
New Constructions for UC Secure Computation
using Tamper-proof Hardware

Nishanth Chandran?, Vipul Goyal??, and Amit Sahai? ? ?

Department of Computer Science, UCLA
{vipul, ryan, rafail, sahai}@cs.ucla.edu

Abstract. The Universal Composability framework was introduced by
Canetti to study the security of protocols which are concurrently ex-
ecuted with other protocols in a network environment. Unfortunately
it was shown that in the so called plain model, a large class of func-
tionalities cannot be securely realized. These severe impossibility results
motivated the study of other models involving some sort of setup assump-
tions, where general positive results can be obtained. Until recently, all
the setup assumptions which were proposed required some trusted third
party (or parties).
Katz recently proposed using a physical setup to avoid such trusted setup
assumptions. In his model, the physical setup phase includes the parties
exchanging tamper proof hardware tokens implementing some function-
ality. The tamper proof hardware is modeled so as to assume that the
receiver of the token can do nothing more than observe its input/output
characteristics. It is further assumed that the sender knows the program
code of the hardware token which it distributed. Based on the DDH
assumption, Katz gave general positive results for universally compos-
able multi-party computation tolerating any number of dishonest parties
making this model quite attractive.
In this paper, we present new constructions for UC secure computation
using tamper proof hardware (in a stronger model). Our results repre-
sent an improvement over the results of Katz in several directions using
substantially different techniques. Interestingly, our security proofs do
not rely on being able to rewind the hardware tokens created by ma-
licious parties. This means that we are able to relax the assumptions
that the parties know the code of the hardware token which they dis-
tributed. This allows us to model real life attacks where, for example,
a party may simply pass on the token obtained from one party to the
other without actually knowing its functionality. Furthermore, our con-
struction models the interaction with the tamper-resistant hardware as
a simple request-reply protocol. Thus, we show that the hardware tokens
used in our construction can be resettable. In fact, it suffices to use token

? Research supported in part by grants listed below.
?? Research supported in part by grants listed below.

? ? ? This research was supported in part by NSF ITR and Cybertrust programs (includ-
ing grants 0627781, 0456717, 0716389, and 0205594), a subgrant from SRI as part of
the Army Cyber-TA program, an equipment grant from Intel, an Okawa Research
Award, and an Alfred P. Sloan Foundation Research Fellowship.

which are completely stateless (and thus cannot execute a multi-round
protocol). Our protocol is also based on general assumptions (namely
enhanced trapdoor permutations).

1 Introduction

The universal composability (UC) framework of security, introduced by Canetti
[Can01], provides a model for security when protocols are executed multiple
times in a network where other protocols may also be simultaneously executed.
Canetti showed that any polynomial time computable multi-party functional-
ity can be realized in this setting when a strict majority of the players are
honest. Canetti and Fischlin [CF01] then showed that without an honest ma-
jority of players, there exists functionalities that cannot be securely realized in
this framework. Canetti, Kushilevitz and Lindell [CKL06] later characterized the
two-party functionalities that cannot be securely realized in the UC model ruling
out almost all non-trivial functions. These impossibility results are in a model
without any setup assumptions (referred to as the “plain” model). These results
can be bypassed if one assumes a setup in the network. Canetti and Fischilin
suggest the use of common reference string (CRS) and this turns out to be a
sufficient condition for UC-secure multi-party computation for any polynomial
time functionality, for any number of dishonest parties [CLOS02]. Some other
“setup” assumptions suggested have been trusted “public-key registration ser-
vices” [BCNP04,CDPW07a], government issued signature cards [HMQU05] and
so on.

UC Secure Computation based on Tamper Proof Hardware. Recently, Katz [Kat07]
introduced the model of tamper resistant hardware as a setup assumption for
universally composable multi-party computation. An important attraction of
this model is that it eliminates the need to trust a party, and instead relies on a
physical assumption. In this model, a party P creates a hardware token imple-
menting a functionality and sends this token to party P ′. Given this token, P ′

can do nothing more than observe the input/output characteristics of the func-
tionality. Based on the DDH assumption, Katz gave general feasibility results
for universally composable multi-party computation tolerating any number of
dishonest parties.

