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Abstract. Halevi and Krawczyk proposed a message randomization al-
gorithm called RMX as a front-end tool to the hash-then-sign digital
signature schemes such as DSS and RSA in order to free their reliance on
the collision resistance property of the hash functions. They have shown
that to forge a RMX-hash-then-sign signature scheme, one has to solve a
cryptanalytical task which is related to finding second preimages for the
hash function. In this article, we will show how to use Dean’s method of
finding expandable messages for finding a second preimage in the Merkle-
Damg̊ard hash function to existentially forge a signature scheme based
on a t-bit RMX-hash function which uses the Davies-Meyer compression
functions (e.g., MD4, MD5, SHA family) in 2t/2 chosen messages plus
2t/2+1 off-line operations of the compression function and similar amount
of memory. This forgery attack also works on the signature schemes that
use Davies-Meyer schemes and a variant of RMX published by NIST in
its Draft Special Publication (SP) 800-106. We discuss some important
applications of our attack.
Keywords: Digital signatures, Hash functions, Davies-Meyer, RMX.

1 Introduction

The collision attacks on the MD5 [36] and SHA-1 [30] hash functions in the recent
years are one of the most vital contributions in the field of cryptology [40, 41].
Since then, there has been a reasonable amount of research showing how seriously
these attacks (in particular on MD5) could undermine the security of the digital
signatures [6, 17, 24, 38, 39] in which these hash functions are deployed.

For a long time, it has been suggested to randomize the messages using a fresh
random value, also called salt, before they are hashed and signed, in order to free
the security of the digital signatures from depending on the collision resistance of
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the hash functions [1,13,14]. Message randomization before hashing would make
an attacker to predict the random value in order to make use of collisions in a
hash function to forge a digital signature. In consequence of that, the security
of a digital signature would be forced to depend on a property weaker than the
collision resistance of the hash function.

At Crypto 2006, Halevi and Krawczyk [19] proposed and analysed two simple
message randomization transforms as the front-end tools for any hash-then-sign
signature scheme which uses Merkle-Damg̊ard hash functions [9, 26]. They have
shown that these message randomization techniques would base the security
of the hash-then-sign signature schemes on the second preimage resistance of
the hash function. They have noted that long message second preimage attack
of Kelsey and Schneier [23] can be mounted on the hashes of the randomized
messages to find second preimages to existentially forge the signatures of these
hashes. Merkle-Damg̊ard hash functions with these front-end tools were also
considered as new modes of operation [19]. One of these transforms, called RMX,
has the practical viability with the signature schemes such as RSA [37] and
DSA [29] and was fully specified in [19, Appendix D], [20, 21]. We call a hash-
then-sign signature scheme which uses RMX as the front-end tool, a RMX-hash-
then-sign signature scheme.

A signer computes the signature of a message m using a RMX-hash-then-
sign signature scheme as follows: He chooses a random value denoted r, and
randomizes m by passing the pair (r, m) as input to the RMX transform. The
randomized message is given by M = RMX(r, m). The signer processes the
message M using a t-bit hash function H and obtains the t-bit hash value H(M).
The signer signs the hash value H(M) using a signature algorithm, denoted SIG,
and obtains the signature s. The signer sends the triplet (m, r, s) to the verifier
who computes M = RMX(r, m) and provides the pair (M, s) to the verification
procedure to verify s.

The RMX transform requires no change to the signatures algorithms such
as RSA and DSA. The implementation of RSA [37] based on RMX-SHA-1 was
discussed in [21]. In 2007, NIST has published a variant of RMX as a draft special
publication (SP) 800-106 [10] which was superseded in 2008 by a second draft
SP 800-106 [11]. In addition, NIST intends that the candidate hash functions in
the SHA-3 hash function competition support randomized hashing [31].

1.1 Related work

Dang and Perlner [12] have shown a generic chosen message forgery attack on
the signature schemes based on t-bit RMX-hashes in 2t/2 chosen messages and
2t/2 operations of the hash function and similar memory. This attack produces
a collision of form H(RMX(r, m)) = H(RMX(r∗, n)) which implies SIG(m) =
SIG(n) where (r, m) 6= (r∗, n), m is one of the chosen messages and n is the
forgery message of m.



1.2 Our results

In this article, we first note that the attack of Dang and Perlner [12] does not pro-
duce a verifiable forgery if the signer uses the same random value for both RMX
hashing and signing such as in DSA [29, 32], ECDSA [3, 32] and RSA-PSS [37].
The re-use of the random value in the signature schemes for the randomized hash-
ing to save the communication bandwidth was addressed in [11, 12, 19, 27, 33].
The attack of [12] also does not work on the signature schemes based on the
other randomized hash function analysed by Halevi and Krawczyk [19] wherein
both the salt and randomized hash value are signed to produce a signature.

