2

)β
= S∗2 (14)

where in (∗) we use R = R∗ and t = t∗. Furthermore, (R,S) 6= (R∗, S∗) implies

|S| = S 6= S∗ = |S∗|, so that S 6= ±S∗ and (S + S∗)(S − S∗) = S2 − S∗2 (14)
=

0 mod N yields a non-trivial factorization of N . Hence, D can efficiently factor N
to solve its own input challenge (N, z, L) directly whenever R = R∗ and (R,S)
is consistent.

On the other hand, if T(R) = t = t∗ = T(R∗) and R 6= R∗, then A has broken
the target-collision resistance of T. Formally, let badTCR denote the event that
t = t∗ and R 6= R∗. If badTCR occurs, D can safely give up, since

Pr [badTCR] ≤ AdvTCR
T,B (k) (15)

for a suitable PPT adversary B on T that simulates D and A.

Summary of the decryption procedure. We summarize the decryption
cases:
– inconsistent (R,S) (consistency check (9)⇔(1) not passed): reject,
– consistent (R,S) and t 6= t∗: decrypt using (13),
– consistent (R,S), t = t∗, and R = R∗: factor N (using S 6= ±S∗ and
S2 = S∗2 by (14)),

– consistent (R,S), t = t∗, and R 6= R∗: give up simulation (A has found a
T-collision).

Hence, also decryption is faithfully simulated unless badTCR occurs.

Finishing the proof. We conclude that, unless badTCR or badkey occurs, D
perfectly simulates the real IND-CCA experiment upon input V = BBSN (u),
and the ideal IND-CCA experiment if V is random. If we let D output whatever
the simulated experiment outputs, we obtain:∣∣∣Pr [D(N, z,BBSN (u)) = 1]− Pr

[
ExpCCA-real

KEM,A (k) = 1
]∣∣∣ ≤ Pr [badTCR] + Pr [badkey]∣∣∣Pr

[
D(N, z, U{0,1}`K) = 1

]
− Pr

[
ExpCCA-rand

KEM,A (k) = 1
]∣∣∣ ≤ Pr [badTCR] + Pr [badkey] .

(16)

Using (8) and (15), Theorem 3 follows from (16).
It remains to prove Lemma 1.

Proof of Lemma 1. Observe that pk and C∗ are distributed slightly differently
in the IND-CCA experiment (i.e., as generated by Gen and Enc) and in the
simulation:

– R∗ = gr
∗

for uniform (hidden) r∗ ∈ [(N − 1)/4] in the experiment, while
R∗ ∈ QRN is a uniform group element in the simulation.

– X = gα2`K+`T for uniform (hidden) α ∈ [(N − 1)/4] in the experiment, while
X = gβ2`K+`T−t∗ for uniform (hidden) β ∈ [(N − 1)/4] in the simulation.

However, conditioned on the following event goodkey:
(in the experiment:) g is a generator, and r∗, α ≤ |QRN |,
(in the simulation:) g is a generator, and β ≤ |QRN |,

pk and C∗ are distributed identically in experiment and simulation: goodkey

implies that N , g, X, and R∗ are uniformly and independently chosen over their
respective domains, and S∗ follows deterministically from pk and R∗ according
to (7). Hence we only need to bound the probability of badkey := ¬goodkey.
Since |QRN | = pq and we assumed that p and q are n/2-bit primes, a uniform
QRN -element is a generator except with probability (p + q − 1)/pq ≤ 2−n/2+2.
Furthermore, (N − 1)/4 is a close approximation of the group order |QRN | =
pq = (N − 1)/4 − (p + q)/2, so that, e.g., r∗ ≤ |QRN | except with probability
2(p+ q)/(N − 1) ≤ 2−n/2+1. Hence,

Pr [badkey] ≤ max
{

2−n/2+2 + 2 · 2−n/2+1, 2−n/2+2 + 2−n/2+1
}

= 2−n/2+3
n/2≥k
≤ 2−k+3

both in the experiment and in the simulation.

