
A Double-Piped Mode of Operation
for MACs, PRFs and PROs:

Security beyond the Birthday Barrier

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation, Japan
yasuda.kan@lab.ntt.co.jp

Abstract. We revisit the double-pipe construction introduced by Lucks
at Asiacrypt 2005. Lucks originally studied the construction for iterated
hash functions and showed that the approach is effective in improving
security against various types of collision and (second-)preimage attacks.
Instead, in this paper we apply the construction to the secret-key set-
ting, where the underlying FIL (fixed-input-length) compression func-
tion is equipped with a dedicated key input. We make some adjustments
to Lucks’ original design so that now the new mode works with a sin-
gle key and operates as a multi-property-preserving domain extension of
MACs (message authentication codes), PRFs (pseudo-random functions)
and PROs (pseudo-random oracles). Though more than twice as slow as
the Merkle-Damg̊ard construction, the double-piped mode enjoys secu-
rity strengthened beyond the birthday bound, most notably, high MAC
security. More specifically, when iterating an FIL-MAC whose output
size is n-bit, the new double-piped mode yields an AIL-(arbitrary-input-
length-)MAC with security up to O

(
25n/6

)
query complexity. This bound

contrasts sharply with the birthday bound of O
(
2n/2
)
, which has been

the best MAC security accomplished by earlier constructions.

Keywords: domain extension, unpredictability, unforgeability, message
authentication code, MAC, birthday bound.

1 Introduction

Many of the symmetric-key cryptographic schemes are usually realized by it-
erating a smaller, fixed-input-length (FIL) primitive. Examples include hash
functions and message authentication codes (MACs), which are often built of a
compression function or of a block cipher. The underlying compression function
or block cipher has also a fixed output length, say n-bit. The size n corresponds
to a security parameter in more ways than one, because it defines not only the
final output size of the scheme but also the size of intermediate values in the it-
eration. For example, in the case of the Merkle-Damg̊ard (MD) construction [18,
9] or Cipher-Block-Chaining (CBC) mode of operation [22, 15], the size of the
intermediate values is exactly equal to n.

The “small” size n of intermediate values leads to various types of attacks and
to limited security of the overlying scheme. For instance, the Merkle-Damg̊ard

hash functions are known to be vulnerable to multi-collision attacks [14] and to
long-message second-preimage attacks [16]. These attacks exploit the fact that
internal collisions can be found with O

(
2n/2

)
work. For iterated MACs, the

internal collisions immediately yield forgery [25, 26], which confines the security
of the overlying MAC scheme to O

(
2n/2

)
query complexity. This security bound

is often called the birthday “barrier.”
Lucks’ Double-Pipe Construction. A natural approach to precluding the
above-mentioned attacks is to increase the size of intermediate values and to
make it larger than the final output size n. This idea was embodied by the
double-pipe hash [17] proposed by Lucks. In the double-pipe hash, the size of
intermediate values was doubled to 2n bits by invoking two applications of the
compression function per message block. The double-pipe design is more than
twice as slow as the MD construction, but Lucks showed that the double-pipe
hashing successfully rules out various birthday-type attacks.

In this paper we apply the double-pipe construction to the secret-key setting
and analyze the security of the scheme as a MAC. We also consider stronger
security notions of pseudo-random functions (PRFs) and pseudo-random oracles
(PROs).1 Of particular interest is the case of being merely a secure MAC, because
there has been no known construction of MAC-Pr (preserving) domain extension
with security beyond the birthday barrier. So we raise the following question:

Q. Can we prove that a double-piped mode provides an AIL-
(arbitrary-input-length-)MAC secure beyond the birthday bar-
rier based on the sole assumption that the underlying compres-
sion function is a secure FIL-MAC?

Our Results. The answer to the above question turns out to be positive. We
work in the dedicated-key setting [4], where the underlying compression function
is equipped with a dedicated key input like a block cipher. We then make two
slight modifications to Lucks’ original design and show that the new double-piped
mode operates as a MAC-Pr, PRF-Pr and PRO-Pr domain extension with each
type of security ensured beyond the birthday bound.

τ 1n

1n

m[ℓ] m[2]

1n 1n

⊕

m[1]

fk
⊕

fk

0n

0n

fk
⊕

fk fk

0d−3n

fk

fk

Fig. 1. Our double-piped mode of operation

Figure 1 describes our altered double-piped mode of operation iterating a
compression function fk : {0, 1}d → {0, 1}n (d ≥ 3n) with a secret key k (A
1 We use the term “PRO” [3] interchangeably with “indifferentiability” [19, 5].

formal definition of the scheme will be given in Sect. 4). The mode takes as its
input a message M = m[1]

∥∥ m[2]
∥∥ · · · ∥∥ m[ℓ] (being properly padded) with

each block of d− 2n bits and outputs the final value τ ∈ {0, 1}n.
The mode basically follows Luck’s original design, except that we make the

following two minor changes:

• In the original, the chaining variable to the second application of the com-
pression function was “tweaked” by swapping two hash values. Instead, we
tweak the chaining variable by XOR-ing (rather than swapping) one of the
two output values with a constant 1n.
• In the original, the final iteration handled the last message block and worked

just like intermediate iterations, except to omit the second application of the
compression function. Instead, we arrange a special finalization step, which
handles no message block and takes the last chaining variable “shifted” by 1n.

The former has been already used by [6] in a more generalized form. The change
is technical, and we adopt it only for simplicity of the proof. The latter technique
was employed in the CS construction [20]. Unlike the first one, this change is
essential to the security of our scheme. We remark that in principle the two
changes do not affect Luck’s original analysis, and the scheme (without the
secret key) remains secure as a hash function.

The new double-piped mode of operation is highly secure; we obtain the
following security results:

• MAC-Pr. This is the main result. We show that the scheme yields a MAC-
Pr domain extension providing security beyond the birthday barrier. Our se-
curity proof involves new techniques of transforming collisions into a forgery.
Using these techniques we are able to prove MAC security up to O

(
25n/6

)
query complexity, improving on the previous best security of the birthday
bound O

(
2n/2

)
. We also provide a discussion on the gap between our bound

O
(
25n/6

)
and the full security O

(
2n

)
.

