
Smashing SQUASH-0

Khaled Ouafi? and Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland

http://lasecwww.epfl.ch

Abstract. At the RFID Security Workshop 2007, Adi Shamir presented
a new challenge-response protocol well suited for RFIDs, although based
on the Rabin public-key cryptosystem. This protocol, which we call
SQUASH-0, was using a linear mixing function which was subsequently
withdrawn. Essentially, we mount an attack against SQUASH-0 with full
window which could be used as a “known random coins attack” against
Rabin-SAEP. We then extend it for SQUASH-0 with arbitrary window.
We apply it with the proposed modulus 21 277 − 1 to run a key recov-
ery attack using 1 024 chosen challenges. Since the security arguments
equally apply to the final version of SQUASH and to SQUASH-0, we
challenge the blame-game argument for the security of SQUASH. Nev-
ertheless, our attacks are inefficient when using non-linear mixing so the
security of SQUASH remains open.

Key words: RFID, cryptanalysis, MAC

1 The SQUASH Algorithm

RFID tags use challenge-response protocols in which a reader sends a random
challenge to a RFID tag to which this latter responds by computing the output
of an algorithm (generally a MAC) fed with the challenge and a unique secret
key. The reader then goes through a database containing a list of secrets asso-
ciated with the identity of each tag to find the matching secret and thus the
tag’s identity. Due to computation and power constraints, most of the primi-
tives proposed for RFID tags rely on symmetric key primitives since they offer
competitive throughput, compared to public-key primitives which require much
more transistors to be implemented as well as longer computation time.

At the RFID Security Workshop 2007, Adi Shamir [3] presented the SQUASH
algorithm, a message authentication code (MAC) which, although based on the
Rabin public-key cryptosystem, performs very well on benchmarks. In addition
to this, it offers some kind of provable security based on the hardness of factoring
large integers. This proof is used as a “safety net” as no attack using the modulus
factors is known so far.

Essentially, SQUASH consists of a public hard-to-factor modulus N of ` bits
and a r-bit length key which is also the length of the challenge. The algorithm
is very simple as it only:
? Supported by a grant of the Swiss National Science Foundation, 200021-119847/1.

– mixes the challenge and the secret key using a mixing function;
– converts it in a number;
– squares it modulo N ;
– truncates the result to a specific window of bits.

There was essentially two versions of SQUASH. The first one considered a
randomized version of the Rabin cryptosystem in which the square was hidden by
adding a random multiple of N to avoid modulo N reduction, but which required
a full-size window (i.e. no truncation at the end). The second one (preferred
for efficiency reasons) considered a small window in the middle of the `-bit
result. Contrarily to the Rabin cryptosystem, SQUASH does not need to be
invertible. So, the factorization of the modulus N does not need to be known
by any participant. This motivated the recommendation of [4] to use Mersenne
numbers (numbers of the form N = 2` − 1) or the more general Cunningham
project numbers (numbers of the form N = a · bc ± d for small a, b, c, d) whose
factorization is unknown so far. Any other technical details regarding SQUASH
are not relevant for our analysis.

Through this paper, we denote by R, K, C, and T the response, key, chal-
lenge, and truncation function of SQUASH respectively. The function SQUASH
will simply consist of the following:

R = T

(`−1∑
i=0

2i × fi(K,C)

)2

mod N

 ,

where the fi’s are Boolean functions and the truncation function T is defined by

T (x) =
⌊
x mod 2b

2a

⌋
.

By expanding the square, we obtain:

R = T

((
`−1∑
i=0

`−1∑
i′=0

2i+i′ × fi(K,C)fi′(K,C)

)
mod N

)
(1)

The version of SQUASH presented in 2007, which we call SQUASH-0, uses a
mixing function f expanding (using a linear feedback shift register) the XOR of
the key and the challenge. It was subsequently updated in the version available
on [3] following a private comment by Vaudenay. This comment was about a total
break on the first version, i.e. the variant using no truncation. Nevertheless, the
version published in [4] suggests to use a concrete non-linear mixing function.
In this paper, we first present the attack by Vaudenay and apply it to any
mixing function of form g(K)⊕L(C). Then, for L linear, we use discrete Fourrier
transform to propose a variant of the attack and we generalize it to the second
variant of SQUASH-0 using an arbitrary window.

