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Abstract. Almost all the important cryptographic protocols we have
today base their security on unproven assumptions, which all imply
NP 6= P, and thus having unconditional proofs of their security seems
far beyond our reach. One research effort then is to identify more ba-
sic primitives and prove the security of these protocols by reductions to
the security of these primitives. However, in doing so, one often observes
some security loss in the form that the security of the protocols is mea-
sured against weaker adversaries, e.g., adversaries with a smaller running
time. Is such a security loss avoidable? We study two of the most basic
cryptographic reductions: hardness amplification of one-way functions
and constructing pseudorandom generators from one-way functions. We
show that when they are done in a certain black-box way, such a security
loss is in fact unavoidable.

1 Introduction

Although we have many protocols today for all kinds of interesting and
important cryptographic tasks, almost all of these protocols have their se-
curity based on some assumptions. These assumptions all imply P 6= NP,
so having unconditional proofs of their security seems far beyond our
reach. One line of research then is to identify the weakest possible as-
sumptions or primitives from which one can build more advanced cryp-
tographic protocols. One such primitive is one-way function (OWF), a
function which is easy to compute but hard to invert, with respect to
polynomial time computation. It is now known that from a OWF, one can
construct other cryptographic primitives such as pseudo-random genera-
tor (PRG), pseudo-random function, private-key encryption, bit commit-
ment, zero-knowledge proof, and digital signature. In fact, all these prim-
itives are known to be equivalent in the sense that they can all be built
from each other [21, 6, 9, 7, 11, 18, 17, 10]. According to [5], these primi-
tives may be categorized as in the world of private cryptography. There
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are other primitives, including public-key encryption, oblivious transfer,
private information retrieval, and key agreement, which may be catego-
rized as in the world of public cryptography. Primitives in the world of
public cryptography seem to require a stronger assumption, and it has
been shown that trapdoor one-way permutations can be used to build all
of them. The relationships among primitives in public cryptography are
more complicated, but most of them have been settled [13, 12, 5, 2, 14, 4,
1].

From a theoretical perspective, we seem to have obtained a good un-
derstanding of the relationships among these primitives. However, from
a practical point of view, there are still issues to be resolved. The first
is that even when we can construct one primitive from another, the con-
struction may not be as efficient as we desire. For example, although we
can use any one-way function to construct all the primitives in the world
of private cryptography, the constructions often do not appear efficient
enough to have a practical impact. Can we improve the efficiency of such
constructions? Some negatives results have been obtained recently for
the tasks of amplifying hardness of OWF [15, 16], constructing PRG from
OWF [3, 20, 16], and constructing encryption or signature scheme [3] from
(trapdoor) one-way permutation.

The second issue is that when constructing a primitive from another,
one often suffers some kind of security loss. For example, although one
can construct a PRG from a OWF, the proofs currently available can only
guarantee the security of the PRG for weaker adversaries having a smaller
running time (or circuit size) than that for OWF. Therefore, if we want
to have a PRG with a certain security level, we need to start from a OWF
with a much higher security level, which would require a substantial cost
to implement and make it less attractive in practice. Similar problems
also occur in other constructions, and people have tried to improve these
constructions, but with limited success so far. Again, one may wonder
whether or not such improvements are indeed impossible. Not much seems
to be known, and our goal is to show that such security losses are basically
unavoidable. We would like to start from two of the most basic primitives:
OWF and PRG, and study the task of hardness amplification for OWF
and the task of constructing PRG from OWF.

We say that a function f is ε-hard (to invert) for time t (or size t), if
any algorithm running in time t (or circuit of size t) must fail to invert
f(x) for at least ε fraction of x. The task of hardness amplification is to
transform a function f which is ε-hard for time t into a function f̄ which is
(1−δ)-hard for time t̄, for some small δ and ε. According to [21, 8], this is



possible with t̄ = t/γ1, for some γ1 = ((1/δ)/ log(1/ε))O(1) (it seems that
a more careful analysis can give γ1 = O((1/δ)/ log(1/ε))). That is, the
hardness of the new function f̄ is now measured against algorithms with a
running time (or circuit size) smaller by a γ1 factor than that for the initial
function f . Therefore, when we want to transform a weakly OWF (with
hardness n−O(1)) into a strongly OWF (with hardness 1−n−ω(1)), we lose
a polynomial factor in the running time (or circuit size) of adversaries.
We say that a function g : {0, 1}n → {0, 1}m is ε-random for time t (or
size t) if for any algorithm C running in time t (or circuit of size t), the
probabilities of C(u) = 1 and C(g(x)) = 1, over random u and random
x respectively, differ by at most ε. According to [10], one can construct
such a function g with m > n (a PRG), which is ε-random for time t/γ2

(or size t/γ2), from any function f which is (1− n−Ω(1))-hard for time t
(or size t), for some γ2 = (n/ε)O(1). From [7], one can have γ2 = nO(1)/ε2,
for the simpler case when m = n + 1 and f is a permutation.

