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Abstract. We provide a collision attack and preimage attacks on the MDC-2 construction, which
is a method (dating back to 1988) of turning an n-bit block cipher into a 2n-bit hash function. The
collision attack is the first below the birthday bound to be described for MDC-2 and, with n = 128,
it has complexity 2124.5, which is to be compared to the birthday attack having complexity 2128.
The preimage attacks constitute new time/memory trade-offs; the most efficient attack requires
time and space about 2n, which is to be compared to the previous best known preimage attack of
Lai and Massey (Eurocrypt ’92), having time complexity 23n/2 and space complexity 2n/2, and to
a brute force preimage attack having complexity 22n.
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1 Introduction

MDC-2 is a method of constructing hash functions from block ciphers, where the output size of
the hash function is twice the size of the block cipher (hence it is called a double-length construc-
tion). MDC-2 was developed at IBM in the late 80s. A conference paper by IBM researchers
Meyer and Schilling from 1988 describes the construction [21]. A patent was filed in August 1987,
and the patent was issued in March 1990 [1]. The construction was standardised in ISO/IEC
10118-2 in 1994 [9]. It is mentioned in great detail in both the Handbook of Applied Cryptog-
raphy [20, Alg. 9.46] and in the Encyclopedia of Cryptography and Security [27, pp. 379–380].
Furthermore, it is in practical use (see e.g., [10, 15,26]).

Since publication, there seems to have been a wide belief in the cryptographic community
that given an ideal block cipher, MDC-2 provides a collision resistant hash function. By this
we mean that given an n-bit block cipher (thus yielding a 2n-bit hash function), the required
effort to find a collision in the hash function is expected to be 2n. However, there is no proof of
this property. The only proof that collision resistance is better than 2n/2, as offered by many
simpler (single-length) constructions, is due to Steinberger [25], who showed that for MDC-2
based on an ideal cipher, an adversary asking less than 23n/5 queries has only a negligible chance
of finding a collision.

In this paper we provide the first collision attack on MDC-2 which breaks the birthday
bound. The attack makes no non-standard assumptions on the underlying block cipher. When
applied to an instantiation of MDC-2 with e.g., a 128-bit block cipher (see e.g., [28]), the attack
has complexity about 2124.5, which is better than the expected 2128 collision resistance for an
ideal 256-bit hash function.

We also present improved preimage attacks on MDC-2. The previous best known preimage
attack, first described by Lai and Massey [16], has time complexity about 23n/2 and requires
around 2n/2 memory. In this paper we provide a range of time/memory trade-offs, the fastest
of which is significantly faster than the Lai/Massey attack. We describe attacks of any time
complexity from 2n to 22n. The memory requirements are such that the product of the time
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and space complexities is always around 22n. Hence, our most efficient preimage attack has time
and space complexity about 2n.

Finally, we describe how to use the preimage attack to find multicollisions faster than by
the previous best known multicollision attack of Joux [11].

Related work. As mentioned, Lai and Massey described [16] a preimage attack on MDC-2
of complexity around 23n/2. Knudsen and Preneel gave [14] a preimage attack on MDC-4 (a
stronger and less efficient variant of MDC-2, to which the attacks described in this paper do not
apply) of complexity 27n/4. Steinberger proved [25] a lower bound of 23n/5 for collision resistance
of MDC-2 in the ideal cipher model.

Our attacks in fact apply to a larger class of hash function constructions based on block
ciphers (see Section 2.1). Knudsen, Lai and Preneel described [13] collision and preimage attacks
on all block cipher based hash function constructions of rate 1, meaning that one message block
is processed per block cipher call. These attacks do not apply to MDC-2 (having rate 1/2).