We then show an existential forgery attack under a generic chosen message
attack [18] on the RMX-hash-then-sign signature schemes when the compression
functions of the hash functions have fixed points. Our attack produces a valid
forgery in the above applications wherein the forgery attack of Dang and Perlner
does not succeed. Our attack uses Dean’s trick of finding fixed-point expandable
messages [15, 23] for finding second preimages in the hash functions that use
fixed point compression functions. Many popular hash functions, that include,
MD4 [35], MD5 [36], SHA family [30] and Tiger [2] have compression functions
that use Davies-Meyer construction [22, 34] for which fixed points can be easily
found [28]. In an existential forgery attack, the attacker asks the signer for the
signatures on a set of messages of his choice and is then able to produce a
valid signature on a message which was never signed by the signer. Our forgery
attack requires 2t/2 equal length chosen messages, 2t/2+1 off-line operations of
the compression function and a probability of 2−24 to hit the correct bits used
to pad the message by the RMX transform. The attack requires about 2t/2

memory. With this computational work, we can establish a collision of the form
H(RMX(r, m)) = H(RMX(r, m‖n)) where m is one of the chosen messages and
n 6= m is a randomized message block which gives a fixed point. This implies
SIG(m) = SIG(m‖n) and we show the message m‖n as the forgery of m. Our
attack also works on the signature schemes that use a variant of RMX published
by NIST in its SP 800-106 [11] and in its earlier version [10].

1.3 Impact of our results

Our forgery attack on the RMX-hash-then-sign signature schemes is totally im-
practical for the reasonable hash value sizes of 256 bits. Moreover, our attack
can not be parallelizable as it requires a real signer to sign a huge set of mes-
sages. Our analysis is in no contradiction to that of Halevi and Krawczyk [19].
Moreover, it complements their analysis by showing that RMX-hashes achieve
an essential security improvement with respect to off-line birthday attacks in
forcing these attacks to work on-line (e.g. requiring 2t/2 messages signed by the
legitimate signer and similar amount of memory). Our analysis demonstrates
that the security of RMX-hash-then-sign signature schemes based on the t-bit
ideal fixed-point compression functions is equivalent to that of the t-bit standard
keyed hash function HMAC [4] based on a t-bit ideal compression function. The
attack of [12] has a similar impact, though its application is limited.



1.4 Guide to the paper

In Section 2, we provide the notation and the background information necessary
to understand the paper. In Section 3, we describe randomized hash functions
of [19] and outline the RMX specification and its variant published by NIST [11].
In Section 4, we discuss the forgery attack of [12] on the RMX-hash-then-sign
schemes and its limitations. In Section 5, we show how to apply Dean’s fixed
point expandable messages to forge hash-then-sign signatures. In Section 6, we
describe our forgery attack on the signature schemes based on the RMX hash
mode and its variants. In Section 7, we conclude the paper with some open
questions.

2 Preliminaries

In this section, we define some notation and review some fundamentals of hash
functions and digital signatures that will be used throughout the paper.

2.1 Notation

The symbol ‖ represents the concatenation operation. The notation eα represents
the concatenation of e bit α times where e is either 0 or 1. For example, 14 =
1‖1‖1‖1. If a is a positive integer, we represent by a[α], the first (from left to
right) α bits of a. For example, if a = 1011011001 then a[4] = 1011. Similarly, if
ab is a positive integer, we represent by (ab)[α], the first α bits of ab.

2.2 Merkle-Damg̊ard hash functions

Let H : {0, 1}∗ → {0, 1}t be a Merkle-Damg̊ard hash function based on the
compression function h : {0, 1}b × {0, 1}t → {0, 1}t. An upper bound in bits
(say 2l) on the length of the message to be hashed is often specified for H . The
message m to be processed using H is split into blocks m1, m2, . . . , mL−1 and
mL. Let |mi| = b for i = 1 to L − 1 and q be the number of the message bits in
the last block mL where q < b. If q ≤ b − l − 1 then the message m is padded
with 1‖0b−l−q−1‖|m| where |m| is the l-bit binary representation of the length
of the message m. If q > b − l − 1 then the message m is padded with 1‖0b−q−1

and a separate b-bit block 0b−l‖ |m| is concatenated to the padded message
m‖1‖0b−q−1. Every message block mi, for i = 1 . . . L, is processed using h as
defined by Hi = h(Hi−1, mi) where H0 is the initial value (IV) of H , Hi is the
intermediate hash value of H at iteration i of h and HL is the hash value of H .
We denote by HH0 , a hash function with H0 as the IV.

Some properties of an ideal hash function H
H0.

1. Collision resistance (CR): It should take about 2t/2 operations of HH0 to
find two messages m and n such that m 6= n and HH0(m) = HH0(n).



2. Second preimage resistance (SPR): For a challenged target message m, it
should take about 2t operations of HH0 to find another message n such that
n 6= m and HH0(m) = HH0(n). However, for a target message of 2d blocks,
second preimages for HH0 can be found in about 2t−d operations of h [23].

Some properties of an ideal compression function h.

1. CR: It should take about 2t/2 operations of h to find two different pairs
(Hi−1, mi) and (H∗

i−1, ni) such that h(Hi−1, mi) = h(H∗
i−1, ni).

2. SPR: For a challenged pair (Hi−1, mi), it should take about 2t opera-
tions of h to find a pair (H∗

i−1, ni) such that (Hi−1, mi) 6= (H∗
i−1, ni) and

h(Hi−1, mi) = h(H∗
i−1, ni). This property is also called random-SPR (r-

SPR) [19].