We would like to show the impossibility of having a hardness ampli-
fication of OWF or a construction of PRG from OWF which can avoid
such a loss of security. However, it is not clear how to establish the impos-
sibility of transforming one primitive P to another primitive Q, especially
given the possibility that the primitive Q may indeed exist. Therefore, one
can only expect to have such impossibility results for a certain restricted
types of transformations. Here, we consider transformations which are
done in some black-box way.

Black-Box Reductions. The standard notion of black-box transformation
from a primitive P to a primitive Q consists of two oracle algorithms T (·)

and R(·) satisfying the following two conditions: (1) correctness: for any
N that implements P , TN implements Q, and (2) security: for any N
that implements P and for any A that breaks TN (as an implementation
of Q), RA,N breaks N (as an implementation of P ).

Although this may look restricted, almost all the known transforma-
tions between primitives in cryptography (including those we discussed
before) are done in such a black-box way. In this paper, we consider a
more general model, in which we drop the first condition and keep only
the second one, namely, only the security proof is required to be done in
a black-box way. We call this the weakly-black-box model, and note that
impossibility results on such a more general model become stronger. We
consider two transformations in this model: hardness amplification for
OWF and constructing PRG from OWF. In the case of weakly-black-box
hardness amplification, there exists an oracle algorithm R (an adversary)



such that for any M which breaks the hardness condition of the new
function f̄ , R using M as an oracle can break the hardness condition
of the initial function f . In the case of weakly-black-box PRG construc-
tion, there exists an oracle algorithm R (an adversary) such that for any
D which breaks the randomness condition of the resulting generator g,
R using D as an oracle can break the hardness condition of the initial
function f . Here we consider the more general case in which R can be
non-uniform by allowing it to have an advice string (or seeing R as a
collection of circuits with oracle gates), and again this makes our impos-
sibility results stronger.

Our Results. We first consider the task of weakly-black-box hardness am-
plification for OWF, which transforms ε-hard functions into (1− δ)-hard
functions. Our first two results show that any algorithm R realizing such a
hardness amplification must make at least q1 = Ω((1/δ)/ log(1/ε)) queries
to the oracle, unless it can use a long advice string. More precisely, our
first result shows that for any R which is allowed to make adaptive oracle
queries, it must make at least q1 oracle queries or use some linear-size ad-
vice. This implies that when doing hardness amplification in this way and
considering adversaries as uniform (or slightly non-uniform) algorithms,
one can only guarantee the hardness of the new function f̄ against adver-
saries with a computation time smaller by a q1 factor, so a security loss of
this factor is in fact unavoidable. Our second result shows that for any R
which can only make non-adaptive queries, it must again makes at least
q1 oracle queries or now use an advice of exponential length. This implies
that when doing hardness amplification in this way and considering ad-
versaries as non-uniform circuits of some small exponential size, one can
only guarantee the hardness of the new function f̄ against adversaries
with a circuit size smaller by a q1 factor, so a security loss of this factor
is again unavoidable.

We next consider the task of weakly-black-box construction of PRG
from OWF, which transforms (1− δ)-hard functions into ε-random func-
tions. Our third and forth results show that any algorithm R realizing
such a construction must make at least q2 = Ω(n/ε2) queries, unless it
can use a long advice. More precisely, our third result shows that for any
R which is allowed to make adaptive oracle queries, it must make at least
q2 oracle queries or use some linear-size advice. Again, this implies that
when constructing PRG in this way and considering adversaries as uni-
form (or slightly non-uniform) algorithms, a security loss of a q2 factor is
in fact unavoidable. Finally, our forth result shows that for any R which



can only make non-adaptive queries, it must again make at least q2 oracle
queries or now use an advice of exponential length. Again, this implies
that when constructing PRG in this way and considering adversaries as
non-uniform circuits of some small exponential size, a security loss of a
q2 factor is also unavoidable.

We remark that in a different setting, Shaltiel and Viola [19] recently
showed that for the task of amplifying the hardness of computing Boolean
functions (instead of inverting one-way functions), a security loss in terms
of circuit size is also unavoidable when this is done in a black-box way.
However, they only considered the case that the oracle algorithm R makes
non-adaptive queries, and there seem to be further complications when
dealing with inverting one-way functions. On the other hand, our proof
(for hardness amplification, with R making non-adaptive queries) is dif-
ferent in spirit from theirs, and our proof can be modified to give an
alternative (and perhaps more intuitive) proof to their result.

2 Preliminaries

For n ∈ N, let [n] denote the set {1, 2, . . . , n} and let Un denote the
uniform distribution over {0, 1}n. We will consider the computational
model of non-uniform oracle algorithms. For such an algorithm R, let
Rf ;α denote the algorithm R using f as an oracle and α as an advice.

For a many-to-one function f : {0, 1}n → {0, 1}m and an algorithm
M : {0, 1}m → {0, 1}n, we say that M inverts f(x), denoted as M(f(x)) ≡
x, if M(f(x)) ∈ f−1(f(x)), and we say that M can α-invert f , if

Pr
x∈Un

[M(f(x)) ≡ x] ≥ α.