Consequently, we restrict to the special case where there exists Boolean func-
tions gi and Li such that

fi(K,C) = gi(K)⊕ Li(C)

for all i, K, and C, where ⊕ denotes the exclusive or (XOR) operation. This is the
case for the Rabin-SAEP encryption [1] where K plays the role of the plaintext
and C plays the role of the random coins. In Sections 3 and 4, we further assume
that the Li’s are linear in the sense that Li(a⊕ b) = Li(a)⊕Li(b) for any a and
b.

In what follows we first consider in Section 2 Vaudenay’s passive attack
against this algorithm with a full-size window. Namely, we assume the adversary
gets the full Rabin encryption but no linearity in the Li’s. This translates into
a “known random coins attack” against Rabin-SAEP. It works with complexity
O(`2r6) and O(r2) known challenges. Next, we study an active variant of this
attack in the linear case in Section 3 working in complexity O(`r2 log r/ log log r)
and O(r2/ log log r) chosen challenges. Finally, we apply the variant to the case
of an arbitrary window in Section 4. Our final attack has a complexity of
O(`r2 log r) and uses O(r2) chosen challenges. It works when the window is
large enough, namely b − a > 4 log2 r − 2. However, in the case of Mersenne
numbers, those figures boil down to a complexity of O(r2 log r) and O(r2/`)
chosen challenges, and the condition is relaxed to b − a > 2 log2 r − log2 ` − 1.
When the window is smaller, there is still room for further improvements. We
conclude that SQUASH-0 is dead broken and that the security proof in SQUASH
is incorrect if factoring is hard. However, the security of SQUASH is still open.

2 Passive Attack with Full-Size Window

The goal of a passive total-break attack, is for an adversary to derive the
secret key from challenge-response samples only. In what follows, we denote
ki = (−1)gi(K) and ci = (−1)Li(C). We have

fi(K,C) =
1− kici

2

which is linear (in the sense of Z) in terms of ki with coefficients known to the
adversary. By expanding (1) we derive

R =
1
4

∑
i,i′

2i+i′cici′kiki′ −
2` − 1

2

∑
i

2iciki +
(2` − 1)2

4
mod N (2)

when no truncation T is used.
A first attack consists of collecting enough equations of this form and solving

them, e.g. by linearization or re-linearization [2]. Simple lineralization consists of
expressing kiki′ as a new unknown and solving linear equations. We get r(r+1)

2
unknowns and a solving algorithm of complexity O(`2r6) (as for O(r6) multi-
plications with complexity O(`2)) after collection of O(`r2) bits (as for O(r2)
samples of O(`) bits). Since kiki′ = ±1 which is unexpectedly small, we can
also consider algorithms based on lattice reduction using O(`) samples only. The
attack works even if the Li’s are not linear. In the Rabin-SAEP case, we ob-
tain a “known random coins attack” in which an adversary can request many

encryptions of the same plaintext and get the random coins with. His purpose
is to recover the plaintext. However, for ` resp. r in the order of magnitude of
210 resp. 26, complexities are still very high.

Interestingly, we note that when N is a Mersenne number then N = 2`−1 so
Equation (2) simplifies by getting rid of r unknowns. Therefore, we have r(r−1)

2

unknowns instead of r(r+1)
2 .

