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Abstract. We consider information-theoretic key agreement between
two parties sharing somewhat different versions of a secret w that has
relatively little entropy. Such key agreement, also known as informa-
tion reconciliation and privacy amplification over unsecured channels,
was shown to be theoretically feasible by Renner and Wolf (Eurocrypt
2004), although no protocol that runs in polynomial time was described.
We propose a protocol that is not only polynomial-time, but actually
practical, requiring only a few seconds on consumer-grade computers.

Our protocol can be seen as an interactive version of robust fuzzy ex-
tractors (Dodis et al., Crypto 2006). While robust fuzzy extractors, due
to their noninteractive nature, require w to have entropy at least half its
length, we have no such constraint. In fact, unlike in prior solutions, in
our solution the entropy loss is essentially unrelated to the length or the
entropy of w, and depends only on the security parameter.

1 Introduction

We consider the problem of information-theoretic key agreement between two
parties that initially possess only correlated weak secrets. At the start of the
protocol, Alice has a string w, Bob has w′ that is similar, but not identical,
to w, and the adversary Eve’s information about w is incomplete. The goal is
for Alice and Bob to agree on a shared secret key k about which Eve has no
information. Security has to hold even in the case of active Eve, i.e., one who can
perform the (wo)man-in-the-middle attack. It is important that the output k be
as long as possible given the entropy of w (the difference between the length of
k and the entropy of w is known as the entropy loss).

This setting arises, for example, when Alice and Bob have access to a (possi-
bly) noisy channel that can be partially eavesdropped by Eve; or when a trusted
server (Alice) stores the biometric of a user (Bob), and the user subsequently
uses his fresh biometric reading to authenticate himself to the server; or when
Alice and Bob are mobile nodes wanting to authenticate each other based on
the fact that their knowledge of a location is greater than Eve’s (e.g., if they are
much closer to a particular location than Eve, and thus are able to observe it at
higher resolution).
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Renner and Wolf [RW04] proposed the first protocol to solve this problem.
This protocol (described in [RW04, Corollary 9]) is very general: it does not
require proximity between w and w′, but only requires, roughly, that information
that w and w′ contain about each other is more than the information that Eve
has about them. However, the price for this generality is that the protocol is not
practical as presented: the round complexity is quite high, and the local running
time of each party is not even polynomial.

Renner and Wolf mention briefly, however [RW04, Section 2.2], that local
running time can be made polynomial through the use of error-correcting tech-
niques when w and w′ “are bitstrings which differ in a certain limited number
of positions” (that is, are close in the Hamming metric). Indeed, subsequently,
Dodis et al. [DKRS06] used error-correcting techniques to propose a protocol
that is computationally efficient not only for the Hamming metric, but also for
the set difference metric. Moreover, their protocol has just a single message from
Alice to Bob.

Unfortunately, the price for such high efficiency is high entropy loss: if the
length of w is n and its entropy (after the error-correcting information) is m,
then the protocol of Dodis et al. cannot output k longer than m − (n −m). In
particular, if the entropy of w is less than half its length, it achieves nothing
(this is unavoidable in all single-message protocols [DKRS06,KR08a], as pointed
out in [DKRS06] and shown in [DW08]).

Our Contribution We build on the results of [RW04] and [DKRS06] by proposing
a protocol that is efficient for both parties and has both lower round complexity
and lower entropy loss than the protocol of [RW04]. Our analysis decouples
security from the length n of w, thus offering a flexible tradeoff between security
and performance. Without going into details of all the parameters, for security
2−L, the length of k in our protocol is about m−L2/2−O(L logL+L logn) and
the number of messages exchanged between Alice and Bob is L+logn+5. More
details and a more careful performance comparison are provided in Section 2.

Our protocol is more general than the work of [DKRS06] not only in the
entropy requirement, but also in the kinds of differences between w and w′ it can
handle. Specifically, it can handle any metric that has secure sketches [DORS08]
(see Section 3.2) that do not lose too much entropy (in particular, therefore, our
protocol tolerates Hamming, set difference, edit distance [DORS08] and point-set
difference [CL06] errors). Thus, while Renner and Wolf showed feasibility of key
agreement from correlated information, and Dodis et al. showed its practicality
for certain restricted settings, we demonstrate its practicality for a broad class
of settings.

Implementation Results We implemented our protocol (using Shoup’s NTL
[Sho01]), although we have not performed careful code optimization and did not
include any improvements of Section 4.2. The protocol was tested for L = 80 and
n = 100, 000 on a LAN with Alice and Bob running on a 2.4Ghz Intel Pentium
4 and a WAN with Alice running on a 2.4Ghz Intel Xeon instead. The running
times over a WAN and LAN were nearly the same, both less than 5 seconds. Of
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the total running time, approximately 1.5 seconds were spent by each party on
computation and an additional 1 second was spent in total communication costs.
The improvements in Section 4.2 will reduce the running time further (although
the impact of these improvements on the number of rounds and the amount of
computation is easy to understand, it is difficult to say how much the actual
total running times will decrease).

Other related work Variants of this problem have been studied, under the names
“information reconciliation,” “privacy amplification,” and “fuzzy extractors.”
Without providing an exhaustive overview of the literature, we note here the
most closely related work. Information-theoretic security against active Eve was
achieved by Maurer, Renner, and Wolf [Mau97,MW97,Wol98,MW03,RW03]
in the restricted setting when w = w′ or when w, w′, and Eve’s information
come from repeated independent identically distributed experiments. Boyen et
al [BDK+05] removed those restrictions, instead requiring that w and w′ be
close in some metric that has secure sketches, but achieved only computational
security. One of their solutions relies on the random oracle model, and the other
on computational assumptions necessary to enable password-base authenticated
key agreement.

