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Abstract. The existence of encryption and commitment schemes secure
under selective opening attack (SOA) has remained open despite consid-
erable interest and attention. We provide the �rst public key encryption
schemes secure against sender corruptions in this setting. The underly-
ing tool is lossy encryption. We then show that no non-interactive or
perfectly binding commitment schemes can be proven secure with black-
box reductions to standard computational assumptions, but any statis-
tically hiding commitment scheme is secure. Our work thus shows that
the situation for encryption schemes is very di�erent from the one for
commitment schemes.

1 Introduction

IND-CPA and IND-CCA are generally viewed as strong notions of encryption se-
curity that su�ce for applications. However, there is an important setting where
these standard notions do not in fact imply security and the search for solutions
continues, namely, in the presence of selective-opening attack (SOA) [22, 13, 38,
18, 16, 14]. Let us provide some background on SOA and then discuss our results
for encryption and commitment.

1.1 Background

The problem. Suppose a receiver with public encryption key pk receives a
vector c = (c[1], . . . , c[n]) of ciphertexts, where sender i created ciphertext
c[i] = E(pk ,m[i]; r[i]) by encrypting a message m[i] under pk and coins r[i]
(1 ≤ i ≤ n). It is important here that the messages m[1], . . . ,m[n] might be
related, but the coins r[1], . . . , r[n] are random and independent. Now, the ad-
versary, given c, is allowed to corrupt some size t subset I ⊆ {1, . . . , n} of senders
(say t = n/2), obtaining not only their messages but also their coins, so that
it has m[i], r[i] for all i ∈ I. This is called a selective opening attack (SOA).
The security requirement is that the privacy of the unopened messages, namely
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m[i1], . . . ,m[in−t] where {i1, . . . , in−t} = {1, . . . , n} \ I, is preserved. (Mean-
ing the adversary learns nothing more about the unopened messages than it
could predict given the opened messages and knowledge of the message distri-
bution. Formal de�nitions to capture this will be discussed later.) The question
is whether SOA-secure encryption schemes exist.

Status and motivation. One's �rst impression would be that a simple hybrid
argument would show that any IND-CPA scheme is SOA-secure. Nobody has yet
been able to push such an argument through. (And, today, regarding whether
IND-CPA implies SOA-security we have neither a proof nor a counterexample.)
Next one might think that IND-CCA, at least, would su�ce, but even this is
not known. The di�culty of the problem is well understood and documented
[22, 13, 16, 38, 18, 14], and whether or not SOA-secure schemes exist remains
open.

Very roughly, the di�culties come from a combination of two factors. The �rst
is that it is the random coins underlying the encryption, not just the messages,
that are revealed. The second is that the messages can be related.

We clarify that the problem becomes moot if senders can erase their random-
ness after encryption, but it is well understood that true and reliable erasure is
di�cult on a real system. We will only be interested in solutions that avoid
erasures.

The problem �rst arose in the context of multiparty computation, where it is
standard to assume secure communication channels between parties [8, 17]. But,
how are these to be implemented? Presumably, via encryption. But due to the
fact that parties can be corrupted, the encryption would need to be SOA-secure.
We contend, however, that there are important practical motivations as well. For
example, suppose a server has SSL connections with a large number of clients.
Suppose a virus corrupts some fraction of the clients, thereby exposing the ran-
domness underlying their encryptions. Are the encryptions of the uncorrupted
clients secure?

Commitment. Notice that possession of the coins allows the adversary to verify
that the opening is correct, since it can compute E(pk ,m[i]; r[i]) and check that
this equals c[i] for all i ∈ I. This apparent commitment property has been viewed
as the core technical di�culty in obtaining a proof. The view that commitment
is in this way at the heart of the problem has led researchers to formulate and
focus on the problem of commitment secure against SOA [22]. Here, think of the
algorithm E in our description above as the commitment algorithm of a commit-
ment scheme, with the public key being the empty string. The question is then
exactly the same. More generally the commitment scheme could be interactive
or have a setup phase.

Independently of the encryption setting, selective openings of commitments
commonly arise in zero-knowledge proofs. Namely, often an honest veri�er may
request that the prover opens a subset of a number of previously made commit-
ments. Thus, SOA-security naturally becomes an issue here, particularly when
considering the concurrent composition of zero-knowledge proofs (since then,



overall more openings from a larger set of commitments may be requested). The
security of the unopened commitments is crucial for the zero-knowledge property
of such a protocol, and this is exactly what SOA-security of the commitments
would guarantee.

Definitions. Previous work [22] has introduced and used a semantic-style se-
curity formalization of security under SOA. A contribution of our paper is to
provide an alternative indistinguishability-based formalization that we denote
IND-SO-ENC for encryption and IND-SO-COM for commitment. We will also
refer to semantic security formalizations SEM-SO-ENC and SEM-SO-COM.

1.2 Results for encryption

We provide the �rst public-key encryption schemes provably secure against
selective-opening attack. The schemes have short keys. (Public and secret keys
of a �xed length su�ce for encrypting an arbitrary number of messages.) The
schemes are stateless and noninteractive, and security does not rely on erasures.
The schemes are without random oracles, proven secure under standard assump-
tions, and even e�cient. We are able to meet both the indistinguishability (IND-
SO-ENC) and the semantic security (SEM-SO-ENC) de�nitions, although under
di�erent assumptions.

Closer look. The main tool (that we de�ne and employ) is lossy encryption,
an encryption analogue of lossy trapdoor functions [40] that is closely related to
meaningful-meaningless encryption [34] and dual-mode encryption [41]. We pro-
vide an e�cient implementation of lossy encryption based on DDH. We also show
that any (su�ciently) lossy trapdoor function yields lossy encryption, thereby
obtaining several other lossy encryption schemes via the lossy trapdoor construc-
tions of [40, 10, 45].

We then show that any lossy encryption scheme is IND-SO-ENC secure,
thereby obtaining numerous IND-SO-ENC secure schemes. If the lossy encryp-
tion scheme has an additional property that we call e�cient openability, we show
that it is also SEM-SO-ENC secure. We observe that the classical quadratic
residuosity-based encryption scheme of Goldwasser and Micali [27] is lossy with
e�cient openability, thereby obtaining SEM-SO-ENC secure encryption. It is
interesting in this regard that the solution to a long-standing open problem is
a scheme that has been known for 25 years. (Only the proof was missing until
now.)

Previous work. In the version of the problem that we consider, there is one
receiver and many senders. Senders may be corrupted, with the corruption ex-
posing their randomness and message. An alternative version of the problem
considers a single sender and many receivers, each receiver having its own public
and secret key. Receivers may be corrupted, with corruption exposing their se-
cret key. Previous work has mostly focused on the receiver corruption version of
the problem. Canetti, Feige, Goldreich and Naor [13] introduce and implement
non-committing encryption, which yields SOA-secure encryption in the receiver



corruption setting. However, their scheme does not have short keys. (Both the
public and the secret key in their scheme are as long as the total number of
message bits ever encrypted.) Furthermore, Nielsen [38] shows that this is nec-
essary. Canetti, Halevi and Katz [16] provide SOA-secure encryption schemes
for the receiver corruption setting with short public keys, but they make use of
(limited) erasures. (They use a key-evolving system where, at the end of every
day, the receiver's key is updated and the previous version of the key is securely
erased.) In the symmetric setting, Panjwani [39] proves SOA-security against a
limited class of attacks.

Our schemes do not su�er from any of the restrictions of previous ones. We
have short public and secret keys, do not rely on erasures, and achieve strong
notions of security.

A natural question is why our results do not contradict Nielsen's negative
result saying that no noninteractive public key encryption scheme with short
and �xed keys is SOA-secure without erasures for an unbounded number of
messages [38]. The reason is that we consider sender corruptions as opposed to
receiver corruptions.

Discussion. It has generally been thought that the two versions of the prob-
lem (sender or receiver corruptions) are of equal di�culty. The reason is that
corruptions, in either case, allow the adversary to verify an opening and appear
to create a commitment. (Either the randomness or the decryption key su�ces
to verify an opening.) Our work refutes this impression and shows that sender
corruptions are easier to handle than receiver ones. Indeed, we can fully resolve
the problem in the former case, while the latter case remains open. (Achiev-
ing a simulation-based notion for receiver corruptions is ruled out by [38] but
achieving an indistinguishability-based notion may still be possible.)

1.3 Results for commitment

Previous work. In the zero-knowledge (ZK) setting, Gennaro and Micali [24]
notice a selective opening attack and circumvent it by adapting the distribution
of the messages committed to. Similarly, a number of works (e.g., Dolev et al.
[21], Prabhakaran et al. [42] in the ZK context) use �cut-and-choose� techniques
on committed values, which is a speci�c form of selective opening. These works
can prove security by using speci�c properties of the distributions of the commit-
ted values (e.g., the fact that the unopened values, conditioned on the opened
values, are still uniformly distributed). The �rst explicit treatment of SOA-secure
commitment is by Dwork, Naor, Reingold, and Stockmeyer [22]. They formal-
ized the problem and de�ned SEM-SO-COM. On the negative side, they showed
that the existence of a one-shot (this means non-interactive and without setup
assumptions) SEM-SO-COM-secure commitment scheme implied solutions to
other well-known cryptographic problems, namely, three-round ZK and �magic
functions.� This is evidence that simulation-based one-shot SOA-secure commit-
ment is di�cult to achieve. In particular, from Goldreich and Krawczyk [26], it
is known that three-round black-box zero-knowledge proof systems exist only for



languages in BPP.3 On the positive side Dwork et al. showed that any statisti-
cally hiding chameleon commitment scheme is SOA-secure. (This scheme would
not be one-shot, which is why this does not contradict their negative results.)

Results for SEM-SO-COM. On the negative side, we show that no one-
shot or perfectly binding commitment scheme can be shown SEM-SO-COM-
secure using black-box reductions to standard assumptions. Here, by a standard
assumption, we mean any assumption that can be captured by a game between a
challenger and an adversary. (A more formal de�nition will be given later.) Most
(but not all) assumptions are of this form. On the positive side, we show, via
non-black-box techniques, that there exists an interactive SEM-SO-COM-secure
commitment scheme under the assumption that one-way permutations exist.

Results for IND-SO-COM. On the negative side, we show that no perfectly
hiding commitment scheme (whether interactive or not) can be shown IND-
SO-COM secure using black-box reductions to standard assumptions. On the
positive side, we show that any statistically hiding commitment scheme is IND-
SO-COM secure. (We note that a special case of this result was already implicit
in the work of Bellare and Rogaway [6].)

