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Abstract. A group key agreement (GKA) protocol allows a set of users
to establish a common secret via open networks. Observing that a major
goal of GKAs for most applications is to establish a confidential chan-
nel among group members, we revisit the group key agreement defini-
tion and distinguish the conventional (symmetric) group key agreement
from asymmetric group key agreement (ASGKA) protocols. Instead of
a common secret key, only a shared encryption key is negotiated in an
ASGKA protocol. This encryption key is accessible to attackers and cor-
responds to different decryption keys, each of which is only computable
by one group member. We propose a generic construction of one-round
ASGKAs based on a new primitive referred to as aggregatable signature-
based broadcast (ASBB), in which the public key can be simultaneously
used to verify signatures and encrypt messages while any signature can
be used to decrypt ciphertexts under this public key. Using bilinear pair-
ings, we realize an efficient ASBB scheme equipped with useful prop-
erties. Following the generic construction, we instantiate a one-round
ASGKA protocol tightly reduced to the decision Bilinear Diffie-Hellman
Exponentiation (BDHE) assumption in the standard model.

1 Introduction

Many complex cryptosystems rely on the existence of a confidential channel
among the users. A major goal of key agreement protocols is to establish such a
channel for two or more users. Since the inception of the Diffie-Hellman protocol
[12] in 1976, it has been an elusive open problem to construct a one-round group
key agreement protocol from scratch. A round means that each party sends one
message and can broadcast simultaneously. A key agreement protocol is said
to be from scratch if each participant does not hold any secret values prior to
the execution of the protocol. Each type of long-term-key free protocols can
only provide security against passive attackers, but they are the basis to build



advanced protocols against more powerful attackers. We concentrate on new key
agreement protocols from scratch in this report.

1.1 Our Contribution

This paper investigates a close variation of the above mentioned problem of
one-round group key agreement protocols and focuses on “how to establish a
confidential channel from scratch for multiple parties in one round”. We provide
a short overview of some new ideas to solve this variation.

Asymmetric GKA. Observe that a major goal of GKAs for most appli-
cations is to establish a confidential broadcast channel among the group. We
investigate the potentiality to establish this channel in an asymmetric manner
in the sense that the group members merely negotiate a common encryption
key (accessible to attackers) but hold respective secret decryption keys. We in-
troduce a new class of GKA protocols which we name asymmetric group key
agreements (ASGKAs), in contrast to the conventional GKAs. A trivial solution
is for each member to publish a public key and withhold the respective secret
key, so that the final ciphertext is built as a concatenation of the underlying
individual ones. However, this trivial solution is highly inefficient: the ciphertext
increases linearly with the group size; furthermore, the sender has to keep all the
public keys of the group members and separately encrypt for each member. We
are interested in nontrivial solutions that do not suffer from these limitations.

Aggregatable signature-based broadcast (ASBB). Our proposals rely
on a new notion named aggregatable signature-based broadcast. In an ASBB
scheme, the public key can be simultaneously used to verify signatures and en-
crypt messages, and any valid signature can be used to decrypt ciphertexts un-
der this public key; furthermore, an ASBB scheme satisfies the key-homomorphic
property and the aggregatability property. The key-homomorphic property means
that the combination of signatures on the same message produces a valid sig-
nature of this message under the combination of the corresponding public keys.
As a consequence, the combined signature can be used as a decryption key of
the new ASBB instance. Aggregatability states that the combination of secure
ASBB instances produces a new secure ASBB instance.

Non-trivial one-round ASGKA. We propose a non-trivial one-round AS-
GKA scheme. Our idea is to generate the public key of an ASBB scheme in a
distributed manner, such that only each member can obtain a signature under
this public key. These signatures can be used as their respective decryption keys
and a confidential channel among the group is established. We build an efficient
ASBB scheme from bilinear pairings and prove its security under the decision
n-Bilinear Diffie-Hellman exponentiation (n-BDHE) assumption with the help
of a random oracle. By following the generic construction and exploiting the ran-
domness in the setup stage, we instantiate a one-round ASGKA protocol and
tightly reduce its security to the decision n-BDHE assumption in the standard
model (without using random oracles). The proposed one-round ASGKA proto-
col achieves the confidential channel of a one-round conventional GKA protocol.



Also, our ASGKA proposal has additional advantages, e.g., serving as a public
key based broadcast scheme without requiring a dealer.

1.2 One-round Group Key Agreement

A key agreement protocol enables two or more users within an open network
to create a common secret key. In what follows we review round-efficient key
agreement protocols, especially, one-round protocols. These protocols are unau-
thenticated and only secure against passive attacks but they are the basis on
which protocols with active security can be built. To date, only very few one-
round key agreement protocols (excluding their variations) have been found, i.e.,
the two-party Diffie-Hellman [12] and the tripartite Joux [19] protocols.

The basic Diffie-Hellman protocol [12] is a one-round two-party protocol.
After each party publishes one element in a finite cyclic group, two parties can
establish a common secret key. If one party fixes its published element as its
public key and the other party generates its element dynamically for each session,
the Diffie-Hellman protocol implies a public key cryptosystem, i.e., the well-
known ElGamal cryptosystem [13].

The Joux protocol [19] is a one-round tripartite protocol. Similarly to the
Diffie-Hellman protocol, by fixing two members’ published strings as their public
keys, the Joux protocol implies a mini broadcast cryptosystem without a trusted
dealer in which only these two members can decrypt the messages. Neverthe-
less, the Joux protocol is limited to three parties. To date, it remains unknown
whether it can be extended to more than three parties without introducing ad-
ditional rounds.