• PRF-Pr. Our result for PRF is a straightforward corollary of that for
PRO. This is due to the fact that we are working in the dedicated-key
setting with the key being secret. In such a scenario, the notion of indis-
tinguishability (i.e., PRF) becomes strictly weaker than that of indifferen-
tiability (i.e., PRO). The new mode gives the full O(2n) security of PRF.
• PRO-Pr. We prove that the double-piped mode is indifferentiable beyond

the birthday bound; the mode is secure up to O(2n) query complexity. This
bound has been already realized by earlier constructions, but our scheme has
slight performance advantages over them (see Sect. 2).

Organization. Section 2 reviews previous constructions of domain extensions
for MACs, PRFs and PROs. Section 3 provides basic notation, adversary models,
and security notions used in the paper. In Sect. 4 we give a formal definition of
our double-piped mode of operation. Section 5 is devoted to the security proofs
of our MAC-Pr result. In Sect. 6 and 7 we present the security results for PRF-Pr
and PRO-Pr, respectively.

Table 1. Comparing the MAC/PRF/PRO security of various domain extensions

MAC PRF PRO

Feistel network 2n/6 2n 2n/16 [10, 23, 8]

Enciphered CBC 2n/4 2n/2 2n/4 [11]

NI, CS, ESh, MDP 2n/2 2n/2 2n/2 [1, 20, 5, 4, 12]

Proposed double-pipe 25n/6 2n 2n —

Benes, multilane-NMAC, one-pass — 2n — [24, 27, 28]

Prefix-free, chopMD, Maurer-Tessaro — 2n 2n [6, 7, 21]

2 Related Work

In this section we go through prior constructions of MAC-Pr, PRF-Pr and PRO-
Pr domain extensions. For MACs, previous constructions provide security only
up to the birthday bound. For PRFs and PROs, we mention only those construc-
tions which have security above the birthday bound. See Table 1 for summary.2

MAC-Pr Constructions. The study of MAC-Pr domain extension was initi-
ated by An and Bellare [1] who presented the NI construction. The NI construc-
tion was built on the MD iteration in the dedicated-key setting. The subsequent
work, including CS [20], ESh [4] and MDP [12], is all based on the MD con-
struction. All of these constructions have the birthday-bound security O

(
2n/2

)
.

Dodis and Puniya [10] showed that the Feistel network, when iterated sufficiently
many times, yields a secure, MAC domain extension with a relatively low bound
of O

(
2n/6

)
query complexity. A year later Dodis et al. [11] proposed the enci-

phered CBC mode, which iterates block ciphers (or “length-preserving MACs”)
and provides an AIL-MAC with the better security of O

(
2n/4

)
.

PRF-Pr Constructions. The problem of PRF domain extension has been
extensively studied. Patarin analyzed the Feistel network [23] and the Benes
network [24], and these constructions were shown to give O(2n) security. For
PRF, there exist constructions which are more efficient than the double-pipe
design, such as multilane-NMAC [27] and the one-pass construction in [28].
PRO-Pr Constructions. Chang et al. [6] proved that a double-pipe MD con-
struction with prefix-free padding is indifferentiable beyond the birthday bound.
Chang and Nandi [7] also proved that the chopMD construction based on a 2n-
bit compression function is indifferentiable beyond the birthday bound. These
constructions are similar to our double-piped mode of operation, but our con-
struction has slight performance gains over them as our scheme requires neither a
prefix-free encoding nor a 2n-bit compression function. Maurer and Tessaro [21]
treated the problem in a different setting, where the input size (rather than
output) of the primitive was restricted to n bits.
2 Here we focus on deterministic constructions without use of nonce or random-

ization. We also focus on property-preserving domain extensions. Hence other
constructions—for example RMAC [13]—are excluded from our comparison.

3 Preliminaries

General Notation. We write x ← y for the assignment of the value y to
a variable x. Given a set X, we write x

$←− X for the operation of selecting
an element uniformly at random from the set X and assigning its value to a
variable x. The symbol x

∥∥ y represents the concatenation of two strings x
and y, x ⊕ y the exclusive OR of x and y, and |x| the length of x in bits. For
a finite string M ∈ {0, 1}∗ and a block size b, the length of M in blocks is
the quantity ℓ =

⌈ |M |+1
b

⌉
. We adopt the notation M b←− M∥10∗ to signify the

“canonical” padding procedure, i.e., M ←M∥10bℓ−|M |−1, where ℓ is the length
in blocks of the original M (before being padded). Given a padded message M ,
we use the notation m[1]

∥∥ · · · ∥∥ m[ℓ] b←− M as a shorthand for partitioning the
string M into b-bit blocks and assigning each block value to m[1], . . . , m[ℓ], so
that each m[i] is of b-bit length. Also, we write x

∥∥ y
a,b←−− z for dividing the

string z ∈ {0, 1}a+b into x ∈ {0, 1}a and y ∈ {0, 1}b. Throughout the paper we
fix the output size n and define x̄ def= x⊕ 1n0|x|−n for a string x with |x| ≥ n.

Adversaries and Games. An adversary is a probabilistic algorithm. An ad-
versary A may take inputs or have access to one or more oracles. We write
y ← AO(x) to mean that the adversary A, given input x and access to oracle O,
outputs a value which is assigned to the variable y. The notation AO(x) = y
indicates the event that the output value of the adversary A, taking an input
value x and interacting with oracle O, happens to be equal to the value y.

Often it is convenient to describe oracle behavior in a game style. The nota-
tion G(A) indicates running A according to the description of G. By y ← G(A)
we mean the operation of running A in game G, and the value returned by game
G is assigned to the variable y. Likewise we define G(A) = y. Games frequently
involve sets and flags. A set Set is used to record certain specific types of values
that appear in the game. We write Set ∪←− x for the operation Set← Set ∪ {x}.
A flag flag is used to detect some event that happens in the game. By abuse of
notation we let flag also denote the event that the flag flag gets set. We write
flag for the complement of the event flag. Unless otherwise stated, sets are set
to ∅ and flags are set to 0 at the beginning of each game execution.

MACs. We adopt the standard single-verification model for the notion of MAC
security.3 Succinctly, for a keyed family of functions fk : X → Y with k ∈ K
and for an adversary A define

Advmac
f (A) def= Pr

[
x⋆ is new ∧ fk(x⋆) = y⋆

∣∣ (x⋆, y⋆)← Afk(·), k
$←− K

]
as the advantage function,4 where we call a message x⋆ new if it has not been
queried to oracle fk(·).