Closer look. Technically, we derive black-box impossibility results in the style
of Impagliazzo and Rudich [32], but we can derive stronger claims, similar to
Dodis et al. [20]. (Dodis et al. [20] show that the security of full-domain hash
signatures [4] cannot be proved using a black-box reduction to any hardness
assumption that is satis�ed by a random permutation.) Concretely, we prove
impossibility of ∀∃semi-black-box proofs from any computational assumption
that can be formalized as an oracle X and a corresponding security property
P (i.e., a game between a challenger and an adversary) which the oracle satis-
�es. For instance, to model one-way permutations, X could be a truly random
permutation and P could be the one-way game in which a PPT adversary tries
to invert a random image. We emphasize that, somewhat surprisingly, our im-
possibility claim holds even if P models SOA-security. In that case, however,
a reduction will necessarily be non-black-box, see Section 9 for a discussion.
Concurrently to and independently from our work, Haitner and Holenstein [28]
developed a framework to prove impossibility of black-box reductions from any
computational assumption. While their formalism is very similar to ours (e.g.,
their de�nition of a �cryptographic game� matches our de�nition of a �prop-
erty�), they apply it to an entirely di�erent problem, namely, encryption scheme
security in the presence of key-dependent messages.

3 �Black-box� means here that the ZK simulator uses only the (adverserial) veri�er's
next-message function in a black-box way to simulate an authentic interaction. Jump-
ing ahead, we will show that in many cases SOA-secure commitment cannot be
proved using a black-box reduction to a standard computational assumption. Both
statements are negative, but orthogonal. Indeed, it is conceivable that a security re-
duction uses speci�c, non-black-box properties of the adversary (e.g., it is common in
reductions to explicitly make use of the adversary's complexity bounds), but neither
scheme nor reduction use speci�cs (like the code) of the underlying primitive.



Relation to the encryption results. An obvious question is why our re-
sults for encryption and commitment are not contradictive. The answer is that
our SOA-secure encryption scheme does not give rise to a commitment scheme.
Our commitment results do show that the SOA-security of an encryption scheme
cannot be proved using a black-box reduction, but only if encryption constitutes a
commitment. Because we consider SOA-security under sender corruptions in the
encryption setting, this is not the case. (Recall that with sender corruptions, an
encryption opening does not reveal the secret key, so the information-theoretic
argument of Nielsen [38] that any encryption scheme is committing does not
apply.)

1.4 History

This paper was formed by merging two Eurocrypt 2009 submissions which were
accepted by the PC under the condition that they merge. One, by Bellare and
Yilek, contained the results on encryption. (Sections 1.1,3,4,5.) The other, by
Hofheinz, contained the results on commitment. (Sections 1.2,6,7,8,9.) Both pa-
pers had independently introduced the indistinguishability de�nition of SOA-
security, the �rst for encryption and the second for commitment. Full versions
of both papers are available as [7, 31].

2 Notation

For any integer n, let 1n be its unary representation and let [n] denote the set
{1, . . . , n}. We let a← b denote assignment to a the result of evaluating b. If b is
simply a tuple of values of size m, we will write (b1, . . . , bm)← b when we mean
that b is parsed into b1 to bm. We let a←$ b denote choosing a value uniformly
at random from random variable b and assigning it to a.

We say a function µ(n) is negligible if µ ∈ o(n−ω(1)). We let neg(n) denote
an arbitrary negligible function. If we say some p(n) = poly(n), we mean that
there is some polynomial q such that for all su�ciently large n, p(n) ≤ q(n). The
statistical distance between two random variable X and Y over common domain
D is ∆(X, Y ) = 1

2

∑
z∈D |Pr[X = z]− Pr[Y = z]| and we say that two random

variables X and Y are δ-close if their statistical distance is at most δ and if δ is
negligible, we might say X ≡s Y .

We denote by ε the empty string. For any strings m0 and m1, let m0 ⊕m1

denote the bitwise xor of the two strings. We use boldface letters for vectors, and
for any vector m of n messages and i ∈ [n], let m[i] denote the ith message in m.
For a set I ⊆ [n] of indices i1 < i2 < . . . < il, let m[I] = (m[i1],m[i2], . . . ,m[il]).
For any set I (resp. any vector m)(resp. any string m), let |I| (resp. |m|) (resp.
|m|) denote the size of the set (resp. length of the vector) (resp. length of the
string).

All algorithms in this paper are randomized, unless otherwise speci�ed as be-
ing deterministic. For any algorithm A, let CoinsA(x1, x2, . . .) denote the set of
possible coins A uses when run on inputs x1, x2, . . .. Let A(x1, x2, . . . ; r) denote



running algorithm A on inputs x1, x2, . . . and with coins r ∈ CoinsA(x1, x2, . . .).
Then A(x1, x2, . . .) denotes the random variable A(x1, x2, . . . ; r) with r chosen
uniformly at random from CoinsA(x1, x2, . . .). When we say an algorithm is e�-
cient, we mean that it runs in polynomial time in its �rst input; if the algorithm
is randomized we might also say it runs in probabilistic polynomial time (PPT).
An unbounded algorithm does not necessarily run in polynomial time.

3 Encryption Related De�nitions

3.1 Encryption Schemes

A public-key encryption scheme AE = (K, E ,D) is a triple of PT algorithms. The
(randomized) key generation algorithm K takes as input a security parameter 1λ

and outputs a public key/secret key pair (pk , sk). The (randomized) encryption
algorithm E takes as input a public key pk and a message m and outputs a
ciphertext c. The decryption algorithm takes as input a secret key sk and a
ciphertext C and outputs either the decryption m of c, or ⊥, denoting failure. We
require the correctness condition that for all (pk , sk) generated by K, and for all
messages m, D(sk, E(pk ,m)) = m. The standard notion of security for public-key
encryption scheme is indistinguishability under chosen-plaintext attack (ind-cpa).

3.2 Encryption Security under Selective Opening

We consider both indistinguishability-based and simulation-based de�nitions of
security for encryption under selective opening which we call ind-so-enc and
sem-so-enc, respectively.

Indistinguishability-based. For any public-key encryption scheme AE =
(K, E ,D), any message sampler M, and any adversary A = (A1, A2), we say
the ind-so-enc-advantage of A with respect toM is

Advind-so-enc
A,AE,M,n,t(λ) = 2 · Pr[Expind-so-enc

A,AE,M,n,t(λ)]− 1,

where the ind-so-enc security experiment is de�ned in Figure 1, and M|I,m0[I]

returns a random n-vector m1 according to M, subject to m1[I] = m0[I]. In
other words,M|I,m0[I] denotes conditionally resampling from the message space
subject to the constraint that the messages corresponding to indices in I are
equal to m0[I].

We say that a public-key encryption scheme AE is ind-so-enc-secure if for any
e�cient message samplerM that supports e�cient conditional resampling and
for all e�cient adversaries A, the ind-so-enc-advantage of A with respect toM
is negligible in the security parameter.

In words, the experiment proceeds as follows. The adversary is given a pub-
lic key pk and n ciphertexts c encrypted under public key pk . The messages
corresponding to the n ciphertexts come from the joint distribution M. The
adversary then speci�es a set I of t ciphertexts and receives the randomness r[I]



Experiment Expind-so-enc

A,AE,M,n,t(λ)

m0←$M(1λ); b←$ {0, 1}; (pk , sk)←$K(1λ)
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk ,m0[i])
c[i]← E(pk ,m0[i]; r[i])

(I, st)←$ A1(1
λ, pk , c)

m1←$M|I,m0[I]

b′←$ A2(st, r[I],mb)
Return (b = b′)

Fig. 1. The IND-SO-ENC security experiment

used to generate those ciphertexts in addition to a message vector mb such that
mb[I] were the actual messages encrypted using r[I] and the rest of mb depends
on the bit b. If b, which the experiment chooses randomly, is 0, the rest of the
messages in the vector are the actual messages used to create the ciphertexts c
that were given to the adversary. If b = 1, the rest of the messages are instead
resampled from M, conditioned on I and mb[I]. The adversary must then try
to guess the bit b.

The de�nition is a natural extension of ind-cpa to the selective decryption set-
ting. Intuitively, the de�nition means that an adversary, after adaptively choos-
ing to open some ciphertexts, cannot distinguish between the actual unopened
messages and another set of messages that are equally likely given the opened
messages that the adversary has seen.

Simulation-based. For any public-key encryption scheme AE = (K, E ,D), any
message samplerM, any relation R, any adversary A = (A1, A2), and any sim-
ulator S = (S1, S2), we say the sem-so-enc-advantage of A with respect to M,
R, and S is

Advind-so-enc
A,S,AE,M,R,n,t(λ) =Pr[Expsem-so-enc-real

A,AE,M,R,n,t(λ) = 1]

− Pr[Expsem-so-enc-ideal
S,AE,M,R,n,t (λ) = 1]

where the sem-so-enc security experiments are de�ned in Figure 2.
We say that a public-key encryption scheme AE is sem-so-enc-secure if for

any e�cient message sampler M, any e�ciently computable relation R, and
any e�cient adversary A, there exists an e�cient simulator S such that the
sem-so-enc-advantage of A with respect to M, R, and S is negligible in the
security parameter.

In words, the experiments proceed as follows. In the sem-so-enc-real experi-
ment, the adversary A is given a public key pk and n ciphertexts c encrypted
under public key pk . The messages corresponding to the n ciphertexts come
from the joint distributionM. The adversary then speci�es a set I of t cipher-
texts and receives the messages m[I] and randomness r[I] used to generate those
ciphertexts. The adversary then outputs a string w and the output of the ex-
periment is R(m, w), the relation applied to the message vector and adversary's



Experiment Expsem-so-enc-real

A,AE,M,R,n,t(λ)

m←$M(1λ); (pk , sk)←$K(1λ)
For i = 1, . . . , n(λ) do

r[i]←$ CoinsE(pk ,m[i])
c[i]← E(pk ,m[i]; r[i])

(I, st)←$ A1(1
λ, pk , c)

w←$ A2(st, r[I],m[I])
Return R(m, w)

Experiment Expsem-so-enc-ideal

S,AE,M,R,n,t (λ)

m←$M(1λ)
(I, st)←$ S1(1

λ)
w←$ S2(st,m[I])
Return R(m, w)

Fig. 2. The two security experiments for SEM-SO-ENC

output. In the sem-so-enc-ideal experiment, a vector m of messages is chosen and
the simulator, given only the security parameter, chooses a set I. The simulator
is then given m[I], the messages corresponding to the index set I. Finally, the
simulator outputs a string w and the output of the experiment is R(m, w).

4 Lossy Encryption

The main tool we use in our results is what we call a Lossy Encryption Scheme.
Informally, a lossy encryption scheme is a public-key encryption scheme with a
standard key generation algorithm (which produces `real' keys) and a lossy key
generation algorithm (which produces `lossy' keys), such that encryptions with
real keys are committing, while encryptions with lossy keys are not committing.
Peikert, Vaikuntanathan, and Waters [41] called such lossy keys �messy keys�,
for message lossy, while de�ning a related notion called Dual-Mode Encryp-
tion. The notion of Lossy Encryption is also similar to Meaningful/Meaningless
Encryption [34], formalized by Kol and Naor.