3 Active Attack with Full-Size Window

Let C1, . . . , Cd be a set of d random challenges, given an integer d to be later
discussed. Let Ui be the d-bit vector with coordinate Li(Cj), j = 1, . . . , d. We
consider an active attack making 2d chosen challenges. Given a d-bit vector x,
we define the challenge C(x) =

⊕
j xjCj and R(x), the response obtained after

submitting this challenge. Given a real function ϕ(x) and a d-bit vector V , we
further recall the multidimentional discrete Fourrier transform of a function ϕ
with group Zd

2:
ϕ̂(V) =

∑
x

(−1)x·V ϕ(x)

where x · V denotes the scalar dot product of vectors x and V . Thanks to the
linearity of Li, we have

ci(x) = (−1)Li(C(x)) = (−1)
L

j xjLi(Cj) = (−1)x·Ui

Using the following:

– ϕ(x) = 1 =⇒ ϕ̂(V) = 2d × 1V =0;
– ϕ(x) = (−1)xiUi =⇒ ϕ̂(V) = 2d × 1Ui=V ;
– ϕ(x) = (−1)xi(Ui⊕Uj) =⇒ ϕ̂(V) = 2d × 1Ui⊕Uj=V ;

we deduce from Equation (2) that

R̂(V) =
1
4

∑
i,i′

2i+i′

(∑
x

(−1)x·(Ui⊕Ui′⊕V)

)
kiki′

−2` − 1
2

∑
i

2i

(∑
x

(−1)x·(Ui⊕V)

)
ki

+
(2` − 1)2

4

∑
x

(−1)x·V (mod N). (3)

3.1 First Method

Let I be an integer between 0 and `− 1. We assume that C1, . . . , Cd are chosen
such that

– for all j we have LI(Cj) = 0;

– for every i < i′ there exists j such that Li(Cj) 6= Li′(Cj).

In terms of Ui’s, the hypotheses translate into observing that all the Ui’s are
pairwise different and that one of these vectors is the vector containing only 0’s.
Clearly, we can find these vectors by using an incremental algorithm to select
Cj ’s in the hyperplane defined by LI(C) = 0. If we generate d random vectors in
the hyperplane, under heuristic assumptions, the probability that the condition
is fulfilled is roughly e−`22−d−1

which is constant for d = 2dlog2 `e and equal to
e−1/2.

By (3), thanks to the hypotheses we obtain

R̂(0) = 2d−2
∑

i

22ik2
i − 2d+I−1(2` − 1)kI +

2d(2` − 1)2

4
(mod N)

but since k2
i = 1 for all i we obtain

R̂(0) = 2d−1(2` − 1)
(

2
3

2` − 1
3
− 2IkI

)
(mod N)

We can thus deduce kI when N is not a Mersenne number. This means that
recovering the key requires O(r`2) chosen challenges and complexity O(r`3).
Clearly, we can trade data complexity against time complexity.

The Mersenne case. If N is a Mersenne number N = 2` − 1, as suggested
in [4], the above expression vanishes so we have to make a specific treatment.
Actually, we have

R =
1
4

∑
i,i′

2i+i′cici′kiki′ mod N

By changing the assumption about the Ci’s to

– there is a unique I < J pair such that UI = UJ

we obtain
R̂(0) = 2I+J+d−1kIkJ (mod N)

so we can still adapt the attack. Other kinds of Cunningham numbers N = ab±c,
as suggested in [4], work like in the previous case.

3.2 Second Method

We now relax the assumption about the Ci’s. By taking a value V such that

– V 6∈ {0, U0, U1, . . . , U`−1}
– there exists a unique {I, J} pair such that V = UI ⊕ UJ

then (3) simplifies to

R̂(V) = 2I+J−1+dkIkJ (mod N)

so we can deduce the value of kIkJ .
The advantage of this method is that from the same set of challenges we can

derive many equations of the form kIkJ = b (which are indeed linear equations)
for all I and J such that V = UI ⊕ UJ satisfies the above conditions. With
random Ci’s, the expected number of such equations is roughly 1

2`
2e−`22−d−1

so
for d ≈ 2 log2 ` we obtain enough equations to recover all bits of K using O(`2)
chosen challenges and complexity O(`3 log `).