3 It suffices to consider only single-verification adversaries, because our MACs are
deterministic [2].

4 Throughout the paper the probabilities are defined over all coins of adversaries,
oracles and games.

PRFs. The notion of PRF says that a keyed family of functions fk : X → Y
with a random key k

$←− K should be indistinguishable from a truly random
function g : X → Y . Succinctly, define

Advprf
f (A) def= Pr

[
Afk(·) = 1

∣∣ k
$←− K

]
− Pr

[
Ag(·) = 1

∣∣ g
$←− {g : X → Y }

]
.

The notion of PRF implies a secure MAC [2].
PROs. Roughly speaking, the notion of indifferentiability [19, 5] corresponds to
a type of indistinguishability where adversaries are given oracle access not only
to the overlying scheme but also to the underlying primitive. Let F : {0, 1}∗ →
{0, 1}n be a mode of operation which iterates a random function f : {0, 1}d →
{0, 1}n. Let S : {0, 1}d → {0, 1}n be a (stateful) simulator having access to a
random function F : {0, 1}∗ → {0, 1}n. We define

Advpro
F,S(A) def= Pr

[
AF,f = 1

]
− Pr

[
AF,S = 1

]
.

Here it is important to note that the simulator cannot “observe” the queries that
A makes to F .
Resources. We bound resources of adversaries in terms of its time complex-
ity t, the number of queries q and the total length of queries σ in blocks.5 We
write, for example, Advmac

f (t, q, σ) def= maxA Advmac
f (A), where the max runs

over all adversaries, each having a time complexity at most t, making at most q
queries, the total length of queries being at most σ blocks. To measure the time
complexity of adversaries, we fix a model of computation. The time complex-
ity of an adversary includes its code size and the total time needed to perform
its overlying experiment, in particular the time to access its oracles. We write
Timef for the time to perform one computation of f (for fixed-length inputs)
and Memf (σ) the memory to store σ-many input/output pairs of f . Lastly we
note that for the notion of PROs, the resources of the simulator must be also
taken into consideration.

4 Definition of the Double-Piped Mode

Now we give a formal definition of our double-piped mode of operation Fk :
{0, 1}∗ → {0, 1}n in Fig. 2. Our mode F takes a secret key k ∈ {0, 1}κ and a
message M ∈ {0, 1}∗, outputting a tag τ ∈ {0, 1}n. It iterates a single compres-
sion function fk : {0, 1}d → {0, 1}n operating with a single key k ∈ {0, 1}κ. We
require that d ≥ 3n. We refer back to Fig. 1 for pictorial representation.

5 MAC-Pr beyond the Birthday Barrier

In this section we prove that the double-piped mode F is an AIL-MAC with
security well above the birthday bound, based on the sole assumption that the
compression function f is a secure FIL-MAC. First we roughly outline our proof
and then proceed to its full description.
5 The block length depends on each scheme, and in our construction it is equal to

d− 2n bits.

Algorithm Fk(M)

101 M
d−2n←−−−M∥10∗; m[1]

∥∥ m[2]
∥∥ · · · ∥∥ m[ℓ]

d−2n←−−−M

102 v1[1]← 0n; v2[1]← 0n

103 for i = 1 to ℓ

104 x1[i]← v1[i]
∥∥ v2[i]

∥∥ m[i]; x2[i]← v1[i]
∥∥ v2[i]

∥∥ m[i]

105 v1[i + 1]← fk

(
x1[i]
)
; v2[i + 1]← fk

(
x2[i]
)

106 end for

107 τ ← fk

(
v1[ℓ + 1]

∥∥ 1n
∥∥ v2[ℓ + 1]

∥∥ 0d−3n
)

108 ret τ

Fig. 2. Definition of our double-piped mode of operation Fk : {0, 1}∗ → {0, 1}n

5.1 Outline of the MAC-Pr Proof

We convert a forger attacking F into ones attacking f . We start by observing
that the success of forging a tag value for F implies at least one of the following
three events:

• Event forge: A forgery of the tag value for f occurs at the finalization step,
• Event ones: An output value of f happens to be equal to 1n at some internal

invocation to f , or
• Event match: The 2n-bit chaining values at the input to the finalization

step happen to be the same for two different queries.

The first two events immediately give us forgers attacking f without birthday
degradation, but the third one does not. So we break the third event down
further, showing that the match event points to at least one of the following
three events:

• Event zeros: At some iteration point, the 2n-bit chaining value happens to
be equal to 02n,
• Event twofold: At some iteration point, the output of the “upper” f happens

to be equal to that of the “lower” f , or
• Event dblcoll: A collision of 2n-bit chaining values occurs somewhere, yield-

ing two collisions of such a type for f .

The zeros and twofold events instantly provide forgers attacking f without
birthday degradation. To treat the dblcoll event, however, we need to partition
the case depending on “how many” (single, n-bit) collisions for f are formed in
the game. We introduce a threshold value θ and denote by theta the event that
“θ-many” (single, n-bit) collisions for f are found. We divide the case as follows:

• Case theta: In this case we construct a forger attacking f by utilizing the
accumulation of collisions. Usually the transformation of a collision into a
forgery would lead to birthday degradation [1], but we succeed in maintaining
a forgery probability above the birthday bound owing to the large (θ-many)
number of collisions.

• Case dblcoll∧theta: On the other hand, if there are not “so many” collisions,
then we can create a forger attacking f with a good success probability by
utilizing the double, 2n-bit collision(s). Namely, we first detect that a colli-
sion occurs at the half n-bit value, say v ∈ {0, 1}n, of the chaining variable
(and there are not so many such collisions). We then try to forge a tag, hop-
ing that the remaining half n-bit value will also collide. The (predicted) tag
value is chosen from previous chaining variables with its half value colliding
to v (and there are not so many candidates for the tag value).

Finally, we choose the threshold value θ appropriately so that the security
bound becomes optimal in our setting. This gives us the desired security of
O

(
25n/6

)
query complexity.

5.2 Detailed Proof of MAC-Pr

We now state our main theorem:

Theorem 1. Let F be the double-piped mode. If the underlying compression
function f is a secure FIL-MAC, then the mode F yields a secure AIL-MAC
with security above the birthday bound. Specifically, we have

Advmac
F (t, q, σ) ≤ 9 · σ6/5 ·Advmac

f (t′, q + 2σ),

where t′ = t + (q + 2σ) · Timef + Memf (2σ).

Proof. Let A be a forger attacking F , having a time complexity at most t, making
at most q queries to Fk(·) oracle, the query complexity being at most σ blocks.
We consider game G1 as defined in Fig. 3. Game G1 precisely corresponds to
the game defining Advmac

F (A), except that it introduces three flags forge, ones
and match.