More formally, a lossy public-key encryption scheme AE = (K,Kloss, E ,D) is
a tuple of PT algorithms de�ned as follows. The key generation algorithm K
takes as input the security parameter 1λ and outputs a keypair (pk , sk); we call
public keys generated by K real public keys. The lossy key generation algorithm
Kloss takes as input the security parameter and outputs a keypair (pk , sk); we call
such pk lossy public keys. The encryption algorithm E takes as input a public
key pk (either from K or Kloss) and a message m and outputs a ciphertext c.
The decryption algorithm takes as input a secret key sk and a ciphertext c and
outputs either a message m, or ⊥ in the case of failure. We require the following
properties from AE :

1. Correctness on real keys. For all (pk , sk)←$K it must be the case that
D(sk , E(pk ,m)) = m. In other words, when the real key generation algorithm
is used, the standard public-key encryption correctness condition must hold.

2. Indistinguishability of real keys from lossy keys. No polynomial-time adver-
sary can distinguish between the �rst outputs of K and Kloss. We call the
advantage of an adversary A distinguishing between the two the lossy-key-
advantage of A and take it to mean the obvious thing, i.e., the probability



that A outputs 1 when given the �rst output of K is about the same as the
probability it outputs 1 when given the �rst output of Kloss.

3. Lossiness of encryption with lossy keys. For any (pk , sk) ← Kloss and two
distinct messages m0,m1, it must be the case that E(pk ,m0) ≡s E(pk ,m1).
We say the advantage of an adversary A in distinguishing between the two
is the lossy-ind advantage of A and take it to mean the advantage of A in the
standard ind-cpa game when the public key pk in the ind-cpa game is lossy.
Notice that because the ciphertexts are statistically close, even an unbounded
distinguisher will have low advantage. We sometimes call ciphertexts created
with lossy public keys lossy ciphertexts.

4. Possible to claim any plaintext. There exists a (possibly unbounded) al-
gorithm Opener that, given a lossy public key pk loss, message m, and ci-
phertext c = E(pk loss,m), will output r′ ∈R CoinsE(pk loss,m) such that
E(pk loss,m; r′) = c. In other words, Opener will �nd correctly distributed
randomness to open a lossy ciphertext to the plaintext it encrypts. It then
directly follows from the lossiness of encryption that with high probability
the opener algorithm can successfully open any ciphertext to any plaintext.

We note that the fourth property is already implied by the �rst three properties;
the canonical (ine�cient) Opener algorithm will, given pk loss, m, and c, simply try
all possible coins to �nd the set of all r such that E(pk loss,m; r) = c and output
a random element of that set. Nevertheless, we explicitly include the property
because it is convenient in the proofs, and later we will consider variations of
the de�nition which consider other (more e�cient) opener algorithms.

We also note that the de�nition of lossy encryption already implies ind-cpa

security. We next provide two instantiations of lossy public-key encryption, one
from DDH and one from lossy trapdoor functions.

4.1 Instantiation from DDH

We now describe a lossy public-key encryption scheme based on the DDH as-
sumption. Recall that the DDH assumption for cyclic group G of order prime p
says that for random generator g ∈ G∗ (we use G∗ to denote the generators of G),
the tuples (g, ga, gb, gab) and (g, ga, gb, gc) are computationally indistinguishable,
where a, b, c←$ Zp.

The scheme we describe below is originally from [36], yet some of our notation
is taken from the similar dual-mode encryption scheme of [41]. The scheme has
structure similar to ElGamal.

Let G be a prime order group of order prime p. The scheme AEddh =
(K,Kloss, E ,D) is a tuple of polynomial-time algorithms de�ned as follows:

Algorithm K(1λ)
g←$ G∗; x, r←$ Zp

pk ← (g, gr, gx, grx)
sk ← x
Return (pk , sk)

Algorithm E(pk ,m)
(g, h, g′, h′)← pk
(u, v)←$ Rand(g, h, g′, h′)
Return (u, v ·m)

Algorithm D(sk, c)
(c0, c1)← c
Return c1/csk

0



Algorithm Kloss(1λ)
g←$ G∗; r, x 6= y←$ Zp

pk ← (g, gr, gx, gry)
sk ← ⊥
Return (pk , sk)

Subroutine Rand(g, h, g′, h′)
s, t←$ Zp

u← gsht; v ← (g′)s(h′)t

Return (u, v)

We show that AEddh satis�es the four properties of lossy encryption schemes.

1. Correctness on real keys. To see the correctness property is satis�ed, consider
a (real) public key pk = (g, gr, gx, grx) and corresponding secret key sk = x.
Then, for some message m ∈ G

D(sk , E(pk ,m)) = D(sk , (gs+rt, gxs+rxt ·m))
= (gxs+rxt ·m)/(gs+rt)x

= m

2. Indistinguishability of real keys from lossy keys. This follows from the as-
sumption that DDH is hard in the groups we are using, since the �rst output
of K is (g, gr, gx, grx) and the �rst output of Kloss is (g, gr, gx, gry) for y 6= x.

3. Lossiness of encryption with lossy keys. We need to show that for any lossy
public key pk generated by Kloss, and any messages m0 6= m1 ∈ G, it is the
case that E(pk ,m0) ≡s E(pk ,m1). The results of Peikert, Vaikuntanathan,
and Waters can be applied here (speci�cally Lemma 4 from their paper [41]).
We repeat their lemma for completeness.

Lemma 1 (Lemma 4 from [41]). Let G be an arbitrary multiplicative
group of prime order p. For each x ∈ Zp, de�ne DLOGG(x) = {(g, gx) : g ∈
G}. There is a probabilistic algorithm Rand that takes generators g, h ∈ G
and elements g′, h′ ∈ G, and outputs a pair (u, v) ∈ G2 such that:
� If (g, g′), (h, h′) ∈ DLOGG(x) for some x, then (u, v) is uniformly random

in DLOGG(x).
� If (g, g′) ∈ DLOGG(x) and (h, h′) ∈ DLOGG(y) for x 6= y, then (u, v) is

uniformly random in G2.

The Rand procedure mentioned in the lemma is exactly our Rand procedure
de�ned above. As [41] proves, this lemma shows that encryptions under
a lossy key are statistically close, since such encryptions are just pairs of
uniformly random group elements.

4. Possible to claim any plaintext. The unbounded algorithm Opener is simply
the canonical opener mentioned above. Speci�cally, on input lossy public key
pk = (g, h, g′, h′), message m ∈ G, and ciphertext (c1, c2) ∈ G2, it computes
the set of all s, t ∈ Zp such that Rand(g, h, g′, h′; s, t) outputs (c1, c2/m). It
then outputs a random element of this set.

4.2 Instantiation from Lossy TDFs

Before giving our scheme we will recall a few de�nitions.



De�nition 1 (Pairwise Independent Function Family). A family of func-
tions Hn,m from {0, 1}n to {0, 1}m is pairwise-independent if for any distinct
x, x′ ∈ {0, 1}n and any y, y ∈ {0, 1}m,

Pr
h←$Hn,m

[h(x) = y ∧ h(x′) = y′] =
1

22m
.

For our results, we make use of lossy trapdoor functions, a primitive recently
introduced by Peikert and Waters [40]. Informally, a lossy trapdoor function is
similar to a traditional injective trapdoor function, but with the extra property
that the trapdoor function is indistinguishable from another function that loses
information about its input. We recall the de�nition from Peikert and Waters
(with minor notational changes):

De�nition 2 (Collection of (n, k) Lossy Trapdoor Functions). Let λ be a
security parameter, n = n(λ) = poly(λ), and k = k(λ) ≤ n. A collection of (n, k)-
lossy trapdoor functions Ln,k = (Stdf , Sloss, Ftdf , F

−1
tdf ) is a tuple of algorithms

with the following properties:

1. Easy to sample, compute, and invert given a trapdoor, an injective trapdoor
function. The sampler Stdf , on input 1λ outputs (s, t), algorithm Ftdf , on
input index s and some point x ∈ {0, 1}n, outputs fs(x), and algorithm
F−1

tdf , on input t and y outputs f−1
s (y).

2. Easy to sample and compute lossy functions. Algorithm Sloss, on input 1λ,
outputs (s,⊥), and algorithm Ftdf , on input index s and some point x ∈
{0, 1}n, outputs fs(x), and the image size of fs is at most 2r = 2n−k.

3. Di�cult to distinguish between injective and lossy. The function indices out-
putted by the sampling algorithms Stdf and Sloss should be computationally
indistinguishable. We say the advantage of distinguishing between the indices
is the ltdf-advantage.

We now describe an instantiation of lossy encryption based on lossy trapdoor
functions.

Let λ be a security parameter and let (Stdf , Sloss, Ftdf , F
−1
tdf ) de�ne a col-

lection of (n, k)-lossy trapdoor functions. Also let H be a collection of pair-
wise independent hash functions from n bits to ` bits; the message space of
the cryptosystem will then be {0, 1}`. The parameter ` should be such that
` ≤ k − 2 log(1/δ), where δ is a negligible function in the security parameter λ.
The scheme AE loss = (K,Kloss, E ,D) is then de�ned as follows:

Algorithm K(1λ)
(s, t)←$ Stdf(1λ)
h←$H
pk ← (s, h); sk ← (t, h)
Return (pk , sk)

Algorithm E(pk ,m)
(s, h)← pk
x←$ {0, 1}n
c1 ← Ftdf(s, x)
c2 ← m⊕ h(x)
Return (c1, c2)

Algorithm D(sk , c)
(t, h)← sk
(c1, c2)← c
x← F−1

tdf (t, c1)
Return h(x)⊕ c2

The Kloss algorithm is simply the same as K, but using Sloss instead of Stdf .
(In this case, the trapdoor t will be ⊥.)



We now show that AE loss satis�es the four properties of lossy encryption
schemes.

1. Correctness on real keys. This follows since when pk = (s, h) was generated
by K, s is such that (s, t)←$ Stdf(1λ) and h←$H so that

D(sk, E(pk ,m)) = h(F−1
tdf (t, Ftdf(s, x)))⊕ (m⊕ h(x))

= h(x)⊕m⊕ h(x)
= m

2. Indistinguishability of real keys from lossy keys. We need to show that any
e�cient adversary has low lossy-key advantage in distinguishing between a
real public key (s, h) and a lossy key (s′, h′), where (s, h)←$K(1λ) and
(s′, h′)←$Kloss(1λ). Since s is the �rst output of Stdf and s′ is the �rst output
of Sloss, we use the third property of lossy trapdoor functions, speci�cally
that the function indices outputted by Stdf and Sloss are computationally
indistinguishable.