3.3 Generalization

We can further generalize this attack by taking all values V which are either 0
or equal to some UI or to some UI ⊕ UJ but without requiring unicity of I or
{I, J}. In general, we obtain an equation which may involve several kI or kIkJ

as Equation (3) simplifies to

R̂(V) =
∑

{I,J}:UI⊕UJ=V

2I+J−1+dkIkJ

−
∑

I:UI=V

(2` − 1)2I+d−1kI + (2` − 1)22d−21V =0 (mod N).

Provided that the number of monomials is not too large, the only correct ±1
assignment of the monomials leading to an expression matching the R̂(V) value
can be isolated.

Using d = log2
r(r+1)

2 we obtain only one unknown per equation on average
so we can recover all key bits with complexity O(`r2 log r) using O(r2) chosen
challenges. We can still slightly improve those asymptotic figures.

Let `m be the complexity of getting the matching ±1 assignments in one
equation (i.e. m is the complexity in terms of modulo N additions). The com-
plexity of the Fourier transform is O(`d2d), so the complexity of the algorithm
becomes O(`(d + m)2d). The average number of unknowns per equation is
r22−d−1. By using an exhaustive search strategy to solve the equation we obtain
log2m ≈ r22−d−1. With d = 2 log2 r − log2 log2 log r − 1 we have m = log r
and we finally obtain a complexity of O(`r2 log r/ log log r) with O(r2/ log log r)
chosen challenges.

We could view the equation as a knapsack problem and use solving algorithms
better than exhaustive search. For instance, we can split the equation in two
halves and use a claw search algorithm. The effect of this strategy leads us to
log2m ≈ 1

2r
22−d−1 and we reach the same asymptotic complexity. However the

practical benefit may be visible as the following example shows.

Example 1. SQUASH with no truncation is trivially broken if we can factor the
modulus N so it should be at least of 1 024 bits. As an example, for ` = 1 024 and

r arbitrary (up to `) we can take d = 14 so roughly 2d ≈ 16 000 chosen challenges.
We obtain at most `(`+1)

2 2−d ≈ 32 unknowns per equation on average. Using claw
search algorithm will work with 216 numbers in memory and 216 iterations to
recover 32 bits of the key for each equation.

The Mersenne case. Finally, another nice thing with Mersenne numbers is
that the equation further simplifies to

R̂(V) =
`−1∑
n=0

2n
∑
{I,J}:

UI⊕UJ=V,I+J−1+d mod `=n

kIkJ (mod N). (4)

So, if the set of {I, J}’s sparsely spread on (UI⊕UJ , (I+J−1+d) mod `) pairs,
the knapsack is nearly super-increasing and we can directly read all kIkJ bits
in the table of all R̂(V)’s. That is, m is constant. With d = 2 log2 r − log2 `− 1
we roughly have ` unknowns per equation and we can expect this phenomenon.
So, we obtain a complexity of O(r2 log r) with O(r2/`) chosen challenges. For
instance, with N = 21 277 − 1 and r = 128 we can take d = 3 so that 8 chosen
challenges are enough to recover all bits. With r = ` we can take d = 10 so that
1 024 chosen challenges are enough.

Example 2. As a toy example we consider a SQUASH instance with N = 13 ×
19 = 247, ` = 8, and r = 4 along with the function

f(K,C) = (K ⊕ C)‖(K ⊕ C)

with d = 2.
If K = 0x9, we have k0 = k3 = k4 = k7 = −1 and k1 = k2 = k5 = k6 = +1.

We take 2 random values for the Ci’s: C1 = 0x2 and C2 = 0xa. Here is a table
for the C(x) values:

x C(x) f(K,C(x)) R(x)

00 0x0 0x99 = 153 191

10 0x2 0xbb = 187 142

01 0xa 0x33 = 51 131

11 0x8 0x11 = 17 42

V R̂(V)

00 506

10 138

01 160

11 −40

The Ui’s are

U0 = U4 = 00, U1 = U5 = 11, U2 = U6 = 00, U3 = U7 = 01.