We claim that a successful forgery by A implies at least one of the events
forge, ones or match. A forgery by A immediately implies the event forge as long
as the value u at line 443 is new. If the value u is not new, then it must have been
inserted into the set Dom(f) at lines 331, 345 or 431. An insertion at lines 331
or 431 implies the event ones, while that at line 345 implies match. Thus we have

Advmac
F (A) def= Pr

[
G1(A) = 1

]
≤ Pr

[
forge ∨ ones ∨match

]
≤ Pr

[
forge

]
+ Pr

[
ones

]
+ Pr

[
match ∧ ones

]
.

We start with bounding Pr
[
forge

]
. We construct a forger B1 attacking f as

follows: B1 runs the adversary A, simulating Fk(·) oracle and computing the
subroutine Vk(·, ·) by making queries to its fk(·) oracle. The adversary B1 stops
at line 444 before making the query u to its fk(·) oracle and submits a forgery
(u, τ⋆). Note that B1 always succeeds under the event forge, making at most
q + 2σ queries to its oracle. So we get

Pr
[
forge

]
≤ Advmac

f (B1) ≤ Advmac
f (t1, q + 2σ),

Game G1(A):

201 k
$←− {0, 1}κ

202 (M⋆, τ⋆)← AFk(·)

203 if M⋆ ∈ Dom(F) then ret 0 end if
204 ret Vk(M⋆, τ⋆)

On query M to Fk(·):
300 Dom(F) ∪←−M ; M

d−2n←−−−M∥10∗

301 m[1]
∥∥ m[2]

∥∥ · · · ∥∥ m[ℓ]
d−2n←−−−M

302 v1[1]← 0n; v2[1]← 0n

303 for i = 1 to ℓ
304 x1[i]← v1[i]

∥∥ v2[i]
∥∥ m[i]

305 x2[i]← v1[i]
∥∥ v2[i]

∥∥ m[i]
306 v1[i + 1]← fk

(
x1[i]
)

I
311 v2[i + 1]← fk

(
x2[i]
)

I
◃
331 Dom(f) ∪←− x1[i], x2[i]
332 if v1[i + 1] = 1n or v2[i + 1] = 1n

333 then ones← 1 end if
334 end for
341 Dbl ∪←− v1[ℓ + 1]

∥∥ v2[ℓ + 1]

343 u← v1[ℓ + 1]
∥∥ 1n

∥∥ v2[ℓ + 1]
∥∥ 0d−3n

345 τ ← fk(u); Dom(f) ∪←− u
347 ret τ

Subroutine Vk(M, τ):

400 M
d−2n←−−−M∥10∗

401 m[1]
∥∥ m[2]

∥∥ · · · ∥∥ m[ℓ]
d−2n←−−−M

402 v1[1]← 0n; v2[1]← 0n

403 for i = 1 to ℓ
404 x1[i]← v1[i]

∥∥ v2[i]
∥∥ m[i]

405 x2[i]← v1[i]
∥∥ v2[i]

∥∥ m[i]
406 v1[i + 1]← fk

(
x1[i]
)

I
411 v2[i + 1]← fk

(
x2[i]
)

I
◃
431 Dom(f) ∪←− x1[i], x2[i]
432 if v1[i + 1] = 1n or v2[i + 1] = 1n

433 then ones← 1 end if
434 end for
441 if v1[ℓ + 1]

∥∥ v2[ℓ + 1] ∈ Dbl
442 then match← 1 end if
443 u← v1[ℓ + 1]

∥∥ 1n
∥∥ v2[ℓ + 1]

∥∥ 0d−3n

444 τ ′ ← fk(u)
445 if τ = τ ′ and u /∈ Dom(f)
446 then forge← 1 end if
447 if τ = τ ′ then ret 1 end if
448 ret 0

Fig. 3. Definition of game G1(A) for MAC-Pr. The marks I and ◃ indicate that more
lines will be inserted in later games.

where t1 = t + (q + 2σ) · Timef .
We next treat the term Pr

[
ones

]
. We construct a forger B2 attacking f as

follows: B2 first picks an index α
$←− {1, 2, . . . , 2σ} and then starts running the

adversary A, simulating Fk(·) oracle and (if necessary) computing Vk(·, ·) by
making queries to its fk(·) oracle. The adversary B2 keeps a counter, which is
initialized to 0 and gets incremented as B2 makes a call to fk(·) oracle except
for the finalization step at line 345 where the counter remains unchanged. Just
before making the α-th query xα to fk(·) oracle, B2 quits running A and outputs
a forgery (xα, 1n).

We now argue that the forger B2 always succeeds as long as the index α is
correctly guessed; the α-th query is expected to be the first call to fk(·) oracle
such that the value 1n gets returned. We verify that the value xα is new if the
index α is such a value. The only thing to check is whether xα has been already
queried at the finalization step (at line 345). If it had been queried, then it would
mean that xα is of the form ∗1n∗ in which the leftmost ∗ is some n-bit string,
contradicting with the minimality of α. Now the choice of α is independent of

the event ones, so we get Advmac
f (B2) ≥ 1

2σ ·Pr[ones]. Observe that the adversary
B2 makes at most q + 2σ queries to its oracle, and hence we obtain

Pr
[
ones

]
≤ 2σ ·Advmac

f (B2) ≤ 2σ ·Advmac
f (t1, q + 2σ).

We proceed to the evaluation of Pr
[
match ∧ ones

]
. To do this, we consider

game G2 defined in Fig. 4. Game G2 adds three new flags zeros, twofold and
dblcoll to game G1.