3. Lossiness of encryption with lossy keys. We need to show that for any lossy
public key pk generated by Kloss, and any messages m0 6= m1 ∈ {0, 1}`,
it is the case that E(pk ,m0) ≡s E(pk ,m1). As Peikert and Waters show
in [40], this is true because of the lossiness of fs (where s is part of pk ,
generated by Sloss). Speci�cally, they show that the average min-entropy
H̃∞(x|(c1, pk)) of the random variable x, given fs(x) and pk is at least k,
and since ` ≤ k − 2 log(1/δ), it follows that h(x) will be δ-close to uniform
and mb ⊕ h(x) will also be δ-close to uniform for either bit b.

4. Possible to claim any plaintext. Again, the opener is simply the canonical
opener that is guaranteed to be correct by the �rst three properties. Speci�-
cally, the (unbounded) algorithm Opener, on input a public key pk = (s, h),
message m′ ∈ {0, 1}`, and ciphertext c = (c1, c2) = (fs(x), h(x)⊕m) for some
x ∈ {0, 1}n and m ∈ {0, 1}`, must output x′ ∈ {0, 1}n such that fs(x′) = c1

and h(x′)⊕m′ = c2. To do so, Opener enumerates over all {0, 1}n and creates
a set X = {x′ ∈ {0, 1}n : fs(x′) = c1 ∧ h(x′) = m′ ⊕ c2} before returning a
random x ∈ X.

4.3 An Extension: E�cient Opening

Recall that in the above de�nition of lossy encryption, the Opener algorithm
could be unbounded. We will now consider a re�nement of the de�nition that
will be useful for achieving the simulation-based selective opening de�nition. We
say that a PKE scheme AE is a lossy encryption scheme with e�cient opening
if it satis�es the following four properties:

1. Correctness on real keys. For all (pk , sk)←$K it must be the case that
D(sk , E(pk ,m)) = m.

2. Indistinguishability of real keys from lossy keys. No polynomial-time adver-
sary can distinguish between the �rst outputs of K and Kloss.



3. Lossiness of encryption with lossy keys. For any (pk , sk) ← Kloss and two
distinct messages m0,m1, it must be the case that E(pk ,m0) ≡i E(pk ,m1).
Notice that we require ciphertexts to be identically distributed.

4. Possible to e�ciently claim any plaintext. There exists an e�cient algo-
rithm Opener that on input lossy keys sk loss and pk loss, message m′, and
ciphertext c = E(pk loss,m), outputs an r′ ∈R CoinsE(pk loss,m

′) such that
E(pk loss,m

′; r′) = c. In words, the algorithm Opener is able to open cipher-
texts to arbitrary plaintexts e�ciently.

We emphasize that it is important for the opener algorithm to take as input
the lossy secret key. This may seem strange, since in the two schemes described
above the lossy secret key was simply ⊥, but this need not be the case.

4.4 The GM Probabilistic Encryption Scheme

The Goldwasser-Micali Probabilistic encryption scheme [27] is an example of a
lossy encryption scheme with e�cient opening. We brie�y recall the GM scheme.
Let Par be an algorithm that e�ciently chooses two large random primes p and q
and outputs them along with their product N . Let Jp(x) denote the Jacobi
symbol of x modulo p. We denote by QRN the group of quadratic residues
modulo N and we denote by QNR+1

N the group of quadratic non-residues x
such that JN (x) = +1. Recall that the security of the GM scheme is based
on the Quadratic Residuosity Assumption, which states that it is di�cult to
distinguish a random element of QRN from a random element of QNR+1

N . The
scheme AEGM = (K,Kloss, E ,D) is de�ned as follows.

Algorithm K(1λ)
(N, p, q)←$ Par(1λ)
x←$ QNR+1

N

pk ← (N,x)
sk ← (p, q)
Return (pk , sk)

Algorithm E(pk ,m)
(N,x)← pk
For i = 1 to |m|

ri←$ Z∗N
c[i]← r2

i ·xmi mod N
Return c

Algorithm D(sk , c)
(p, q)← sk
For i = 1 to |c|
If Jp(c[i]) = Jq(c[i]) = +1

mi ← 0
Else mi ← 1

Return m

The algorithm Kloss is the same as K except that x is chosen at random from
QRN instead of QNR+1

N ; in the lossy case the secret key is still the factorization
of N .

It is easy to see that the scheme AEGM meets the �rst three properties of
lossy PKE schemes with e�cient opening: the correctness of the scheme under
real keys was shown in [27], the indistinguishability of real keys from lossy keys
follows directly from the Quadratic Residuosity Assumption, and encryptions
under lossy keys are lossy since in that case all ciphertexts are just sequences
of random quadratic residues. We claim that AEGM is also e�ciently openable.
To see this consider the (e�cient) algorithm Opener that takes as input secret
key sk = (p, q), public key pk = (N,x), plaintext m, and encryption c. For
simplicity, say m has length n bits. For each i ∈ [n], Opener uses p and q to
e�ciently compute the four square roots of c[i]/xmi and lets r[i] be a randomly



chosen one of the four. The output of Opener is the sequence r, which is just a
sequence of random elements in Z∗N .

5 SOA-Security from Lossy Encryption

We now state our main results for encryption: any lossy public-key encryption
scheme is ind-so-enc-secure, and any lossy public-key encryption scheme with
e�cient opening is sem-so-enc-secure.

Theorem 1 (Lossy Encryption implies IND-SO-ENC security). Let λ
be a security parameter, AE = (K,Klossy, E ,D) be any lossy public-key encryp-
tion scheme,M any e�ciently samplable distribution that supports e�cient re-
sampling, and A be any polynomial-time adversary corrupting t = t(λ) parties.
Then, there exists an unbounded lossy-ind adversary C and an e�cient lossy-key

adversary B such that

Advind-so-enc
A,AE,M,n,t(λ) ≤ 2n ·Advlossy-ind

C,AE (λ) + 2 ·Advlossy-key
B,AE (λ).

Proof. We will prove the theorem using a sequence of game transitions. We start
with a game that is simply the ind-so-enc experiment run with A, and end with a
game in which A has no advantage, showing that each subsequent game is either
computationally or statistically indistinguishable from the previous game. Now,
we know that

Advind-so-enc
A,AE,M,n,t(λ) = 2 Pr[Expind-so-enc

A,AE,M,n,t(λ)]− 1

by the de�nition of ind-so-enc-security (see Section 3.2). We will now explain the
game transitions.

G0: The same as the ind-so-enc experiment.
G1: The only change is that the A1 is given a lossy public key and lossy

ciphertexts.
H0: Instead of opening the ciphertexts corresponding to index I (pro-

vided by A1) by revealing the actual coins used to generate the
ciphertexts, H0 runs the Opener algorithm on the actual messages
and ciphertexts and gives A2 the coins outputted. By the de�nition
of the Opener algorithm (see Section 4), the coins will be correctly
distributed and consistent with the ciphertexts.

Hj : We generalize H0 with a sequence of hybrid games. In the jth hybrid
game, the �rst j ciphertexts given to A1 are encryptions of dummy
messages instead of the �rst j messages outputted by M. Yet, the
game still opens the ciphertexts for A2 to the actual messages pro-
duced byM using the Opener algorithm.

Hn: In the last hybrid game, A1 is given encryptions of only the dummy
message, yet A2 receives openings of the ciphertexts to the actual
messages generated byM.



We �rst claim that there is an e�cient adversary B such that

Pr[G0]− Pr[G1] = Advlossy-key
B,AE (λ). (1)

To see this consider a B that is given a challenge public key pk∗ and must
decide whether or not it is lossy. The adversary uses the ind-so-enc-adversary A
and executes exactly the same as G0 and G1, giving the adversary the challenge
key pk∗ and ciphertexts generated using pk∗. It is important for the conditional
resamplability ofM to be e�cient in order for adversary B to be e�cient.

Next, we claim that
Pr[G1] = Pr[H0]. (2)

Recall that H0 opens ciphertexts c[i] = E(pk ,m0[i]) by using the Opener pro-
cedure. The key point is that in H0, c[i] is still opened to m0[i]. This ensures
us that Opener will always succeed in �nding coins that open the ciphertext
correctly, and ensures us that the output of Opener is identically distributed to
the actual coins used to encrypt m. Thus, the claim follows.

We can now use a standard hybrid arguments to claim there is an unbounded
adversary C such that

Pr[H0]− Pr[Hn] = n ·Advlossy-ind
C,AE (λ). (3)

Adversary C, on input a lossy public key pk∗, will operate the same as Hj

(for some guess j) except that it will use the challenge key, and for the jth
ciphertext it will use the result of issuing an IND-CPA challenge consisting of
the dummy message mdum and the real message m0[j]. The adversary C needs to
be unbounded because it runs the (possibly ine�cient) procedure Opener. With
standard IND-CPA, the unbounded nature of C would be problematic. However,
in the case of lossy encryption, the encryptions of two distinct lossy ciphertexts
are statistically close instead of just computationally indistinguishable, so C will
still have only negligible advantage.

Finally, we claim that
Pr[Hn] = 1/2, (4)

which is true since in Hn the adversary A1 is given encryptions of dummy mes-
sages and has no information about the messages chosen from M. (In fact, we
could modify the games again and move the choice of the messages to after
receiving I from A1.)

Combining the above equations, we see that

Advind-sda
A,AE,M,n,t(λ) ≤ 2n ·Advlossy-ind

C,AE (λ) + 2 ·Advlossy-key
B,AE (λ),

which proves the theorem. ut

Theorem 2 (Lossy Encryption with E�cient Opening implies SEM-
SO-ENC security). Let λ be a security parameter, AE = (K,Klossy, E ,D) be
any lossy public-key encryption scheme with e�cient opening,M any e�ciently
samplable distribution, R an e�ciently computable relation, and A = (A1, A2)



be any polynomial-time adversary corrupting t = t(λ) parties. Then, there exists
an e�cient simulator S = (S1, S2) and e�cient lossy-key adversary B such that

Advsem-so-enc
A,S,AE,M,R,n,t(λ) ≤ Advlossy-key

B,AE (λ).

Proof (Sketch). The proof of Theorem 2 is very similar to the proof of Theorem 1,
so we will only sketch it here. For more details see [7]. We can modify the
sem-so-enc-real experiment step by step until we have a successful simulator in
the sem-so-enc-ideal experiment. Consider the following sequence of games:

G0: The sem-so-enc-real experiment.
G1: Same as G0 except the adversary A1 is given a lossy public key.

The games are indistinguishable by the second property of e�ciently
openable lossy encryption.

G2: Instead of giving A2 the actual randomness r[I], the experiment uses
the e�cient Opener procedure.

G3: Adversary A1 is given encryptions of dummy messages, but A2 is
still given openings to the actual messages in m. To do this, the
e�cient Opener algorithm is applied to the dummy ciphertexts.