We sort monomials following the corresponding values of V as follows:

– V = 00: k0, k4, k2, k6, k0k4, k1k5, k2k6, k3k7, k0k2, k0k6, k2k4, k4k6,
– V = 01: k3, k7, k0k3, k0k7, k3k4, k4k7, k2k3, k2k7, k3k6, k6k7,

– V = 10: k1k3, k1k7, k3k5, k5k7,
– V = 11: k1, k5, k0k1, k0k5, k1k4, k4k5, k1k2, k1k6, k2k5, k5k6.

Due to the structure of f we know that k0 = k4, k1 = k5, k2 = k6 and k3 = k7

so the list simplifies (modulo N = 247) to:

R̂(00) =
(
20+4+1 + 21+5+1 + 22+6+1 + 23+7+1

)
+
(
20+2+1 + 20+6+1 + 22+4+1 + 24+6+1

)
k0k2

−(28 − 1)
(
20+1 + 24+1

)
k0 − (28 − 1)

(
22+1 + 26+1

)
k2

+(28 − 1)2 +
1
3

(216 − 1)

R̂(10) =
(
21+3+1 + 21+7+1 + 23+5+1 + 25+7+1

)
k1k3

R̂(01) = −(28 − 1)
(
23+1 + 27+1

)
k3

+
(
20+3+1 + 20+7+1 + 23+4+1 + 24+7+1

)
k0k3

+
(
22+3+1 + 22+7+1 + 23+6+1 + 26+7+1

)
k2k3

R̂(11) =
(
20+1+1 + 20+5+1 + 21+4+1 + 24+5+1

)
k0k1

+
(
21+2+1 + 21+6+1 + 22+5+1 + 25+6+1

)
k1k2

−(28 − 1)
(
21+1 + 25+1

)
k1

which yields

R̂(00) = 176 + 89k0k2 − 25k0 − 100k2 (mod 247)
R̂(10) = 109k1k3 (mod 247)
R̂(01) = −200k3 + 178k0k3 + 218k2k3 (mod 247)
R̂(11) = 168k0k1 + 178k1k2 − 50k1 (mod 247)

The only values of k0 and k2 leading to R̂(00) = 506 (mod N) is k0 = −1
and k2 = +1. Similarly, k1 and k3 lead to R̂(10) = 138 (mod N) if and only if
k1 = −k3. Using R̂(01) = 160 (mod N), we deduce k3 = −1. From these values,
we recover the key K = 9.

4 Application to Limited Windows

In what follows we let S denote the Rabin encryption. We assume that S is
truncated to a window defined by

T (x) =
⌊
x mod 2b

2a

⌋
so that R = T (S). Our analysis from Section 3 still applies when R is replaced
by S. However, S is not directly available to the adversary.

Since it is not clear how to break this variant of SQUASH even when N
can be factored, ` could be much smaller than usual values for modulo bit-
length. Indeed, [4] suggested an aggressive ` = 128 with the Mersenne number
N = 2128 − 1, a = 48, b = 80, and r = 64.

4.1 First Method

First, by observing that for any e1, . . . , en ∈ ZN we have(
n∑

i=1

ei mod N

)
mod 2b =

((
n∑

i=1

ei mod 2b

)
+
(
−βN mod 2b

))
mod 2b (5)

for some 0 ≤ β < n thus

T

(
n∑

i=1

ei mod N

)
=

(
n∑

i=1

T (ei) + T (−βN) + α

)
mod 2b−a

for some 0 ≤ α ≤ n.
We now apply the previous attack (first method) with n = 2d and the list of

all d-bit vectors x. We use ei = S(x) corresponding to the challenge C(x). We
deduce

T
(
Ŝ(0) mod N

)
=
(
R̂(0) + T (−βN) + α

)
mod 2b−a.