For a function g : {0, 1}n → {0, 1}m and an algorithm D : {0, 1}m →
{0, 1}, we say that D can ε-distinguish g if

∣∣∣∣ Pr
x∈Un

[D(g(x)) = 1]− Pr
u∈Um

[D(u) = 1]
∣∣∣∣ ≥ ε.

One can allow M and D to be probabilistic, in which case the probabilities
above are taken also over their randomness.

Next, let us introduce two types of black-box transformations which
we will study in this paper. Note that in a usual black-box model, both
the construction and the security proof are required to be done in a black-
box way. Here we consider weaker models which only require the security
proof to be done in a black-box way.



Definition 1. A weakly-black-box hardness amplification from (ε, n, m)-
hardness to (ε̄, n̄, m̄)-hardness consists of a non-uniform oracle algorithm
R satisfying the following condition. For any function f : {0, 1}n →
{0, 1}m, there exists a function f̄ : {0, 1}n̄ → {0, 1}m̄ such that

– given any M : {0, 1}m̄ → {0, 1}n̄ which can (1 − ε̄)-invert f̄ , there
exists an advice α such that Rf,M ;α can (1− ε)-invert f .

Definition 2. A weakly-black-box transformation from (ε, n, m)-hardness
to (ε̄, n̄, m̄)-randomness consists of a non-uniform oracle algorithm R sat-
isfying the following condition. For any function f : {0, 1}n → {0, 1}m,
there exists a function g : {0, 1}n̄ → {0, 1}m̄, with m̄ ≥ n̄ + 1, such that

– given any D : {0, 1}m̄ → {0, 1} which can ε̄-distinguish g, there exists
an advice α such that Rf,D;α can (1− ε)-invert f .

In the two definitions above, the oracle algorithm R in general is allowed
to make adaptive queries, which can depend on the answers from previ-
ous queries. We will also consider the case requiring that R only makes
non-adaptive queries, which do not depend on the answers from previous
queries but can depend on the input and the advice.

We will need the following (known) fact that a randomly chosen func-
tion is likely to be hard to invert. The proof can be modified from those
in, e.g., [3, 22], which we omit here.

Lemma 1. Let c any constant such that 0 < c < 1, and let C be any
non-uniform oracle algorithm which uses an advice of length at most 2cn

and makes at most 2cn queries to the oracle. Then there is a constant
c1 > 0 such that if we sample a random function f : {0, 1}n → {0, 1}m,

Pr
f

[
∃α : Cf ;α can 2−c1n-invert f

]
≤ 2−2Ω(n)

.

Finally, we will rely on the following lemma, which gives a large devi-
ation bound for a sequence of random variables with a sparse dependency
relationship. This may have some interest of its own.

Lemma 2. Suppose Z1, . . . , Zk is a sequence of binary random variables
such that for each i ∈ [k], E[Zi] = µi and Zi is mutually independent of
all but d − 1 other random variables. Then for any even t ∈ N and for
any A ∈ N, Pr[|∑i∈[k] Zi −

∑
i∈[k] µi| ≥ A] ≤ 2(4tdk/A2)t/2.

Due to the space limitation, we omit the proof here. The idea is that
Pr[|∑i∈[k] Zi −

∑
i∈[k] µi| ≥ A] ≤ E[(

∑
i∈[k](Zi − µi))t]/At, and the nu-

merator equals
∑

i1,...,it∈[k] E[
∏

i∈{i1,...,it}(Zi−µi)] which have most of the
terms equal to zero.



3 Hardness Amplification

In this section, we show that any algorithm R realizing a weakly-black-
box hardness amplification must make many queries, unless it can use a
long advice. Our first result, Theorem 1 below, shows such a query lower
bound for any R which is allowed to use an advice of linear length and
to make adaptive queries. We will give the proof in Subsection 3.1.

Theorem 1. Suppose an algorithm R uses an advice of length ¯̀ and
realizes a weakly-black-box hardness amplification from (ε, n, m)-hardness
to ((1 − δ), n̄, m̄)-hardness, with 2−cn ≤ ε, δ ≤ c and ¯̀≤ cn for a small
enough constant c > 0. Then R must make at least Ω((1/δ) log(1/ε))
oracle queries.

Our second result, Theorem 2 below, shows a query lower bound for
any R which is even allowed an advice of exponential length but can only
make non-adaptive queries. We will give the proof in Subsection 3.2.

Theorem 2. Suppose an algorithm R uses an advice of length ` and
realizes a weakly-black-box hardness amplification from (ε, n, m)-hardness
to ((1 − δ), n̄, m̄)-hardness, with 2−cn ≤ ε, δ ≤ c and ` ≤ 2cn for a small
enough constant c > 0. Then R must make at least Ω((1/δ) log(1/ε))
oracle queries, if it only makes non-adaptive queries.