For more than three parties, Boneh and Silverberg proposed a one-round
(n + 1)-party protocol [6] but their protocol relies on n-linear pairings which by
itself is also an open problem and no construction has been found so far. As-
suming that there exist n-linear pairing maps, their protocol implies a broadcast
cryptosystem [4,14] for n users by fixing n users’ published strings as their public
keys. Similarly to the Joux protocol, the Boneh-Silverberg protocol is limited to
n + 1 parties. It seems difficult to extend it to more than n + 1 parties without
additional rounds even if the existence of efficient n-linear pairings is assumed.

Burmester and Desmedt [11] extended the Diffie-Hellman protocol to n par-
ties. Their protocol requires two rounds and is the most efficient existing GKA
protocol in round efficiency without constraints on n. Some papers (e.g., [7,22])
can achieve authenticated GKA in one-round. But these GKA protocols are
based on public key encryption and differ from the above ones in that they are
not from scratch. The protocol in [7] is PKI-based and only one party uses its
public key for encryption purpose. Since setting up a PKI may be regarded as
a one-round protocol, such protocols can fairly be compared with a two-round
protocol from scratch. It is an open question whether our one-round protocol
can be used to build a two-round authenticated GKA from scratch.

However, as remarked by Joux [19], in some cases the two rounds in key
agreement protocols can be somewhat cumbersome, and a single pass would be
much more preferable. For instance, exchanging an email message key among a



group of users with a two-round key agreement protocol would require all of them
to be connected concurrently. Another scenario is a group of friends wishing to
share their private files via the insecure Internet; doing so with a two-round key
agreement protocol would require all of them to be online at the same time. In
practice, it is difficult for a group of distributed users to be online concurrently
(especially if they live in different time zones). In these scenarios, the bandwidth
is not a problem but the round efficiency is critical. In addition, the bandwidth
overhead can be mitigated by the hardware development but the round overhead
can only be addressed by more efficient protocols.

Unauthenticated GKA protocols can only be secure against passive attackers.
Hence, it is necessary to improve these basic protocols to meet active security
for practical applications. There are lots of studies following this research line.
In [1] Bellare et al. showed a compiler which converts unauthenticated protocols
into authenticated ones in the two-party setting; extending [1] to the group set-
ting is possible but inefficient. In [20], Katz and Yung proposed an aggregatable
compiler which transforms any secure GKA protocol against passive attackers
into a secure authenticated GKA protocol against active attackers. The compiler
preserves forward security of the original protocol. In [21], Kudla and Paterson
considered modular proof techniques for authenticated key agreement protocols
which are not designed in a modular way but which one nevertheless wishes
to prove secure. Different key agreement protocols secure against active attack-
ers may be constructed from authentication techniques and a library of basic
protocols including our protocols in this paper.

1.3 Motivating Applications

By way of motivation, we illustrate some interesting applications and advantages
of the new notion of ASGKA as well as our one-round instantiation.

Application scenarios. Our ASGKA protocol suits broadcast applications
to which regular broadcast schemes and GKA protocols are difficult to apply.
We have in mind applications where it is hard to find a trusted party to serve
as a dealer in a regular broadcast scheme, and it is inconvenient to require
all the parties to stay online concurrently to implement a (two-round) regular
GKA protocol. Such applications include broadcast to ad hoc groups, off-line file
sharing via internet, secure group chat, group purchase of encrypted content with
identity privacy (i.e., where the seller cannot identify the members of a group
purchase) and so on. These applications deal with not very large self-organized
groups which live a period of time after being established. Hence, our ASGKA
fills the application gap left by regular GKA or broadcast schemes.

Comparison with the trivial solution. As mentioned in Section 1.1,
the trivial solution suffers from linear complexity in the ciphertext size, keys
storage requirement and encryption overhead. In our scheme, the ciphertext,
the negotiated public key and all decryption keys are of constant size. Although
in our proposal each member’s published string is linear in the group size in
negotiation, no one needs to keep any bit of them after executing the protocol.
Hence, the storage requirement is small in our scheme. The encryption operation



in our scheme is also efficient, i.e., three exponentiations. Due to the heavy
communication overhead in key establishment, our scheme does not improve
on the trivial solution for one-time group applications1. However, in practice,
once a group is established, it is likely to live for a period of time, as discussed
above, in which case the communication overhead incurred by our protocol can
be amortized over the group lifetime.

Public key based broadcast without a dealer. For our ASGKA pro-
posal, if each member is allowed to register to a certificate authority its published
string as its public key, then anyone knowing the public keys of all members can
send encrypted messages to the group and only the group members can decrypt
the message. Here, the ciphertexs and the secret key of each member are constant
and independent of the group scale. This implies that our ASGKA protocol can
be used as an efficient public key based dealer-free broadcast scheme which, to
the best of our knowledge, is not found in the public literature. However the ex-
isting broadcast schemes in the literature do require such a privileged dealer and
confidential channels from the dealer to each subscribers before implementing
the broadcast system, which is undesirable in some applications.

Key self-confirmation. After a GKA protocol is executed, the agreed keys
may become invalid for various reasons, for instance, inside attackers or commu-
nication errors. Some proposals (e.g., [10, 20]) suggest a simple method to com-
plete the key confirmation. They assume that the group members have agreed
on a public message in advance. After running the basic protocols, each member
encrypts this message with its derived session key and broadcasts the ciphertext.
Then the members can verify whether they share the same session key (the ex-
isting GKAs are symmetric) by checking the consistency of the ciphertexts. This
method may not work if there exist inside attackers (a major goal of the key
confirmation is to prevent inside attacks). Such attackers can invalidate a correct
session key by simply sending a random string in the last round. This flaw can
be fixed by letting the group members prove that they have behaved honestly,
but such fixes seem expensive in practice. For our asymmetric GKA protocol,
the key confirmation is simple and requires no additional rounds if the proto-
col has been correctly executed. Group members can choose a random message
and encrypt it using their derived encryption keys. Then they can decrypt using
their derived decryption keys. If the decryption outputs a correct plaintext, the
corresponding member concludes that the ASGKA protocol has been correctly
run; otherwise, the member raises a public alarm. Hence, if an ASGKA protocol
has been correctly executed, each member can verify this fact locally without
communicating with others and no additional rounds are required.