5 Avoiding safe primes

In our KEM, we assume that N = PQ is composed of two safe primes (i.e.,
primes of the form P = 2p + 1 for prime p). We can drop this assumption
and allow arbitrary Blum integers N , if we employ a Goldreich-Levin [21] based
pseudorandom generator instead of the Blum-Blum-Shub generator. Namely, all
we actually need to prove that KEM is IND-CCA is that(

N, g, gr2
`K+`T

,Extpk (gr2
`T)
)

c
≈
(
N, g, gr2

`K+`T
, U{0,1}`K

)
, (17)

where
c
≈ denotes computational indistinguishability, N is a Blum integer, g ∈

QRN , r ∈ [N/4], and U{0,1}`K ∈ {0, 1}`K are uniform, and Ext is a suitable
randomness extractor. In our original description of KEM, we have Extpk (u) =
BBSN (u). In that case, we only know that the hardness of factoring N implies
(17) if u = gr2

`T is a uniform element of QRN (which is the case when N = PQ
for safe primes P,Q, since then g is a generator with high probability). But if g
is not a generator at least with high probability, then u may not be uniformly
distributed.

Now suppose we set

Extpk (u) =
(
GLs(u),GLs(u2), . . . ,GLs(u2`K−1

)
)
∈ {0, 1}`K

for the Goldreich-Levin predicate GLs that maps u to the bitwise inner product
of s and u. Then a hybrid argument and the hard-core property of GLs show
that (17) is implied by the hardness of computing u with u2 = v mod N from
(N, g, v) (with v = gr). But any algorithm B that computes such a u from
(N, g, v) can be used to factor N . Namely, given N , choose uniformly h ∈ ZN
and r̃ ∈ [N/4], and set g = h2 and v = g2r̃+1. (Observe that v is almost uniformly
distributed over 〈g〉, sinceN is a Blum integer.) Then, invoke B(N, g, v) to obtain
a square root u of v. We can then compute a square root of g as h̃ = uagb (for
a, b ∈ Z with a(2r̃ + 1) + 2b = gcd(2r̃ + 1, 2) = 1). With probability 1/2, then
gcd(h − h̃, N) yields a non-trivial factor of N . Hence (17) is implied by the
hardness of factoring arbitrary Blum integers, and our KEM (instantiated with
the Goldreich-Levin predicate) is IND-CCA secure. The price to pay is that we
need to place a seed s ∈ {0, 1}`N for the Goldreich-Levin hard-core function in
the public key. (However, note that s can be made a global system parameter,
like N and g.)

Acknowledgements

We are grateful to Victor Shoup, who generously allowed us to use his observa-
tions on how to compress the public key from O(`T) down to two group elements,
and on how to get rid of the assumption that P and Q are safe primes. We would
also like to thank Ronald Cramer and Ivan Damg̊ard for interesting discussions.

References

1. Werner Alexi, Benny Chor, Oded Goldreich, and Claus-Peter Schnorr. RSA and
Rabin functions: Certain parts are as hard as the whole. SIAM Journal on Com-
puting, 17(2):194–209, 1988.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73.
ACM Press, November 1993.

3. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De
Santis, editor, EUROCRYPT’94, volume 950 of LNCS, pages 92–111. Springer-
Verlag, Germany, May 1994.

4. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1. In Hugo Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 1–12. Springer-Verlag, Germany, August 1998.

5. Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudo-
random number generator. SIAM Journal on Computing, 15(2):364–383, May
1986.

6. Manuel Blum and Shafi Goldwasser. An efficient probabilistic public-key encryp-
tion scheme which hides all partial information. In G. R. Blakley and David
Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 289–302. Springer-
Verlag, Germany, August 1985.

7. Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudorandom bits. SIAM Journal on Computing, 13(4):850–864, 1984.

8. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryp-
tion without random oracles. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 223–238. Springer-Verlag, Ger-
many, May 2004.

9. Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext
security from identity-based encryption. SIAM Journal on Computing, 36(5):915–
942, 2006.

10. Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security
from identity-based techniques. In Vijayalakshmi Atluri, Catherine Meadows, and
Ari Juels, editors, ACM CCS 05, pages 320–329. ACM Press, November 2005.

11. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 126–144. Springer-Verlag, Germany, August 2003.

12. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Journal of the ACM, 51(4):557–594, 2004.

13. David Cash, Eike Kiltz, and Victor Shoup. The Twin Diffie-Hellman problem and
applications. In Nigel P. Smart, editor, EUROCRYPT 2008, LNCS, pages 127–145.
Springer-Verlag, Germany, April 2008.

14. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen,
editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer-Verlag,
Germany, April / May 2002.

15. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003.

16. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In
23rd ACM STOC, pages 542–552. ACM Press, May 1991.

17. Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

18. Roger Fischlin and Claus-Peter Schnorr. Stronger security proofs for RSA and
Rabin bits. Journal of Cryptology, 13(2):221–244, 2000.

19. Rosario Gennaro and Yehuda Lindell. A framework for password-based authen-
ticated key exchange. ACM Transactions on Information and System Security,
9(2):181–234, 2006.

20. Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

21. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In 21st ACM STOC, pages 25–32. ACM Press, May 1989.

22. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

23. Goichiro Hanaoka and Kaoru Kurosawa. Efficient chosen ciphertext secure pub-
lic key encryption under the computational Diffie-Hellman assumption. In Josef
Pieprzyk, editor, ASIACRYPT 2008, LNCS, pages 308–325. Springer, December
2008.

24. Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key
encapsulation. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS,
pages 553–571. Springer-Verlag, Germany, August 2007.

25. Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi
and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 581–600. Springer-
Verlag, Germany, March 2006.

26. Eike Kiltz. Chosen-ciphertext secure key-encapsulation based on Gap Hashed
Diffie-Hellman. In Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007,
volume 4450 of LNCS, pages 282–297. Springer-Verlag, Germany, April 2007.

27. Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A new randomness
extraction paradigm for hybrid encryption. In Antoine Joux, editor, EUROCRYPT
2009, LNCS, pages ???–???, Springer-Verlag, Germany, April 2009.

28. Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 426–
442. Springer-Verlag, Germany, August 2004.

29. Stefan Lucks. A variant of the Cramer-Shoup cryptosystem for groups of unknown
order. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages
27–45. Springer-Verlag, Germany, December 2002.

30. Moni Naor, Omer Reingold, and Alon Rosen. Pseudo-random functions and fac-
toring. SIAM Journal on Computing, 31(5):1383–1404, 2002.

31. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd ACM STOC. ACM Press, May 1990.

32. Pascal Paillier and Jorge L. Villar. Trading one-wayness against chosen-ciphertext
security in factoring-based encryption. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT 2006, volume 4284 of LNCS, pages 252–266. Springer-Verlag, Germany,
December 2006.

33. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–
196. ACM Press, May 2008.

34. Duong Hieu Phan and David Pointcheval. About the security of ciphers (semantic
security and pseudo-random permutations). In Helena Handschuh and Anwar
Hasan, editors, SAC 2004, volume 3357 of LNCS, pages 182–197. Springer-Verlag,
Germany, August 2004.

35. Michael O. Rabin. Digital signatures and public key functions as intractable as fac-
torization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Tech-
nology, January 1979.

36. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 433–444. Springer-Verlag, Germany, August 1992.

37. Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signatures
with fast signing and verifying. In Lynn Margaret Batten and Jennifer Seberry, ed-
itors, Information Security and Privacy, 7th Australian Conference, ACISP 2002,
LNCS, pages 144–154, Melbourne, Australia, July 2002. Springer.

38. Hugh C. Williams. A modification of the RSA public-key encryption procedure.
IEEE Transactions on Information Theory, 26(6):726–729, November 1980.

A A variant of our scheme

We now propose a variant of our scheme that has slightly more efficient decap-
sulation but suffers from a comparatively large public key size.