Insert following lines into game G1 (at mark ◃):
On query M to Fk(·):
320 if v1[i + 1] = v2[i + 1]
321 then twofold← 1 end if
322 w ← v1[i + 1]

∥∥ v2[i + 1]
323 if x1[i] /∈ Dom1(f) and w ∈ Dbl
324 then dblcoll← 1 end if
325 Dom1(f) ∪←− x1[i]; Dbl ∪←− w
326 if w = 02n then zeros← 1 end if

Subroutine Vk(M, τ):
422 w ← v1[i + 1]

∥∥ v2[i + 1]
423 if x1[i] /∈ Dom1(f) and w ∈ Dbl
424 then dblcoll← 1 end if
425 Dom1(f) ∪←− x1[i]; Dbl ∪←− w
426 if w = 02n then zeros← 1 end if

Fig. 4. Definition of game G2(A) for MAC-Pr

We show that match implies at least one of the events zeros, twofold or dblcoll.
Let (M⋆, τ⋆) be the forgery output by the adversary A. The event match implies
that there exists some previous query M ′ to Fk(·) oracle such that Fk(M ′) =
Fk(M⋆), making an internal collision of the value u at lines 343 and 443. If either
(i) M ′ is a suffix of M⋆ with M⋆ producing a chaining variable of 02n or (ii) M⋆ is
such a suffix of M ′, then the case immediately implies the zeros event. If neither
is such a suffix of the other, then the condition Fk(M ′) = Fk(M⋆) guarantees
that there must be an internal collision of 2n-bit chaining variables. The collision
value may be of the form v∥v ∈ {0, 1}2n leading to the event twofold, or otherwise
we must have the event dblcoll. Therefore, we have

Pr
[
match ∧ ones

]
≤ Pr

[
(zeros ∨ twofold ∨ dblcoll) ∧ ones

]
≤ Pr

[
zeros ∧ ones

]
+ Pr

[
twofold ∧ ones

]
+ Pr

[
twofold ∧ dblcoll ∧ ones

]
.

We bound the probability Pr
[
zeros∧ones

]
. We construct a forger B3 attacking

f as follows: B3 first picks an index α
$←− {1, 2, . . . , σ} and then starts running

the adversary A, simulating game G2 by making queries to its fk(·) oracle. The
adversary B3 keeps a counter, which is initialized to 0 and gets incremented by 1
(and not by 2) as B3 makes two calls to fk(·) oracle either at lines 306-311 or
at lines 406-411. Just before the α-th execution of lines 306-311 or of lines 406-
411, in which two queries x1

α, x2
α are about to be made, B3 quits running A and

outputs a forgery (x1
α, 0n).

The adversary B3 always succeeds under the event zeros ∧ ones along with
the condition that the index α is correctly guessed (i.e., the α-th execution of
lines 306-311 or of lines 406-411 sets the flag zeros for the first time), because the
query x1

α is guaranteed to be new if the value α is minimal (Notice that either
x1

α = x1
α′ or x1

α = x2
α′ for some α′ < α implies the event zeros at index α′). In

particular, the value x1
α cannot have been queried at the finalization step (at

line 345) due to the event ones. Now the choice of α is independent of the event
zeros ∧ ones, so we get Advmac

f (B3) ≥ 1
σ · Pr[zeros ∧ ones]. The adversary B3

makes at most q + 2σ queries to its oracle, which gives us

Pr
[
zeros ∧ ones

]
≤ σ ·Advmac

f (B3) ≤ σ ·Advmac
f (t1, q + 2σ).

We then treat the term Pr
[
twofold∧ones

]
. We construct a forger B4 attacking

f as follows: B4 first picks an index α
$←− {1, 2, . . . , σ−1} and then starts running

the adversary A, simulating game G2 by making queries to its fk(·) oracle. The
adversary B4 keeps the same type of counter as the one used by B3. Just before
the α-th execution of lines 306-311, in which two queries x1

α, x2
α are about to be

made, B4 quits running A, makes a query v1
α ← fk(x1

α) and outputs a forgery
(x2

α, v1
α).

The adversary B4 always succeeds under the event twofold ∧ ones provided
that the index α is correctly chosen (i.e., the α-th execution of lines 306-311
sets the flag twofold for the first time), because the query x2

α must be new if
the value α is minimal (Notice that either x2

α = x1
α′ or x2

α = x2
α′ for some

α′ < α implies the event twofold at index α′). Also, the value x2
α cannot have

been queried at the finalization step (at line 345) under the event ones. Now the
choice of α is independent of the event twofold ∧ ones, so we get Advmac

f (B4) ≥
1

σ−1 · Pr[twofold ∧ ones]. The adversary B4 makes at most q + 2σ queries to its
oracle, and hence

Pr
[
twofold ∧ ones

]
≤ (σ − 1) ·Advmac

f (B4) ≤ (σ − 1) ·Advmac
f (t1, q + 2σ).

We go on to handle the term Pr
[
twofold ∧ dblcoll ∧ ones

]
. We introduce a

threshold value θ = θ(σ) in game G3, as defined in Fig. 5. For the moment we
just let θ be a certain function of σ. The description of θ is to be determined at
the end of the proof. Game G3 involves three sets All, Coll and Pair. The set All
simply stores all input/output pairs (x, v) already computed as fk(x) = v. The
set Coll is a subset of All and stores only those pairs (x, v) that are colliding. The
set Pair stores colliding pairs (x′, x). We define a function N(All, v⋆) def=

{
(x, v)

∣∣
(x, v) ∈ All, v = v⋆

}
. We see that

Pr
[
twofold ∧ dblcoll ∧ ones

]
= Pr

[
(twofold ∧ dblcoll ∧ ones ∧ theta)

∨ (twofold ∧ dblcoll ∧ ones ∧ theta)
]

≤ Pr
[
ones ∧ theta

]
+ Pr

[
twofold ∧ dblcoll ∧ ones ∧ theta

]
.

Insert following lines into game G2 (at mark I):

On query M to Fk(·):
307 C

(
x1[i], v1[i + 1]

)
312 C

(
x2[i], v2[i + 1]

)
Subroutine Vk(M, τ):
407 C

(
x1[i], v1[i + 1]

)
412 C

(
x2[i], v2[i + 1]

)

Subroutine C(x, v):
501 U ← N(All, v)
502 if (x, v) /∈ All and U ̸= ∅ then
503 Coll ∪←− (x, v); Coll← Coll ∪ U
504 for each (x′, v′) ∈ U
505 Pair ∪←− (x′, x) end for
506 end if
507 All ∪←− (x, v)
508 if |Pair| ≥ θ(σ) then theta← 1 end if

Fig. 5. Definition of game G3(A) for MAC-Pr

We evaluate the probability Pr
[
ones ∧ theta

]
. We construct a forger B5 at-

tacking f as follows: B5 picks two indices α, β
$←− {1, 2, . . . , 2σ} such that α < β.

Then B5 starts running the adversary A, simulating Fk(·) oracle and (if nec-
essary) computing Vk(·, ·) by making queries to its fk(·) oracle. The adversary
B5 keeps the same type of counter as the one used by forger B2 (counting the
number of calls to fk(·) oracle except at the finalization step). On making the
α-th query xα to fk(·) oracle, B5 records the returned value vα ← fk(xα). The
adversary B5 resumes running A. Then just before making the β-th query xβ to
fk(·), B5 stops running A and outputs (xβ , vα) as a forgery.