Identification of disruptive principals in GKA protocols. In existing
GKA protocols, it is not a trivial job to identify malicious principals aiming to
disrupt the protocol even if some of these protocols are authenticated and proven
secure against active attackers. Indeed, authentication in a GKA protocol only
prevents such attacks by outside adversaries. A disruptive principal can just

1 Those applications are about fully dynamic group broadcast without a dealer and
could be interesting for future research.



broadcast some authenticated random strings during the protocol execution to
paralyze the protocol. To thwart such attackers, group members may be required
to prove that they have behaved correctly in a zero-knowledge manner. This
modification can work (to identify the disruptive principals) but it introduces a
substantial cost. In our ASGKA scheme, since the transcripts from participants
are indeed signatures under their respective temporary public keys, anyone who
did not honestly behave can be identified and expelled if any group member
raises an alarm after key confirmation.

1.4 Paper Organization

In Section 2, we revisit the notion of group key agreement. Section 3 presents a
generic ASGKA construction from ASBBs with key homomorphic property and
aggregatability. An ASBB scheme is efficiently realized in Section 4 and the one-
round ASGKA protocols naturally follow from the generic formula. Section 5 is
a conclusion.

2 Group Key Agreement Revisited

In the conventional GKA definition, a group of members interact to establish
a common secret key within an open network. One may notice that a major
goal of GKAs is to establish a confidential broadcast channel among the group.
In such a broadcast context from GKA protocols, there is no need for a dealer
to distribute decryption keys, but only group members can broadcast to other
group members2. However, in practice the senders can be potentially anyone, as
the case of asymmetric encryption. Hence, we are motivated to find alternatives
to achieve the final goal of conventional GKAs. For instance, assume that there
exists a public key based broadcast cryptosystem in which the single public
key corresponds to numerous secret decryption keys; if the group members can
jointly generate such a cryptosystem and share the public key while only the
group members can extract a secret key during the joint computation, then any
message encrypted under this public key can only be decrypted by the group
members and a confidential channel is built among them.

2.1 Protocol Variables and Partner Relationship

The following revisited GKA definition derives from the widely-accepted ones
due to [7,8,9,10,20]. Similarly to [20], we assume for simplicity a fixed, polynomial-
size set P = {U1, · · · ,U`} of potential players. Any subset of the potential players
may decide at any point to establish a confidential channel among them, but we
assume that these subsets are the same during a run of the protocol and con-
centrate on static groups.
2 In some applications, this feature can be an advantage, e.g., intra-group authenti-

cations. In our ASGKA protocol, intra-group authentication can be easily realized
since the underlying primitive can be used as a signature scheme.



Whenever group membership changes, a new group Pv = {U1, · · · ,Un} is
formed and its members can establish a confidential channel through an instance
performing a group key agreement protocol Σ: the index v increases whenever the
membership changes and P0 denotes the initial group. Πıi

Ui
denotes an instance

ıi of a group member Ui. An instance Πıi

Ui
has a unique session identifier Sidıi

Ui

and a partner identifier Pidıi

Ui
. After the GKA protocol Σ has been terminated

successfully, Πıi

Ui
has a unique decryption key identifier Dkidıi

Ui
corresponding to a

decryption key dkıi

Ui
, and a unique encryption key identifier Ekidıi

Ui
corresponding

to an encryption key ekıi

Ui
, and a freshness identifier Fidıi

Ui
representing whether

dkıi

Ui
is compromised. If not, Fidıi

Ui
= 1; else Fidıi

Ui
= 0. Finally, the partner

identifier Pidıi

Ui
corresponds to a set of group members Pıi

Ui
= Pv \ {Ui}.

Definition 1. (Successful termination of GKA.) We say that a GKA pro-
tocol Σ has been successfully terminated in the instance Πıi

Ui
if for 1 ≤ k 6= i ≤ n,

(1) each Uk of Pıi

Ui
has instance Πık

Uk
containing {Sidık

Uk
, Pidık

Uk
, Dkidık

Uk
, Ekidık

Uk
};

(2) Sidık

Uk
= Sidıi

Ui
; (3) Pık

Uk
= Pv \{Uk}. In this case, we state that the instances

Πıi

Ui
and Πık

Uk
are partnered.

2.2 Adversarial Model

In the real world, a protocol determines how principals behave in response to
signals from their environment. In the model, these signals are sent by the adver-
sary A. For simplicity, only passive adversaries are considered in the definitions.
A passive adversary is assumed to merely eavesdrop all communication in the
network. An adversary A’s interaction with the principals in the network (more
specifically, with the various instances) is modeled by the following oracles:

– Parameter(1λ): On A’s query λ, respond with common parameters denoted
by π, including two polynomial time algorithms E(·, ·) and D(·, ·).

– Setup(P0): On A’s query P0, start the protocol Σ and output the initial
group P0 = {U1, · · · ,U`}. For 1 ≤ k ≤ `, initialize Sidık

Uk
← 0, Pidık

Uk
←

∅, Dkidık

Uk
← NULL, Ekidık

Uk
← NULL, Fidık

Uk
← 1, S ← 0.