Recently, a number of new double-length constructions have been proposed. At FSE 2005,
Nandi et al. [23] proposed a rate 2/3 scheme, and they proved that finding a collision requires
at least 22n/3 queries. Later the same year (Indocrypt 2005), Nandi [22] introduced a class
of rate 1/2 double-length schemes, all instances of which having optimal collision resistance
2n. At Asiacrypt 2005, Lucks [18] proposed the double-pipe scheme as a failure-friendly design,
meaning that collision resistance is retained even if the underlying compression function slightly
fails to be collision resistant. The scheme maintains two chains, which are combined at the end,
and hence is in fact a single-length scheme. However, by omitting the merging at the end one
has a double-length scheme, which is optimally collision resistant. Hirose [8] proposed (FSE
2006) a collision resistant double-length scheme, based on an n-bit block cipher accepting keys
of more than n bits. The rate depends on the key size. For all these schemes, the security proof
is based on the assumption that the underlying primitive (compression function or block cipher)
is secure. Our attacks do not apply to any of the schemes mentioned here.

Hellman has described a generic method to find a preimage of a 2n-bit hash function with
runtime 24n/3 [7]. The caveat is that (apart from requiring 24n/3 memory) a precomputation of
cost 22n is needed. The preimage attacks on MDC-2 that are described in this paper are on a
much better time/memory trade-off curve, and do not require a 22n precomputation.

2 Preliminaries

The collision attack presented in this paper makes use of multicollisions.

Definition 1. Let f be some function. An r-collision for f is an r-set {x1, . . . , xr} such that
f(x1) = . . . = f(xr). A multicollision is an r-collision for some r > 1. A 2-collision is known
simply as a collision.

Consider the classical occupancy problem (see e.g., [5]) consisting of randomly throwing q1 balls
into 2n urns, where it is assumed that each of the 2nq1 possible outcomes is equally likely. In
order for the probability that at least one urn contains at least r balls to be 1− 1/e, one must
throw about

q1 = (r!2n(r−1))1/r (1)

balls in total [5, IV,(2.12)]. The classical occupancy problem can be translated into the problem
of finding an r-collision for a sufficiently random n-bit function f . Hence, this task has expected
complexity q1 as given by (1). In the following we shall use this expression as an estimate for
the complexity of finding an r-collision.



We note that a standard birthday collision attack has complexity 2(n+1)/2, according to (1)
with r = 2. With 2n/2 queries a collision is found with probability about 1− e−1/2 ≈ 0.39.

2.1 Description of the MDC-2 construction

MDC-2 was originally defined using DES [24] as the underlying block cipher. Here, we think
of MDC-2 as a general double-length construction method for hash functions based on block
ciphers. For ease of presentation we shall assume that keys and message blocks are of the same
size, even if this is in fact not the case for DES. In Appendix A, we discuss this special case.

Let EK(m) denote the encryption under some block cipher (assumed to be secure) of plain-
text m using the key K. If X is an n-bit string, then we let XL denote the leftmost n/2 bits of
X, and we let XR denote the rightmost n/2 bits of X. Given E, MDC-2 defines a 2n-bit hash
function (with some given, distinct initial values H0 and H̃0) as follows. Split the message M
(assumed to be appropriately padded) into t blocks m1, . . . , mt, and do, for each i from 1 to t,
the following (‘‖’ denotes concatenation).

V = EHi−1(mi)⊕mi

Ṽ = EH̃i−1
(mi)⊕mi,

followed by

Hi = V L‖Ṽ R

H̃i = Ṽ L‖V R.

The output is Ht‖H̃t. See also Figure 1. In other words, the chaining variables Hi−1 and H̃i−1
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Fig. 1: The MDC-2 construction.

are used as keys in two block cipher calls, which each encrypt the message block mi, and
subsequently xor the resulting ciphertexts with mi. The two right halves of the results are then
swapped to obtain the next pair of chaining variables. In what follows, these steps will be called
an iteration.

In the original description of MDC-2 [21], two bits of each of the two keys Hi−1 and H̃i−1

were fixed. This had two implications. First of all, all known weak and semi-weak keys of DES
were ruled out, and secondly, this measure ensured that the two keys were always different.
There seems to be no strong consensus that fixing key bits is a necessary security measure



when MDC-2 is based on some other block cipher for which weak keys are not believed to
exist. However, one might argue that ensuring that the two keys are different increases security
– although this practice also has a cost in terms of security: the amount of state passed on
from one iteration to the next is less than 2n bits. The attacks presented in this paper can be
applied regardless of whether or not some key bits are fixed. However, the discussion of Section 6
assumes that no key bits are fixed.