Let T : ZN → {0, 1}`T be a target-collision resistant hash function. Then,
define the following key encapsulation mechanism KEM′ = (Gen′,Enc′,Dec′):
Key generation. Gen′(1k) chooses uniformly at random

• a modulus N = PQ = (2p+ 1)(2q + 1) (using IGen(1k), cf. Section 2.2),

• a quadratic residue h ∈ QRN ,
• exponents αi,j ∈ [(N − 1)/4] for i ∈ [`T] and j ∈ {0, 1},

Gen′ then gets g = h2 and

X1,j = gα1,j2
`K · h j ∈ {0, 1}

Xi,j = gαi,j2
`K

i = 2, . . . , `T, j ∈ {0, 1}.

Gen′ finally outputs a public key pk and a secret key sk , where

pk = (N, g, (Xi,j)i∈[`T],j∈{0,1}) sk = (N, (αi,j)i∈[`T],j∈{0,1}).

Encapsulation. Enc′(pk) chooses uniformly r ∈ [(N − 1)/4], sets

R = g2`Kr t = (t1, . . . , t`T) = T(R) ∈ {0, 1}`T S =

∣∣∣∣∣
(

`T∏
i=1

Xi,ti

)r∣∣∣∣∣
and outputs the key K = BBSN (gr) ∈ {0, 1}`K and the ciphertext C =
(R,S) ∈ QRN × (Z∗N ∩ [(N − 1)/2]).

Decapsulation. Dec′(sk , (R,S)) verifies that (R,S) ∈ Z∗N × (Z∗N ∩ [(N −1)/2])
and rejects if not. Then, Dec′ computes t = (t1, . . . , t`T) = T(R) and checks

(
S2
)2`K+1

?=
(
R2
)1+2`K+1 P`T

i=1 αi,ti

(
=
(
R2
)2dlogg

Q`T
i=1Xi,ti

)
. (18)

If (18) does not hold, Dec′ rejects. Otherwise, Dec′ computes

T = S2
(
R2
)−P`T

i=1 αi,ti

(
(18)
=
(
R2
) 1

2`K+1

)
. (19)

and outputs K = BBSN (T) = BBSN ((R2)
1

2`K+1)).

Correctness. The scheme enjoys correctness, since an honestly generated ci-
phertext (R,S) fulfils

(
S2
)2`K+1

=

∣∣∣∣∣
(

`T∏
i=1

Xi,ti

)r∣∣∣∣∣
22`K+1

= g2`K+1r·2dlogg

Q`T
i=1Xi,ti =

(
R2
)2dlogg

Q`T
i=1Xi,ti ,

so that consistency in the sense of (18) holds, and Dec′(sk , (R,S)) outputs

BBSN (T) = BBSN ((R2)
1

2`K+1) = BBSN (gr) = K.

Efficiency. With some trivial optimizations, KEM′ uses roughly two exponen-
tiations for encapsulation and one for decapsulation. However, KEM′’s public
key contains 2`T + 1 group elements. This number can be roughly halved by
using the following technique. Namely, observe that in KEM′, the hash value

t = T(R) is interpreted as a bitwise selector of `T out of 2`T group elements
Xi,j . Instead, one can interpret t as an integer that specifies a subset of group
elements Xi. Concretely, we can define a mapping f from {0, 1}`T to subsets of
[`], where ` denotes the number of group elements. For our proof, we will only
need that for any distinct t, t∗ ∈ {0, 1}`T , we have f(t) 6⊆ f(t∗) and f(t∗) 6⊆ f(t).
As an example, we can have the injective mapping f that associates to t the t-th
subset of [`] of size `/2. Using a suitable enumeration of these subsets, f can
be implemented efficiently, and we will only need about ` ≈ `T + log `T group
elements Xi to make f injective. More sophisticated examples of such mappings
f were suggested in the context of one-time signatures, see [37]. However, since
our scheme KEM is far superior in public key size and (roughly) on par with
KEM′ in terms of efficiency, we omit the details.

For concreteness let us again assume that one regular exponentiation with
an exponent of length ` requires 1.5 · ` modular multiplications and that one
squaring takes the same time as one multiplication. Let us further assume that
`N := bitlength(N) = 1024 and `K = `T = 80. Then encapsulation requires
3`N + `K + `T = 3232 multiplications; decapsulation requires 1.5`N + `K = 1616
multiplications. Hence in terms of efficiency KEM′ is slightly better than KEM,
in particular for decapsulation. However, KEM′ has the drawback of large public
key size.