– Execute(U1, · · · ,Un): Execute the protocol between unused instances of play-
ers {U1, · · · , Un} = Pv ⊆ P0 and output the transcript of the execution. Here,
v changes whenever the group changes and hence is the group sequence num-
ber. The number of group members and their identities are chosen by the
adversary. For 1 ≤ k ≤ n, update Sidık

Uk
← Sidık

Uk
+ 1, Pidık

Uk
← Pv \ {Uk},

Dkidık

Uk
← dkık

Uk
, Ekidık

Uk
← ekık

Uk
, S ← S + 1. S is the session sequence

number to record the running times of Execute.
– Ek-Reveal(Πıi

Ui
): Output Ekidıi

Ui
.

– Dk-Reveal(Πıi

Ui
): Output Dkidıi

Ui
. Update Fidıi

Ui
← 0. We allow the encryp-

tion key to be different from the decryption key and hence the Ek-Reveal
oracle and the Dk-Reveal oracle are distinguished.

– Test(Πıi

Ui
,m0,m1): This query is used to define the advantage of an ad-

versary A. A executes this query on a fresh instance Πıi

Ui
(see Definition 4

below) at any time, but only once (other queries have no restriction). When
A asks this query, it receives a challenge ciphertext c∗ = E(mρ, ek

ıi

Ui
), where

ρ is the result of a coin flip. Finally, A outputs a bit ρ′.



2.3 Properties of GKA

A major goal of GKA protocols is to establish a confidential channel for group
members. We use this goal to define the correctness of a GKA protocol while
use the approaches to the goal to classify GKA protocols.

Definition 2. (Correctness.) We say a GKA protocol Σ is correct if, when-
ever it has been successfully terminated, for any instance Πıi

Ui
and any of its

partners Πık

Uk
and any message m in the message space of E(·, ·), it holds that

D(E(m, ekıi

Ui
), dkık

Uk
) = m and D(E(m, ekık

Uk
), dkıi

Ui
) = m.

Definition 3. (Asymmetric Group Key Agreement.) A GKA protocol Σ
is said to be symmetric if after being successfully terminated, it holds that dkıi

Ui
=

dkık

Uk
= sk. Else, Σ is said to be an asymmetric group key agreement protocol.

A GKA protocol is nontrivial if |E(m, ekıi

Ui
)| and |E(m, ekık

Uk
)| are independent

of n, where |s| denotes the binary length of string s. This restraint rules out trivial
protocols where each member just publishes a public key and keeps its secret
key for an agreed public key cryptosystem. The conventional GKA protocols are
all symmetric. An ASGKA protocol allows different members to have different
decryption keys. However, it does not state whether the inside members can
use their secret decryption keys to (collusively) compute a new (equivalent)
decryption key. This issue of traitor traceability is beyond our scope.

We first define the notion of freshness as the precondition to define the secrecy
of GKA protocols, in which the corruption query Dk-Reveal models insider
attacks and captures forward security of GKAs.

Definition 4. (Freshness.) An instance Πıi

Ui
is fresh if before the adversary

answers the Test oracle, neither the instance Πıi

Ui
nor anyone of its partnered

instances has received a Dk-Reveal query.

Let us proceed to the main security notion of GKAs against passive attackers.
In the conventional GKA definitions, the group members finally share a secret
key. Accordingly, the security is defined by the indistinguishability of the shared
key from a random string. In our definition we allow the group members to
have different decryption keys. Hence, we define the security of GKAs by the
security of the final confidential channel, i.e., the indistinguishability of messages
transferred via this channel.

Definition 5. (Secrecy of GKA.) Let Σ be a GKA protocol and A be a passive
adversary against Σ. When A asks a query Test(Πıi

Ui
,m0,m1) to a fresh instance

Πıi

Ui
in Σ, A receives a challenge ciphertext c∗ = E(mρ, ek

ıi

Ui
), where ρ is the

result of a coin flip. Finally, A outputs a bit ρ′. The advantage of A in the above
secrecy game is defined as AdvGKA

A,Σ = |Pr[ρ′ = ρ]− 1
2 |. Σ is said to be secure for

static groups if A is allowed to query all the oracles and AdvGKA
Σ is negligible.



3 Generic Construction of One-round ASGKA

In this section, we propose a secure generic construction of one-round ASGKA
protocols for static groups. To achieve this goal, we present a primitive referred to
as aggregatable signature-based broadcast (ASBB). It has the key-homomorphic
property and aggregatability which are crucial for our generic one-round ASGKA
protocol.

3.1 Aggregatable Signature-based Broadcast

An ASBB scheme can be used simultaneously as a signature scheme and a broad-
cast scheme. It exploits the duality between decryption keys and signatures which
has been noticed in ID-based encryption [3] and certificate-based encryption [17],
but the encryption in ASBB does not take input the receivers’ identities.

The security of an ASBB scheme incorporates the standard notion of security
for a signature scheme, i.e., existential unforgeability under a chosen message
attack (EUF-CMA) [18] and the security as an encryption scheme.

Definition 6. (Aggregatable signature-based broadcast.) An ASBB scheme
consists of six polynomial-time algorithms:

– π ← ParaGen(1λ): On input a security parameter λ, output the public para-
meters π.

– (pk, sk)← KeyGen(π): On input π, output a public/secret key pair (pk, sk).
– σ ← Sign(pk, sk, s): On input the key pair (pk, sk) and any string s, output

a signature σ.
– 0/1 ← Verify(pk, s, σ): On input the public pk and a signature σ of string

s, output 0 or 1.
– c ← Encrypt(pk, m): On input a public key pk and a plaintext m, output a

ciphertext c.
– m ← Decrypt(pk, s, σ, c): On input the public key pk, any valid string-

signature (s, σ) and a ciphertext c, output the plaintext m.