2.3 Compression functions with fixed points

A fixed point for a compression function h is a pair (Hi−1, mi) such that
h(Hi−1, mi) = Hi−1. Let h be the Davies-Meyer compression function which
is defined by h(Hi−1, mi) = Emi

(Hi−1) ⊕ Hi−1 = Hi where mi is the message
block which is used as a key to the block cipher E and the input state Hi−1

is the plaintext to E. A fixed point for h can be easily found by evaluating
the expression E−1

mi
(0) for some message block mi. Davies-Meyer feed-forward

can also use addition mod 2t and fixed points can still be found for this case.
This technique to find fixed points for the Davies-Meyer construction has been
described in [28], [23, Appendix A.1].

2.4 Existential forgery attack on the signature schemes

An existential forgery of a signature scheme SIG under a generic chosen message
attack [18] (also called weak chosen message attack [8]) is performed as follows:

1. The attacker sends to the challenger (signer) a list of q messages m1, . . . , mq.
2. The challenger generates a public and private key pair (Pk, Sk) using a

key generation algorithm. The challenger generates the signatures si on the
messages mi computed using his private key Sk and the signature algorithm
SIG for i = 1, . . . , q. The challenger sends to the attacker the public key Pk
and the signatures si.

3. The attacker forges the signature scheme SIG by outputting a pair (m, s) if:

(a) (m, s) /∈ {(m1, s1), . . . , (m
q, sq)}; and

(b) The triplet (Pk, m, s) produces a valid verification.

Let Adv be the probability that the adversary wins the above game, taken
over the coin tosses made by him and the challenger. The adversary is said to
(t, q, ǫ)-existentially forge the signature scheme SIG if he runs in time at most t,
makes at most q queries and Adv ≥ ǫ.



3 Randomized hashing

A family of hash functions {Hr}r∈R for some set R is target collision resistant
(TCR) [5, 19] if no efficient attacker after choosing a message m and receiving
the salt r ∈R R can find a second preimage n such that m 6= n and Hr(m) =
Hr(n) except with insignificant probability. The usage of the family {Hr}r∈R

for the digital signatures necessitates the users to sign the salt r along with
the hash of the message. However, hash-then-sign signature schemes such as
DSA [29] and RSA [37] do not support signing the salt in addition to Hr(m). In
order to free such signature schemes from signing the salt, Halevi and Krawczyk
introduced the notion of enhanced TCR (eTCR) hash function family [19]. The
hash function family {H̃r}r∈R is eTCR if there exists no efficient attacker who
after committing to a message m and receiving the salt r, can find a pair (r∗, n) 6=
(r, m) such that H̃r(m) = H̃r∗(n) except with insignificant probability.

Halevi and Krawczyk [19] presented two randomized hash function modes for
H . The first t-bit scheme, denoted Hr, XORs every block mi of the message m
with a b-bit random value r as shown below:

HH0

r (m) = HH0

r (m1‖ . . . ‖mL)
def
= HH0(m1 ⊕ r‖m2 ⊕ r‖ . . . ‖mL ⊕ r).

The second t-bit scheme, denoted H̃r, prepends r to mi ⊕ r for i = 1 . . . , L as
shown below:

H̃H0

r (m) = H̃H0

r (m1‖ . . . ‖mL)
def
= HH0(r‖m1 ⊕ r‖m2 ⊕ r‖ . . . ‖mL ⊕ r).

The functions H̃r and Hr are eTCR and TCR respectively if the compression
function h is either chosen-SPR (c-SPR) or Evaluated-SPR (e-SPR) [19]. These
properties for the compression function h are defined below:

1. c-SPR: For a given message block mi, find (Hi−1, H
∗
i−1, ni) such that

h(Hi−1, mi) = h(H∗
i−1, ni).

2. e-SPR: Choose u ≥ 1 values ∆1, . . . , ∆u each of length b bits. Receive a
random value r ∈ {0, 1}b and then define mi = r⊕∆u and Hi−1 = HH0(r⊕
∆1‖ . . . ‖r ⊕ ∆u−1). Find (H∗

i−1, ni) such that h(Hi−1, mi) = h(H∗
i−1, ni).

A generic birthday attack can be mounted on the c-SPR property of h and
it does not work on the r-SPR and e-SPR properties of h [19]. The eTCR con-
struction H̃r was proposed as the preferred hash function mode for use in digital
signatures as it does not require explicit signing of the salt r and allows for bet-
ter implementation flexibility. A concrete specification of H̃r called RMX and its
usage with the digital signatures and its implementation details were discussed
in [19, Appendix D] [20] and [21] respectively. RMX was also considered as a
message randomization transform.

3.1 RMX specification

The RMX scheme randomizes an input message m of at most 2l − b bits using a
random value r of length between 128 and b bits to an output message M . The
RMX algorithm is defined below following [19, Appendix D], [20, 21]:



1. Three random values r0, r1 and r2 are computed from r as follows:

(a) r0 = r‖0b−|r| such that |r0| = b bits.
(b) r1 = r‖r‖ . . . ‖r

︸ ︷︷ ︸

b bits

such that |r1| = b and the last repetition of r is truncated

if needed.
(c) r2 = r

[b−l−8]
1 (The first b − l − 8 bits of r1).

2. Split the input message m into L − 1 b-bit blocks m1, m2. . . . , mL−1 and a
last block mL of length b′ where 1 ≤ b′ ≤ b.

3. Set M0 = r0.
4. For i = 1 to L − 1:

(a) Mi = mi ⊕ r1.