We can then construct a simulator S = (S1, S2) that runs A exactly as its
run in G3. Speci�cally, S chooses a lossy keypair and runs A1 with a vector of
encryptions of dummy messages. When A1 outputs a set I, S asks for the same
set I and learns messages mI . The simulator then uses the e�cient Opener algo-
rithm to open the dummy ciphertexts to the values mI and �nally outputs the
same w as A2. Thus, the game G3 is identical to the sem-so-enc-ideal experiment
run with simulator S. Since all of the games are close, the theorem follows. ut

6 Commitment Preliminaries and De�nitions

Commitment schemes.

De�nition 3 (Commitment scheme). For a pair of PPT machines Com =
(S,R) and a machine A, consider the following experiments:

Experiment Expbinding
Com,A(λ)

run 〈R(recv), A(com)〉
m′0←$ 〈R(open), A(open, 0)〉
rewind A and R back to after step 1
m′1←$ 〈R(open), A(open, 1)〉
return 1 i� ⊥ 6= m′0 6= m′1 6= ⊥

Experiment Exphiding-b
Com,A (λ)

(m0,m1)←$ A(choose)
return 〈A(recv),S(com,mb)〉

In this, 〈A,S〉 denotes the output of A after interacting with S, and 〈R, A〉 denotes
the output of R after interacting with A. We say that Com is a commitment
scheme i� the following holds:
Syntax. For any m ∈ {0, 1}λ, S(com,m) �rst interacts with R(recv). We call

this the commit phase. After that, S(open) interacts again with R(open),
and R �nally outputs a value m′ ∈ {0, 1}λ ∪ {⊥}. We call this the opening
phase.



Correctness. We have m′ = m always and for all m.
Hiding. For a PPT machine A, let

Advhiding
Com,A(λ) := Pr

[
Exphiding-0

Com,A = 1
]
(λ)− Pr

[
Exphiding-1

Com,A = 1
]
(λ),

where Exphiding-b
Com,A is depicted below. For Com to be hiding, we demand that

Advhiding
Com,A is negligible for all PPT A that satisfy m0,m1 ∈ {0, 1}λ always.

Binding. For a machine A, consider the experiment Expbinding
Com,A below. For Com

to be binding, we require that Advbinding
Com,A(λ) = Pr

[
Expbinding

Com,A(λ) = 1
]
is neg-

ligible for all PPT A.

Further, we say that Com is perfectly binding i� Advbinding
Com,A = 0 for all A. We say

that Com is statistically hiding i� Advhiding
Com,A is negligible for all (not necessarily

PPT) A.

De�nition 4 (Non-interactive commitment scheme). A non-interactive
commitment scheme is a commitment scheme Com = (S,R) in which both com-
mit and opening phase consist of only one message sent from S to R. We can
treat a non-interactive commitment scheme as a pair of algorithms rather than
machines. Namely, we write (com, dec)←$ S(m) shorthand for the commit mes-
sage com and opening message dec sent by S on input m. We also denote by
m′←$ R(com, dec) the �nal output of R upon receiving com in the commit phase
and dec in the opening phase.

Note that perfectly binding implies that any commitment can only be opened to
at most one value m. Perfectly binding (non-interactive) commitment schemes
can be achieved from any one-way permutation (e.g., Blum [9]). On the other
hand, statistically hiding implies that for any m0,m1 ∈ {0, 1}λ, the statistical
distance between the respective views of the receiver in the commit phase is
negligible. One-way functions su�ce to implement statistically hiding (interac-
tive) commitment schemes (Haitner and Reingold [29]), but there are certain
lower bounds for the communication complexity of such constructions (Wee
[47], Haitner et al. [30]). However, if we assume the existence of (families of)
collision-resistant hash functions, then even constant-round statistically hiding
commitment schemes exist (Damgård et al. [19], Naor and Yung [37]).

Interactive argument systems and zero-knowledge. We recall some basic
de�nitions concerning interactive argument systems, mostly following Goldreich
[25].

De�nition 5 (Interactive proof/argument system). An interactive proof
system for a language L with witness relation R is a pair of PPT machines
IP = (P,V) such that the following holds:

Completeness. For every family (xλ, wλ)λ∈N such that R(xλ, wλ) for all λ and
|xλ| is polynomial in λ, we have that the probability for V(xλ) to output 1
after interacting with P(xλ, wλ) is at least 2/3.



Soundness. For every machine P ∗ and every family (xλ, zλ)λ∈N such that
|xλ| = λ and xλ 6∈ L for all λ, we have that the probability for V(xλ) to
output 1 after interacting with P ∗(xλ, zλ) is at most 1/3.

If the soundness condition holds for all PPT machines P ∗ (but not necessarily
for all unbounded P ∗), then IP is an interactive argument system. We say that IP
enjoys perfect completeness if V always outputs 1 in the completeness condition.
Furthermore, IP has negligible soundness error if V outputs 1 only with negligible
probability in the soundness condition.

De�nition 6 (Zero-knowledge). Let IP = (P,V) be an interactive proof or
argument system for language L with witness relation R. IP is zero-knowledge
if for every PPT machine V ∗, there exists a PPT machine S∗ such that for all
sequences (x,w) = (xλ, wλ)λ∈N with R(xλ, wλ) for all λ and |xλ| polynomial
in λ, for all PPT machines D, and all auxiliary inputs zV ∗

= (zV ∗

λ )λ∈N ∈
({0, 1}∗)N and zD = (zD

λ )λ∈N ∈ ({0, 1}∗)N, we have that

AdvZK
V ∗,S∗,(x,w),D,zV ∗ ,zD (λ) := Pr

[
D(xλ, zD

λ , 〈P(xλ, wλ), V ∗(xλ, zV ∗

λ )〉) = 1
]

− Pr
[
D(xλ, zD

λ , S∗(xλ, zV ∗

λ )) = 1
]

is negligible in λ. Here 〈P(xλ, wλ), V ∗(xλ, zV ∗

λ )〉 denotes the transcript of the
interaction between the prover P and V ∗.

Most known interactive proof system achieve perfect completeness. Con-
versely, most systems do not enjoy a negligible soundness error �by nature�;
their soundness has to be ampli�ed via repetition, e.g., via sequential or concur-
rent composition. Thus, it is important to consider the concurrent composition
of an interactive argument system:

De�nition 7 (Concurrent zero-knowledge). Let IP = (P,V) be an inter-
active proof or argument system for language L with witness relation R. IP is
zero-knowledge under concurrent composition i� for every polynomial n = n(λ)
and PPT machine V ∗, there exists a PPT machine S∗ such that for all sequences
(x,w) = (xi,λ, wi,λ)λ∈N,i∈[n] with R(xi,λ, wi,λ) for all i, λ and |xi,λ| polynomial

in λ, for all PPT machines D, and all auxiliary inputs zV ∗
= (zV ∗

λ )λ∈N ∈
({0, 1}∗)N and zD = (zD

λ )λ∈N ∈ ({0, 1}∗)N, we have that

AdvcZK
V ∗,S∗,(x,w),D,zV ∗ ,zD :=

Pr
[
D((xi,λ)i∈[n], z

D
λ , 〈P((xi,λ, wi,λ)i∈[n]), V ∗((xi,λ)i∈[n], z

V ∗

λ )〉) = 1
]

− Pr
[
D((xi,λ)i∈[n], z

D
λ , S∗((xi,λ)i∈[n], z

V ∗

λ )) = 1
]

is negligible in λ. Here 〈P((xi,λ, wi,λ)i∈[n]), V ∗((xi,λ)i∈[n], z
V ∗

λ )〉 denotes the tran-
script of the interaction between n copies of the prover P (with the respective
inputs (xi,λ, wi,λ) for i = 1, . . . , n) on the one hand, and V ∗ on the other hand.



There exist interactive proof systems (with perfect completeness and negligible
soundness error) that achieve De�nition 7 for arbitrary NP-languages if one-way
permutations exist (e.g., Richardson and Kilian [44]; see also [33, 15, 1, 23, 3]
for similar results in related settings). If we assume the existence of (families
of) collision-resistant hash functions, then there even exist constant-round in-
teractive proof systems that achieve a bounded version of De�nition 7 in which
the number of concurrent instances is �xed in advance (Barak [1], Barak and
Goldreich [2]).4

Black-box reductions. Reingold et al. [43] give an excellent overview and
classi�cation of black-box reductions. We recall some of their de�nitions which
are important for our case. A primitive P = (FP, RP) is a set FP of functions
f : {0, 1}∗ → {0, 1}∗ along with a relation R over pairs (f,A), where f ∈ FP, and
A is a machine. We say that f is an implementation of P i� f ∈ FP. Furthermore,
f is an e�cient implementation of P i� f ∈ FP and f can be computed by a
PPT machine. A machine A P-breaks f ∈ FP i� RP(f,A). A primitive P exists if
there is an e�cient implementation f ∈ FP such that no PPT machine P-breaks
f . A primitive P exists relative to an oracle B i� there exists an implementation
f ∈ FP which is computable by a PPT machine with access to B, such that no
PPT machine with access to B P-breaks f .

De�nition 8 (Relativizing reduction). There exists a relativizing reduction
from a primitive P = (FP, RP) to a primitive Q = (FQ, RQ) i� for every oracle
B, the following holds: if Q exists relative to B, then so does P.

De�nition 9 (∀∃semi-black-box reduction). There exists a ∀∃semi-black-
box reduction from a primitive P = (FP, RP) to a primitive Q = (FQ, RQ) i� for
every implementation f ∈ FQ, there exists a PPT machine G such that Gf ∈ FP,
and the following holds: if there exists a PPT machine A such that Af P-breaks
Gf , then there exists a PPT machine S such that Sf Q-breaks f .

It can be seen that if a relativizing reduction exists, then so does a ∀∃semi-black-
box reduction. The converse is true when Q �allows embedding,� which essentially
means that additional oracles can be embedded into Q without destroying its
functionality (see Reingold et al. [43, De�nition 3.4 and Theorem 3.5] and Simon
[46]). Below we will prove impossibility of relativizing reductions between certain
primitives, which also proves impossibility of ∀∃semi-black-box reductions, since
the corresponding primitives Q allow embedding.