Given the system parameters π, a public key pk and a challenge ciphertext
c = Encrypt(pk, mρ) for m0 and m1 chosen by an attacker A, where ρ is the
challenger’s random coin flip, the attacker wins if it outputs a guess bit ρ′ = ρ.
An ASBB scheme is said to be semantically indistinguishable against chosen
plaintext attacks (Ind-CPA) if, for any polynomial-time attacker A, |Pr[ρ =
ρ′] − 1

2 | is negligible in λ. An ASBB scheme is said to be EUF-CMA-Ind-CPA
secure if the underlying signature is EUF-CMA secure and the encryption is
Ind-CPA secure.

An ASBB scheme has a key-homomorphic property, as mentioned in Sec-
tion 1.1. This means that, given two signatures on the same message under two
public keys, one can efficiently produce a signature of the same message under
a new public key derived from the original two public keys.



Definition 7. (Key homomorphism.) An ASBB scheme is said to be key
homomorphic if, for any two public/secret key pairs (pk1, sk1), (pk2, sk2) ←
KeyGen(π) and any message string s, σ1 = Sign(pk1, sk1, s), σ2 = Sign(pk2, sk2,
s), it holds that (1) Verify(pk1 ⊗ pk2, s, σ1 � σ2) = 1 and (2) Decrypt(pk1 ⊗
pk2, s, σ1�σ2, c) = m for any plaintext m such that c← Encrypt(pk1⊗pk2,m),
where ⊗ : Γ × Γ → Γ and � : Ω × Ω → Ω are two efficient operations in the
public key space Γ and the signature space Ω, respectively.

For key homomorphic ASBB schemes sharing system parameters, the com-
bination of signatures of the same string under different public keys is also a
valid signature of this string under the combination of given public keys. Note
that this property does not contradict the standard EUF-CMA security of sig-
natures, since in a EUF-CMA game, the public key is provided by the challenger
while the public key derived from combination is generated by the attacker in
the key-homomorphic notion.

Let us consider this problem further. Since the combination of given public
keys yields the public key of a new ASBB instance, we naturally question the
security of the resulting ASBB instance such as the EUF-CMA security, Ind-
CPA security or other properties that are potentially useful. For our focus of
one-round GKAs, we study the Ind-CPA security of the resulting system and
introduce another important property, i.e., aggregatability, in an ASBB scheme.

Definition 8. (Aggregatability.) The aggregatability of an ASBB scheme is
defined by the following game between an adversary A and a challenger CH:

– Setup: A initializes the game with an integer n. CH replies with (π, pk1, · · · ,
pkn) which are the system parameters and n independent public keys of the
key-homomorphic ASBB scheme.

– Education: For 1 ≤ j 6= i ≤ n, the adversary A can adaptively choose any
string sj ∈ {0, 1}∗ to query CH for a valid signature σi(sj) under pki. sj is
determined by the attacker but the limit is that si 6= sj if i 6= j. In other
words, the attacker can freely decide n messages sj(1 ≤ j ≤ n) but it cannot
query sj to PKj, although the queries to PKi are allowable.

– Challenge: CH and A run a standard Ind-CPA game under the combined
public key pk = pk1 ⊗ · · · ⊗ pkn. A wins if A outputs a correct guess bit.
Denote A’s advantage by AdvA = |Pr[win]− 1

2 |.

An ASBB scheme is said to be (τ, ε, n)-aggregatable against adaptively chosen
message attacks if no τ -time algorithm A has advantage AdvA ≥ ε in the above
aggregatability game. An ASBB scheme is said to be (τ, ε, n)-aggregatable against
non-adaptively chosen message attacks if the adversary is required to provide sj

for j = 1, · · · , n after the Setup stage and no τ -time algorithm A has advantage
AdvA ≥ ε in the corresponding non-adaptive aggregatability game.

The aggregatability against non-adaptively chosen message attacks is suffi-
cient for our purpose of one-round GKAs. Note that, in the above aggregatabil-
ity definition, the EUF-CMA security is implicitly used. This is because if the



underlying ASBB is not EUF-CMA secure, the attacker may successfully forge
signatures of some message s′ under all the public keys after the Education stage.
Due to the key-homomorphic property, the attacker can obtain a signature σ′ of
s′ under pk and σ′ is also a valid decryption key. As a result, the attacker can
decrypt normally and the aggregatability cannot hold.

3.2 A Generic Construction of One-round ASGKA Protocols

Based on ASBBs, we present a generic construction of ASGKA protocols for
static groups. The construction is illustrated in Matrix (1), where ⇓/↓, ≺: and
TPK represent public/private computation, broadcast operation and temporary
public key, respectively.

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

U1knows U2knows U3knows · · · Unknows TPK

U1 ≺: © σ1(ID2) σ1(ID3) · · · σ1(IDn) pk1

U2 ≺: σ2(ID1) © σ2(ID3) · · · σ2(IDn) pk2

U3 ≺: σ3(ID1) σ3(ID2) © · · · σ3(IDn) pk3

...
...

...
...

. . .
...

...

Un ≺: σn(ID1) σn(ID2) σn(ID3) · · · © pkn

↓ ↓ ↓ · · · ↓ ⇓

example: dk1 dk2 dk3 · · · dkn pk

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

(1)

Protocol I: One-round ASGKA Protocol

– Public Parameter Generation. The public parameters are the description
π of an ASBB scheme.

– Group Setup. Decide the group of the players P = {U1, · · · ,Un}. Let ID1, · · · ,
IDn be the respective identities.

– Group Key Agreement. Ui randomly generates a public key pki and broad-
casts the corresponding row in Matrix (1):

σi(ID1), · · · , σi(IDi−1), σi(IDi+1), · · · , σi(IDn), pki.

Here, σi(IDj) is a signature of IDj corresponding to the public key pki. ©
represents that σi(IDi) is not published for 1 ≤ i ≤ n.