5. Let lpad (meaning last block pad) be a 16-bit string, representing the bit
length b′ of mL in the big-endian notation. If lpad0 and lpad1 are the first
and second bytes of lpad, respectively, and each of these bytes represents a
number between 0 and 255, then b′ = 256 × lpad1 + lpad0.

(a) If b′ ≤ b − l − 24 then set M∗
L = mL‖0

k‖lpad where k = b − b′ − 16 − l.
Set ML = M∗

L ⊕ r2 .

(b) If b′ > b − l − 24 then set M∗
L = mL‖0

b−b′ and M∗
L+1 = 0b−l−24‖lpad.

Set ML = M∗
L ⊕ r1 and ML+1 = M∗

L+1 ⊕ r2.

6. Output the randomized message M = RMX(r, m) = M0‖ . . . ‖ML in the
case of (5a) and M = RMX(r, m) = M0‖ . . . ‖ML‖ML+1 in the case of (5b).

Remark 1. We note that when b′ ≤ b − l − 24, the padding rule designed for
RMX with k = b − b′ − 16 − l requires a separate block to accommodate the
padding and length encoding (at least l + 1) bits of the message M required
by the hash function HH0 as illustrated in Appendix A. In addition, when b′ ≤
b − l − 24, with k = b − b′ − 16 − l, |M∗

L| = b − l and hence |r2| = b − l bits

which means r2 = r
[b−l]
1 . For example, let |mL| = b′ = b − l − 24 bits. Then

k = b − b′ − l − 16 = b − (b − l − 24) − l − 16 = 8 bits. Now M∗
L = mL‖0

8‖lpad
and |M∗

L| = b − l − 24 + 8 + 16 = b − l bits. Hence, r2 should also be b − l bits.

Hence, in this paper, we set r2 = r
[b−l]
1 for b′ ≤ b − l − 24 bits.

If we set k = b − b′ − 24 − l for b′ ≤ b − l − 24 bits then the padding and
length encoding bits required by HH0 can be accommodated in the last block of
M as illustrated in Appendix A. When k = b − b′ − 24− l, with b′ ≤ b − l − 24,

|M∗
L| = b−l−8 bits and hence |r2| = b−l−8 bits which means r2 = r

[b−l−8]
1 which

is the same as in RMX specification. For example, let |mL| = b′ = b− l−24 bits.
Then k = b−b′−l−24 = b−(b−l−24)−l−24 = 0 bits. Now M∗

L = mL‖0
0‖lpad

and |M∗
L| = b − l − 24 + 0 + 16 = b − l − 8 bits and hence |r2| = b − l − 8 bits

and we can set r2 = r
[b−l−8]
1 .

A variant of RMX. NIST has published a variant of RMX in its SP 800-
106 [11] replacing its previous draft SP 800-106 [10]. We call the latest variant of
RMX in SP 800-106 [11] by RMXSP whose specification is placed in Appendix B.



Remark 2. We note that RMX and RMXSP differ in the padding rule defined for
the messages. In addition, in RMX, the prepended random value r is extended
to a block of b bits by padding it with 0 bits, whereas, in RMXSP, it is directly
concatenated with the XOR of the message blocks and random value.

4 Generic forgery attack on the RMX-hash-then-sign

signature schemes

Dang and Perlner [12] proposed an on-line birthday forgery attack on the signa-
ture schemes based on t-bit RMX-hashes in 2t/2 chosen messages, 2t/2 off-line
hash function operations and a similar amount of memory as outlined below:

– On-line phase:

1. Query the signer for the signatures of 2t/2 chosen messages mi where
i = 1, . . . , 2t/2. Store every mi in a Table L1.

2. The signer chooses a fresh random value ri to compute the signature si

of every message mi using SIG. The signer first computes RMX(mi) and
then computes SIG(HH0(RMX(mi))) = si. The signer returns the pair
(ri, si) where i = 1, . . . , 2t/2.

– Off-line phase:

1. For i = 1, . . . , 2t/2, using ri, compute the hash values HH0(RMX(ri, m
i))

and store them together with (ri, si) in L1.
2. Choose random pairs (rj , mj) and compute the hash values

HH0(RMX(rj , mj)) where j is in increments of 1. While computing a
hash value, check whether it collides with any of the hash values in the
Table L1. After about j = 2t/2 attempts, with a good probability, we
can find one collision. Let that random pair be (ry , my). That is, we
can find (rx, mx, Hx) from L1 where (rx, mx) 6= (ry , my) and Hx =
HH0(RMX(ry, my)) = HH0(RMX(rx, mx)) where x, y ∈ {1, . . . , 2t/2}.
Hence, SIG(mx) = SIG(my).

3. Output message my as the forgery of mx.

4.1 Limitations of the forgery attack

We note that the above attack does not produce a valid forgery in the following
signature applications. These applications were noted in [12, 19].

– The random component that already exists in the signature schemes such
as RSA-PSS, DSA and ECDSA, can also be used for randomized hashing
(e.g., RMX hash mode) to save the bandwidth. The above attack does not
succeed on such signature schemes during the forgery verification as the
random value used by the signer for RMX hashing and signing matches the
arbitrary value chosen by the attacker with a negligible probability.