7 Simulation-based Commitment Security under

Selective Openings

Consider the following real security game: adversary A gets, say, n commitments,
and then may ask for openings of some of them. The security notion of Dwork

4 It is common to allow the simulator S∗ to be expected polynomial-time. In fact, the
positive results [44, 33] (but not [1]) construct an expected PPT S∗. We will neglect
this issue in the following, since our results do not depend the complexity of S∗ (as
long as S∗ is not able to break an underlying computational assumption).



et al. [22] requires that for any such A, there exists a simulator S that can
approximate A's output. More concretely, for any relation R, we require that
R(m, outA) holds about as often as R(m, outS), where m = (m[i])i∈[n] are
the messages in the commitments, outA is A's output, and outS is S's output.
Formally, we get the following de�nition (where henceforth, I will denote the
set of �allowed� opening sets):

De�nition 10 (SEM-SO-COM). Assume n = n(λ) > 0 is polynomially
bounded, and let I = (In)n be a family of sets such that each In is a set of
subsets of [n]. A commitment scheme Com = (S,R) is simulatable under se-
lective openings (short SEM-SO-COM secure) i� for every PPT n-message
distribution M, every PPT relation R, and every PPT machine A (the adver-
sary), there is a PPT machine S (the simulator), such that Advsem-so

Com,M,A,S,R is
negligible. Here

Advsem-so
Com,M,A,S,R(λ) := Pr

[
Expsem-so-real

Com,M,A,R = 1
]
(λ)−Pr

[
Expsem-so-ideal

M,S,R = 1
]
(λ),

where the experiments Expsem-so-real
Com,M,A,R and Expsem-so-ideal

M,S,R are de�ned as follows:

Experiment Expsem-so-real
Com,M,A,R(λ)

m = (m[i])i∈[n]←$M
I ←$ 〈A(recv), (Si(com,m[i]))i∈[n]〉
outA←$ 〈A(open), (Si(open))i∈I〉
return R(m, outA)

Experiment Expsem-so-ideal
M,S,R (λ)

m = (m[i])i∈[n]←$M
I ←$ S(choose)
outS ←$ S((m[i])i∈I)
return R(m, outS)

In this, we require from A that I ∈ Iλ,
5 and we denote by 〈A, (Si)i〉 the output

of A after interacting concurrently with instances Si of S.

Discussion of the de�nitional choices. While De�nition 10 essentially is
the selective decommitment de�nition Dwork et al. [22, De�nition 7.1], there
are a number of de�nitional choices we would like to highlight (the following
discussion applies equally to the upcoming De�nition 13):
� Unlike [22, De�nition 7.1], neither adversary A nor relation R get an auxiliary
input. Such an auxiliary input is common in cryptographic de�nitions to
ensure some form of composability.

� We do not explicitly hand the chosen set I to the relation R. Handing I to
R potentially makes the de�nition more useful in larger contexts in which I
is public.

� One could think of letting R determine the message vector m.6 (Equivalently,
we can viewM as part of R and letM forward its random coins�or a short

5 that is, we actually only quantify over those A for which I ∈ Iλ
6 This de�nition is closer to a universally composable de�nition (cf. Canetti [11]) in
the sense that R (almost) takes the role of a UC-environment: R selects all inputs
and reads the outputs (in particular the output of A). However, we stress that R may
not actively interfere in the commitment protocol. Note that we cannot hope for fully
UC-secure commitments for reasons not connected to the selective decommitment
problem, cf. Canetti and Fischlin [12].



seed�to R in a message part m[i] which is guaranteed not to be opened,
e.g., when i 6∈ I for all I ∈ In.)

� The order of quanti�ers (∀M, R, A∃S) is the weakest one possible. In par-
ticular, we do not mandate that S is constructed from A in a black-box
way.

In all of the cases, we chose the weaker de�nitional variant for simplicity, which
makes our negative results only stronger. We stress, however, that our positive
results (Theorem 4 and Theorem 6) hold also for all of the stronger de�nitional
variants.

7.1 Impossibility from black-box reductions

Formalization of computational assumptions. Our �rst negative result
states that SEM-SO-COM security cannot be achieved via black-box reductions
from standard assumptions. We want to consider such standard assumptions in a
general way that allows to make statements even in the presence of �relativizing�
oracles. Thus we make the following de�nition, which is a special case of the
de�nition of a primitive from Reingold et al. [43] (cf. also Section 6).

De�nition 11 (Property of an oracle). Let X be an oracle. Then a property
P of X is a (not necessarily PPT) machine that, after interacting with X and
another machine A, �nally outputs a bit b. For an adversary A (that may interact
with X and P), we de�ne A's advantage against P as

Advprop
P,X ,A := Pr[P outputs b = 1 after interacting with A and X ]− 1/2.

Now X is said to satisfy property P i� for all PPT adversaries A, we have that
Advprop

P,X ,A is negligible.

In terms of Reingold et al. [43], the corresponding primitive is P = (FP, RP),
where FP = {X}, and RP(X , A) i� Advprop

P,X ,A is non-negligible. Our de�nition
is also similar in spirit to �hard games� as used by Dodis et al. [20], but more
general.

We emphasize that P can only interact with X and A, but not with possible
additional oracles. (See Section 9 for further discussion of properties of oracles, in
particular their role in our proofs.) Intuitively, P acts as a challenger in the sense
of a cryptographic security experiment. That is, P tests whether adversary A
can �break� X in the intended way. We give an example, where �breaking� means
�breaking X 's one-way property�.

Example. If X is a random permutation of {0, 1}λ, then the following P models
X 's one-way property: P acts as a challenger that challenges A to invert a
randomly chosen X -image. Concretely, P initially chooses a random Y ∈ {0, 1}λ
and sends Y to A. Upon receiving a guess X ∈ {0, 1}λ from A, P checks if
X (X) = Y . If yes, then P terminates with output b = 1. If X (X) 6= Y , then P
tosses an unbiased coin b′ ∈ {0, 1} and terminates with output b = b′.



We stress that we only gain generality by demanding that Pr[P outputs 1]
is close to 1/2 (and not, say, negligible). In fact, this way indistinguishability-
based games (such as, e.g., the indistinguishability of ciphertexts of an ideal
encryption scheme X ) can be formalized very conveniently. On the other hand,
cryptographic games like the one-way game above can be formulated in this
framework as well, by letting the challenger output b = 1 with probability 1/2
when A fails.

On the role of property P. Our upcoming results state the impossibility of
(black-box) security reductions, from essentially any computational assumption
(i.e., property) P. The obvious question is: what if the assumption already is an
idealized commitment scheme secure under selective openings? The short answer
is: �then the security proof will not be black-box.� We give a detailed explanation
of what is going on in Section 9.

Stateless breaking oracles. In our impossibility results, we will describe a
computational world with a number of oracles. For instance, there will be a
�breaking oracle� B, such that B aids in breaking the SEM-SO-COM security of
any given commitment scheme, and in nothing more. To this end, B takes the role
of the adversary in the SEM-SO-COM experiment. Namely, B expects to receive
a number of commitments, then chooses a subset of these commitments, and
then expects openings of the commitments in this subset. This is an interactive
process which would usually require B to hold a state across invocations. How-
ever, stateful oracles are not very useful for establishing black-box separations,
so we will have to give a stateless formulation of B. Concretely, suppose that the
investigated commitment scheme is non-interactive. Then B answers determin-
istically upon queries and expects each query to be pre�xed with the history of
that query. For instance, B �nally expects to receive openings dec = (dec[i])i∈I

along with the corresponding previous commitments com = (com[i])i∈[n] and
previously selected set I. If I is not the set that B would have selected when
receiving com alone, then B ignores the query. This way, B is stateless (but ran-
domized, similarly to a random oracle). Furthermore, for non-interactive com-
mitment schemes, this makes sure that any machine interacting with B can open
commitments to B only in one way. Hence this formalization preserves the bind-
ing property of a commitment scheme, something which we will need in our
proofs.

We stress, however, that this method does not necessarily work for interac-
tive commitment schemes. Namely, any machine interacting with such a stateless
B can essentially �rewind� B during an interactive commitment phase, since B
formalizes a next-message function. Now if the commitment scheme is still bind-
ing if the receiver of the commitment can be rewound (e.g., this holds trivially
for non-interactive commitment schemes, and also for perfectly binding commit-
ment schemes), then our formalization of B preserves binding, and our upcoming
proof works. If, however, the commitment scheme loses its binding property if
the receiver can be rewound, then the following theorem cannot be applied.

We are now ready to state our result.



Theorem 3 (Black-box impossibility of non-interactive or perfectly
binding SEM-SO-COM, most general formulation). Let n = n(λ) = 2λ,
and let I = (In)n with In = {I ⊆ [n] | |I| = n/2} denote the set of all n/2-sized
subsets of [n].7 Let X be an oracle that satis�es property P. Then there is a set
of oracles relative to which X still satis�es property P, but there exists no non-
interactive or perfectly binding commitment scheme which is simulatable under
selective openings.

Proof strategy. We will use a random oracle RO that, for any given non-
interactive commitment scheme Com∗, induces a message distribution M∗ =
{(RO(Com∗, i,X∗))i∈[n]}X∗∈{0,1}λ/3 . Here, RO(Com∗) denotes the hash of the
description of Com∗, and X∗ is a short �seed� that ties the values RO(Com∗, i,
X∗) (with the same X∗ but di�erent i) together. Furthermore, we will specify
an oracle B that will help to break Com∗ with respect toM∗. Concretely, B �rst
expects n Com∗-commitments, and then requests openings of a random subset
of them. If all openings are valid, B returns a value X∗ consistent (according to
M∗) with all opened messages (if such an X∗ exists). A suitable SEM-SO-COM
adversary A can use B simply by relaying its challenge to obtain X∗ and hence
the whole message vector in its SEM-SO-COM experiment.

However, we will prove that B is useless to any simulator S that gets only a
message subset m[I]: if S uses B before requesting its own message subset m[I],
then B's answer will not be correlated with the SEM-SO-COM challenge message
vector m. (This also holds if S �rst sends commitments to B and immediately
afterwards requests m[I] from the SEM-SO-COM experiment; in that case, S
has to break the binding property of Com∗ to get an answer from B which is
correlated with m.) But if S uses B after obtaining m[I], then with very high
probability, S will have open at least one commitment to B whose message is not
contained in m[I]. By de�nition ofM∗, this opening of S will not be consistent
with the other values of m[I] (except with small probability), and B's answer
will again not be correlated with m.

Since S cannot e�ciently extract the seed X∗ from its message subset m[I]
alone (that would require a brute-force search over exponentially many values),
this shows that Com∗ is not SEM-SO-COM secure. Consequently, because Com∗

was arbitrary (only the message distributionM∗ is speci�c to Com∗), there exist
no SEM-SO-COM secure commitment schemes relative to RO and B. Finally,
it is easy to see that relative to RO and B, primitive X still satis�es property
P. Concretely, observe that B does not break any commitment (note that B's
answer depends only on the opened commitments), but only inverts a message
distribution (or, rather, RO). Hence, any adversary attacking property P of X
can use e�cient internal simulations of RO and B instead of the original oracles.
Since X satis�es property P with respect to adversaries without (additional)
oracle access, the claim follows.

7 We stress that the proofs of Theorem 3 and Theorem 5 hold literally also for the
�cut-and-choose� In = {I ⊆ [n] | ∀i ∈ [λ] : either 2i− 1 ∈ I or 2i ∈ I}.



The following corollary provides an instantiation of Theorem 3 for a number
of standard cryptographic primitives.