– Group Encryption Key Derivation. The group encryption key is:

pk =
n⊗

j=1

pkj .



– Decryption Key Derivation. Player Ui can calculate its secret decryption
key dki from the corresponding column of Matrix (1):

dki = σi(IDi)
n,j 6=i⊙
j=1

σj(si) =
n⊙

j=1

σj(IDi).

Note that an attacker cannot compute dki since σi(IDi) is unpublished. The
last row is the output of a successful run of an ASGKA instance.

– Encryption/Decryption. Since π is an ASBB scheme, dki is a signature of
si under the new public key pk. Hence, dki is also a decryption key corre-
sponding to the new public key pk and the Encryption/Decryption algo-
rithms can be trivially realized in π.

We give the proof of the following theorem in [23].

Theorem 1. The proposed generic one-round ASGKA protocol for static groups
is secure if the underlying key homomorphic ASBB is EUF-CMA-Ind-CPA se-
cure and aggregatable against non-adaptive chosen message attacks.

Although we only consider the CPA security in our ASGKA protocol, by
noting that the resulting output of the protocol can be viewed as a public key
based broadcast system, it is possible to achieve security against chosen cipher-
text attacks (CCA). In fact, some generic approaches that convert a CPA secure
encryption scheme into a CCA secure one can apply to our scheme, similarly
to the Fujisaki-Okamoto conversion [15]. Since our focus is one-round ASGKAs
with basic security, we will not explore such improvements here.

4 The Proposal

From the generic construction, to realize one-round ASGKA protocols, one needs
only to implement a secure ASBB scheme. We construct an ASBB scheme secure
in the random oracle model using available bilinear pairing techniques.

4.1 An Efficient ASBB Scheme

The scheme is realized in bilinear pairing groups [5,16]. Let PairGen be an algo-
rithm that, on input a security parameter 1λ, outputs a tuple Υ = (p, G, GT , e),
where G and GT have the same prime order p, and e : G×G→ GT is an efficient
non-degenerate bilinear map such that e(g, g) 6= 1 for any generator g of G, and
for all u, v ∈ Z, it holds that e(gu, gv) = e(g, g)uv.

– Public parameters: Let Υ = (p, G, GT , e) ← PairGen(1λ), G = 〈g〉. Let
H : {0, 1}∗ → G be a cryptographic hash function. The system parameters
are π = (Υ, g, H).

– Public/secret keys: Select at random r ∈ Z∗p, X ∈ G \ {1}. Compute

R = g−r, A = e(X, g).

The public key is pk = (R,A) and the secret key is sk = (r, X).



– Sign: The signature of any string s ∈ {0, 1}∗ under the public key pk is

σ = XH(s)r.

– Verify: Given a message-signature pair (s, σ), the verification equation is

e(σ, g)e(H(s), R) = A.

If the equation holds, output 1 to represent that purported signature is valid.
Else output 0 and reject the purported signature.

– Encryption: For a plaintext m ∈ GT , randomly select t ∈ Z∗p and compute

c1 = gt, c2 = Rt, c3 = mAt.

– Decryption: After receiving a ciphertext (c1, c2, c3), anyone with a valid
message-signature pair (s, σ) can extract

m =
c3

e(σ, c1)e(H(s), c2)
.

The correctness of the proposed ASBB scheme follows from a direct verifica-
tion. Define ⊗ by (R1, A1)⊗ (R2, A2) = (R1R2, A1A2) and � by σ1�σ2 = σ1σ2.
For security, we have the following claims in which Claim 2 follows from the
definition of ⊗ and �, and the security proof of Claim 3 can be found in the full
version of the paper [23].

Theorem 2. Let G be a bilinear group of prime order p. For any positive inte-
gers n, the following claims hold. (1) The proposed ASBB scheme is (τ ′, ε, n)-
aggregatable against non-adaptive chosen message attacks in the random ora-
cle model assuming the decision (τ, ε, n)-BDHE assumption holds in G, where
τ ′ = τ +O((qH +n2)τExp). (2) The proposed ASBB scheme is key-homomorphic.
(3) The proposed ASBB scheme is EUF-CMA-Ind-CPA secure in the random
oracle model under the Computational Diffie-Hellman (CDH) and Decisional
Bilinear Diffie-Hellman (DBDH) assumptions.

Proof. The aggregatability relies on the decision n-BDHE assumption which is
shown to be sound by Boneh et al. [2] in the generic group model. The decision
n-BDHE assumption in G is as follows.

Definition 9. Let G be bilinear group of prime order p as defined in Section 4.1
and g, h two independent generators of G. Denote −→y g,α,n = (g1, · · · , gn, gn+2, · · · ,
g2n) ∈ G2n−1, where gi = gαi

for some unknown α ∈ Z∗p. An algorithm B that
outputs b ∈ {0, 1} has advantage ε in solving the decision n-BDHE problem if

|Pr[B(g, h,−→y g,α,n, e(gn+1, h)) = 0]− Pr[B(g, h,−→y g,α,n, Z) = 0)]| ≥ ε

where the probability is over the random choice of g, h in G, the random choice
α ∈ Z∗p, the random choice of Z ∈ GT , and the random bits consumed by B.
We say that the decision (τ, ε, n)-BDHE assumption holds in G is if no τ -time
algorithm has advantage at least ε in solving the decision (τ, ε, n)-BDHE problem.



Based on the decision BDHE assumption, we prove the critical aggregata-
bility of our ASBB scheme. We construct an algorithm B that uses a decision
BDHE challenge to simulate all the requested service for an aggregatability at-
tacker A. Then B uses the answer bit from A to solve the the decision BDHE
assumption. We illustrate that B has the same advantage as A in the same time
complexity except for an additive factor, i.e., the reduction is tight.