– When the signature schemes based on TCR hashing Hr are used to sign a
message m, both r and Hr(m) have to be signed. For a valid forgery on such
signatures, the attacker should use the same random value as the signer;
hence this attack does not succeed.



5 Application of Dean’s fixed point expandable messages

to forge hash-then-sign signature schemes

Dean [15,23] has shown that if it is easy to find fixed points for the compression
function then a fixed point expandable message, a multicollision using different
length messages, can be constructed for the hash function. Using Dean’s trick,
we show that, one out of 2t/2 signatures obtained on the equal length messages
from a legitimate signer can be forged by finding a collision which looks like
HH0(m) = HH0(m‖n) where n is the fixed point message block. This implies
SIG(m‖n) = SIG(m) and we show the message m‖n as the forgery of m in 2t/2+1

invocations of HH0 and one chosen message query to the signer. We assume that
h is the Davies-Meyer compression function. The attack is outlined below:

1. Consider 2t/2 equal-length messages mi of length (c× b)− (l + 1) bits where
c is the number of b-bit blocks and i = 1, . . . , 2t/2. Compute the hash values
Hi of mi under HH0 where each mi is padded with a bit 1 followed by l bits
that represent the binary format of the length (c× b)− (l+1) bits. Let these
l + 1 bits be pad bits. Store mi and Hi in a table L1.

2. For j = 1, . . . , 2t/2, compute 2t/2 fixed points for h such that h(H∗
j , nj) = H∗

j

where the last l + 1 bits of every block nj are fixed with a padding bit 1
and l bits that represent the binary format of the length of the message
mi‖pad‖(nj)[b−(l+1)] where (nj)[b−(l+1)] represents the first b− (l+1) bits of
nj . Let the last l +1 bits of nj be padf bits where by padf we mean padding
bits in the fixed point block. Store H∗

j and (nj)[b−(l+1)] in a table L2.

3. According to the birthday paradox, with a significant probability, we can find
a hash value Hx from the list L1 and a hash value H∗

y from the list L2 such

that HH0(mx‖pad) = Hx = H∗
y = h(H∗

y , ny) for some x ∈ {1, . . . , 2t/2} and

y ∈ {1, . . . , 2t/2}. This implies HH0(mx‖pad‖ny) = HH0(mx‖pad) = Hx.
Let m = mx and n = (ny)[b−(l+1)].

4. Ask the signer for the signature on the message m. The signer hashes the
message m‖pad using HH0 and then signs the hash value HH0(m‖pad) using
the signature algorithm SIG to obtain the signature s = SIG(m).

5. Now, HH0(m‖pad‖n‖padf) = HH0(m‖pad). Hence, SIG(HH0(m‖pad)) =
SIG(HH0(m‖pad‖n)) which implies SIG(m) = SIG(m‖pad‖n). Note that padf
bits are the padded bits to the message m‖pad‖n when it is hashed with HH0 .

6. Output the message m‖pad‖n as the forgery of the chosen message m.

Remark 3. Our attack technique subtly differs from Dean’s trick [15, 23] as we
exert control over the fixed point message blocks by integrating the padding
and length encoding bits that represent the length of the forgery message in the
last few bits of the fixed point block. Whereas in Dean’s trick to find expandable
messages, all bits in the fixed point block can be random. Hence, our trick would
also work to find expandable messages for the hash functions when the message
inputs are XORed with a random value.



6 Existential forgery attack on some RMX-hash-then-sign

signatures

Here we extend the technique presented in Section 5 to provide an existential
forgery attack on the hash-then-sign signatures that use t-bit fixed point com-
pression functions and RMX transform specified in Section 3.1 and Remark 1.
Our forgery attack also works in the applications outlined in Section 4.1 wherein
the generic forgery attack described in Section 4 does not succeed.

In this attack, we first determine the length of the message to be forged and
also length of the message to be produced as a forgery. We then compute 2t/2

fixed point message blocks for the compression function by integrating padding
and length encoding bits required for the forgery message into the fixed point
blocks. We then ask the signer to sign 2t/2 equal length chosen messages and
collect their signatures and random values used for signing. We use those 2t/2

random values and messages to compute 2t/2 RMX-hashes and find a collision
with the 2t/2 pre-computed fixed point hash values. We will find one of the
chosen messages (along with its random value and signature) and one fixed point
message block whose respective hashes collide. We then XOR the fixed point
block and the random value to obtain a new block and concatenate it as a suffix
block to the chosen message. Finally, we produce this concatenated message as
the forgery of the chosen message. The attack involves some subtleties due to
the fact that the RMX transform has a padding layer and hence, the attack has
an additional negligible complexity of 224 which adds to the complexity of 2t/2

chosen messages and 2t/2+1 operations of the compression function.
The pseudocode for the existential forgery attack on the signature scheme

SIG which uses a hash function HH0 based on the Davies-Meyer compression
function h and RMX as the message randomization algorithm is given below:

– Pre-computation phase:

1. Determine the length of the message to be forged. Let it be a message
m of 2b − l − 24 bits. Let m∗ be the forgery of m to be produced whose
length can be pre-determined using |m| as given by |m∗| = |m|+ l+24+
b+(b− l−24−1) = 2b− l−24+ l+24+ b+ b− l−25 = 4b− l−25 bits.