A generalisation. We may generalise the MDC-2 construction. Let f : {0, 1}n × {0, 1}n →
{0, 1}n be any function, and let g be any (efficiently invertible) bijection from 2n bits to 2n
bits. Then a generalised construction is the following.

W = f(Hi−1,mi)‖f(H̃i−1,mi)
Hi‖H̃i = g(W ).

(2)

See Figure 2. In standard terms, (2) defines a compression function h : {0, 1}3n → {0, 1}2n. The

Hi−1 H̃i−1

mi
??
f

?

??
f

?
g

? ?
Hi H̃i

Fig. 2: The generalised MDC-2 construction.

attacks presented in this paper apply to any instance of this construction. Notice that MDC-2
has f(x, y) = Ex(y)⊕ y and g(a‖b‖c‖d) = a‖d‖c‖b. In the following we shall use the notation of
the generalised construction. We assume that evaluating g (both forwards and backwards) costs
much less than evaluating f . Our complexity estimates will be in terms of compression function
evaluations. For example, if an attack requires T calls of f , we shall count this as having time
complexity T/2, since f is evaluated twice in the compression function.

3 The collision attack

The collision attack applies to any construction of the type (2). We use the notation of Section 2
in the following description of the collision attack.

1. Given initial chaining values H0 and H̃0, find an r-collision in H1. Let the messages producing
the r-collision be m1

1, . . . , m
r
1, and let the r (“random”) values of H̃1 be H̃1

1 , . . . , H̃r
1 .

2. Let ` = 1.
3. Choose the message block m`

2 arbitrarily, and evaluate W `
j = f(H̃j

1 ,m`
2) for every j, 1 ≤

j ≤ r. If W `
i = W `

j for some i 6= j, 1 ≤ i, j ≤ r, then a collision (mi
1‖m`

2,m
j
1‖m`

2) has been
found. If not, increment ` and repeat this step.

See Figure 3. Step 1 requires finding an r-collision in an n-bit function. This is expected to take
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Fig. 3: The collision attack. Thick lines mean that there are r different values of this variable. Thin lines mean
that there is only one.

time q1 = (r!2n(r−1))1/r as mentioned in Section 2. The probability of success in Step 3 is about(
r
2

)
2−n, since there are

(
r
2

)
pairs of n-bit values, which may be equal. Hence, we expect to need

to repeat Step 3 2n/
(
r
2

)
times. In each iteration we evaluate the encryption function r times.

In the construction (2), f is evaluated twice per message block, and hence the r evaluations of
f are equivalent to r/2 compression function evaluations. The total work required in Step 3 is
therefore expected to be

q2 = (r/2) · 2n/

(
r

2

)
= 2n/(r − 1).

The total work required is q1 + q2 = (r!2n(r−1))1/r + 2n/(r− 1). Hence, we may choose r as the
integer ≥ 2 that minimises this expression. Notice that q1 is an increasing function of r, and q2 is
decreasing. By setting q1 = q2 one gets, very roughly, a time complexity around (log2(n)/n)2n.
However, it turns out that the best choice of r is not exactly the one where q1 = q2, as one might
expect. Table 1 shows the best choices of r and the corresponding complexities for different sizes
n of the block cipher.

Table 1: Time complexity of the collision attack on MDC-2 with an n-bit block cipher, compared to birthday
complexity. For details in the case of MDC-2 based on DES (n = 54), see Appendix A.1.

n r
Collision attack complexity

Section 3 Birthday

54 8 251.5 254

64 9 261.3 264

128 14 2124.5 2128

256 24 2251.7 2256

The probability of success of our attack with these complexities is about 1− 1/e for Step 1,
and the same probability for Step 3 when repeated 2n/

(
r
2

)
times, in total (1 − 1/e)2 ≈ 0.40.



As mentioned in Section 2, the probability of success for the birthday attack with 2n queries is
about 1− e−1/2 ≈ 0.39. Hence, we consider the comparisons fair.