3.1 Proof of Theorem 1

Consider any non-uniform oracle algorithm R which realizes such a hard-
ness amplification. Assume that R makes at most q ≤ (c0/δ) log(1/ε)
oracle queries, for a small enough constant c0, and we will show that this
leads to a contradiction. The basic idea is that when R makes only a
small number of queries, it is easy to get confused between some useful
oracle M : {0, 1}m̄ → {0, 1}n̄ (which is correlated with f) and a useless
one 0̄ : {0, 1}m̄ → {0, 1}n̄ (which is independent of f). Here, we take 0̄
to be the all-zero function, where 0̄(ȳ) = 0n̄ for any ȳ ∈ {0, 1}m̄. We will
first describe a natural approach which will encounter two obstacles, and
we will then show how to modify the approach to overcome the obstacles.

First, we would like to pick a function f : {0, 1}n → {0, 1}m, such
that f is hard to invert by Rf,0̄;α for any advice α, and the corresponding
harder function f̄ does not map many inputs into a small subset. Its
existence is guaranteed by the following lemma.

Lemma 3. There exists a function f : {0, 1}n → {0, 1}m satisfying the
following two conditions:



1. for any advice α ∈ {0, 1}¯̀, Prx∈Un

[
Rf,0̄;α(f(x)) ≡ x

]
≤ 2−Ω(n), and

2. for any set S ⊆ {0, 1}m̄ with |S| ≤ 2(3/4)n, Prx̄∈Un̄

[
f̄(x̄) ∈ S

] ≤ δ.

Proof. First, note that giving R the oracle 0̄ does not help as any query to
it can be answered by R itself without actually querying 0̄. Next, observe
that for any f such that the corresponding function f̄ does not satisfy
the second condition, witnessed by the set S, the function C, defined as

C(ȳ) =
{

any element from f̄−1(ȳ) if ȳ ∈ S,
0n̄ otherwise,

can δ-invert f̄ which implies that Rf,C;α can (1 − ε)-invert f for some
advice α ∈ {0, 1}¯̀. Note that such a function C can be described by
|S|(m̄ + n̄) bits, so it can be replaced by an additional advice of that
length. Thus, we can obtain from R another algorithm R̄ which uses an
advice of length at most ¯̀+ |S|(m̄+ n̄) ≤ 2(4/5)n such that if a function f
fails on one of the conditions, then we have Prx[R̄f ;ᾱ(f(x)) ≡ x] > 2−Ω(n)

for some advice ᾱ. By Lemma 1, the fraction of such f ’s is less than one,
which implies the existence of an f satisfying both conditions. ut

Fix one such function f guaranteed by the lemma, and let f̄ : {0, 1}n̄ →
{0, 1}m̄ be the corresponding harder function. To find an inverter for f̄ , we
start from the function f̄−1, which clearly 1-inverts f̄ , and since it suffices
to δ-invert f̄ , we can afford to destroy most of its outputs. More precisely,
let M : {0, 1}m̄ → {0, 1}n̄ be the probabilistic function (or equivalently,
a distribution over deterministic functions) such that independently for
any ȳ ∈ {0, 1}m̄,

M(ȳ) =
{

any element from f̄−1(ȳ) with probability 3δ,
0n̄ with probability 1− 3δ,

where we let f̄−1(ȳ) = {0n̄} when ȳ /∈ Image(f̄). Then by a Markov
inequality, we can have the following lemma showing that with a good
probability, M inverts f̄ well and thus can help R for inverting f .

Lemma 4. PrM

[
M 2δ-inverts f̄

] ≥ δ.

On the other hand, we would like to show that M is unlikely to help R
for inverting f . More precisely, we would like to show that for any advice
α ∈ {0, 1}¯̀, the probability (over M) that Rf,M ;α (1−ε)-inverts f is very
small. The idea is that when R only makes a small number of queries,
it has some chance of confusing the (useful) oracle M with the (useless)
oracle 0̄.



Let us fix an advice α ∈ {0, 1}¯̀ now. Consider the binary random
variables V α

x , for x ∈ {0, 1}n, defined as

– V α
x = 1 if and only if Rf,M ;α(f(x)) 6≡ x.

Then we would like to give an upper bound on the probability

Pr
M

[
Pr
x

[
Rf,M ;α(f(x)) 6≡ x

]
≤ ε

]
= Pr

M


 ∑

x∈{0,1}n

V α
x ≤ ε2n


 .

However, a Markov inequality can only give an upper bound about 1−2ε
(one can show that E[V α

x ] ≥ 3ε for most x), which is too large, while our
goal is to have an upper bound of 2−Ω(n). For this we would like to apply
Lemma 2.

However, there seem to be some obstacles preventing us from applying
Lemma 2. First, many of these random variables may all depend on each
other because the corresponding computations of R may all query M
on some common entry. Second, even for a fixed x, the queries made by
Rf,M ;α(f(x)) can vary for different M , as we allow R to make adaptive
queries which can depend on the answers of previous queries.

To deal with the second obstacle, we consider another set of random
variables Zα

x , for x ∈ {0, 1}n, defined as

– Zα
x = 1 if and only if M(ȳ) = 0n̄ for any query ȳ made by Rf,0̄;α(f(x)).