Corollary 1 (Black-box impossibility of non-interactive or perfectly
binding SEM-SO-COM). Assume n and I as in Theorem 3. Then no non-
interactive or perfectly binding commitment scheme can be proved simulatable
under selective openings via a ∀∃semi-black-box reduction to one or more of the
following primitives: one-way functions, one-way permutations, trapdoor one-
way permutations, IND-CCA secure public key encryption, homomorphic public
key encryption.

The corollary is a special case of Theorem 3. For instance, to show Corollary 1
for one-way permutations, one can use the example X and P from above: X is a
random permutation of {0, 1}λ, and P models the one-way experiment with X .
Clearly, X satis�es P, and so we can apply Corollary 1. This yields impossibility
of relativizing proofs for SEM-SO-COM security from one-way permutations. We
get impossibility for ∀∃semi-black-box reductions since one-way permutations al-
low embedding, cf. Simon [46], Reingold et al. [43]. The other cases are similar.
Note that while it is generally not easy to even give a candidate for a crypto-
graphic primitive in the standard model, it is easy to construct an idealized, say,
encryption scheme in oracle form.

We stress that Corollary 1 makes no assumptions about the nature of the
simulation (in the sense of De�nition 10). In particular, the simulator may freely
use, e.g., the code of the adversary; the only restriction is black-box access to
the underlying primitive. As discussed in the introduction, this is quite di�erent
from the result one gets upon combining Goldreich and Krawczyk [26] and Dwork
et al. [22]: essentially, combining [26, 22] shows impossibility of constructing S
in a black-box way from A (i.e., such that S only gets black-box access to A's
next-message function).

Generalizations. First, Corollary 1 constitutes merely an example instanti-
ation of the much more general Theorem 3. Second, the proof also holds for
a relaxation of SEM-SO-COM security considered by Dwork et al. [22, De�ni-
tion 7.3], where adversary and simulator approximate a function of the message
vector.

7.2 Possibility using non-black-box techniques

Non-black-box techniques vs. interaction. Theorem 3 shows that SEM-
SO-COM security cannot be achieved unless one uses non-black-box techniques
or interaction. In this section, we will investigate the power of non-black-box
techniques to achieve SEM-SO-COM security. As it turns out, for our purposes
a concurrently composable zero-knowledge argument system is a suitable non-
black-box tool.8 We stress that the use of this zero-knowledge argument makes

8 We require concurrent composability since the SEM-SO-COM de�nition considers
multiple, concurrent sessions of the commitment scheme.



our scheme necessarily interactive, and so actually circumvents Theorem 3 in
two ways: by non-black-box techniques and by interaction. However, from a
conceptual point of view, our scheme is �non-interactive up to the zero-knowledge
argument.� In particular, our proof does not use the fact that the zero-knowledge
argument is interactive. (That is, if we used a concurrently composable non-
interactive zero-knowledge argument in, say, the common reference string model,
our proof would still work.)

The scheme. For our non-black-box scheme, we need an interactive argument
system IP with perfect completeness and negligible soundness error, such that IP
is zero-knowledge under concurrent composition. We also need a perfectly bind-
ing non-interactive commitment scheme Comb. Both these ingredients can be
constructed from one-way permutations. To ease presentation, we only describe
a bit commitment scheme, which is easily extended (along with the proof) to the
multi-bit case. In a nutshell, the sender SZK commits twice (using Comb) to the
the same bit and proves in zero-knowledge (using IP) that the committed bits are
the same.9 In the opening phase, the sender opens one (randomly selected) com-
mitment. Note that this overall commitment scheme is binding, since IP ensures
that both commitments contain the same bits, and the underlying commitment
Comb is binding. For a SEM-SO-COM simulation, we generate inconsistent over-
all commitments which can later be opened arbitrarily by choosing which indi-
vidual Comb-commitment is opened. We can use the simulator of IP to generate
fake consistency proofs for these inconsistent commitments. (Since we consider
many concurrent commitment instances in our SEM-SO-COM experiment, we
require concurrent composability from IP for that.)

Scheme 12 (Non-black-box commitment scheme ZKCom). Let Comb =
(Sb,Rb) be a perfectly binding non-interactive commitment scheme. Let IP =
(P,V) be an interactive argument system for NP which enjoys perfect complete-
ness, has negligible soundness error, and which is zero-knowledge under concur-
rent composition. Let ZKCom = (SZK,RZK) for the following SZK and RZK:
� Commitment to bit b:

1. SZK prepares (comj , decj)←$ Sb(b) for j ∈ {0, 1} and sends (com0, com1)
to RZK.

2. SZK uses IP to prove to RZK that com0 and com1 commit to the same
bit.10

9 We note that a FOCS referee, reviewing an earlier version of this paper without
ZKCom, also suggested to employ zero-knowledge to prove consistency of a given
commitment. This suggestion was independent of the eprint version of this paper
which at that time already contained our scheme ZKCom. A Eurocrypt referee, re-
viewing a version of the paper with ZKCom, remarked that alternative constructions
of a SEM-SO-COM secure commitment scheme are possible. A more generic con-
struction could be along the lines of �commit using a perfectly binding commitment,
then prove consistency of commitment or opening using concurrent zero-knowledge.�

10 Formally, the corresponding language L for IP consists of statements x = (com0,
com1) and witnesses w = (dec0, dec1) such that R(x, w) i� Rb(com0, dec0) =
Rb(com1, dec1) ∈ {0, 1}.



� Opening:
1. SZK uniformly chooses j ∈ {0, 1} and sends (j, decj) to RZK.

The security of ZKCom. It is straightforward to prove that ZKCom is a hid-
ing and binding commitment scheme. (We stress, however, that Comb's perfect
binding property is needed to prove that ZKCom is binding; otherwise, the zero-
knowledge argument may become meaningless.) More interestingly, we can also
show that ZKCom is SEM-SO-COM secure:

Theorem 4 (Non-black-box possibility of SEM-SO-COM). Fix n and I
as in De�nition 10. Then ZKCom is simulatable under selective openings in the
sense of De�nition 10.

Proof outline. We start with the real SEM-SO-COM experiment with an ar-
bitrary adversary A. As a �rst step, we substitute the proofs generated during
the commitments by simulated proofs. Concretely, we hand to A proofs for the
consistency of the commitments that are generated by a suitable simulator S∗.
By the concurrent zero-knowledge property of IP, such an S∗ exists and yields
indistinguishable experiment outputs. Note that S∗ does not need witnesses to
generate valid-looking proofs, but instead uses (possibly rewinding or even non-
black-box) access to A. Hence, we can substitute all ZKCom-commitments with
inconsistent commitments of the form (com0, com1), where com0 and com1 are
Comb-commitments to di�erent bits. Such a ZKCom-commitment can later be
opened arbitrarily. By the computational hiding property of Comb (and since we
do not need witnesses to generate consistency proofs anymore), this step does
not change the output distribution of the experiment signi�cantly. But note that
now, the initial generation of the commitments does not need knowledge of the
actual messages. In fact, only the messages m[I] of the actually opened com-
mitments need to be known at opening time. Hence, at this point, the modi�ed
experiment is a valid simulator in the sense of the ideal SEM-SO-COM exper-
iment. Since the experiment output has only been changed negligibly by our
modi�cations, we have thus constructed a successful simulator in the sense of
De�nition 10.

Where is the non-black-box component? Interestingly, the used argument
system IP itself can well be black-box zero-knowledge (where black-box zero-
knowledge means that the simulator S∗ from De�nition 7 has only black-box
access to the next-message function of V ∗). The essential fact that allows us
to circumvent our negative result Theorem 3 is the way we employ IP. Namely,
ZKCom uses IP to prove a statement about two given commitments (com0, com1).
This proof (or, rather, argument) uses an explicit and non-black-box description
of the employed commitment scheme Comb. It is this argument that cannot even
be expressed when Comb makes use of, say, a one-way function given in oracle
form.

The role of the commitment randomness. Observe that the opening of a
ZKCom-commitment does not release all randomness used for constructing the



commitment. In fact, it is easy to see that our proof would not hold if SZK opened
both commitments com0 and com1 in the opening phase. Hence, ZKCom is not
suitable for settings in which an opening corresponds to a corruption of a party
(e.g., in a multi-party computation setting), and when one cannot assume no
trusted erasures.

Generalizations. First, ZKCom can be straightforwardly extended to a multi-
bit commitment scheme, e.g., by running several sessions of ZKCom in parallel.
Second, ZKCom is SEM-SO-COM secure also against adversaries with auxiliary
input z: our proof holds literally, where of course we also require security of
Comb against non-uniform adversaries.

8 Indistinguishability-based Commitment Security under

Selective Openings

Motivated by the impossibility result from the previous section, we now relax
De�nition 10 as follows:

De�nition 13 (IND-SO-COM). Let n = n(λ) > 0 be polynomially bounded,
and let I = (In)n be a family of sets such that each In is a set of subsets of [n]. A
commitment scheme Com = (S,R) is indistinguishable under selective openings
(short IND-SO-COM secure) i� for every PPT n-message distributionM, and
every PPT adversary A, we have that Advind-so

Com,M,A is negligible. Here

Advind-so
Com,M,A(λ) := Pr

[
Expind-so-real

Com,M,A = 1
]
(λ)− Pr

[
Expind-so-ideal

Com,M,A = 1
]
(λ),

where the experiments Expind-so-real
Com,M,A and Expind-so-ideal

Com,M,A are de�ned as follows:

Experiment Expind-so-real
Com,M,A(λ)

m = (m[i])i∈[n]←$M
I ←$ 〈A(recv), (Si(com,m[i]))i∈[n]〉
outA←$ 〈A(open), (Si(open))i∈I〉

return A(guess,m)

Experiment Expind-so-ideal
Com,M,A (λ)

m = (m[i])i∈[n]←$M
I ←$ 〈A(recv), (Si(com,m[i]))i∈[n]〉
outA←$ 〈A(open), (Si(open))i∈I〉
m′←$M |m[I]
return A(guess,m′)

Again, we require from A that I ∈ Iλ, and we denote by 〈A, (Si)i〉 the output of
A after interacting concurrently with instances Si of S. Furthermore, M | m[I]
denotes the message distributionM conditioned on the values of m[I].

On the conditioned distribution M | m[I]. We stress that, depending on
M, it may be computationally hard to sample m′←$M | m[I], even if (the
unconditioned) M is PPT. This might seem strange at �rst and inconvenient
when applying the de�nition in some larger reduction proof. However, there
simply seems to be no other way to capture indistinguishability, since the set
of opened commitments depends on the commitments themselves. In particular,
in general we cannot predict which commitments the adversary wants opened,



and then, say, substitute the not-to-be-opened commitments with random com-
mitments. What we chose to do instead is to give the adversary either the full
message vector, or an independent message vector which �could be� the full mes-
sage vector, given the opened commitments. We believe that this is the canonical
way to capture secrecy of the unopened commitments under selective openings.