The starting point for our work is the same as for [RW04]: a protocol, also
by Renner and Wolf [RW03], designed for the case of w = w′. We modify it for
the case of w 6= w′ in a way that improves it even for the case of w = w′, and
provide a more careful, concrete security analysis for it ([RW03] provides only
an asymptotic analysis that works when n→∞).

2 Overview of the Result

Notation, Distributions, Entropy Let Ul denote the uniform distribution on
{0, 1}l. Let X1, X2 be two probability distributions over some set S. Their sta-
tistical distance is

SD (X1, X2)
def

= max
T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑

s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣

(they are said to be ε-close if SD (X1, X2) ≤ ε). The min-entropy of a random
variable W is H∞(W ) = − log(maxw Pr[W = w]) (all logarithms are base 2,
unless specified otherwise). Following [DORS08], for a joint distribution (W, E),
define the (average) conditional min-entropy of W given E as

H̃∞(W | E) = − log( E
e←E

(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). A com-
putationally unbounded adversary who receives the value of E cannot find the

correct value of W with probability greater than 2−
eH∞(W |E).

Throughout this paper, for any string x, we use the notation λx to denote
its length and hx to denote its entropy (i.e, H∞(X)).
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Model We now define our goal, by modifying the noninteractive robust fuzzy ex-
tractor definition of [DKRS06]. An Interactive Robust Fuzzy Extractor protocol
allows two parties, Alice and Bob, holding instances w, w′ of correlated random
variables W, W ′ that are guaranteed to be close but not identical, to agree on
a secret key. We assume that w and w′ are within distance at most η in some
underlying metric space. The correctness of the protocol guarantees that when
the protocol is executed in the presence of a passive adversary (one who does
not interfere with messages between Alice and Bob), the parties end up agreeing
on the same secret key, as long as dis(w, w′) ≤ η.

The security of the protocol guarantees that even when the protocol is exe-
cuted in the presence of an active adversary, who interferes with messages arbi-
trarily, if both parties accept, then they agree on a key that is uniformly random
from the adversary’s point of view. Moreover, if only one party accepts, then its
key is still uniformly random from the adversary’s point of view. (As was ob-
served in, for example, [Wol98] and [Sho99], we cannot require that if one party
rejects, then so does the other party, because an active adversary can always
replace the last message with an invalid one—by that time, the sender of that
message must have already accepted, while the recipient will reject.)

More formally, let w, w′ ∈ {0, 1}n chosen according to distributions W, W ′

be the secret values held by Alice and Bob respectively. Call three correlated
random variables (W, W ′, E) (where W and W ′ range over some metric space

M) suitable if H̃∞(W | E) ≥ hW and Pr(w,w′)←(W,W ′)[dis(w, w′) ≤ η] = 1. Let
Protocol (A, B) be executed in the presence of an active adversary Eve. Let Ca

be the random variable describing A’s view of the communication when (A, B) is
executed in the presence of Eve.Likewise, define Cb. (We will use ca, cb to denote
specific values of these variables.) We denote the private coins of Alice and Bob
by ra and rb respectively. Alice’s output will be denoted by kA = A(w, ca, ra),
and Bob’s by kB = B(w′, cb, rb) (if successful, both will be of length λk; rejection
will be denoted by a special symbol ⊥). Let C = Ca ∪ Cb ∪ E be Eve’s view of
the protocol; because Eve is computationally unbounded, we can assume she is
deterministic.

Definition 1. An interactive protocol (A, B) played by Alice and Bob on a com-
munication channel fully controlled by an adversary Eve, is an (M, hW , λk, η,
δ, ε)-interactive robust fuzzy extraction protocol if it satisfies the following prop-
erties whenever (W, W ′, E) are suitable:

1. Correctness. If Eve is passive, then Pr[kA = kB] = 1.
2. Robustness. The probability that the following experiment outputs “Eve wins”

is at most δ: sample (w, w′, e) from (W, W ′, E); let ca, cb be the communi-
cation upon execution of (A, B) with Eve(e) actively controlling the chan-
nel, and let A(w, ca, ra) = kA, B(w′, cb, rb) = kB. Output “Eve wins” if
(kA 6= kB ∧ kA 6=⊥ ∧kB 6=⊥).

3. Extraction. Letting C denote an active Eve’s view of the protocol,

SD ((kA, C, E | kA 6=⊥), (Uλk
, C, E)) ≤ ε and

SD ((kB, C, E | kB 6=⊥), (Uλk
, C, E)) ≤ ε .
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Our Protocol Before going into details in subsequent sections, we present here a
high-level overview of our protocol. We start with an authentication sub-protocol
Auth presented in [RW03] that achieves the following: using the secret w that is
common to Alice and Bob, it allows Alice to send to Bob an authentic (but nonse-
cret) message M of length λM bit-by-bit in 2λM messages. Alice and Bob [RW03]
can use this sub-protocol in order to agree on a key k as follows: they use Auth

to get an extractor seed s from Alice to Bob, and then extract k from w using
s.1

We modify this protocol by using Auth to authenticate a MAC key instead
of an extractor seed. The MAC key, in turn, is used to authenticate the extrac-
tor seed s (which can be done very efficiently using simple information-theoretic
MACs). This seems counterintuitive, because Auth reveals what is being authen-
ticated, while MAC keys need to remain secret. The insight is to use the MAC
key before Auth begins.2 Our modification is beneficial for three reasons. First,
MAC keys can be made shorter than extractor keys, so Auth is used on a shorter
string, thus reducing the number of rounds and the entropy loss. Second, this
modification allows us to use the same MAC key to authenticate not only the
extractor seed s, but also the error-correction information (the so-called “secure
sketch” of w [DORS08]) in the case Bob’s w′ is different from Alice’s w. Third,
because there are MACs that are secure even against (limited) key modifica-
tion [DKRS06,CDF+08], we can lower the security parameters in Auth, further
increasing efficiency and reducing entropy loss.