Let

yb
I = 2d−1(2` − 1)

(
2
3

2` − 1
3
− 2Ib

)
mod N

for b = ±1. Based on the previous attack we obtain

T (ykI

I) =
(
R̂(0) + T (−βN) + α

)
mod 2b−a

for some α ∈ [0, 2d] and β ∈ [0, 2d−1]. The probability that there exists α and β
such that T (y−kI

I) matches the right-hand side of the equation is at most 22d−r,
so for 2d+ 1 < r it is likely that we can deduce kI .

The Mersenne case. When N is a Mersenne prime number, the T (−βN)
expression simplifies to T (β). This is always 0 for d ≤ a and it can be integrated
in the α in T (−βN) + α in other cases: all T (−βN) + α values are numbers in
the

[
0, 2d +

⌊
2d−1
2a

⌋]
range. In what follows we assume that d ≤ a for simplicity.

We now use yb
I,J = 2I+J+d−1b mod N and, with the updated hypotheses on

the Cj vectors, we obtain

T (ykIkJ

I,J) =
(
R̂(0) + α

)
mod 2b−a

for some α in the [0, 2d] range. Note that T (y−1
I,J) = T (y+1

I,J) and that

T (y+1
I,J) = T

(
2(I+J+d−1) mod `

)
=
{

2((I+J+d−1) mod `)−a if a ≤ (I + J + d− 1) mod ` < b
0 otherwise.

This is enough to deduce kIkJ for (I, J) pairs such that there is no α for which
T (y−kIkJ

I,J) matches the right-hand side. Thus we can recover kIkJ .

4.2 Second Method

Similarly to (5), if εi = ±1 and ε1 + · · ·+ εn = 0 we have(
n∑

i=1

εiei mod N

)
mod 2b =

((
n∑

i=1

εi(ei mod 2b)

)
− βN mod 2b

)
mod 2b

for some |β| < n
2 thus

T

(
n∑

i=1

εiei mod N

)
=

(
n∑

i=1

εiT (ei) + T (−βN) + α

)
mod 2b−a

for some −n
2 < α ≤ n

2 . We deduce that for each V there exist α and β verifying

T
(
Ŝ(V) mod N

)
=
(
R̂(V) + T (−βN) + α

)
mod 2b−a.

With the appropriate conditions on the set of challenges we obtain

T
((

2I+J−1+dkIkJ

)
mod N

)
=
(
R̂(V) + T (−βN) + α

)
mod 2b−a

which can be used to recover kIkJ .
In the Mersenne case with d < a, T (−βN) is either 0 or 2b−a − 1 depending

on the sign of β so we have a single additional value for T (−βN) + α which is
−n

2 . Since we will always take d < a we omit the other cases.

4.3 Generalization

More generally, for all V there exists α and β such that

T

 ∑
{I,J}:UI⊕UJ=V

2I+J−1+dkIkJ

−
∑

I:UI=V

(2` − 1)2I+d−1kI + (2` − 1)22d−21V =0

)
mod N

)
=
(
R̂(V) + T (−βN) + α

)
mod 2b−a

with either −n
2 < α ≤ n

2 and |β| < n
2 for V 6= 0 or 0 ≤ α ≤ n and 0 ≤ β < n for

V = 0.
Our attack strategy can now be summarized as follows.

1. Take a value for d. Make a table of all T (−βN) + α values. This table has
less than 22d terms (2d + 1 in the Mersenne case) and can be compressed
by dropping the d least significant bits (corresponding to the α part). In
the Mersenne case, it can be compressed to nothing as numbers of form
T (−βN) + α are all in the [−2d−1, 2d−1] range modulo 2b−a.

2. Pick d challenges at random and query all the 2d combinations C(x). Get
the responses R(x).

3. Compute the discrete Fourier transform R̂ in O(`d2d).
4. For each V , try all ±1 assignments of occurring unknowns in Ŝ(V) and keep

all those such that T (Ŝ(V) mod N)− R̂(V) is of form T (−βN) + α.