2. Pre-compute 2t/2 fixed points for the compression function h using mes-
sage blocks N j , each of size b bits, such that H∗

j−1 = h(H∗
j−1, N

j) for

j = 1, . . . , 2t/2. While finding fixed points, fix the last l + 1 bits of each
message block N j for the pad bit 1 and l bits to represent the pre-
determined length encoding of the message m∗ of length 4b− l− 25 bits
to be produced as forgery. Let these l + 1 bits be padf bits. Store the
pairs (N j , H∗

j−1) for j = 1, . . . , 2t/2 in a Table L1.

– On-line phase:

1. Query the signer with 2t/2 equal length chosen messages mi for i =
1, . . . , 2t/2 (the message can also be the same in these queries). Let |mi| =
b+ b− l−24 bits. Every message mi can be represented as mi = mi

1‖m
i
2

where |mi
1| = b bits and |mi

2| = b− l− 24 bits. Store these 2t/2 messages
in a Table L2.



For i = 1, . . . , 2t/2, the signer computes the signatures si on the equal-
length messages mi as follows:
(a) The signer chooses a fresh random value ri for every query i indepen-

dent of the message mi. The signer calculates three random values
r0,i, r1,i and r2,i for every chosen random value ri following the RMX
specification in Section 3.1 and Remark 1 as follows:
i. r0,i = ri‖0

b−|ri|

ii. r1,i = ri‖ri‖ . . . ‖ri such that |r1,i| = b bits and the last repetition
of ri is truncated if needed.

iii. r2,i = r
[b−l]
1,i (as noted in Remark 1).

(b) The signer splits every message mi as mi = mi
1‖m

i
2 where |mi

1| = b
bits and |mi

2| = b − l − 24 bits.
(c) The signer randomizes every message mi as follows:

i. M i
0 = r0,i

ii. M i
1 = mi

1 ⊕ r1,i

iii. M i
2 = (mi

2‖0
8‖lpad)⊕ r2,i

(d) Let padm represents the l-bit binary encoded format of the
length of the message M i

0‖M
i
1‖M

i
2. For every randomized mes-

sage M i
0‖M

i
1‖M

i
2, the signer computes the hash value by pass-

ing this message as input to the hash function HH0 . The
hash value for every randomized message is H̃H0

ri
(mi) =

HH0(M i
0‖M

i
1‖(M

i
2‖1‖0

l−1)‖(0b−l‖padm)). The signer returns the
signature si = SIG(H̃H0

ri (mi)) of every message mi.
2. For every queried message mi where i = 1, . . . , 2t/2, the signer returns

the pair (ri, si).

– Offline phase:

1. Add the received pair (ri, si) to the table L2.
2. Using the random value ri, compute three random values r0,i, r1,i and

r2,i following the RMX specification in Section 3.1 and Remark 1.
3. Randomize the message mi as follows:

(a) M i′

0 = r0,i

(b) M i′

1 = mi
1 ⊕ r1,i

(c) M i′

2 = (mi
2‖0

8‖lpad)⊕ r2,i

4. Let M i′ = M i′

0 ‖M i′

1 ‖M i′

2 . The validity of the signatures si returned
by the signer during the on-line phase of the attack ensures that
M i′

0 ‖M i′

1 ‖M i′

2 = M i
0‖M

i
1‖M

i
2.

5. Compute H̃H0

ri
(mi) = HH0(M i

0‖M
i
1‖(M

i
2‖1‖0

l−1)‖(0b−l‖padm)) and

add the hash values H̃H0

ri
(mi) to the Table L2. Let H̃H0

ri
(mi) = Hi for

i = 1, . . . , 2t/2. Now the Table L2 contains the values (mi, ri, si, Hi).
6. Find a collision between the 2t/2 hash values stored in the Tables L1 and

L2. With a significant probability, we can find a hash value Hx from the
Table L2 and a hash value H∗

y from the Table L1 such that:

HH0(Mx
0 ‖M

x
1 ‖(M

x
2 ‖1‖0

l−1)‖(0b−l‖padm)) = Hx = h(H∗
y , Ny) = H∗

y

where



(a) Mx
0 = r0,x and |Mx

0 | = b
(b) Mx

1 = mx
1 ⊕ r1,x and |Mx

1 | = b
(c) Mx

2 = (mx
2‖0

8‖lpad)⊕ r2,x and |Mx
2 | = b − l

(d) Ny = (Ny)[b−l−1]‖padf
and x ∈ {1, . . . , 2t/2}, y ∈ {0, . . . , 2t/2 − 1}. This step is illustrated in
Figure 1(a) and 1(b).

7. Let r′2,x be the last l bits of r1,x. Then r1,x = r2,x‖r
′
2,x. Note that |r2,x| =

b−l. Let padr = r′2,x⊕(1‖0l−1). Let padr1 = (r
[b−l]
1,x ⊕0b−l)‖(r′2,x⊕padm).

Note that |padr1| = b bits.

8. Calculate (Ny)
[b−l−1]

⊕r
[b−l−1]
1,x = ny as shown in Figure 1(c). The prob-

ability that the last 24 bits of ny are 08‖lpad is 2−24. These 24 bits
represent the padding bits of the message randomized by RMX.