The rest of the paper is devoted to filling in the details of the above overview,
including smaller improvements not discussed here, and proving the following
theorem.

Theorem 1. Given an [n, κ, 2η + 1]2 linear error correcting code, the proto-
col presented in Section 4 is an (M, hW , λk , η, δ, ε)-interactive robust fuzzy ex-

traction protocol, where M is the Hamming space over {0, 1}n with the fol-
lowing parameters: Setting security δ = 2−L, the protocol can extract λk =
hW − (n−κ)− 2 log 1

ε − (L2/2+O(L(logn+log L))) bits (assuming n < 2L and
λk− (n−κ)+2 log 1

ε > 10L). The protocol involves an exchange of L+logn+5
messages between the two parties.

The constant hidden by the O in the entropy loss is small, with O(L(log n +
log L)) really being less than 3L log 2L + 1

2L log n + 3(log 8L)(log 16n).
We obtain similar results for other metric spaces, with the only difference

being that n − κ in the entropy loss gets replaced by the entropy loss of the
secure sketch for that metric space (see Section 3.2).

Comparison with Prior Work When no error-correction is needed (i.e., w = w′

and η = 0), then n−κ = 0, and we get an improvement of the result of [RW03].

1 For technical reasons, since the adversary can modify message of Auth, she may have
some information about the string extracted from w; this problem is easily handled,
see Section 4.

2 This idea has been used before in several contexts; to the best of our knowledge it
was first used in [Che97] in the context of secure link state routing.
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The result of [RW03] sets L = Θ(
√

n/ log n) and loses Θ(n/ log n) bits of entropy.
This can be seen in the description of protocol Auth in [RW03], which has Θ(

√
n)

rounds, each losing Θ(L) bits. Our protocol has only Θ(L) rounds, with each also
losing Θ(L) bits. Thus, our result is a Θ(log n)-factor improvement in efficiency
and entropy loss for the same security (moreover, the constant hidden by Θ,
although difficult to compute exactly, is substantial, likely bigger than log n in
real applications).

A precise comparison with [RW04], which uses [RW03] as a building block and
adds error-correction, is even more complicated. Our advantage in the number
of rounds remains the same, though the constant factor improves even further.
To compare the entropy loss, we can fix the secure sketch code used in our
protocol (which can be based on any linear error-correcting code) to the one
implicitly used in [RW04]. In that case, the entropy loss due to added error-
correction is asymptotically the same for our protocol and for the protocol of
[RW04], though the constant in our protocol is substantially lower. On the other
hand, an important advantage of our protocol is that we can choose a code that
is efficiently decodable, in which case the entropy loss due to error-correction
may increase, but the protocol will run in polynomial-time.

We now compare our result to the construction of [DKRS06]. The advantage
of the [DKRS06] construction is that it takes only a single message and the
entropy loss is linear in L rather than quadratic. The disadvantage is that it
loses additional n − hW bits of entropy, which means that it is most effective
when W has very high entropy. In particular, it becomes inapplicable when
hW ≤ n/2.

3 Building Blocks

3.1 Extractors

Because in this paper Eve is always assumed to have some external information E
about Alice and Bob’s secrets, we need the following variant, defined in [DORS08,
Definition 2], of the definition of strong extractors of [NZ96]:

Definition 2. Let Ext : {0, 1}n → {0, 1}l be a polynomial time probabilistic
function that uses r bits of randomness. We say that Ext is an average-case

(n, m, l, ε)-strong extractor if for all pairs of random variables (W, E) such that

w ∈W is an n-bit string and H̃∞(W | E) ≥ m, we have SD((Ext(W ; X), X, E),
(Ul, X, E) ≤ ε, where X is the uniform distribution over {0, 1}r.

We should note that some strong extractors (in particular, universal hash-
ing [CW79,HILL99]) are already average-case extractors, and any strong extrac-
tor can be made average-case with a slight increase in input entropy [DORS08,
Section 2.5].

The following (new) lemma shows that strings extracted by average-case
extractors have high average min-entropy, even given the seed. The proof can be
found in the full version [KR08b].
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Lemma 1. Let Ext be a an average-case (n, m, l, ε)-strong extractor. Then if

H̃∞(W | E) ≥ m, and W consists of n-bit strings, H̃∞(Ext(W, X) | X, E) ≥
min

(
l, log 1

ε

)
− 1.

3.2 A Variation on Secure Sketches

So far, we have presented the error-correcting information that Alice sends to
Bob in the first message as a secure sketch. Actually, we need a slight variant
on secure sketches, one that provides some resilience even when the sketch is
modified. The requires a different definition than the definition of [DORS08],
though it turns out that known constructions need to be modified only slightly
to satisfy it.