Again, this attack uses O(2d) chosen challenges and a complexity of O(`(d +
2s2−d

)2d) where s is the number of unknowns, i.e. s = r(r+1)
2 resp. s = r(r−1)

2
in the Mersenne case. The remaining question is whether all wrong assignments
are discarded.

For a given equation, each of the 2s2−d

wrong assignments is discarded with
probability 22d−(b−a) resp. 2d−(b−a). Thus, if b − a > 2d + s2−d resp. b − a >
d + s2−d they can all be filtered out. The minimum of the right-hand side is
2 log2 s+2 log2

e ln 2
2 resp. log2 s+log2(e ln 2) and reached by d = log2 s+log2

ln 2
2

resp. d = log2 s + log2 ln 2. By taking this respective value for d we have O(r2)
chosen challenges and a complexity of O(`r2 log r), and the condition becomes
b− a > 4 log2 r + 2 log2

e ln 2
2 − 2 resp. b− a > 2 log2 r + log2(2e ln 2). If b− a >

4 log2 r − 2 resp. b− a > 2 log2 r this condition is always satisfied.

Example 3. We continue our toy example with a = 1 and b = 7 (i.e. we drop
the least and most significant bits after the Rabin encryption). We still use 4
chosen challenges which are the linear combinations of C1 = 2 and C2 = 10 and
compute the R̂(V) values (without any modular reduction). Here is a table for
the R(x) and R̂(V) values:

x C(x) f(K,C(x)) R(x)

00 0x0 0x99 = 153 T (191) = 31

10 0x2 0xbb = 187 T (142) = 7

01 0xa 0x33 = 51 T (131) = 1

11 0x8 0x11 = 17 T (42) = 21

V R̂(V)

00 60

10 4

01 16

11 44

The possible values of T (−βN) for |β| < n
2 are in {0, 4,−5}. The possible values

for T (−βN) + α are in [−7, 5] − {−3}. We take the equation R̂(10) = 4. The
possible values for R̂(10) + T (−βN) + α modulo 64 are in [−3, 9] − {1}. On

the other hand, T (109k1k3 mod N) can only be 5 (for k1k3 = −1) or −10 (for
k1k3 = +1) so we deduce k1k3 = −1. Similarly, for V = 01 we obtain

T (178k0k3 + 218k2k3 − 200k3 mod N) ∈ [9, 21]− {13}

The 8 possible values for T (178k0k3 + 218k2k3 − 200k3 mod N) are

k0k3 k2k3 k3 + + + + +− +−+ +−− −+ + −+− −−+ −−−
T 34 51 3 16 43 56 8 25

We deduce k3 = −1, k0k3 = +1, k2k3 = −1 as the only possible assignment.
Again, we recover K = 9.

The Mersenne case. Finally, the Mersenne case can simplify further using
Equation (4). We take d = 2 log2 r − log2 `− 1 and run the attack with O(r2/`)
chosen challenges and complexity O(r2 log r). Assuming that all unknowns kIkJ

sparsely spread on (UI ⊕UJ , (I + J − 1 + d) mod `) pairs then T (R̂(V) mod N)
yields b−a−d useful bits with roughly one kIkJ per bit and ends with d garbage
bits coming from T (−βN) + α. So, we can directly read the bits through the
window and it works assuming that b − a > d, which reads b − a > 2 log2 r −
log2 `− 1.

Example 4. We now use the parameters from [4]: ` = 128, N = 2128− 1, a = 48,
b = 80. Although [4] suggested a 64-bit secret with non-linear mixing we assume
here that the mixing is of form f = g ⊕ L with linear L but that g expands
to r = 128 secret bits (possibly non-linearly). We have s = 8 128 unknowns of
form kiki′ . With d = 10 we obtain 1 024 vectors V so we can expect to find 8
unknowns in each equation. Equations are of form

T (Ŝ(V) mod N) =
(
R̂(V) + T (−βN) + α

)
mod 2b−a

where (T (−βN) + α) mod 2b−a is in the range [−29, 29] which gives a set of at
most 210 + 1. Filtering the 28 − 1 wrong assignments on the 8 unknowns we can
expect 2−13 false acceptances in addition to the right one. Simple consistency
checks can discard wrong assignments, if any, and recover all ki’s. Clearly, all
computations are pretty simple and we only used 210 chosen challenges.