Theorem 4 (IND-CCA security of KEM′). Assume T is a target collision
resistant hash function and the factoring assumption holds. Then KEM′ is secure
in the IND-CCA secure in the sense of Definition 2.

Given Theorem 2, it suffices to prove the following theorem.

Theorem 5 (IND-CCA adversary on KEM′ ⇒ BBS-distinguisher). For ev-
ery adversary A that (tKEM′ , εKEM′)-breaks KEM′’s IND-CCA property, there exists
an algorithm D that (tBBS, εBBS) breaks BBS and an adversary B that (tT, εT)-
breaks T, such that

tBBS ≈ tT ≈ tKEM′ εBBS + εT +
2`T + 3

2k−1
≥ εKEM′ .

Proof. Setting up the variables for simulation. Assume an adversary A on
KEM′’s IND-CCA security. We define a BBS-distinguisher D, which acts on input
(N, z, V) as follows. D first uniformly picks an element h ∈ QRN , exponents
βi,j ∈ [(N − 1)/4] for i ∈ [`T], j ∈ {0, 1}, and sets

L = lcm(1, . . . , `T) g = h2L R∗ = z

t∗ = (t∗1, . . . , t
∗
`T

) = T(R∗) Xi,t∗i
= g

βi,t∗
i
2`K

Xi,1−t∗i = g
βi,1−t∗

i
2`K · h.

Preparation of challenge ciphertext and key. To complete the definition
of the challenge ciphertext C∗ = (R∗, S∗), D defines

S∗ =
∣∣∣∣R∗P`T

i=1 βi,t∗
i

∣∣∣∣
=

∣∣∣∣∣∣R∗
dlogg

Q`T
i=1Xi,t∗

i

2`K

∣∣∣∣∣∣
 (20)

such that (18) is met. Note that the (real) corresponding key K∗ according to
Dec′ is defined as

K∗ = BBSN

((
R∗2

) 1
2`K+1

)
= BBSN (z

1
2`K) = BBSN (u). (21)

D then invokes A with public key pk = (N, g, (Xi,j)i,j), challenge ciphertext
C∗ = (R∗, S∗), and challenge key V . Note that V is either the real challenge key
BBSN (u), or it is a uniform string.

On the distribution of simulated public key and challenge ciphertext.
The distribution of public key pk and challenge ciphertext C∗ is almost identical
in simulation and IND-CCA experiment. Concretely, the proof of the following
lemma is very similar to the proof of Theorem 1, and we omit it.

Lemma 2. There exists an event badkey such that, conditioned on ¬badkey, pub-
lic key pk and challenge ciphertext C∗ are identically distributed in simulation
and IND-CCA experiment. Furthermore, Pr [badkey] ≤ 2`T+3

2k−1 , both in the simula-
tion and in the IND-CCA experiment.

Thus, conditioned on ¬badkey, D perfectly simulates A’s input as in the real

IND-CCA experiment if V = BBSN (u) = BBSN (z
1

2`K), and as in the ideal IND-
CCA experiment if V is random.

How to handle A’s decryption queries. It remains to describe how D
handles decryption queries of A as in the IND-CCA experiment. So say that
A submits a ciphertext (R,S) for decryption. We may assume that (R,S) ∈
Z
∗
N × (Z∗N ∩ [(N −1)/2]). Let t = (t1, . . . , t`T) = T(R). Write d = |{i : ti 6= t∗i }| ∈
{0, . . . , `T} for the Hamming distance of t and t∗, and abbreviate β =

∑`T
i=1 βi,ti .

We call a ciphertext consistent iff the original decryption algorithm would not
have rejected it. Hence, by (18), a ciphertext is consistent iff

S2 =
(
R2
)dlogg

Qk
i=1Xi,ti

2`K

(
=
(
R2
)β2`K+dloggh

d

2`K =
(
R2
)β+ d

2`K+1L

)
(22)

Our goal will be to implement a consistency check using our setup of variables
above, and to decrypt consistent ciphertexts as in the IND-CCA experiment.