9. Let m∗ = mx
1‖(m

x
2‖0

8‖lpad‖padr)‖padr1‖(ny)[|n
y|−24] and m = mx

1‖m
x
2 .

Note that |m| = 2b − l − 24 bits and m∗ = 4b − l − 25 bits which is the
same as predetermined in Step (1) of the pre-computation phase of the
attack. The signature SIG(m) on the message m is also valid on m∗ as
H̃H0

r (m) = H̃H0

r (m∗).
10. Finally, output the message m∗ as the forgery of the message m.

Complexity: It takes 2t/2 operations of h to precompute fixed points; 2t/2 cho-
sen message queries to the signer during the on-line phase; 2t/2 operations of h
and XOR operations during the off-line phase and a probability of 2−24 to hit
the correct padding bits of the RMX transform. Total complexity of the attack
is approximately 2t/2+1 operations of the compression function and 2t/2 chosen
messages. The memory requirements of the attack are as follows assuming that
the size of the signature is four times that of the security level of t/2 bits of a
t-bit hash (which is possible in DSA): b×2t/2+t×2t/2 bits in the precomputation

phase; 2b × 2t/2 bits in the on-line phase and |r| × 2t/2 + t × 2t/2 + 2t × 2t/2

bits in the off-line phase. The total memory required for the attack is equal to
(3b + 4t + |r|) × 2t/2 bits. This is approximately 2t/2+3 memory of t-bit values.
Illustration: Forging a signature scheme based on RMX-SHA-256 requires
about 2129 operations of the SHA-256 compression function, 2128 chosen mes-
sages and a probability of 2−24. Assuming that |r| = 128 bits, this attack requires
a memory of about 2131. In comparison, as noted in [19], forging a signature
scheme based on RMX-SHA-256 using second preimage attack of [23] requires
about 2201 SHA-256 compression function operations, more than 255 memory
and one chosen message.

Remark 4. Our forgery attack on the RMX-hash-then-sign signature schemes is
independent of the size of the random value r. Our analysis assumes that in the
RMX specification, b′ = b − l − 24 bits. The attack also works for about the
same complexity when b′ < b − l − 24 bits. However, when b′ > b − l − 24 bits,
the padding bits of the RMX transform are placed in the last two blocks ML

and ML+1. Since, the last block ML+1 does not contain any message bits, it is
not possible to generate a fixed point block which can represent this block and
hence, the attack does not work.
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Fig. 1. Forgery attack on the RMX-hash-then-sign scheme based on Davies-Meyer

6.1 Applications of our forgery attack

Our existential forgery attack on SIG based on RMX-hashes that use fixed point
compression functions also works on SIG based on RMXSP-hashes that use fixed
point compression functions. When |m| + 1 ≥ |r| for RMXSP, the complexity
of our forgery attack on SIG using RMXSP is similar to the one on SIG using
RMX with the exception that it requires a success probability of 1/2 to hit the
correct padding bit “1” used to pad the message by RMXSP. The same attack
also works on the signature schemes that use the previous version of RMXSP [10]
by assuming |m|+ 16 ≥ |r|. The attack has similar complexity as when RMX is
used except that it has a success probability of 2−16 to hit the 16 padding bits
used to pad the message by this variant.

Our forgery attack also works on the signatures based on the proposal
HH0(r‖HH0

r (m)) [19] and on the signature schemes that use RMX transform
together with the hash functions that use split padding [42] (assures that a min-
imum number of message bits are used in every block including the padding and
length encoding block) to pad the message input to the hash function. Adding
sequential counters to the RMX hash function (similar to the HAIFA hash
mode [7]) also does not add any protection against our attack nor to the one
in Section 4 as the counter inputs can be controlled in both the attacks. Note
that sequential counters to the RMX hash function would still prevent the at-
tempts to forge the RMX-hash-then-sign schemes using second preimage attacks
of [15, 23].

Remark 5. Our on-line birthday forgery attack does not work on the signature
schemes that use wide-pipe hash construction [25] with the internal state size
w ≥ 2t based on the fixed point compression functions as the attack requires at
least 2t chosen messages and 2t+1 operations of the compression function. For
example, Grøstl hash function [16], one of the selected candidates for the first



round of NIST’s SHA-3 hash function competition, uses a compression function
for which fixed points can be easily found and has w ≥ 2t for a t-bit hash value.

6.2 Attack on the e-SPR property of the compression functions

Our forgery attack on the RMX-hash-then-sign signature schemes translates into
a birthday collision attack on the e-SPR property of the compression function
h for which fixed points can be easily found. Recall that in the e-SPR game, we
choose u ≥ 1 values ∆1, . . . , ∆u, each of length b bits. We then receive a random
value r ∈ {0, 1}b and define mi = r⊕∆u and Hi−1 = HH0(r⊕∆1‖ . . . ‖r⊕∆u−1).
Finally, we aim to find a pair (H∗

i−1, ni) such that (H∗
i−1, ni) 6= (Hi−1, mi) and

h(Hi−1, mi) = h(H∗
i−1, ni). The attack is outlined below:

1. Collect 2t/2 fixed point pairs (Hi−1, m
i) for h in a Table L where i =

1, . . . , 2t/2. Play the e-SPR game 2t/2 times always with ∆1 = ∆2 = 0
and every time we receive a fresh random value rj for j = 1, . . . , 2t/2.