The relation between SEM-SO-COM and IND-SO-COM security. Un-
fortunately, we (currently) cannot prove that SEM-SO-COM security implies
IND-SO-COM security (although this seems plausible, since usually simulation-
based de�nitions imply their indistinguishability-based counterparts). Techni-
cally, the reason why we are unable to prove an implication is the conditioned
distributionM | m[I] in the ideal IND-SO-COM experiment, which cannot be
sampled from during an (e�cient) reduction.

A relaxation. Alternatively, we could let the adversary predict a predicate
π of the whole message vector, and consider him successful if Pr[b = π(m)]
and Pr[b = π(m′)] for the alternative message vector m′←$M | m[I] di�er
non-negligibly. We stress that our upcoming negative result also applies to this
relaxed notion.

8.1 Impossibility from black-box reductions

Theorem 5 (Black-box impossibility of perfectly binding IND-SO-
COM, most general formulation). Let n = n(λ) = 2λ, and let I = (In)n

with In = {I ⊆ [n] | |I| = n/2} denote the set of all n/2-sized subsets of [n]. Let
X be an oracle that satis�es a property P even in presence of an EXPSPACE-
oracle. We also assume that X is computable in EXPSPACE.11 Then, there
exists a set of oracles relative to which X still satis�es P, but no perfectly binding
commitment scheme is indistinguishable under selective openings.

Proof outline. Similarly to Theorem 3, we specify an oracle RO which induces
a message distribution M∗. This time, however, RO maps En/2+1-elements to
message vectors in En, where E = {0, 1}λ is the domain of each individual
message. Hence, n/2 messages usually do not �x the whole message vector, but
more messages do. Now �x any perfectly binding commitment scheme Com∗. We
de�ne a breaking oracle B that, like the B from Theorem 3, asks for n Com∗-
commitments and subsequent openings of a random subset I ∈ In of these
commitments. If all openings are valid, B extracts the whole message vector
in the commitments (note that this is possible since Com∗ is perfectly binding),
and returns a �close� (with respect to Hamming distance) element in the message
distributionM∗ if there is a su�ciently close one.

It is easy to see that an adversary can use B to obtain the whole message
vector m in the real IND-SO-COM experiment. But a message vector freshly
sampled from M∗, conditioned on the opened messages m[I], will most likely

11 Examples of such X are random oracles or ideal ciphers. It will become clearer how
we use the EXPSPACE requirement in the proof.



be di�erent from m. Hence, our adversary easily distinguishes the real from the
ideal IND-SO-COM experiment.

The main part of the proof shows that oracle B is useless to an adversary
attacking X 's property P. Assume �rst that the commitment scheme Com with
respect to which an adversary A on X queries B is perfectly binding. In that
case, a somewhat technical but straightforward combinatorial argument shows
that A's successfully opened messages m[I], together with A's queries to RO,
determine B's answer (except with small probability). Hence A can use internal
simulations of B and RO instead of the original oracles, and hence property
P of X is not damaged by the presence of B. To ensure that B is only useful
for perfectly binding commitment schemes Com, we let B test whether Com is
perfectly binding. Since we demand that Com is perfectly binding, this test is
independent of the random coins used by X . Indeed, B needs to check that
for all syntactically possible commitments and decommitments, and all possible
random coins used by X , the opened message is unique. Hence, by assumption
about X , this test can also be performed by A using an EXPSPACE-oracle, and
the above proof idea applies.

On the requirement on X . We stress that the requirement in Theorem 5 on
X is a rather mild one. For instance, random oracles are one-way even against
computationally unbounded adversaries, as long as the adversary makes only a
polynomial number of oracle queries. Hence, an EXPSPACE-oracle (which itself
does not perform oracle queries) is not helpful in breaking a random oracle. So
similarly to Corollary 1, we get for concrete choices of X and P:

Corollary 2 (Black-box impossibility of perfectly binding IND-SO-
COM). Let n and I as in Theorem 5. Then no perfectly binding commitment
scheme can be proved indistinguishable under selective openings via a ∀∃semi-
black-box reduction to one or more of the following primitives: one-way functions,
one-way permutations, trapdoor one-way permutations, IND-CCA secure public
key encryption, homomorphic public key encryption.

Generalizations. Again, Corollary 2 constitutes merely an example instantia-
tion of the much more general Theorem 5. We stress, however, that the proof for
Theorem 5 does not apply to �almost-perfectly binding� commitment schemes
such as the one from Naor [35]. (For instance, for such schemes, B's check that
the supplied commitment scheme is binding might tell something about X .)

8.2 Statistically hiding schemes are secure

Fortunately, things look di�erent for statistically hiding commitment schemes:

Theorem 6 (Statistically hiding schemes are IND-SO-COM secure).
Fix arbitrary n and I as in De�nition 13, and let Com = (S,R) be a statisti-
cally hiding commitment scheme. Then Com is indistinguishable under selective
openings in the sense of De�nition 13.



Proof outline. Intuitively, the claim holds since an adversary A's views in the
real, resp. ideal IND-SO-COM experiment are statistically close (and hence so
must be A's outputs). However, the fact that A's views are indeed statistically
close is less obvious than it may seem at �rst glance. Our proof proceeds in
games and starts with the real IND-SO-COM experiment with A. As a �rst
modi�cation, we change the opening phase of the experiment, so that the opening
of each selected commitment is produced solely from the commitment itself and
the �target message� m[i] to which it should be opened (but not from opening
information previously generated alongside the commitment). Note that this
change is merely conceptual and does not alter A's view at all. This makes
the opening phase ine�cient, but since we are dealing with statistically hiding
commitment schemes, we need not worry about that. Indeed, by the statistical
hiding property, we can now substitute all commitments (in a hybrid argument)
with commitments to a �xed value (say, 0λ) without a�ecting the experiment
output. We can reduce this step to the hiding property of the commitment
scheme since the experiment only needs commitments as input, and produces all
openings on its own. At this point, all commitments that A gets are independent
of m, and so the whole view of A is independent of the unopened values m[[n]\I].
Hence A's output is (almost) independent of m[[n] \ I] in the real IND-SO-
COM experiment and, with similar reasoning, also in the ideal IND-SO-COM
experiment. This shows the claim.

9 On the role of property P

The intuitive contradiction. The formulations of Theorem 3 and Theo-
rem 5 seem intuitively much too general: essentially they claim impossibility of
black-box proofs from any computational assumption which is formulated as
a property P of an oracle X . Why can't we choose X to be an ideally secure
commitment scheme, and P a property that models precisely what we want to
achieve, e.g., De�nition 13 (i.e., IND-SO-COM security)? After all, De�nition 13
can be rephrased as a property P by letting A choose a message distribution
M and send this distribution (as a description of a PPT algorithm M) to P.
Then, P could perform the Expind-so-real

Com,M,A or the Expind-so-ideal
Com,M,A experiment with

A, depending on an internal coin toss (the output of P will then depend on A's
output and on that coin toss). This P models De�nition 13, in the sense that

Advind-so
Com,M,A = 2Advprop

P,X ,A.

Also, using a truly random permutation as a basis, it is natural to assume that we
can construct an ideal (i.e., as an oracle) perfectly binding commitment scheme
X that satis�es P. (Note that although X is perfectly binding, A's view may still
be almost statistically independent of the unopened messages, since the scheme
X is given in oracle form.)

Hence, if the assumption essentially is already IND-SO-COM security, we can
certainly achieve IND-SO-COM security (in particular, using a trivial reduction),
and this seems to contradict Theorem 5. So where is the problem?



Resolving the situation. The problem in the above argument is that P-
security (our assumption) implies IND-SO-COM security (our goal) in a fun-
damentally non-black-box way. Namely, the proof converts an IND-SO-COM
adversary A and a message distributionM into a P-adversary A′ that sends a
description of M to P. This very step makes use of an explicit representation
of the message distribution M, and this is what makes the whole proof non-
black-box. In other words, this way of achieving IND-SO-COM security cannot
be black-box, and there is no contradiction to our results.

Viewed from a di�erent angle, the essence of our impossibility proofs is: build
a very speci�c message distribution, based on oracles (RO, resp. C), such that
another �breaking oracle� B �breaks� this message distribution if and only if the
adversary can prove that he can open commitments. This step relies on the fact
that we can specify message distributions which depend on oracles. Relative to
such oracles, property P still holds (as we prove), but may not re�ect IND-SO-
COM security anymore. Namely, since P itself cannot access additional oracles12,
P is also not able to sample a message space that depends on additional (i.e.,
on top of X ) oracles. So in our reduction, although A itself can, both in the
IND-SO-COM experiment and when interacting with P, access all oracles, it
will not be able to communicate a message distribution M that depends on
additional oracles (on top of X ) to P. On the other hand, any PPT algorithm
M, as formalized in De�nition 13, can access all available oracles.

So for the above modeling of IND-SO-COM as a property P in the sense of
De�nition 11, our impossibility results still hold, but become meaningless (since
basically using property P makes the proof non-black-box). In a certain sense,
this comes from the fact that the modeling of IND-SO-COM as a property P is
inherently non-black-box. A similar argument holds for the message distribution
in the SEM-SO-COM experiment; there, however, we face the additional problem
of modeling the existence of a simulator in a property.

What computational assumptions can be formalized as properties in
a �black-box� way? Fortunately, most standard computational assumptions
can be modeled in a black-box way as a property P. Besides the mentioned
one-way property (and its variants), in particular, e.g., the IND-CCA security
game for encryption schemes can be modeled. Observe that in this game, we
can let the IND-CCA adversary himself sample challenge messages m0, m1 for
the IND-CCA experiment from his favorite distribution; no PPT algorithm has
to be transported to the security game. In fact, the only properties which do
not allow for black-box proofs are those that involve an explicit transmission
of code (i.e., a description of a circuit or a Turing machine). In that sense, the
formulation of Theorem 3 and Theorem 5 is very general and useful.

(Non-)programmable random oracles. We stress that the black-box re-
quirement for random oracles (when used in the role of X ) corresponds to
�non-programmable random oracles� (as used by, e.g., Bellare and Rogaway [5])

12 by De�nition 11, P must be speci�ed independently of additional oracles; if we did
allow P to access additional oracles, this would break our impossibility proofs



as opposed to �programmable random oracles� (as used by, e.g., Nielsen [38]).
Roughly, a proof in the programmable random oracle model translates an attack
on a cryptographic scheme into an attack on a simulated random oracle (that
is, an oracle completely under control of simulator). Naturally, such a reduction
is not black-box. And indeed, with programmable random oracles, even non-
interactive SEM-SO-COM secure commitment schemes can be built relatively
painlessly. As an example, [38] proves a simple encryption scheme (which can
be interpreted as a non-interactive commitment scheme) secure under selective
openings.
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