Our Contributions. In this paper, we improve the results of Katz in several
directions using completely different techniques. Our results can be summarized
as follows:

– Knowing the Code: A central assumption made by Katz [Kat07] is that all
parties (including the malicious ones) know the program code of the hard-
ware token which they distributed. This assumption is precisely the source
of extra power which the simulator gets in the security proofs [Kat07]. The
simulator gets the power of rewinding the hardware token which is vital for

the security proofs to go through. However we argue that this assumption
might be undesirable in practice. For example, it does not capture real life
adversaries who may simply pass on hardware tokens obtained from one
party to another. As noted by Katz [Kat07], such attacks may potentially
be prevented by making the creator of a token easily identifiable (e.g., the
token could output the identity of the creator on certain fixed input). How-
ever, we note that a non-sophisticated fix of this type might to susceptible
to attacks where a malicious party builds a wrapper around the received to-
ken to create a new token and passes it on to other parties. Such a wrapper
would use the token inside it in a black-box way while trying to answer the
user queries. Secondly, one can imagine more sophisticated attacks where
tokens of one type received as part of one protocols may be used as tokens of
some other type in other protocols. Thus, while it may be possible to design
constructions based on this assumption, it seems like significant additional
analysis might be needed to show that this assumption holds.
We relax this assumption in this work. In other words, we make no as-
sumptions on how malicious parties create the hardware token which they
distribute.

– Resettability of the token: The security of the construction in [Kat07] also
relies on the ability of the tamper-resistant hardware to maintain state
(even when, for example, the power supply is cut off)1. In particular, the
parties need to execute a two-round interactive protocol with the tamper-
resistant hardware. It is explicitly assumed that the hardware cannot be
reset [CGGM00]. In contrast, our construction models the interaction with
the tamper-resistant hardware as a simple one round request-reply protocol.
Thus, we are able to show that the hardware tokens used in our construc-
tion can be resettable. In fact, it suffices to use token which are completely
stateless (and thus cannot even execute a multi-round protocol). We argue
that relaxing this assumption about the capability of the tamper resistant
tokens is desirable and may bring down their cost considerably.

– Cryptographic Assumptions: An open problem left in [Kat07] was to construct
a protocol in this model which is based on general assumptions. We settle this
problem by presenting a construction which is based on enhanced trapdoor
permutations previously used in CLOS [CLOS02] and other works.

Our communication model for the token also has an interesting technical
difference from the one in [Kat07]. In [Kat07], it is assumed that once P creates
a hardware token and hands it over to P ′, then P cannot send any messages to the
token (but can receives messages from it). We require the opposite assumption;
once the token has been handed to P ′, it cannot send any messages to P (but can
potentially receive messages from it). It is easy to see that if the communication
1 As Katz [Kat07] noted, this assumption can be relaxed if the token has an inbuilt

source of randomness and thus messages sent by the token in the protocol are differ-
ent in different execution (even if the other party is sending the same messages). Note
that a true randomness source is needed to relax this assumption and cryptographic
techniques such as pseudo random functions do not suffice.

is allowed in both directions, then this model degenerates to the plain model
which is the subject of severe impossibility results [CF01,CKL06].

Our Techniques. Recall that all the participating parties exchange tamper proof
hardware tokens with each other before the protocols starts. To execute the
protocol, the parties will presumably make queries to the tokens received from
other parties. We observe that the simulator (in the proof of security) can be
given access to all the queries which any dishonest party makes to a token de-
signed by an honest party. Our first idea to exploit this extra power (and make
the simulator non-rewinding) is to extract the inputs of the dishonest parties as
follows. If party P1 wants to commit to its input to party P2, it will first have
to feed the opening to the commitment to the token provided by P2 which will
output a signature on the commitment (certifying that it indeed saw the open-
ing). One may observe that this is very close in spirit to how proofs are done in
the Random Oracle model. One problem which we face is that P1 cannot give a
signature obtained from the token directly to P2 (since these signatures can po-
tentially help establish a covert communication channel between the token and
P2). Thus, the party P1 instead gives a commitment to the signature obtained
(and will later prove that this commitment is a commitment to valid signature).