How to detect inconsistent ciphertexts. We first describe how D detects
inconsistent ciphertexts. Namely, (22) is equivalent to(

S2(R2)−β
)2`K+1L

= (R2)d (23)

since exponentiating with 2`K+1L is a bijection on QRN ,5 and the group elements
on both sides of (22) are squares. On the other hand, D can easily check (23)
and hence efficiently detect and reject inconsistent ciphertexts.
5 At this point we need that the modulus N consists of the product of two safe primes

such that QRN is a cyclic group whose order does not divide the integers 1, . . . , `T.
Hence for KEM′ it does not seem to be possible to avoid safe primes. (In contrast to
KEM, cf. Section 5.)

How to decrypt consistent ciphertexts. Now assume that C is consistent
and t 6= t∗ (so that 1 ≤ d ≤ `T). Then,

BBSN

((
S2(R2)−β

)L
d

)
(23)
= BBSN

((
R2
) 1

2`K+1

)
= K. (24)

Since L/d ∈ N by definition of L = lcm(1, . . . , `T), D can retrieve K efficiently
using (24). Hence, D can decrypt all consistent ciphertexts satisfying t 6= t∗.

The case t = t∗. So let us turn to the case that t = t∗ and the ciphertext is
consistent. Then, if R = R∗ holds, we have

S2 (22)
=
(
R2
)dlogg

Qk
i=1Xi,ti

2`K
(∗)
=
(
R∗2

)dlogg

Qk
i=1Xi,t∗

i

2`K (20)
= S∗2, (25)

where (∗) uses R = R∗ and t = t∗. Furthermore, (R,S) 6= (R∗, S∗) implies

|S| = S 6= S∗ = |S∗|, so that S 6= ±S∗ and (S + S∗)(S − S∗) = S2 − S∗2 (25)
=

0 mod N yields a non-trivial factorization of N . Hence, D can efficiently factor N
to solve its own input challenge (N, z, L) directly whenever R = R∗ and (R,S)
is consistent.

On the other hand, if T(R) = t = t∗ = T(R∗) and R 6= R∗, then A has broken
the target-collision resistance of T. Formally, let badTCR denote the event that
t = t∗ and R 6= R∗. If badTCR occurs, D can safely give up, since

Pr [badTCR] ≤ AdvTCR
T,B (k) (26)

for a suitable PPT adversary B on T that simulates D and A.

Summary of the decryption procedure. We summarize the decryption
cases:
– inconsistent (R,S) (consistency check (23)⇔(22)⇔(18) not passed): reject,
– consistent (R,S) and t 6= t∗: decrypt using (24),
– consistent (R,S), t = t∗, and R = R∗: factor N (using S 6= ±S∗ and
S2 = S∗2 by (25)),

– consistent (R,S), t = t∗, and R 6= R∗: give up simulation (A has found a
T-collision).

Hence, also decryption is faithfully simulated unless badTCR occurs.

Finishing the proof. We conclude that, unless badTCR or badkey occurs, D
perfectly simulates the real IND-CCA experiment upon input V = BBSN (u),
and the ideal IND-CCA experiment if V is random. If we let D output whatever
the simulated experiment outputs, we obtain:∣∣∣Pr [D(N, z,BBSN (u)) = 1]− Pr

[
ExpCCA-real

KEM′,A (k) = 1
]∣∣∣ ≤ Pr [badTCR] + Pr [badkey]∣∣∣Pr

[
D(N, z, U{0,1}`K) = 1

]
− Pr

[
ExpCCA-rand

KEM′,A (k) = 1
]∣∣∣ ≤ Pr [badTCR] + Pr [badkey] .

(27)

Using Lemma 2 and (26), Theorem 5 follows from (27).

	Introduction
	Preliminaries
	Notation
	Factoring
	Key encapsulation mechanisms
	Target-collision resistant hashing

	Chosen-ciphertext security from factoring
	The scheme

	Proof of security
	Avoiding safe primes
	A variant of our scheme