Suppose that A is a τ -time adversary A breaking the aggregatability with
probability larger than ε for a system parameterized with a given n. We build
an algorithm B with advantage ε in solving the decision n-BDHE problem in G.
B takes as input a random decision n-BDHE challenge (g, h,−→y g,α,n, Z), where
−→y g,α,n = (g1, · · · , gn, gn+2, · · · , g2n) and Z is either e(gn+1, h) or a random
element of GT (recall that gi = g(αi)). B proceeds as follows.

Preparation for simulation. For j = 1, · · · , n, B randomly selects vi ∈ Zp

and computes hj = gjg
vj . B randomly selects i∗ ∈ {1, · · · , n}, ai, ri ∈ Z∗p. Let

Si∗ = {1, · · · , i∗ − 1, i∗ + 1, · · · , n}. Compute

Ri∗ = gri∗ (
∏

k∈Si∗
gn+1−k), σi∗,j = gai∗ g−ri∗

j (
∏k 6=j

k∈Si∗
g−1

n+1−k+j)R
−vj

i∗ (j 6= i∗).

For i 6= i∗, compute

Ri = grig−1
n+1−i, σi,j = gaig−ri

j gn+1−i+jR
−vj

i for j 6= i.

Noting that g
(αj)
i = g(αi+j) = gi+j for any i, j, for j 6= i∗, we have that

e(σi∗,j , g)e(hj , Ri∗) = e(gai∗ g−ri∗
j (

∏k 6=j
k∈Si∗

g−1
n+1−k+j)R

−vj

i∗ , g)e(gjg
vj , Ri∗)

= e(gai∗ g−ri∗
j (

∏k 6=j
k∈Si∗

g−1
n+1−k+j), g)e(gj , Ri∗)

= e(gai∗ g−ri∗
j (

∏k 6=j
k∈Si∗

g−1
n+1−k+j), g)e(gj , g

ri∗ (
∏

k∈Si∗
gn+1−k))

= e(gai∗ g−ri∗
j (

∏k 6=j
k∈Si∗

g−1
n+1−k+j), g)e(g, gri∗

j (
∏

k∈Si∗
gn+1−k+j))

= e(gai∗ , g)e(g, gn+1) = e(g, g)ai∗ e(g, g)αn+1 def= Ai∗ .
For j 6= i(i 6= i∗), it holds that

e(σi,j , g)e(hj , Ri) = e(gaig−ri
j gn+1−i+jR

−vj

i , g)e(gjg
vj , Ri)

= e(gaig−ri
j gn+1−i+j , g)e(gj , Ri) = e(gaig−ri

j gn+1−i+j , g)e(gj , g
rig−1

n+1−i)
= e(gai , g)e(g−ri

j gn+1−i+j , g)e(g, gri
j g−1

n+1−i+j) = e(gai , g)

= e(g, g)ai
def= Ai.

Hence, for all j 6= i(i ∈ {1, · · · , n}), we have that

e(σi,j , g)e(hj , Ri) = Ai. (2)

After the above preparations, B runs the aggregatability game with attacker
A. During the game, B will give A the public system parameters including public
keys and A can ask signatures from B according to Definition 8. We model the
hash function as a random oracle maintained by B and the A can ask hash
outputs with its chosen queries.

Setup simulation. B needs to generate n public keys {pk1, · · · , pkn}. B sets
pki = (Ri, Ai) and forwards them to A. Note that ri, ai are uniformly distributed
in Z∗p. Hence the simulated public keys have an identical distribution as in the



real world and the simulation is perfect. After the Setup stage, A has to submit
its distinct queries sj ∈ {0, 1}∗(1 ≤ j ≤ n) in the Education stage to B.

Random oracle simulation. After Setup stage, A can query the random
oracle at any point. Assume that A queries the random oracle at most qH times.
For each time, A queries B with (s′j , j) for the hash output of s′j , where s′j ∈
{0, 1}∗ and j is a positive integer. Assume that s′j is fresh (If s′j has been queried,
B just returns the previous reply for consistence). To simulate the random oracle,
B works as follows. If 1 ≤ j ≤ n and s′j = sj , B sets H(s′j) := hj ; else if 1 ≤ j ≤ n
but s′j 6= sj or n < j ≤ qH , B randomly selects hj ∈ G and sets H(s′j) := hj .
B responds with hj to the query (s′j , j) from A. Clearly, the simulation of the
random oracle is perfect.

Education simulation. For 1 ≤ j ≤ n, B needs to generate signatures
σi(sj) such that verify(σi(sj), sj , pki) = 1(i 6= j). After the above preparation,
B can easily simulate education: When A requests the signature on sj under the
public key pki, B responds with σi(sj) = σi,j . From Equation (2), the simulated
signatures are well formed and the simulation is also perfect.

Challenge simulation. B and A run a standard Ind-CPA game under the
the aggregated public encryption key. Denote that a = a1 + · · · + an, r = r1 +
· · ·+ rn. Note that Si∗ = {1, · · · , n} \ {i∗}. It follows that the aggregated public
encryption key is (R,A) where

R = Ri∗
∏

k∈Si∗
Rk = gri∗ (

∏
k∈Si∗

gn+1−k)
∏

k∈Si∗
grkg−1

n+1−k

= gri∗
∏

k∈Si∗
grk = g

Pn
k=1 rk = gr,

A = Ai∗
∏

k∈Si∗
Ak = e(g, g)ai∗ e(g, g)αn+1 ∏

k∈Si∗
e(g, g)ak

= e(g, g)αn+1 ∏n
k=1 e(g, g)ak = e(g, g)αn+1+a.