2. We check if Hi−1 = HH0(rj‖rj) for some i and j. Let that rj = r and fixed
point be (Hi−1, mi) where mi = mi for some i.

3. Let H∗
i−1 = HH0(r), ni = r, Hi−1 = HH0(r‖r). Now h(H∗

i−1, ni) =
HH0(r‖r) = HH0(r‖r‖mi) = h(Hi−1, mi).

Thus, after an expected number of 2t/2 games, we win one game. Note that
the forgery attack in Section 4 also translates into an e-SPR attack on any
compression function after an expected number of 2t/2 e-SPR games.

7 Conclusion

Our research opens an interesting question on how to improve RMX SHA family
without degrading its performance much to protect the signatures based on it
against our forgery attack. One solution is not to mix the message bits processed
using RMX transform with the padding and length encoding bits of the hash
function by having only the latter bits in the last block. However, this patch
introduces insufficient amount of randomness in the last block and requires some
changes to the implementations of SHA family. It is an interesting problem
to study this design. Recently, it has been suggested to use RMX-MD5 as a
countermeasure to prevent impersonation attacks on the websites using collision
attacks on MD5 [38]. Considering that one out of 264 legitimate signatures based
on RMX-MD5 can be forged following our results, it is an interesting problem
to combine our techniques with those of [38] to analyse the security of RMX-
MD5 over MD5 in the website certificates. Our research shows that randomized
hashing is not easy to implement safely and we recommend NIST to consider
our research during the SHA-3 hash function competition. It is clear from our
attacks and those of [15,23] that it is well-worth investigating the SPR properties
of the compression functions to identify possible weaknesses that may affect the
randomized hashing setting.
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A Observation in the padding rule of RMX

Consider hashing of a message m using RMX-SHA-256. For SHA-256, b = 512
bits. Let |m| = 512 + 424 = 936 bits where |m1| = 512 and |m2| = 424 bits.
Following the specification of RMX given in Section 3.1, b′ = b − l − 24 =
512− 64− 24 = 424 bits and k = b − b′ − 16− l = 512− 424− 16− 64 = 8 bits.
Let |r| = 128 bits. Now the randomized message M is defined as follows:

1. M0 = r0

2. M1 = m1 ⊕ r1

3. Calculation of M2:

(a) M∗
2 = m2‖0

8‖lpad where |M∗
2 | = 448 bits

(b) M2 = M∗
2 ⊕ r2



Therefore, RMX(r, m) = M = M0‖M1‖M2. A hash function HH0 used to pro-
cess M requires at least l+1 bits for padding and length encoding. For SHA-256,
l = 64 bits and hence it requires at least 65 bits for padding and length encoding.
It is difficult to accommodate more than 64 bits in the remaining l-bit positions
in the last block M2 as it already has 448 bits. Therefore to process M using
SHA-256, M is padded as follows: M = M0‖M1‖(M2‖1‖0

63

︸ ︷︷ ︸

512 bits

)‖ (0448‖l)
︸ ︷︷ ︸

512 bits

where l

represents the 64-bit binary encoded format of the length of M . Similarly, if
b′ = 423 bits then k = 9 bits and M∗

2 = m2‖0
9‖lpad. So, if b′ ≤ b − l − 24 then

HH0 requires an extra block to pad and length encode M .
Alternatively, when b′ ≤ b− l−24 bits, we could define k = b−b′−24− l bits.

Then the hash function HH0 does not require an extra block to length encode the
message M . In the above illustration, when |m| = 936 bits, M∗

2 = m2‖0
0‖lpad

and M2 = M∗
2 ⊕ r2 where |M∗

2 | = 440 bits and M = M0‖M1‖M2. To process M
using a hash function HH0 , M is padded as follows: M = M0‖M1‖ (M2‖1‖0

7‖l)
︸ ︷︷ ︸

440+72 bits

.

B Message randomization technique RMXSP

Let m be the input message, r be a message independent random bit string of at
least 128 bits and at most 1024 bits and M be the randomized message. Let zpad
be a string of zero bits, which is zero or more “0” bits. Let λ denotes zero “0”
bits or an empty string. Let pad = 1‖zpad. Let rpad be the 16-bit binary format
of |r|. The input message m is encoded to the form m‖pad and this encoded
message is then randomized (transformed to M) as specified below.

1. If |m| + 1 ≥ |r|:

(a) pad = 1‖λ = 1.

Else

(a) pad = 1‖0|r|−|m|−1.

2. m′ = m‖pad.
3. If |r| > 1024 then stop and output an error indicator.
4. rem = |m′| mod |r|
5. Concatenate ⌊|m′|/|r|⌋ copies of the r to the rem left-most bits of r to get

R, such that |R| = |m′|. Now let

R = r‖r‖ . . . ‖r
︸ ︷︷ ︸

⌊|m′|/|r|⌋ times

‖r[rem]

6. The randomized output is given by M = RMXSP(r, m) = r‖(m′ ⊕R)‖rpad.

Illustration: Let |r| = 128 and |m| = 927 bits. Now |m| + 1 ≥ r, therefore
zpad = λ and pad = 1. Now m′ = m‖pad = m‖1 and |m′| = 928 bits. The
random value R = r‖ . . . ‖r

︸ ︷︷ ︸

7 times

‖r[32].