Secure sketches, defined in [DORS08], provide two algorithms: “generate”
(Gen) that takes an input w and produces a sketch P and “recover” (Rec) that
outputs w from the sketch P and any w′ sufficiently close to w. Their security
guarantees that some entropy remains in w even given P . Secure sketches provide
no guarantees when P has been tampered with, while we need to make sure
that the output of Rec still has entropy. Thus, we need to add a weak form of
robustness (i.e., resilience to active attack) to secure sketches. At the same time,
we do not need a full recovery of the original w: we will be satisfied if both Gen

and Rec produce some string R that preserves some of the entropy of w. In that
way, our new primitive is like a fuzzy extractor, except we do not require that
R be uniform, merely that it have entropy. In keeping with extractor literature
terminology [CRVW02], we call the primitive a weakly robust fuzzy conductor
because it conducts entropy from w to R and is robust against active attacks on
P . Because we no longer recover the original w but rather reproduce the same
R, we rename Rec into Rep.

Let M be a metric space with distance function dis. Suppose (Gen, Rep)
are two procedures, where Gen(w), for w ∈ M, outputs an extracted string
R ∈ {0, 1}∗ and a helper string P ∈ {0, 1}∗, and Rep(w′, P ′), for w′ ∈ M, P ′ ∈
{0, 1}∗, outputs R′ ∈ {0, 1}∗.

Definition 3. The procedures (Gen, Rep) are an (M, hW , hR, hR′ , η)-weakly ro-
bust fuzzy conductor if they satisfy the following properties:

1. Error-Tolerance. If dis(w, w′) ≤ η and R, P were generated by (R, P ) ←
Gen(w), then Rep(w′, P ) = R.

2. Security of Gen. For any suitable (W, W ′, E), the string R has high entropy

even for those who observe P and E: if (R, P ) ← Gen(W ), then H̃∞(R |
E, P ) ≥ hR.

3. Security of Rep. Even if the adversary modifies P , the string produced by Rep

has high entropy: for all (adversarial) functions A and suitable (W, W ′, E),

if (R, P ) ← Gen(W ), P ′ ← A(P, E), and R′ ← Rep(W ′, P ′), then H̃∞(R′ |
E, P ) ≥ hR′ .

We can build weakly robust fuzzy conductors out of any secure sketch (SS,
Rec). (Secure sketches, defined in [DORS08], allow the recovery of w from a close
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string w′). We use the secure sketch constructions of [DORS08] to build weakly
robust fuzzy conductors for Hamming, set difference, and edit distance metrics.
Namely, in Appendix A, we easily obtain

– for Hamming distance over an alphabet of size F , given an [n, κ, 2t+1] linear
error-correcting code for the alphabet, we get hR = hW − (n − κ) log F ,
hR′ = hW − 2(n− κ) log F , and η = t.

– for set difference, with sets whose elements come from a universe of size U ,
we get hR = hW − η log(U + 1) and hR′ = hW − 2η log(U + 1) for any η.

– for edit distance over an alphabet of size we get hR = hW−dn
c e log(n−c+1)−

α, and hR′ = hW −dn
c e log(n−c+1)−2α, where α = (2c−1)ηdlog(F c +1)e,

for any constant c and η.

3.3 One-time message authentication codes (MACs).

One-time MACs allow information-theoretic authentication of a message using
a key shared in advance.

Definition 4. A function family
{
MACk : {0, 1}λM → {0, 1}λσ

}
is a δ-secure

one-time deterministic MAC for messages of length λM with tags of length λσ if
for any M ∈ {0, 1}λM and any function (adversary) A : {0, 1}λσ → {0, 1}λM ×
{0, 1}λσ ,

Pr
k

[MACk(M ′) = σ′ ∧ M ′ 6= M | (M ′, σ′) = A(MACk(M))] ≤ δ .

MAC Construction. We will use the following standard MAC technique [dB93],
[Tay93], [BJKS93]. View the key k as two values, a and b, of λσ bits each.
Split the message M into c chunks M0, . . . , Mc−1, each λσ bits long, and view
these as coefficients of a polynomial M̃(x) ∈ F2λσ [x] of degree c − 1. Then

MACk(M)
def

= aM̃(a)+ b. This is a dλM/λσe 2−λσ -secure message authentication
code.

This construction has two properties that are particularly important to us.
First, its key length is close to optimal (it is not hard to show that λσ ≥ log 1

δ —
else, adversary could simply guess a tag; and |k| ≥ 2 log 1

δ —else, there would be
fewer than 1

δ tags for M ′ given one of the 1
δ tags for M). Second, it is secure

even when the adversary knows something about the key, with security degrading
according to the amount of information adversary knows (this kind of security
was first addressed in [MW97]). Intuitively, the security of this MAC is roughly
the entropy of the key minus half the key length. More formally,

Proposition 1. Let (K, E) be a joint distribution. Then for all (adversarial)
functions M with λM -bit outputs and A,

Pr
(k,e)←(K,E)

[MACk(M ′) = σ′ ∧ M ′ 6= M | (M ′, σ′) = A(MACk(M(e)), e)]

≤
⌈

λM

λσ

⌉
2λσ−eH∞(K|E) .
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We defer the proof of this proposition to the full version [KR08b]. We note
that its proof becomes simpler (than similar prior proofs) if we use the notion
of average min-entropy. In particular, we will use following lemma [DORS08]
that states that average min-entropy of a variable from the point of view of an
adversary doesn’t decrease by more than the number of bits (correlated with the
variable) observed by the adversary.

Lemma 2. If B has at most 2λ possible values, then

H̃∞(A | B, E) ≥ H̃∞(A, B | E)− λ ≥ H̃∞(A | E)− λ

3.4 A Modification of Renner-Wolf Interactive Authentication

Alice and Bob share a string R. Alice wishes to authentically send Bob
M = M1 . . . MλM

of λM bits. The value λM and the number of ones in
M is known to Bob.