For the aggregated public key (R,A), the decryption keys corresponding to each
group member are not revealed. Although neither B nor A know the stars ?
satisfying e(?, g)e(H(si), R) = A, B knows r, a ∈ Z∗p such that R = gr, A =
e(g, g)αn+1+a, where α is unknown. Hence, B can challenge A as follows.

When receiving the plaintexts m0,m1 ∈ GT chosen by A, B randomly selects
a bit b ∈ {0, 1} and computes the challenge ciphertext (c∗1, c

∗
2, c

∗
3) where c∗1 =

h, c∗2 = hr, c∗3 = mbZe(g, h)a. B claims that Z = e(gn+1, h) to answer the decision
n-BDHE challenge if and only if A’s guess bit b′ = b.

Success probability: Since g, h are generators, we let h = gt for some
unknown t ∈ Z∗p. Hence,

Rt = (gr)t = (gt)r = hr,
At = (gr)t = e(g, g)(α

n+1+a)t = e(g, gt)(α
n+1+a)

= e(gαn+1
, h)e(g, h)a = e(gn+1, h)e(g, h)a.

Therefore, if and only if Z = e(gn+1, h), (c∗1, c
∗
2, c

∗
3) = (gt, Rt,mbA

t) and (c∗1, c
∗
2,

c∗3) is well formed (i.e., it is a valid ciphertext of mb under the public key (R,A)).
Hence, B has the same advantage to solve the decision n-BDHE challenge as that
of B breaking the aggregatability of the ASBB scheme.

Time-complexity: In the simulation, B’s overhead is dominated by com-
puting (σi,j , Ri, Ai) for j 6= i and hj . Computing hj requires qH exponentiations
in G (the overhead to sample a random element in G is about one exponenti-



ation). Computing σi,j requires O(n2) exponentiations in G. Note that B can
compute Ai by an exponentiation in GT rather than a pairing computation.
Computing Ri, Ai requires O(n) exponentiations in G and GT , respectively. Let
τExp denote the time complexity to compute one exponentiation without differ-
entiation of exponentiations in different groups. Hence, the time complexity of
B is τ ′ = τ +O((qH + n2)τExp). ut

4.2 Concrete One-round ASGKA Protocol

Following the generic construction, it is easy to realize a one-round ASGKA
protocol using the instantiated ASBB scheme. Interestingly, we can remove the
hash requirements by observing the randomness in the setup stage. That is, we
bind the i-th user by randomly choosing hi ∈ G rather than setting hi = H(IDi),
while other parts are realized literally following from the generic construction.

– Public parameters generation. It is the same as the above ASBB scheme.
– Group setup. Decide the group of the players P = {U1, · · · ,Un}. Randomly

choose hi ∈ G for i = 1, · · · , n. hi can map to Ui in a natural way, e.g.,
according to the dictionary order in their binary representation.

– Group key agreement. Ui randomly chooses Xi ∈ G, ri ∈ Z∗p and publishes

{σi,j , Ri, Ai}i 6=j , where σi,j = Xih
ri
j , Ri = g−ri , Ai = e(Xi, g).

– Group encryption key derivation. The players share the same group encryption
key(R,A):

R =
∏n

j=1 Rj = g−Σn
j=1rj , A =

∏n
j=1 Aj = e(

∏n
j=1 Xj , g).

– Decryption key derivation. Using the private input (Xi, ri) during the protocol
execution phase, player Ui can calculate its secret decryption key from the
public communication:

σi = Xih
ri
i

∏n,j 6=i
j=1 σj,i =

∏n
j=1 Xjh

rj

i = (
∏n

j=1 Xj)h
Σn

j=1rj

i .

– Encryption. For a plaintext m ∈ GT , anyone who knows the public parameters
and the group encryption key can output the ciphertext c = (c1, c2, c3), where
t← Zp, c1 = gt, c2 = Rt, c3 = mAt.

– Decryption. Since e(σi, g)e(hi, R) = A, each player Ui can decrypt

m =
c3

e(σi, c1)e(hi, c2)
.

Corollary 1. The above n-party ASGKA protocol is secure against passive at-
tackers in the standard model under the decision n-BDHE assumption.

Proof. The proof is a simple combination of Theorems 1 and 2, but since at
the group setup stage, B can simulate hj = gjg

vj with a randomly chosen value
vi ∈ Z∗p, it does not need the help of a random oracle. The detailed proof is
omitted to avoid repetition. ut



5 Conclusions and Future Work

We reconsidered the definition of group key agreement and presented the no-
tion of asymmetric group key agreement. Based on a new notion of aggregatable
signature-based broadcast, we presented a generic construction of one-round AS-
GKA protocols, which can also be used as a broadcast scheme but does not need
a trusted dealer to distribute secret keys. Finally, efficient ASBB and one-round
ASGKA schemes were instantiated using available bilinear pairings. The pro-
posed ASGKA protocol is secure under the decision BDHE assumption without
using random oracles. It fills the application gaps left by conventional GKA and
broadcast systems. ASGKA being a new notion, it opens numerous avenues for
future research such as round-efficient ASGKAs against active attackers, AS-
GKAs with traitor traceability and (conditional) reductions between ASGKA
and conventional GKA protocols.

Acknowledgments and Disclaimer

The authors gratefully acknowledge Professor Colin Boyd for helping to pre-
pare the final paper and anonymous reviewers for their helpful comments. This
paper is partly supported by the Spanish Government through projects CON-
SOLIDER INGENIO 2010 CSD2007-00004 “ARES” and TSI2007-65406-C03-01
“E-AEGIS”, by the Australian ARC Discovery Grant DP0877123, and by the
Chinese NSF projects 60673071 and 60873268. The fifth author is also partially
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