4 Preimage attacks

A brute force preimage attack on MDC-2 (or on (2) in general) has time complexity O(22n) and
space complexity O(1). The previous best known preimage attack is due to Lai and Massey [16],
and has time complexity O(23n/2) and space complexity O(2n/2). Hence, for both attacks the
product of the time complexity and the space complexity is O(22n). In the following subsection
we describe a range of preimage attack time/memory trade-offs, for which the product of the
time and the space complexities is at most n22n, but where time complexity can be anything
between O(n2n) and O(22n). In Section 4.2 we describe how to reach a time and space complexity
of O(2n).

4.1 An attack allowing for time/memory trade-offs

The attack uses pseudo-preimages, which are preimages of the compression function where both
the chaining value and the message block can be chosen freely by the attacker. The attack can
be outlined as follows.

1. Build a binary tree of pseudo-preimages with the target image HT‖H̃T as root: the nodes
are labelled with intermediate hash values, and each edge is labelled with a message block
value meaning that this message block maps from the intermediate hash value at the child
node to the intermediate hash value at the parent. The tree has (on average) two children
for each node, and it has depth d meaning there are 2d leaves.

2. From the initial value Hiv‖H̃iv of the hash function, find a message block that produces an
intermediate hash value equal to one of the leaves in the tree from Step 1.

See Figure 4. The above technique clearly leads to a preimage consisting of a message block

HT‖H̃THiv‖H̃iv

1

Fig. 4: A binary tree of pseudo-preimages of depth d = 3.

that maps to a leaf ` in the tree, and a sequence of d message blocks corresponding to the path
in the tree that leads from the leaf ` to the root. Hence the total length of the message is d + 1
blocks.

The value of d determines the time/memory trade-off. We shall discuss concrete values of
d later. The cost of Step 1 will be evaluated in the following. Since the tree has 2d leaves,
Step 2 is expected to take time 22n−d. In effect, by constructing the tree we produce 2d new
target images, which improves the efficiency of the final brute force search by a factor of 2d.
The memory requirements are 2d + 2d−1 + . . . + 1 = 2d+1 − 1 intermediate hash values.



We note that the last message block, the one that maps to the target image, must contain
proper padding for a message of d + 1 blocks. If there are not enough degrees of freedom in the
last block to both ensure proper padding and to find two pseudo-preimages, then a few initial
steps (consisting of finding a small number of pseudo-preimages) are needed to ensure proper
padding. It will become clear in the following that this only has a small effect on the total time
complexity.

Constructing the tree (Step 1 above) is very time consuming for an ideal hash function.
However, for the MDC-2 construction, there is an efficient method based on the following
theorem.

Theorem 1. Given a target hash value HT‖H̃T, a pseudo-preimage can be found in time at
most 2n−1 with probability about (1 − 1/e)2. By a pseudo-preimage we mean a pair (Hp, H̃p)
and a message block m such that g(f(Hp,m)‖f(H̃p,m)) = HT‖H̃T.

Proof. The method is the following. Let U‖Ũ = g−1(HT‖H̃T). Choose m arbitrarily, define
fm(x) = f(x,m), and evaluate fm on all x ∈ {0, 1}n. Referring again to the classical occupancy
problem, when randomly throwing 2n balls into 2n urns, the probability that a given urn contains
at least one ball is about 1 − 1/e. Assuming that fm is sufficiently random, this means that
the probability that a given image has at least one preimage is about 1− 1/e, and additionally
assuming independence, it means that the probability of finding at least one preimage of both U
and Ũ is (1−1/e)2. Let these preimages be Hp and H̃p, respectively. Then g(fm(Hp)‖fm(H̃p)) =
HT‖H̃T. Finally, the complexity of evaluating fm 2n times corresponds to 2n−1 compression
function evaluations. ut

We note that for an ideal 2n-bit compression function, the above task has complexity about
22n. The story does not finish with Theorem 1, however. Clearly, by evaluating a random n-bit
function 2n times, one finds on average one preimage for all elements of {0, 1}n. Thus, we obtain
the following corollary.

Corollary 1. Given t target hash values, in time 2n−1 one pseudo-preimage (on average) can
be found for each target hash value. Here, t can be any number between 1 and 2n.