The adversary B5 succeeds in forgery if fk(xα) = fk(xβ) and the value xβ

has not been queried at any previous point γ < β. Note that the query xβ cannot
have been made at the finalization step, since we are under the event ones. Now
we see that the number of such working pairs (α, β) is exactly |Pair|, and this
quantity |Pair| becomes larger than θ(σ) if the event theta occurs. Since there
are

(
2σ
2

)
choices of (α, β) total and this choice is independent from the event

ones ∧ theta, we obtain Advmac
f (B5) ≥ θ(σ)

(2σ
2) · Pr

[
ones ∧ theta

]
. This yields

Pr
[
ones ∧ theta

]
≤

(
2σ
2

)
θ(σ)

·Advmac
f (B5) ≤

2σ2

θ(σ)
·Advmac

f (t1, q + 2σ),

where we observe that B5 makes at most q + 2σ queries to its fk(·) oracle.
Lastly, we assess the probability Pr

[
twofold∧dblcoll∧ones∧ theta

]
. For this,

it is helpful to give a graphical interpretation of the sets Coll and Pair. See Fig. 6.
The vertices of the collision graph are simply the points in Coll. Two distinct
points (x, v), (x′, v′) ∈ Coll are connected by an edge if they are colliding, i.e., if
v = v′. Hence, the edges correspond to the points in Pair. The collision graph is
always a disjoint union of complete graphs, containing no isolated vertices.

Now we construct a forger B6 attacking f under the event twofold∧ dblcoll∧
ones ∧ theta. First observe that the event theta sets a limit on the number of
vertices in the collision graph. The number is at most 2θ(σ), for otherwise the
number of edges would exceed θ(σ). Hence we have |Coll| ≤ 2θ(σ) throughout
the game. The adversary B6 first picks an index β

$←− {2, 3, . . . , ⌈2θ(σ)⌉} and

Fig. 6. A simple illustration of the collision graph. The number of vertices is equal
to |Coll|, and the number of edges is equal to |Pair|.

then starts running A, simulating game G3 by making queries to its fk(·) oracle.
B6 keeps a counter, and on the β-th insertion of a colliding value (xβ , vβ) into
the set Coll (so that at this point |Coll| = β), B6 stops running A and carries
out the following operation:

1. If the β-th insertion happens to be at the “lower” pipe (i.e., at lines 312
or 412), then B6 aborts.

2. Otherwise, the β-th insertion of (xβ , vβ) occurs at the “upper” pipe (i.e., at
lines 307 or 407), in which case B6 computes the following:
(a) Choose (xα, vα) $←− N(All, vβ)r{(xβ , vβ)} so that xα ̸= xβ and fk(xα) =

vα = vβ = fk(xβ).
(b) Obtain the value v′

α ← fk(x̄α) by either querying x̄α to fk(·) oracle again
or searching the set All for the entry (x̄α, ·).

(c) Submit (x̄β , v′α) as a forgery.

We verify that B6 succeeds in forgery as long as the values for β and xα are
guessed correctly (and that the case B6 aborts is not a concern). The basic idea
is that B6 hopes to have (vα, v′α) = (vβ , v′β) with v′β

def= fk(x̄β) and x̄β being new.
The event twofold ∧ dblcoll guarantees the existence of such a pair (α, β) with
(vα, v′α) = (vβ , v′β), xα ̸= xβ and xα ̸= x̄β . So let α⋆ < β⋆ be the minimal indices
satisfying these conditions (Note that at (α⋆, β⋆) the event twofold∧dblcoll does
not necessarily occur, since the query xα⋆ may well be in the “lower” pipe). The
minimality ensures that x̄β⋆ is new under the event ones.

We evaluate the success probability of B6. In order to do this, we need to
count the number of possible values for xα at step 2(a). We claim that this
number is at most

√
2θ(σ). To see this, observe that the values for xα come from

the vertices of the connected component corresponding to the output collision
value vβ . Such a connected component is a complete graph, and the number
of vertices must be at most

√
2θ(σ) + 1, for otherwise the number of edges

would exceed
(⌈√

2θ(σ)+1
⌉

2

)
≥

(√
2θ(σ)+1

)√
2θ(σ)

2 > θ(σ), contradicting with

the event theta. Hence the number of possible candidates for xα is at most(√
2θ(σ) + 1

)
− 1 =

√
2θ(σ), excluding the point xβ . Now observe that the

choices of β and xα are completely hidden from the transcript of A, and these
values do not affect the probability Pr

[
twofold∧ dblcoll∧ ones∧ theta

]
, yielding

Advmac
f (B6) ≥ 1

2θ(σ) ·
1√

2θ(σ)
·Pr

[
twofold ∧ dblcoll ∧ ones ∧ theta

]
. Hence we get

Pr
[
twofold ∧ dblcoll ∧ ones ∧ theta

]
≤ 2θ(σ)

√
2θ(σ) ·Advmac

f (B6)

≤ 3 · θ(σ)3/2 ·Advmac
f (t2, q + 2σ),

where t2 = t + (q + 2σ) · Timef + Memf (2σ). Note that B6 makes at most
q + 2σ queries to its oracle and maintains the list All, which consumes at most
Memf (2σ) amount of time complexity.

It remains to determine the threshold function θ(σ). To do this, we sum up
the terms obtained:

Advmac
F (A) ≤ Advmac

f (B1) + 2σ ·Advmac
f (B2)

+ σ ·Advmac
f (B3) + (σ − 1) ·Advmac

f (B4)

+
2σ2

θ(σ)
·Advmac

f (B5) + 3 · θ(σ)3/2 ·Advmac
f (B6).

Now we simply set θ(σ) def= σ4/5. This choice leads to the coefficients of 2σ2

θ(σ) =
2σ6/5 and 3 · θ(σ)3/2 = 3σ6/5. Rounding off the terms yields Advmac

F (A) ≤
9 · σ6/5 ·Advmac

f (t2, q + 2σ), as desired. ⊓⊔

5.3 On the Tightness of the Bound O
(
25n/6

)
At the current stage the best attack we know is the birthday attack, which re-
quires O(2n) query complexity. Hence the bound obtained O

(
25n/6

)
is not tight.