For i = 1 to λM :

1. Alice sends Bob challenge xi ∈r {0, 1}q .

2. Bob receives x′

i, sends b′i = Ext(R;x′

i), and challenge y′

i ∈r {0, 1}q

3. Alice receives bi, yi, verifies that bi = Ext(R; xi) and aborts if not.
She sends (1, ai = Ext(R; yi)) if Mi = 1, and (0,⊥) otherwise.

4. Bob receives b′i, a
′

i aborts if b′i = 1 and a′

i 6= Ext(R; y′

i); accepts otherwise.
If i = λM , Bob verifies that the number of ones in the received string match
the expected number of ones; aborts otherwise.

Note that step 3 and 4 of each iteration are combined
with steps 1 and 2, respectively, of the next iteration.

Fig. 1. Protocol Interactive Message Authentication Auth

The [RW03] authentication protocol allows two parties who share the same
string R to authenticate a message M , even if R has very little entropy.

We generalize this protocol slightly (to use general extractors instead of the
specific polynomial authentication function) and present it in Figure 1. We as-
sume that Ext is an average-case extractor that takes seeds of length q, and
outputs L + 1-bit strings that are 2−L−1-close to uniform as long as the input
has sufficient entropy h (in particular, h ≥ 3L+1 suffices if one is using universal
hashing as the extractor). For our purposes, it suffices to assume that the length



10 Bhavana Kanukurthi and Leonid Reyzin

of M and the number of ones in it (i.e., its Hamming weight wt(M)) are known
to Bob. If |M | is known but wt(M) is not, M can be first encoded as a balanced
string (i.e., a string with the same number of zeros and ones), by encoding, for
example, a 0 as 01 and a 1 as a 10. This doubles the length of M .3

We note that [RW03] present a technique that can be used even if |M | is
unknown (namely, encoding M as a string that becomes balanced only at the
end), but we will not need it here.

Each round of the protocol reveals L + 1 bits of information correlated to
R if Mi = 0, and 2L + 1 bits of information of information correlated to R
if Mi = 1. Hence, by Lemma 2, the adversary’s uncertainty about R will be
sufficient for the extractor to work until the last round as long as H̃∞(R|E) ≥
3L + 1 + (L + 1)(λM + wt(M)), and by Lemma 1 the ai and bi values will have
entropy L from the adversary’s point of view.

The intuition for the security of this protocol is that Eve cannot answer a
random query xi or yi with probability greater than 2−L because of the entropy
of the answers, and hence can neither remove zero bits (because challenges to
Bob keep him synchronized) nor insert one bits (because Alice is required to
answer a challenge for each one). She can insert zero bits and change zeros to
ones, but that is taken care of by the assumption that Bob knows λM and wt(M).

We do not formally define or prove security of this protocol, as the proof is
essentially the same as in [RW03]. The probability that Eve succeeds in trans-
mitting M ′ 6= M to Bob and Bob does not reject (or Alice rejects and Bob
accepts) is at most 2−L.

We note the following security property observed in [RW04]. Consider a
setting where, because of Eve’s malicious interference, Bob does not have the
same R as Alice does, but instead some (possibly correlated) R′. The proto-
col may not be complete, of course. However, it still secure, in the sense that
Eve’s chances of authenticating a message M ′ 6= M are not more than when
R is the same for Alice and Bob, as long as R′ also has sufficient entropy
(≥ 3L + 1 + (L + 1)(λM + wt(M))).

An additional security property (neither mentioned nor needed before) is that
no information about the message M being authenticated is revealed to Eve until
Bob receives the first message of the protocol. This holds with probability at least
1 − 2−L even when Eve is active, because she cannot get Alice to reveal even
the first bit M1 without answering her challenge xi, which she is unlikely to do
without Bob’s help.

3 More efficient methods for encoding M as a balanced string are, of course, also
possible. The length of M can be increased by less than log2 |M | through the use
of algorithms from Bos and Chaum [BC92] or Reyzin and Reyzin [RR02]. These
algorithms compute a bijection between integers in [1,

`

n
n/2

´

] and subsets of size n/2

of a set of size n. Any such subset can be viewed as a balanced string (where the ith

bit is set to 1 iff the ith element is in the subset). Therefore, to balance a string M ,
it can be viewed as integer, and the subset produced by one of the above algorithms
can be viewed as its balanced encoding.
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4 Our Protocol

We propose the following privacy amplification protocol, in which Alice starts
with w and Bob with w′ such that dis(w, w′) ≤ η. Below, MAC refers to the con-
struction from Lemma 3.3 and Ext refers to an arbitrary average-case extractor
(the choice of extractor will affect security only marginally, and will mostly affect
efficiency, as we discuss below; in particular, extractors as simple as universal
hashing can be used). Lengths that are currently undefined (such as of MAC
keys and extractor seeds) will be set in subsequent sections in order to achieve
desired security levels. In the protocol description below, extractor outputs of
varying lengths and distance from uniform are needed at different stages of the
protocol. We account for this variation by using two different extractors, denoted
by Ext1, Ext2.

1. Alice generates a random MAC key k1 and extractor seed s1, computes
(R, P )← Gen(w), σ1 = MACk1

(s1, P ), and sends ((s1, P ), σ1) to Bob.
2. Alice initiates the Renner-Wolf message authentication protocol(Auth) for

the message k1 (suitably converted to a balanced string as indicated in Sec-
tion 3.4), using R as the shared secret value.