Note that Rf,M ;α(f(x)) = Rf,0̄;α(f(x)) if Zα
x = 1. Thus, for any x in the

set Badα, defined as

Badα =
{

x ∈ {0, 1}n : Rf,0̄;α(f(x)) 6≡ x
}

,

we have Zα
x ≤ V α

x , because V α
x = 1 if Zα

x = 1. Furthermore, by Lemma 3,
|Badα| ≥ 2n(1− 2−Ω(n)) ≥ 2n/2.

Even when working with the variables Zα
x ’s, we still face the first

obstacle discussed above. To deal with this, we fix the values of M at
those frequently queried entries. Call ȳ ∈ {0, 1}m̄ heavy for an advice α if

Pr
x

[
Rf,0̄;α(f(x)) queries 0̄ at ȳ

]
≥ w,

where we choose w = 2−(2/3)n. Let M̂ be the restriction of M defined as

M̂(ȳ) =
{

0n̄ if ȳ is heavy for some α,
M(ȳ) otherwise.



Note that for each α, the number of heavy entries for α is at most q/w,
because this number times w is at most the average number of queries
made by Rf,0̄;α(f(x)) over x ∈ {0, 1}n, which is at most q. Thus, the total
number of all such heavy entries (over all α’s) is at most (q/w)2¯̀≤ 2(3/4)n,
since 2−cn ≤ δ, ε and ¯̀≤ cn̄ for a small enough constant c. Let V̂ α

x and Ẑα
x

denote the random variables corresponding to V α
x and Zα

x , respectively,
over the distribution of M̂ . Observe that now for each α, every variable
Ẑα

x is mutually independent of all but qw2n other such variables, so it
becomes possible to apply Lemma 2.

From now on, we will work with the distribution M̂ and the random
variables V̂ α

x and Ẑα
x , for x ∈ {0, 1}n. Let us see how this affects the argu-

ments before when considering M , V α
x , and Zα

x . First, just as Lemma 4,
we can show that such M̂ also has a good chance of inverting f̄ well.

Lemma 5. PrM̂ [M̂ δ-inverts f̄ ] ≥ δ.

Proof. Let S be the set of heavy entries over all α’s, which has |S| ≤
2(3/4)n, and we know that any ȳ such that M̂(ȳ) 6= M(ȳ) is contained in
S. Since f satisfies the second condition of Lemma 3, we have

Pr̄
x

[
M̂(f̄(x̄)) 6= M(f̄(x̄))

]
≤ Pr̄

x

[
f̄(x̄) ∈ S

] ≤ δ.

Thus, if M can 2δ-invert f̄ , M̂ can δ-invert f̄ . Then from Lemma 4, we
have the lemma. ut

From this lemma and the guarantee of R, we have

Pr
M̂

[
∃α : Rf,M̂ ;α (1− ε)-inverts f

]
≥ δ

which implies the existence of an advice α ∈ {0, 1}¯̀ such that

Pr
M̂

[
Rf,M̂ ;α (1− ε)-inverts f

]
≥ δ2−¯̀

. (1)

Let’s fix one such α. On the other hand, PrM̂ [Rf,M̂ ;α (1− ε)-inverts f ] is

Pr
M̂


 ∑

x∈{0,1}n

V̂ α
x ≤ ε2n


 ≤ Pr

M̂


 ∑

x∈Badα

V̂ α
x ≤ ε2n


 ,

and since we still have Ẑα
x ≤ V̂ α

x for any x ∈ Badα, the above is at most

Pr
M̂


 ∑

x∈Badα

Ẑα
x ≤ ε2n


 ≤ Pr

M̂


 ∑

x∈Badα

Ẑα
x ≤ 2ε |Badα|




as |Badα| ≥ 2n/2. Then we bound the last probability by the following.



Lemma 6. PrM̂ [
∑

x∈Badα Ẑα
x ≤ 2ε|Badα|] < δ2−¯̀

.

Proof. Note that for any x ∈ {0, 1}n,

Pr
M̂

[
Ẑα

x = 1
]
≥ (1− 3δ)q ≥ 3ε,

as we assume ε, δ ≤ c and q ≤ (c0/δ) log(1/ε), for small enough constants
c, c0. By Lemma 2 with k = |Badα| ≥ 2n/2, A = εk, d = 1+qw2n ≤ 2n/2,
and t = ε22n/2/16, we have

Pr
M̂


 ∑

x∈Badα

Ẑα
x ≤ 2ε |Badα|


 ≤ 2

(
ε22n

4ε2k

)t/2

≤ 2
(

1
2

)t/2

< δ2−¯̀
,

since 2−cn ≤ δ, ε and ¯̀≤ cn for a small enough constant c. (Note that
the bound still holds even if we allow ¯̀≤ 2cn.) ut

This leads to a contradiction to the bound in (1). Therefore, the
assumption we made at the beginning cannot hold, and R must make
Ω((1/δ) log(1/ε)) oracle queries, which proves Theorem 1.

3.2 Proof of Theorem 2

Note that what is different from Theorem 1 is that now we require that
R makes only non-adaptive queries and as a result we allow R a much
longer advice. Again, assume that R makes at most q ≤ (c0/δ) log(1/ε)
oracle queries, for a small enough constant c0 > 0, and we will show that
this leads to a contradiction.