Proof. The technique is the same as above (we note that inverting g, which must be done 2t

times, is assumed to be a much simpler task than evaluating f). Since fm is evaluated on all 2n

possible inputs, on average one preimage is found for each element of {0, 1}n. Therefore, again
assuming independence, we also expect one preimage on average of each of the t target hash
values. With respect to the complexity, we repeat that 2n calls to fm is equivalent to about
2n−1 compression function calls. ut

In the case of MDC-2, where g has a special form that allows to compute n bits of the output
given only n bits of the input (and vice versa), t above can actually be 22n without affecting
the complexity. The reason is that g (in this case) never has to be inverted more than 2n times.

Due to Theorem 1 and Corollary 1, the tree described above can be efficiently constructed
as follows (note that the tree will, in fact, not be binary, due to some nodes having no children,
and others having more than two, but on average the number of children per node will be two):

Assign the value HT‖H̃T of the target image to the root of the tree. Then find (in expected
time 2n) two pseudo-preimages of the target image by the method of Theorem 1 (applied twice
with different message blocks m). This means the tree now contains the root and two children
of the root. Then find two pseudo-preimages of each of the two children of the root. This also
takes time 2n due to Corollary 1 (again, applied twice). Continue like this d times, ending up
with a tree of depth d having 2d leaves. The time complexity is d2n.



As mentioned, with 2d leaves, meaning 2d new target images, finding by brute force a true
preimage has complexity 22n−d. Hence, the total time complexity is about d2n +22n−d. Memory
requirements are 2d+1 − 1 intermediate hash values and a negligible number of message blocks.

Observe that with d = 0 one gets time complexity 22n and space complexity 1, which is
not surprising since we do not build a tree at all, so we have a standard brute force preimage
attack. With d = n/2 one gets time complexity about 23n/2 and space complexity about 2n/2,
equivalent to the attack of Lai and Massey, but the technique is different. The most efficient
attack appears when d = n, in which case the time complexity is about (n + 1)2n, and the
space complexity is 2n+1. We improve the efficiency of this particular time/memory trade-off in
Section 4.2.

2n
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d = 2n/3
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d = n
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Fig. 5: A visualisation of the time/memory trade-off. Both axes are logarithmic. The case d = 0 corresponds to
the brute force attack. Larger values of d constitute improvements with respect to attack efficiency.

We note that this attack provides practically any time/memory trade-off for which the
product of the time and the space complexities is about 22n. Figure 5 shows some example
trade-offs.

Alternative methods. The tree above does, in fact, not have to be binary. If every node has
on average 2b children, then when the tree has depth d, there are 2bd leaves. The time required
to construct the tree is d2b+n−1. The time required for Step 2 above is 22n−bd. The memory
requirements are about 2bd for reasonably large b. With b = n/(d + 1), which approximately
balances the time spent in Steps 1 and 2, the total time complexity is about (d/2+1)2n(d+2)/(d+1)

and the memory requirements are 2nd/(d+1).
An alternative way of constructing the tree is the following. First, find a pseudo-preimage of

the root. Then, find a pseudo-preimage of the root and its child. Continue applying Corollary 1
this way, finding in each step a pseudo-preimage for each node in the tree, thus doubling the
tree size in every step. After d steps, the tree contains 2d nodes. The time complexity is d2n−1.
See Figure 6.
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Fig. 6: Constructing a tree of pseudo-preimages by finding one child of every node in each step.



Now, if there is no length padding, then we may perform a brute force search that links
the initial value to any of the 2d nodes in the tree. This brute force search has complexity
22n−d. Compared to the variant of the previous section, both time and space requirements are
roughly halved. We note that this attack resembles a method described by Leurent [17] of finding
preimages of MD4.

Length padding can be circumvented in the same way as it is circumvented in Kelsey and
Schneier’s second preimage attack on the Merkle-Damg̊ard construction [12], but the resulting
attack is slightly slower than the variant above, since there is (apparently) no efficient method
of finding fixed points of the compression function.