3. Bob receives ((s′1, P
′), σ′1), and computes R′ = Rep(w′, P ′). He responds to

Alice’s Auth protocol, using the string R′ as the shared secret value.
4. Upon completion of Alice’s side of Auth (if she has not yet rejected), Alice

– extracts k2 = Ext1(R; s1);
– generates a random seed s2;
– sends Bob s2 and σ2 = MACk2

(s2);
– outputs her final key kA = k3 = Ext2(R; s2).

5. Upon completion of Bob’s side of the Auth with the received message k′1,
and receipt of s′2, σ

′
2 from Alice, Bob

– verifies the first MAC, Verifyk′

1

((s′1, P
′), σ′1) (if fail, rejects);

– computes the key for the second MAC, k′2 = Ext1(R
′; s′1);

– verifies the second MAC, Verifyk′

2

(s′2, σ
′
2) (if fail, rejects);

– outputs his final key kB = k′3 = Ext2(R
′; s′2).

The intuition behind the security of this protocol is in the ordering of events.
First, Alice authenticates a message (s1, P ) to Bob using a MAC with a truly
random key k1 which is unknown to Eve. This ensures that Eve cannot (except
with negligible probability) succeed in modifying the message while preserving
the integrity of the tag. However, Bob does not know k1, either—which means
he must defer the verification of the tag σ until a later stage.

Second, after she is sure that Bob has received the message and the tag (and
thus it is too late for Eve to try modifying them), Alice transmits k1 to Bob
using the Renner-Wolf authentication protocol. The protocol reveals all of k1 to
Eve, but at this point k1 is completely useless to her, because it is too late to try
to modify the message and the tag. She cannot modify k1 (except with negligible
probability), by the security of the authentication protocol. It is crucial here that
the authentication protocol is secure even if Eve modified P (such modification
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would not be detected until later), giving Alice and Bob different secrets R and
R′, because both R and R′ have sufficiently high entropy. This enables Bob to
verify the correctness of the MAC (and hence ensure that R = R′) at the end of
the protocol.

The last steps of the protocol are a bit confusing, because instead of just
outputting k2 as the final key, Alice adds a level of indirection, using k2 as a
key to authenticate another extractor seed s2, which is then used to extract the
output key. This is similar to [RW03] and is needed because k2, computed as
Ext(w; s1), is guaranteed to be close to uniform only when s1 is a random seed
independent of Eve’s view. However, s1 is revealed to Eve before Auth and an
active Eve can modify the challenges within Auth (which are extractor seeds)
to be correlated to s1. By the time Ext(w; s1) is computed after Auth, s1 is not
necessarily independent of Eve’s view. Thus, k2 is not necessarily suitable for
the final output, although it is possible to show that it still has entropy and
is therefore suitable as a MAC key. In Section 4.2 we show how to reduce the
length of k2 (and thus the entropy loss) as compared to the protocol of [RW03].

4.1 Analysis

The security parameter for our protocol is L. Through out this section, as with
the rest of the paper, for any string x we use λx to denote the length of the x
and hx to denote its entropy (i.e, H∞(x)).

Robustness We can view the protocol as consisting of two phases.

– Phase 1: Agreeing on k2 from close secrets w, w′

– Phase 2: Using k2 to agree final string k3

Security of Phase 1.

Suppose Eve succeeds in an active attack against Phase 1, i.e., k2 6= k′2. There
are two possibilities.

1. k1 = k′1 (Eve does not attack protocol Auth). Therefore, in order for k2 6= k′2,
either s1 6= s′1 or P 6= P ′. Because Bob verifies the first MAC, Eve needs to
come up with a valid ((s′1, P

′
1), σ

′
1), which she has to do when she forwards

Bob his very first message. This case again gives rise to two possible options,
depending on when Eve sends to Bob her guess for ((s′1, P

′
1), σ

′
1):

– If Eve sends it right after Alice sends ((s1, P1), σ1) and her first challenge
x1 to Bob, then this is equivalent to an active attack on a MAC, because
she needs to produce her “guess” for ((s′1, P

′
1), σ

′
1), before she sees any

information correlated with k1. We denote this probability by Pr[mac].
For an appropriate setting of length of k1 (namely, 2L + 2 log λ(s1,P )/L,
where λ(s1,P ) is the length of s1 and P ) using the MAC construction
from Section 3.3, we can show that Pr[mac] ≤ 2−L.

– If Eve sends it later, then she needs to respond to x1. We denote this
probability by Pr [random− challenge]. From Section 3.4, it follows that
Pr[random− challenge] ≤ 2−L.
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2. k1 6= k′1 : In this case, Eve has to authenticate k′1 6= k1, using Protocol Auth

in order to succeed. Therefore, her chances of success in this case are bounded
by her chances of succeeding in an active attack against Auth. We denote
this probability by Pr[Auth]. Again, if we run Auth on the security parameter
L + 1, we can show that Pr[auth] ≤ 2−L.

Security of Phase 2. This analysis is essentially the same as in [RW03]; we
improve it in the next section. The key k2 = Ext(R, s1) agreed upon by the
parties at the end of Phase 1 is used in Phase 2 to authenticate a fresh extractor
seed s2 (of length λs2

) using the single message MAC scheme of Section 3.3.
However, the authentication protocol of Phase 1 gives Eve the ability to query
the parties and get some information about Ext(w, s1), decreasing the entropy of
k2. Knowing that this decrease will be no more than the amount communicated
about R during Phase 1 (which is Θ(L2) bits), we will set the length of k2 to be
twice that plus 2L + 2 logλs2

/L to get the desired 2−L security for the second
MAC.