Observe that in the proof of Theorem 1, why we can only have ¯̀≤
O(n̄) is that the restriction M̂ fixes all the heavy entries over all α’s at
once, but there are (q/w)2¯̀ such entries which can not exceed 2n̄. Here,
instead, we will consider different restrictions for different α’s separately.
Call ȳ ∈ {0, 1}m̄ heavy for an advice α if

Pr
x

[
Rf,M ;α(f(x)) queries M at ȳ

]
≥ w,

where w = 2−(2/3)n, and note that this definition actually is independent
of the choice of f and M as we assume that R makes only non-adaptive
queries. As in the proof of Theorem 1, one can show that the number of
heavy entries for any advice α is at most q/w. We will consider restricting
an oracle function M (or 0̄) by fixing its values on those heavy entries for



some α according to some function ρ : {0, 1}m̄ → {0, 1}n̄. For an advice
α and a function ρ : {0, 1}m̄ → {0, 1}n̄, let Mα

ρ denote such a restriction
of M , defined as Mα

ρ (ȳ) = ρ(ȳ) if ȳ is heavy for α and Mα
ρ (ȳ) = M(ȳ)

otherwise. Similarly, let 0̄α
ρ denote such a restriction of 0̄. As in Lemma 3,

we have the following lemma. Due to the space limitation, we omit its
proof (which follows from Lemma 1, as 0̄α

ρ has a short description and
can be replaced by a short additional advice).

Lemma 7. There exists a function f : {0, 1}n → {0, 1}m such that for
any advice α ∈ {0, 1}` and any function ρ : {0, 1}m̄ → {0, 1}n̄,

Pr
x

[
Rf,0̄α

ρ ;α(f(x)) ≡ x
]
≤ 2−Ω(n).

Let us pick one such function f guaranteed by the lemma, let f̄ be the
corresponding harder function, and let M be the probabilistic function de-
fined according to this f̄ . As in Lemma 4, we have PrM

[
M δ-inverts f̄

] ≥
δ, and as before, this implies the existence of an advice α ∈ {0, 1}` such
that PrM

[
Rf,M ;α (1− ε)-inverts f

] ≥ δ2−`. Let us fix one such advice α.
By an average argument, there must exist a restriction Mα

ρ of M which
fixes the values of those heavy entries for α, such that

Pr
Mα

ρ

[
Rf,Mα

ρ ;α (1− ε)-inverts f
]
≥ δ2−`. (2)

On the other hand, we will show a contradiction to this bound. Con-
sider the set

Badα =
{

x ∈ {0, 1}n : Rf,0̄α
ρ ;α(f(x)) 6≡ x

}
,

which by Lemma 7 has |Badα| ≥ 2n/2. Let V̂ α
x denote the binary random

variable, over the distribution of Mα
ρ , defined as

– V̂ α
x = 1 if and only if Rf,Mα

ρ ;α(f(x)) 6≡ x.

Note that each variable V̂ α
x is mutually independent of all but qw2n other

variables. Then one can again show that for any x ∈ Badα, PrMα
ρ
[V̂ α

x =
1] ≥ (1− 3δ)q ≥ 3ε, and PrMα

ρ

[
Rf,Mα

ρ ;α (1− ε)-inverts f
]

is

Pr
Mα

ρ


 ∑

x∈{0,1}n

V̂ α
x ≤ ε2n


 ≤ Pr

Mα
ρ


 ∑

x∈Badα

V̂ α
x ≤ 2ε |Badα|


 < δ2−`,

by Lemma 2. This contradicts the bound in (2). Thus, R must make at
least Ω((1/δ) log(1/ε)) queries, which proves Theorem 2.



4 Randomness from Hardness

In this section, we show that any algorithm R realizing a weakly-black-box
transformation from hardness to randomness must make many queries,
unless it can use a long advice string. Our first result, Theorem 3 below,
shows such a query lower bound for any R which is allowed to use an
advice of linear length and to make adaptive queries. We will give the
proof in Subsection 4.1.

Theorem 3. Suppose an algorithm R uses an advice of length ¯̀ and
realizes a weakly-black-box transformation from ((1−δ), n, m)-hardness to
(ε, n̄, m̄)-randomness, with 2−cn ≤ ε, δ ≤ c and ¯̀≤ cn for a small enough
constant c > 0. Then R must make at least Ω(n/ε2) oracle queries.

Our second result, Theorem 4 below, shows a query lower bound for
any R which is even allowed an advice of exponential length but can only
make non-adaptive queries. We will give the proof in Subsection 4.2.

Theorem 4. Suppose an algorithm R uses an advice of length ` and
realizes a weakly-black-box transformation from ((1−δ), n, m)-hardness to
(ε, n̄, m̄)-randomness, with 2−cn ≤ ε, δ ≤ c and ` ≤ 2cn̄ for a small enough
constant c > 0. Then R must make at least Ω(n/ε2) oracle queries, if it
only makes non-adaptive queries.