The gap originates in our construction of adversary B6. Recall that when B6

makes a choice of β it assumes the worst case scenario of 2θ(σ)-many vertices,
the collision graph being a disjoint union of numerous 2-complete graphs. On
the other hand, when B6 makes a choice of xα it assumes the other worst case
scenario of

√
2θ(σ)-many vertices, the collision graph being a single gigantic

complete graph. Hence we are considering two extreme cases which cannot hap-
pen concurrently. It remains an open problem to fill in the gap between our proof
bound O

(
25n/6

)
and the best known attack bound O(2n).

6 PRF-Pr beyond the Birthday Barrier

The PRF-Pr property of our mode immediately follows from the forthcoming
PRO-Pr result. This implication is due to the following simple lemma:

Lemma 1 (PRO-Pr ⇒ PRF-Pr in the Dedicated-Key Setting). Let Fk :
{0, 1}∗ → {0, 1}n be a mode of operation in the dedicated-key setting, which
iterates a primitive fk : {0, 1}d → {0, 1}n with a secret key k. If the mode F is
PRO-Pr in the sense of iterating a random function f : {0, 1}d → {0, 1}n, then
it is PRF-Pr. Specifically, for any simulator S, we have

Advprf
F (t, q, σ) ≤ Advprf

f (t′, q′) + Advpro
F,S(t, q, σ),

where t′ = t + q′ · Timef and q′ is the number of calls to f necessary to process
σ-long queries to F .

Proof. Let A be a distinguisher attacking F , having a time complexity at most t,
making queries whose total complexity is at most σ blocks. We let F ⋆ : {0, 1}∗ →
{0, 1}n denote the mode of operation identical to F except that the underlying
primitive is replaced with a random function f : {0, 1}d → {0, 1}n (rather than
a pseudo-random function fk). Let F : {0, 1}∗ → {0, 1}n be a random function.
We can bound the advantage Advprf

F (A) as

Pr
[
AFk(·) = 1

]
− Pr

[
AF(·) = 1

]
=Pr

[
AFk(·) = 1

]
− Pr

[
AF ⋆(·) = 1

]
+ Pr

[
AF ⋆(·) = 1

]
− Pr

[
AF(·) = 1

]
≤Advprf

f (B) + Advpro
F,S(A),

where we construct the distinguisher B, who attacks f , “naturally” from A who
is distinguishing between Fk and F ⋆. Note that S can be any simulator. We see
that B makes at most q′ queries to its f oracle and that A makes no queries to
the underlying primitive or to the simulator. This gives us the bound. ⊓⊔

7 PRO-Pr beyond the Birthday Barrier

In this section we show that our double-piped mode of operation F : {0, 1}∗ →
{0, 1}n is PRO-Pr with security above the birthday bound. It turns out that
our mode provides the full PRO security of O(2n) query complexity. Our proof
essentially follows the lines of [3].

In order to state our theorem, we give a description of simulators. See Fig. 7.
The simulators maintain a directed, edge-labeled graph structure Vert(f) and
Edge(f). The symbol P (Edge(f), w) denotes the set of “paths” m1∥m2∥ · · · (con-
catenated labels) starting at the origin 02n and connecting to the vertex w. The
simulators also involve arrays f [·] and g[·], which are everywhere undefined at the
beginning of the game. The symbol Dom(f) denotes the set of already-defined
domain points in the array f .

Theorem 2. The mode of operation F is PRO-Pr beyond the birthday bound.
Specifically, we have

Advpro
F,S(t, qf , σF) ≤ σF + qf

2n−1
+

5σ2
F + 18σF qf + 17q2

f

22n
,

where the simulator S has a time complexity at most t+Memf (2σF) and makes
at most qf queries to F oracle (the idealized F).

Proof (Sketch). First we introduce a slightly modified mode of operation H :
{0, 1}∗ → {0, 1}n. See Fig. 8. The new mode H iterates two independent random
functions f and g. The mode H is identical to the original F except that the
finalization step is replaced with the new function g.

Initialization:
600 Vert(f)← {02n}

Simulator S(x):
700 if x ∈ Dom(f) then ret f [x] end if

701 v1∥v2∥m
n,n,d−2n←−−−−−− x

702 if v2 = 1n then v′
2∥m′ n,d−3n←−−−−− m

703 if v1∥v′
2 ∈ Vert(f) then

704 M
$←− P
(
Edge(f), v1∥v′

2

)
705 f [x]← F(M)

706 else f [x]
$←− {0, 1}n end if

707 else f [x]
$←− {0, 1}n; f [x̄]

$←− {0, 1}n
708 if v1∥v2 ∈ Vert(f) then
709 Vert(f) ∪←− f [x]

∥∥ f [x̄]

710 Edge(f) ∪←−
(
v1∥v2, m, f [x]∥f [x̄]

)
711 end if
712 if v̄1∥v2 ∈ Vert(f) then
713 Vert(f) ∪←− f [x̄]

∥∥ f [x]

714 Edge(f) ∪←−
(
v̄1∥v2, m, f [x̄]∥f [x]

)
715 end if end if
716 ret f [x]

Simulator Sf (x):
800 if x ∈ Dom(f) then ret f [x] end if

801 w∥m 2n,d−2n←−−−−− x

802 f [x]
$←− {0, 1}n; f [x̄]

$←− {0, 1}n
803 if w ∈ Vert(f) then
804 Vert(f) ∪←− f [x]

∥∥ f [x̄]

805 Edge(f) ∪←−
(
w, m, f [x]∥f [x̄]

)
end if

806 if w̄ ∈ Vert(f) then
807 Vert(f) ∪←− f [x̄]

∥∥ f [x]

808 Edge(f) ∪←−
(
w̄, m, f [x̄]∥f [x]

)
end if

809 ret f [x]

Simulator Sg(u):
900 if u ∈ Dom(g) then ret g[u] end if
901 if u ∈ Vert(f) then

902 M
$←− P
(
Edge(f), u

)
903 g[u]← H(M)

904 else g[u]
$←− {0, 1}n end if

905 ret g[u]

Fig. 7. Definitions of simulators S, Sf and Sg for PRO-Pr

We start with noting that F is secure if H is secure. The reduction is without
birthday degradation. Namely, we show that if H is PRO-Pr beyond the birthday
bound, then so is F . More specifically, we obtain

Advpro
F,S(t, qf , σF) ≤ Advpro

H,Sf ,Sg
(t, qf , qf , σF) +

σF + qf

2n
,

where in the parameters of Advpro
H,Sf ,Sg

the second “qf” is for the number of
queries to g oracle and the last σF for the total complexity of queries made to
H oracle. The proof is the same as the one for Theorem 5.2 in [3].