It is easy to verify by counting the entropy lost during each round that the
protocol, as presented here, gives us Theorem 1 up to constant factors. (More
precisely, it proves the following modification of Theorem 1: in the expression for
λk, increase the coefficient of L2 from 1/2 to 9, and increase the number of mes-
sages by a factor of 4.) In the next section we present a number of improvements
that reduce the entropy loss by (significant) constant factors, proving Theorem 1.

4.2 Constant-Factor Improvements

In this section we propose improvements that reduce the round complexity by
a factor of 4 and the entropy loss by a factor of up to 18, making this protocol
considerably more practical.

Reducing the length of the extracted MAC key k2 Note that choosing the length
of k2 as above increases the entropy loss of the protocol by almost a factor of 3.
By reworking the analysis of Phase 1 using the notion of average min-entropy
(similar to the analysis in proof of Proposition 1), we can show that requiring
k2 to be longer than twice the communication in Phase 1, as discussed above, is
unnecessary. Using the same notation that we used in the protocol description,
we let σ2 denote the tag of the MAC. To succeed in forging it, the adversary
Eve needs to successfully change σ2 to σ′2. In addition, in Phase 1 she is also
allowed to query Alice and Bob, say, T times. Protocol Auth implicitly imposes
the constraint that Eve needs to also respond to T such queries. Let us denote her
queries by (q1, . . . , qT ) and responses by (q′1, . . . , q

′
T ). We analyze the security of

phases I and II jointly by looking at the average min-entropy of (σ′2, (q
′
1, . . . , q

′
T ))

given (σ2, (q1, . . . , qT )). It turns out to be roughly λk2
− T − λσ2

, which makes
the likelihood that Eve to completes phase I and comes up with σ′2 is no more
than 2−L if λk2

> 2L + T .
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Working Base 4. Recall that in ith round of Auth, Bob sends Alice an extractor
seed sufficient to extract L + 1 bits, and Alice responds with either nothing or
the extracted string, depending on the value of the ith bit of the message being
transmitted. We improve this by encoding the message transmitted by Auth

(namely, the MAC key k1) in base 4 rather than in base 2. Bob will send Alice
an extractor seed sufficient to extract 3L + 1 bits, and Alice will respond with
nothing, the first L+1 bits, the first 2L+1 bits, or all 3L+1 bits depending on the
ith digit of the message. This protocol works for strings that are “balanced” in
base 4: i.e., messages M of length κM whose base-4 digits whose digits add up to
1.5κM . It takes κM rounds and loses 2.5LκM bits of entropy, while maintaining
the same security. This improves the number of rounds by a factor 2 and the
entropy loss by a factor of 3/2.5 = 1.2, because κM is half of the length that
M would have if written in binary (the techniques used to balance a message in
base 2 are also applicable in base 4, and increase the length by essentially the
same ratio).

Working in Parallel. We further improve Auth by having Alice and Bob au-
thenticate two halves of M to each other. Namely, Alice authenticates half of
M to Bob at the same time as Bob authenticates half of M to Alice. Since M
was initially chosen by Alice, she first has to sends half of M to Bob to he can
authenticate it back to her. This has to occur in Alice’s second message, because
we need to make sure that M remains secret until after Bob’s first message. Note
that Bob’s messages for authenticating his half of M can be combined with his
answers to Alice’s challenges. Namely, in each round, Alice will send Bob an
extractor seed sufficient to extract 4L + 1 bits, and Bob will respond with the
first L + 1 bits, the first 2L + 1 bits, or the first 3L + 1 bits, or all 4L + 1 bits
depending on the appropriate digit of M .

Note that the security proof goes through without adding any new challenges
from Bob to Alice (i.e., Alice’s responses remain 0, L+1, 2L+1 or 3L+1 extracted
bits long).

This improvement cuts the number of rounds essentially by a factor of 2
(except for the fact that Bob ends up one round behind), and cuts the entropy
loss by a factor of 5/4=1.25 (because there are no challenges from Bob to Alice,
only from Alice to Bob, and now there are half as many of those).

Not converting to/from a balanced string. Because MACs work even when the
key does not have full entropy, Alice can simply choose a random balanced
string for the MAC key k1 instead of choosing fully random k1, converting it to
a balanced string for Auth, and then having Bob convert it back. The security of
the MAC will remain essentially 2−L if k1 is a random string of length 2L+2 logL
bits that is balanced when viewed in base 4 (because its entropy H∞(k1) will be
at least 2L + log L by bounds on the central quadrinomial coefficient).

While this by itself is not a big improvement (on Alice’s side, choosing a
random balanced string is about as hard as choosing a random string of length
2L and converting to a balanced one of length 2L + log L; so the savings are
mainly on Bob’s side), it enables the next one.
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Lowering the number of extracted bits in Auth. If we lower the bit length of
the extracted strings exchanged in Auth, we increase the probability that the
adversary succeeds in making a few changes to k1. However, by using a MAC
secure against related key attacks, we can actually tolerate a few such changes.
Cramer et al. [CDF+08, Corollary 2], following a construction in [DKRS06],
present a MAC that is essentially as efficient as the one we use, and is secure even
if the adversary is allowed to change the key by exclusive-or with an adversarially
chosen string. Thus, we need to make sure that Eve’s changes to k1 can be
characterized as exclusive-or with a particular string.