4.1 Proof of Theorem 3

Consider any R which realizes such a weakly-black-box transformation.
Assume that R makes at most q ≤ c0n/ε2 oracle queries, for a small
enough constant c0 > 0, and we will show that this leads to a contradic-
tion. The basic idea is that when R makes only a small number of queries,
it is easy to get confused between some useful oracle D : {0, 1}m̄ → {0, 1}
(which is correlated with f) and a useless one B : {0, 1}m̄ → {0, 1} (which
is independent of f). Here, we take B to be a random function.

First, we would like to pick a function f which is hard to invert by
Rf,B;α for any α. The existence of such a function is guaranteed by the
following lemma, which follows from Lemma 1 by observing that the
oracle B, which is independent of f , can be simulated by R itself without
needing to query it.

Lemma 8. There exists a function f : {0, 1}n → {0, 1}m such that for
any advice α ∈ {0, 1}¯̀, Prx,B

[
Rf,B;α(f(x)) ≡ x

] ≤ 2−Ω(n).



Fix one such function f guaranteed by the lemma, and let g = gf :
{0, 1}n̄ → {0, 1}m̄ be the resulting generator. To find a distinguisher
for g, let us start from the characteristic function of Image(g), denoted
as T (i.e., T (u) = 1 if and only if u ∈ Image(g)), which clearly can
(1−2−(m̄−n̄))-distinguish g, and since we only need to ε-distinguish g, we
can afford to add some noise to T . More precisely, let N : {0, 1}m̄ → {0, 1}
be a noise function such that independently for any u ∈ {0, 1}m̄,

N(u) =
{

1 with probability 1−4ε
2 ,

0 with probability 1+4ε
2 ,

and consider the probabilistic distinguisher (or equivalently a distribution
over deterministic distinguishers) D = T ⊕ N such that for any u ∈
{0, 1}m̄, D(u) = T (u) ⊕ N(u). The following shows that D has a good
chance of distinguishing g well.

Lemma 9. PrD[D ε-distinguishes g] ≥ ε.

Proof. From the definition, Prx,D [D(g(x)) = 1]− Pru,D [D(u) = 1] is

1 + 4ε
2

−
(

2−(m̄−n̄) · 1 + 4ε

2
+

(
1− 2−(m̄−n̄)

)
· 1− 4ε

2

)
≥ 2ε,

since m̄ ≥ n̄ + 1 and hence 2−(m̄−n̄) ≤ 1
2 . Then by a Markov inequality,

we have the lemma. ut

As before, from this lemma and the guarantee of R, one can show the
existence of an advice α ∈ {0, 1}¯̀ such that

Pr
D

[
Rf,D;α δ-inverts f

]
≥ ε2−¯̀

. (3)

Let us fix one such advice α.
On the other hand, we will show that this bound cannot hold as D is

unlikely to help R for inverting f . The idea is that when R only makes a
small number of queries, it behaves similarly according to the two different
oracles D and B. More precisely, we will show that for most input x,

Pr
D

[
Rf,D;α(f(x)) ≡ x

]
is small if Pr

B

[
Rf,B;α(f(x)) ≡ x

]
is small.

Here we choose not to show that the two probabilities have a small dif-
ference, as it would then only give a much smaller query lower bound.



Let c1 be a small enough constant, and consider the set

Badα =
{

x ∈ {0, 1}n : Pr
B

[
Rf,B;α(f(x)) ≡ x

]
≤ 2−c1n

}
. (4)

From Lemma 8 and a Markov inequality, we have Prx [x /∈ Badα] ≤
2−Ω(n). Furthermore, we have the following.

Lemma 10. For any x ∈ Badα, PrD[Rf,D;α(f(x)) ≡ x] ≤ 2−Ω(n).

Proof. Fix any x ∈ Badα. First, let us consider the computations of
Rf,B;α(f(x)) over all possible instances of the oracle B, which can be
seen as a tree in a natural way as follows. Each internal node corresponds
to a query u ∈ {0, 1}m̄ to the oracle B, which has two edges coming out
for the two possible answers of B(u), and each leaf contains the output
of Rf,B;α(f(x)) following the corresponding path of computation. We can
assume without loss of generality that R always makes exactly q queries
to the oracle B (by making dummy queries if necessary), and it never
makes the same query twice on any path of computation (by remembering
all previous queries and their answers). The tree has exactly 2q leaves,
and the bound of (4) implies that at most L = 2−c1n · 2q leaves have
Rf,B;α(f(x)) ≡ x.