4.2 Pushing the time complexity down to 2n

The attack above can be modified to obtain an attack of time complexity very close to 2n. The
attack applies a technique which bears some resemblance with the one used in a preimage attack
by Mendel and Rijmen on the HAS-V hash function [19], and also with the P3graph method
introduced by De Cannière and Rechberger in [4]. The attack works as follows:

1. Choose two message blocks m0 and m1 arbitrarily, but with correct padding for a message
of length n + 1 blocks. Here we assume that padding does not fill an entire message block.

2. Compute f(i,mb) for each b ∈ {0, 1} and for every i from 0 to 2n − 1. Store the outputs
in the lists Ub, sorted on the output. Sorting can be done in linear time by using, e.g.,
Bucket-Sort or direct addressing [3].

3. Construct a binary tree with 2n leaves having the target image HT‖H̃T as root (as above
for d = n). The two children of each node in the tree are found by lookups in U0 and U1,
respectively.

4. Given 2n new target images (namely the leaves in the tree), perform a brute force search
starting from the initial value of the hash function.

Step 2 above takes time 2n. Memory requirements for each of the lists Ub are 2n values of n
bits. Step 3 is expected to take a negligible amount of time compared to Step 2, since the tree
is constructed by about 2n table lookups. Step 4 takes an expected time 2n, since there are 2n

target images, and the probability of reaching each of them is 2−2n. In total, the time complexity
of the attack is about 2n+1, and the memory requirements are about the same.

We note that if padding spans several message blocks, a few initial steps are required to
invert through the padding blocks. This may add a small factor of 2n to the complexity.

Table 2 shows some example complexities of this attack for different sizes of n, compared to
the previous best known preimage attack and the brute force attack.

Table 2: Time complexities of the preimage attack of Section 4.2 compared to the previous best known preimage
attack of Lai and Massey, and to a brute force attack. For details on the case of DES (n = 54), we refer to
Appendix A.2.

n
Preimage attack complexity

Section 4.2 Lai-Massey Brute force

54 255 281 2108

64 265 296 2128

128 2129 2192 2256

256 2257 2384 2512



5 Multicollisions

The preimage attack described in the previous section can be used to construct multicollisions
for the construction (2). Let the hash function be H, and let its initial value be Hiv‖H̃iv. Apply
the above preimage attack twice with target hash value Hiv‖H̃iv, yielding two messages M0

and M1. In other words, we find M0,M1 such that H(M0) = H(M1) = Hiv‖H̃iv. Now we can
construct a 2t-collision for arbitrary t; the messages in the multicollision consist of t copies of
M0 or M1, concatenated together.

The time complexity is twice the complexity of the preimage attack, i.e., 2n+2. For t > 4 this
is more efficient than the previous best known multicollision attack by Joux [11], which has time
complexity t2n, assuming a birthday attack is used to produce each individual collision; by apply-
ing the collision attack of Section 3, the complexity is reduced to (very roughly) (t log2(n)/n)2n.
Still the multicollision attack based on the preimage attack is faster when t > 4n/ log2(n). A
drawback of the preimage-based method is memory requirements, which are about 2n+1 in our
attack, whereas by using cycle-finding methods [2,6], the memory requirements of Joux’s attack
can be reduced to a negligible quantity.

6 Other non-random properties

Say M is a message of t blocks, and let H(M) = Ht‖H̃t be the MDC-2 hash of M . The
probability that Ht 6= H̃t is (1 − 2−n)t, because the two halves must be different after the
processing of every block out of the t blocks, in order for them to be different at the end. For an
ideal 2n-bit hash function, this probability is 1−2−n, irrespective of the value of t. Hence, when
t À 1, the probability of the two output halves being equal is much higher in MDC-2 than in
an ideal hash function. In fact, if t = 2n, then the probability is around 1 − 1/e ≈ 0.63, since
(1 − 2−n)2

n ≈ 1/e for plausible values of n. The property does not hold for the construction
(2) in general (nor does it hold if some key bits are fixed to ensure that the two keys in each
iteration are different). What is required is that some n-bit value b exists for every n-bit value
a such that g(a‖a) = b‖b.