Namely, suppose that instead of using responses of length 0, L + 1, 2L + 1,
or 3L + 1, Alice uses responses of length 0, µ + 1, 2µ + 1, or 3µ + 1, and instead
of using responses of length L + 1, 2L + 1, 3L + 1, or 4L + 1, Bob uses responses
of length L + 1, L + µ + 1, L + 2µ + 1, or L + 3µ + 1, for some µ < L. The fact
that Bob’s responses are of length at least L + 1 ensures that Eve cannot insert
or delete digits from k1 but with probability 2−L. She can, however, increase a
digit with probability 2−µ. Because we require a balanced string, any decreased
digit must be compensated by an increased digit; thus, if the total sum of digit
changes is γ, then the probability that Eve does not get caught is 2−γµ/2.

We are working base 4, but using MACs that are based on bit-string keys.
We will convert from base 4 to base 2 using the Gray code: 0→ 00, 1→ 01, 2→
11, 3 → 10. This will ensure that Hamming distance between the key sent by
Alice and the key received by Bob is at most γ. (If we did not use the working-
in-base-4 improvement, then, of course, this would not be necessary.)

The MAC of [CDF+08] is secure when the adversary chooses the modification
to the key without seeing the key. Namely, for any string ∆, the probability that
the adversary can forge a MAC with the key k1⊕∆ is low, where the probability
is taken over a random k1. In our setting, the adversary does get to see the
key, because Auth does not hide k1. However, what helps is that ∆ likely has
low Hamming weight, because to achieve high Hamming weight, Eve would have
to successfully respond to a number of random challenges which does not hold.
Therefore, the number of possible ∆ values is small, which is almost as good as
having a fixed ∆.

More precisely, let π be the security of the MAC for any fixed ∆, and α
be the length of the MAC key. Then there are at most α2/2 values of ∆ of
Hamming weight 2, and by the union bound, the probability that will succeed
with a forgery of the MAC by changing k1 by two bits is at most πα2/2. At the
same time, the probability that Eve will then be able to change k1 by two bits is
at most 2−µ. Letting µ = 2 logα, we get that Eve’s probability of success overall
is π/2. Similarly, there are at most α3/3! values of ∆ of Hamming weight 3, and
the overall probability of success using any such ∆ is π/3!. Continuing in this
manner, we get that overall probability of Eve’s success through modification of
k1 is less than π(1/2! + 1/3! + 1/4! + . . . ) = π(e − 2) < π (we are using here
that ∆ of Hamming weight 1 is impossible because the string k1 ⊕∆ that Bob
receives must be balanced).
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Now to achieve MAC security π = 2−L, we need to set the length of the
MAC key, to be α ≤ 2L + 2 log(n/L + 3) + 2, and µ = 2 log(α) = 2 log(2L +
2 log(n/L + 3) + 2). This follows from [CDF+08, Corollary 2].

Careful counting of round complexity and entropy loss, taking into account
the improvements above, gives us the statement Theorem 1.
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A Building Weakly Robust Fuzzy Conductors

As mentioned before, weakly robust fuzzy conductors can be built trivially out
of any secure sketch (SS, Rec) defined in [DORS08]. For the sake of completeness,
we review the definition below.

Definition 5. An (m, m̃, t)-secure sketch is a pair of efficient randomized pro-
cedures (SS, Rec) s.t.:

1. The sketching procedure SS on input w ∈M returns a bit string s ∈ {0, 1}∗.
The recovery procedure Rec takes an element w′ ∈M and s ∈ {0, 1}∗.

2. Correctness: If dis(w, w′) ≤ t then Rec(w′, SS(w)) = w.
3. Security: For any distribution W overM with min-entropy m, the (average)

min-entropy of W conditioned on s does not decrease very much. Specifically,
if H∞(W ) ≥ m then H̃∞(W | SS(W )) ≥ m̃.

The quantity m− m̃ is called the entropy loss of the secure sketch. ♦

To build a weakly robust fuzzy conductor from a secure sketch, simply let
Gen(w) = (w, SS(w)), and R = Rep(w′, P ′) = Rec(w′, P ′) unless Rec(w′, P ′)
fails to produce a value that is within η of w′ (which can happen only if
P ′ 6= P ), in which case let Rep(w′, P ′) = w′. If the sketch length is λ, then
this construction is an (M, hW , hW − λ, hW − 2λ, η)-weakly robust fuzzy con-

ductor. This can be seen as follows: H̃∞(R|E, P ) ≥ hW − λ by Lemma 2. If
Rec(w′, P ′) = R′, then w can be recovered from R′ if one knows SS(w′) and
SS(w), by computing Rec(R′, SS(w′)) to get w′ and then Rec(w′, SS(w)) to get

w. Hence, H̃∞(R′|E, SS(w), SS(w′)) ≥ H̃∞(w|E, SS(w), SS(w′)) ≥ hW − 2λ,
again by Lemma 2.

This produces weakly robust fuzzy conductors for Hamming distance and
set difference, using deterministic secure sketches of Constructions 3, 5, and 6
of [DORS08]. In particular, for Hamming distance over an alphabet of size F ,
given an [n, k, 2t + 1] linear error-correcting code for the alphabet, this gives
hR = hW − (n − k) log F , hR′ = hW − 2(n − k) log F , and η = t. For set
difference, with sets whose elements come from a universe of size n, this gives
hR = hW − η log(n + 1) and hR′ = hW − 2η log(n + 1) for any η. Construction
9 of [DORS08], for edit distance, needs to modified slightly by omitting the
information required to reverse the embedding, and letting R be the embedded
version of w, R = SHc(w); this produces a weakly robust fuzzy conductor for
edit distance over alphabet of size F with λ = (2c − 1)ηdlog(F c + 1)e, hR =
hW − dn

c e log(n − c + 1) − λ, and hR′ = hW − dn
c e log(n − c + 1) − 2λ, for any

choice of positive integer c and any η.