Using the final trick in the Mersenne case we use d = 6 and thus 64 chosen
challenges to get 64 equations which yield 26 bits each.

Example 5. With N = 21 277 − 1 and the worst case ` = r the attack works for
b − a ≥ 21 and we can take d = 19. We request for 219 chosen challenges. We
obtain 219 equations with roughly 1.6 unknowns per equation.

By using the final trick we take d = 10. The T (−βN) +α part wastes 10 bits
from the window and we can expect to have a single unknown per remaining bit
so that we can simply read it through the window. Provided that the window
has at least 32 bits we expect to read 22 bits in each of the 1 024 equations so
we can recover all bits.

The narrow window case. When b − a is too small for the previous attack
to work, we can still work further on the analysis. To avoid wasting bits on
the window, we shall decrease the value for d. Typically, our attack will get
less equations and have more unknowns per equation. As a consequence it will
list many assignments, including a single correct one. Several directions can be
investigated:

– use the highly biased distribution of most significant garbage bits (since α
has expected value 0 and standard deviation roughly 2

d
2 /2
√

3);
– use small d and better knapsack solving algorithms;
– analyze these assignments on redundant bits and check for consistency within

an equation;
– analyze assignment lists in several equations and try to merge;
– use voting procedures and iterate.

This extension is left to further research.

5 Extending to Non-linear mappings

In case the mapping L is a (non-linear) permutation, we can adapt our attack
strategy by choosing the challenges as follow:

– pick d challenges C1, . . . , Cd.
– compute the chosen challenges by C?(x) = L−1

(⊕
j xjL(Cj)

)
.

By using,
c?i (x) = (−1)Li(C

?(x)) = (−1)
L

j xjLi(Cj) = (−1)x·Ui

Equation (3) remains unchanged so that we can still apply all the attacks de-
scribed through Sections 3 and 4.

More generally, we can extend these attacks to any mixing function of form
f(K,C) = g(K) ⊕ L(C) as long as we can find vector spaces of dimension d in
the range of L.

6 Conclusion

One argument for motivating the SQUASH algorithm consisted of playing the
“blame game”: if anyone can break SQUASH, then the Rabin cryptosystem is
the one which should be blamed instead of the SQUASH design. Clearly, our
attack demonstrates that this argument is not correct. There are instances of
the SQUASH algorithm which can be broken although we still have no clue how
to factor integers. Indeed, our method translates into a “known random coins
attack” against Rabin-SAEP which leads to a plaintext recovery. Known random
coins attacks are not relevant for public-key cryptosystems although they are in
the way SQUASH is using it.

It is not clear how and if our attack can be adapted to the final version of
SQUASH with non-linear mappings. So, although the “blame game” argument
is not valid, the security of SQUASH is still an open problem.

References

1. Dan Boneh. Simplified OAEP for the RSA and Rabin functions. In Joe Kilian, edi-
tor, Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, vol-
ume 2139 of Lecture Notes in Computer Science, pages 275–291. Springer, 2001.

2. Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosystem
by relinearization. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 19–30. Springer, 1999.

3. Adi Shamir. SQUASH: A new one-way hash function with provable se-
curity properties for highly constrained devices such as RFID tags. In-
vited lecture to the RFID Security’07 Workshop. Slides available from
http://mailman.few.vu.nl/pipermail/rfidsecuritylist/2007-August/000001.html.

4. Adi Shamir. SQUASH - a new MAC with provable security properties for highly
constrained devices such as RFID tags. In Kaisa Nyberg, editor, Fast Software En-
cryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, February
10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes in Computer
Science, pages 144–157. Springer, 2008.