If, during the processing of a message, one has obtained two equal halves, a standard birthday
collision attack can be applied in time 2n/2. Hence, a new type of birthday attack on MDC-2 is
as follows. Search for a message block m0 such that f(H0,m0) = f(H̃0,m0) = H1. Then find a
pair (m1,m

′
1) of message blocks such that f(H1,m1) = f(H1, m

′
1). This attack takes the same

amount of time as a standard birthday attack (it is in fact faster by a factor of two, since f only
has to be called 2n times), but a naive implementation uses only 2n/2 memory compared to 2n

for a (naive) standard birthday attack. By using cycle-finding methods, memory requirements
can be made negligible in both cases.

7 Application to other constructions

The construction (2) can be generalised even further. For example, we may define the following
general construction, where f and f̃ are two distinct functions both mapping as {0, 1}n ×
{0, 1}n → {0, 1}n, and g : {0, 1}2n → {0, 1}2n is (again) an invertible mapping:

W = f(Hi−1,mi)‖f̃(H̃i−1,mi)
Hi‖H̃i = g(W ).

(3)

Our attacks also apply to this construction, except that in some cases the complexity is up to
twice as high. For instance, finding a pseudo-preimage of HT‖H̃T now requires 2n evaluations



of both f and f̃ , and hence the total time complexity is comparable to 2n compression function
evaluations, and not 2n−1 as is the case when f = f̃ .

Apart from MDC-2 we have not found other constructions in the literature that fall under
the category of (2) or (3). However, a construction that easily comes to mind is the dual of
MDC-2, meaning that the message block is used as the key in the block cipher calls, and the
chaining value is used as the plaintext and also in the feed-forward. An advantage of this dual
construction is that some block ciphers accept keys that are larger than the plaintext block,
and hence the message blocks are larger which results in improved performance. However, since
this construction is an instance of (2), it is susceptible to the attacks described in this paper.

8 Conclusion

In this paper we presented the first collision attack on the MDC-2 construction having time
complexity below that of a birthday attack. The attack applies to other constructions similar
to MDC-2, and does not rely on weaknesses of the underlying block cipher.

We also described new and improved time/memory trade-offs for preimage attacks, where
almost any trade-off such that the product of time and space complexities is about 22n, with
time complexity between 2n and 22n, is possible. These new trade-offs mean that, e.g., a second
preimage attack on MDC-2 based on DES (see Appendix A) is not far from being practical.

We showed how to construct multicollisions based on the fastest preimage attack, and we
discussed some other constructions to which our attacks apply.

We believe the attacks have great theoretical and potential practical significance. Double-
length schemes have been studied intensively in the last two or three decades, and for many years
it was believed that MDC-2 was collision resistant, assuming the underlying block cipher was
secure. In fact, the main criticism of MDC-2 seems to have been its somewhat poor performance.
These attacks show that we still have a lot to learn about double-length constructions, although
the recent shift towards provably secure schemes provides some consolation.
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A The special case of MDC-2 instantiated with DES

For simplicity, throughout the paper we assumed that the key size k equals the block size n of
the block cipher with which MDC-2 is instantiated. However, this is not necessarily the case,



with DES [24] (n = 64, k = 56) being the most prominent example. The effective key size for
MDC-2 with DES is further reduced by two bits to k = 54. For the following, it suffices to
think of the mapping from chaining blocks to keys as a truncation from 64 to 54 bits. The exact
details of this mapping are of no concern for the following treatment, hence we refer to [9] for
the full details.

A.1 Collision attacks

The collision attack as described in Section 3 produces a collision in the last chaining value
of length 2n. However, if an arbitrary message block is appended to the expected colliding
message pair, it suffices to look for a collision in the 2k bits that will be used as the key input of
DES in the following iteration. Hence, for the collision attack on MDC-2 based on DES having
complexity about 251.5, instead of two, at least three message blocks are needed.

A.2 Preimage attacks

Also for the preimage attack of Section 4, the target hash is assumed to be of size 2n. In order
to take advantage of a smaller key size k, the last message block needs to be known by the
attacker. In this case the time complexity can be as low as 255; if no first preimage is given then
the attack has a complexity of about 265.