Now it remains to analyze the security of H. The analysis amounts to bound-
ing the probability that certain “bad” events occur as in [3]. The key to keeping

τ

1n

m[ℓ] m[2]

1n 1n

⊕

m[1]

f
⊕

f

0n

0n

f
⊕

f g f

f

Fig. 8. Description of H : {0, 1}∗ → {0, 1}n iterating two random functions f and g

the security bound in O(2n) is to treat the output values of f always as pairs(
f(x), f(x̄)

)
and to keep track of those “bad” events associated with the 2n-bit

values. By doing so, we are able to obtain

Advpro
H,Sf ,Sg

(t, qf , qg, σH) ≤ σH + qf

2n

+
5σ2

H + 14σHqf + 12q2
f + 4σHqg + qg + 4qfqg

22n
,

which yields the claimed bound. ⊓⊔

Acknowledgments

The author is most grateful to the Eurocrypt 2009 anonymous reviewers for
their valuable comments. One of the reviewers carried out a thorough review
of the MAC-Pr proof and pointed out a couple of typos. Some of the reviewers
pointed out an inappropriate treatment of the related work. These comments
were especially helpful in revising the paper.

References

1. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message au-
thentication under weakened assumptions. In Wiener, M.J., ed.: CRYPTO 1999.
Volume 1666 of LNCS., Heidelberg, Springer (1999) 252–269

2. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in
message authentication and authenticated encryption. Cryptology ePrint Archive:
Report 2004/304 (2004)

3. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In Lai, X., Chen, K., eds.: ASIACRYPT 2006. Volume 4284
of LNCS., Heidelberg, Springer (2006) 299–314

4. Bellare, M., Ristenpart, T.: Hash functions in the dedicated-key setting: Design
choices and MPP transforms. In Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A.,
eds.: ICALP 2007. Volume 4596 of LNCS., Heidelberg, Springer (2007) 399–410

5. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In Shoup, V., ed.: CRYPTO 2005. Volume 3621 of
LNCS., Heidelberg, Springer (2005) 430–448

6. Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable security analysis of popu-
lar hash functions with prefix-free padding. In Lai, X., Chen, K., eds.: ASIACRYPT
2006. Volume 4284 of LNCS., Heidelberg, Springer (2006) 283–298

7. Chang, D., Nandi, M.: Improved indifferentiability security analysis of chopMD
hash function. In Nyberg, K., ed.: FSE 2008. Volume 5086 of LNCS., Heidelberg,
Springer (2008) 429–443

8. Coron, J.S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In Wagner, D., ed.: CRYPTO 2008. Volume 5157 of LNCS.,
Heidelberg, Springer (2008) 1–20

9. Damg̊ard, I.: A design principle for hash functions. In Brassard, G., ed.: CRYPTO
1989. Volume 435 of LNCS., Heidelberg, Springer (1990) 416–427

10. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In Naor,
M., ed.: EUROCRYPT 2007. Volume 4515 of LNCS., Heidelberg, Springer (2007)
534–554

11. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers
and length-preserving MACs. In Smart, N.P., ed.: EUROCRYPT 2008. Volume
4965 of LNCS., Heidelberg, Springer (2008) 198–219

12. Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damg̊ard scheme
with a permutation. In Kurosawa, K., ed.: ASIACRYPT 2007. Volume 4833 of
LNCS., Heidelberg, Springer (2007) 113–129

13. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC
beyond the birthday paradox limit: A new construction. In Daemen, J., Rijmen,
V., eds.: FSE 2002. Volume 2365 of LNCS., Heidelberg, Springer (2002) 237–251

14. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In Franklin, M.K., ed.: CRYPTO 2004. Volume 3152 of LNCS., Hei-
delberg, Springer (2004) 306–316

15. JTC1: Data cryptographic techniques—Data integrity mechanism using a crypto-
graphic check function employing a block cipher algorithm (1989) ISO/IEC 9797.

16. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In Cramer, R., ed.: EUROCRYPT 2005. Volume 3494 of LNCS.,
Heidelberg, Springer (2005) 474–490

17. Lucks, S.: A failure-friendly design principle for hash functions. In Roy, B.K., ed.:
ASIACRYPT 2005. Volume 3788 of LNCS., Heidelberg, Springer (2005) 474–494

18. Merkle, R.C.: One way hash functions and DES. In Brassard, G., ed.: CRYPTO
1989. Volume 435 of LNCS., Heidelberg, Springer (1990) 428–446

19. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In Naor, M.,
ed.: TCC 2004. Volume 2951 of LNCS., Springer (2004) 21–39

20. Maurer, U.M., Sjödin, J.: Single-key AIL-MACs from any FIL-MAC. In Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M., eds.: ICALP 2005. Volume
3580 of LNCS., Heidelberg, Springer (2005) 472–484

21. Maurer, U.M., Tessaro, S.: Domain extension of public random functions: Beyond
the birthday barrier. In Menezes, A., ed.: CRYPTO 2007. Volume 4622 of LNCS.,
Heidelberg, Springer (2007) 187–204

22. NIST: Computer data authentication (1985) FIPS 113.
23. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In Franklin,

M.K., ed.: CRYPTO 2004. Volume 3152 of LNCS., Heidelberg, Springer (2004)
106–122

24. Patarin, J.: A proof of security in O(2n) for the Benes scheme. In Vaudenay, S.,
ed.: AFRICACRYPT 2008. Volume 5023 of LNCS., Heidelberg, Springer (2008)
209–220

25. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In Coppersmith, D., ed.: CRYPTO 1995. Volume 963 of LNCS., Hei-
delberg, Springer (1995) 1–14

26. Preneel, B., van Oorschot, P.C.: On the security of iterated message authentication
codes. IEEE Transactions on Information Theory 45(1) (1999) 188–199

27. Yasuda, K.: Multilane HMAC—Security beyond the birthday limit. In Srinathan,
K., Rangan, C.P., Yung, M., eds.: INDOCRYPT 2007. Volume 4859 of LNCS.,
Heidelberg, Springer (2007) 18–32

28. Yasuda, K.: A one-pass mode of operation for deterministic message authentica-
tion—Security beyond the birthday barrier. In Nyberg, K., ed.: FSE 2008. Volume
5086 of LNCS., Heidelberg, Springer (2008) 316–333