Now let us see what happens to the probability bound in (4) when
we change the oracle from B to D. While over a random B, each leaf
is reached with the same probability 2−q, this no longer holds if now we
measure the probability over the distribution of D. Note that each edge
corresponds to the bit D(u) = T (u) ⊕ N(u), for some u, and since T is
fixed (as we have fixed f and thus g), we can label that edge by the bit
N(u). Then a leaf on a path with i labels of 1 is now reached with proba-
bility

(
1−4ε

2

)i (1+4ε
2

)q−i
, which increases as i decreases. Observe that the

sequences of labels on the 2q paths to the leaves are all different. Thus,
the probability PrD

[
Rf,D;α(f(x)) ≡ x

]
can be bounded from above by

the sum of the L largest probabilities among the leaves, which is at most

t∑

i=0

(
q

i

)(
1− 4ε

2

)i (1 + 4ε
2

)q−i

, (5)

for any t such that
∑t

i=0

(
q
i

) ≥ L. We can take t = (1−5ε
2 )q, which gives

t∑

i=0

(
q

i

)
≥ 2−O(ε2q) · 2q ≥ 2−c1n · 2q ≥ L,



since q ≤ c0n/ε2 and we can take c0 to be much smaller than c1. Then the
bound in (5) is at most 2−Ω(ε2q) ≤ 2−Ω(n) (using, for example, a Chernoff
bound), which proves the lemma. ut

Now let V α
x , for x ∈ {0, 1}n, denote the binary random variable, over

D, such that

– V α
x = 1 if and only if Rf,D;α(f(x)) ≡ x.

We know from Lemma 10 that for any x ∈ Badα, PrD[V α
x = 1] ≤ 2−Ω(n).

Then we have

E
D


 ∑

x∈{0,1}n

V α
x


 ≤

∑

x∈Badα

E
D

[V α
x ] +

∑

x/∈Badα

1 ≤ 2−Ω(n) · 2n < ε2−¯̀
δ · 2n,

since we assume 2−cn ≤ ε, δ and ¯̀≤ cn for a small enough constant c. By
a Markov inequality, we have

Pr
D

[
Rf,D;α δ-inverts f

]
= Pr

D

[∑
x

V α
x ≥ δ2n

]
< ε2−¯̀

, (6)

which contradicts the bound in (3). This implies that R must make at
least Ω(n/ε2) oracle queries, which proves Theorem 3.

4.2 Proof of Theorem 4

Note that what is different from Theorem 3 is that now we require that R
makes only non-adaptive queries and as a result we allow R a much longer
advice. Again, assume that R makes at most q ≤ c0n/ε2 oracle queries,
for a small enough constant c0 > 0, and we will show that this leads to
a contradiction. The proof here will follow closely that for Theorem 3,
except that at the end we will manage to get a smaller bound than that
in inequality (6), by applying Lemma 2 instead of a Markov inequality.
The idea is similar to that in the proof of Theorem 2.

Let w = 2−(2/3)n, call an entry ȳ ∈ {0, 1}m̄ heavy for an advice α if
Prx[Rf,D;α(f(x)) queries D at ȳ] ≥ w, and again one can show that the
number of heavy entries for any α is at most q/w. Note that this definition
is independent of the choice of D and f as we assume that R only makes
non-adaptive queries. As in the proof of Theorem 2, we will consider
restricting the functions D and B by fixing their values on those heavy
entries for some α according to some function ρ : {0, 1}m̄ → {0, 1}n̄,
and let Dα

ρ and Bα
ρ denote the corresponding restrictions, respectively.



Then similar to Lemma 7 and Lemma 8, one can show the existence of a
function f : {0, 1}n → {0, 1}m such that for any advice α ∈ {0, 1}` and
any function ρ : {0, 1}m̄ → {0, 1},

Pr
x,Bα

ρ

[
Rf,Bα

ρ ;α(f(x)) ≡ x
]
≤ 2−Ω(n). (7)

Let f be such a function guaranteed above, let g = gf be the resulting
generator, and let D be the probabilistic distinguisher defined according
to this g. As in Lemma 9, we have PrD [D ε-distinguishes g] ≥ ε. Then as
in the proof of Theorem 2, one can show that this implies the existence
of an advice α and a restriction Dα

ρ of D which fixes the values of those
heavy entries for α, such that

Pr
Dα

ρ

[
Rf,Dα

ρ ;α δ-inverts f
]
≥ ε2−`. (8)

Let us fix one such α and ρ.
On the other hand, we will show that the bound above can not hold.

Let c1 be a small enough constant, and consider the set:

Badα =
{

x ∈ {0, 1}n : Pr
Bα

ρ

[
Rf,Bα

ρ ;α(f(x)) ≡ x
]
≤ 2−c1n

}
.

By the bound in (7) and a Markov inequality, we have Prx [x ∈ Badα] ≥
1/2. Let V̂ α

x denote the binary random variable, over the distribution of
Dα

ρ , defined as

– V̂ α
x = 1 if and only if Rf,Dα

ρ ;α(f(x)) ≡ x.

Note that each variable V̂ α
x is mutually independent of all but qw2n other

variables. Then using an argument similar to that in the proof of Theo-
rem 3, one can show that for any x ∈ Badα, PrDα

ρ
[V̂ α

x = 1] ≤ 2−Ω(n) ≤
δ/3, and by Lemma 2, PrDα

ρ
[Rf,Dα

ρ ;α δ-inverts f ] is

Pr
Dα

ρ


 ∑

x∈{0,1}n

V̂ α
x ≥ δ2n


 ≤ Pr

Dα
ρ


 ∑

x∈Badα

V̂ α
x ≥ (δ/2) |Badα|


 < ε2−`,

which contradicts the bound in (8). As a result, R must make at least
Ω(n/ε2) queries, which proves Theorem 4.
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