While the above basic idea is simple and elegant, significant more work is
required to turn it into a construction that achieves our main goals (in a way
that the construction relies only on general assumptions). The first issue we
face is: how to prove that the commitment given is a commitment of a valid
signature? While executing a UC commitment scheme, P1 might be interacting
with multiple parties at the same time. We use concurrent zero-knowledge (ZK)
proofs [DNS98,PRS02] for this purpose. Although concurrent ZK proofs are not
directly usable as building blocks in larger protocols (since they are secure only
under concurrent self composition rather than general composition), we show
that they can be used as a building block in our case by presenting a direct
analysis of the resulting scheme to prove its security (under concurrent attacks).

The most difficult issue which we face is: how to prove that a dishonest P1

cannot commit to a valid signature without actually making a query to P2’s
token. This is because if P1 commits to a valid signature (and even gives a
proof of knowledge of the commitment) without making a query to the token,
the UC-simulator cannot rewind P1 to extract this signature (and contradict
security of the underlying signature scheme). We get around this issue by showing
that the analysis of this case can be separated from the UC-Simulator. In a
separate extraction abort lemma proven “outside the UC framework”, we show
that if this case happens, the Environment has the capability to forge signatures
(in other words, we rewind the environment and extract a forged signature).
Thus, we reduce the failure probability of our simulator to the probability with
which the signatures can be forged. Similarly, we have a decommitment abort
lemma proven outside the UC framework where we reduce the success probability
of an adversary opening to a different string than the one committed to (in
a UC commitment scheme we construct) to the soundness of an underlying
(sequentially secure) zero knowledge proof. Other problems that we deal with are:

the issue of selective abort by the hardware token (where the token refuses to give
a valid signature for some particular inputs only) and the issue of equivocating
the commitment while keeping the UC-Simulator straightline.

We are able to incorporate all the above ideas into a construction that
achieves the multiple commitment functionality in the UC framework. We re-
mark that in the end, the analysis of our construction is admittedly somewhat
complex. While one can consider alternative approaches to how a device would
extract, several problems like the issue of selective abort (which was simpler to
deal with in our approach) again seem to imply that the final solution (which
would take care of all these problems) will be no simpler.

Concurrent Independent Work. Independent of our work, Damgard et al [DNW07]
proposed a new construction for UC secure computation in the tamper proof
hardware model. The main thrust of their work seems to obtain a scheme where
the hardware tokens only need to be partially isolated. In other words, there
exists a pre-defined threshold on the number of bits that the token can exchange
with the outside world (potentially in both directions). Their construction is also
based on general assumptions (albeit their assumptions are still stronger than
ours).

Damgard et al [DNW07] however do not solve the main problems addressed
by this work. In particular, their work is in the same rewinding based simula-
tor paradigm as Katz [Kat07] and thus requires the same assumption that the
sender is aware of the program code of the hardware token which it distributed.
Furthermore, the security of their construction relies upon the assumption that
the hardware token is able to keep state (i.e., is not resettable).

2 Our Model

Our model is a modification of the model in [Kat07]. The central modifications we
need are to allow for adversaries who may supply hardware tokens to other par-
ties without knowing the code of the functionality implemented by the hardware
token. To model adversaries who give out tokens without actually “knowing” the
code of the functionality of the tokens, we consider an ideal functionality FAdv

that models the adversarial procedure used to create these tokens. The security
of our protocol will be defined over all probabilistic polynomial time (PPT) ad-
versaries FAdv. The ideal functionality Fwrap implements the tamper-resistant
hardware as in [Kat07].

We first formally define the Fwrap functionality which is a modification of
the Fwrap functionality of [Kat07]. This functionality formalizes the intuition
that an honest user can create a hardware token TF implementing any polyno-
mial time functionality, but an adversary given the token TF can do no more
than observe its input/output characteristics. Fwrap models the hardware token
(sent by Pi to Pj) encapsulating a functionality Mij . The only changes from
[Kat07] we make is that Mij is now an Oracle machine (instead of a 2-round
interactive Turing machine) and does not require any externally supplied ran-
domness. Fwrap models the following sequence of events: (1) a party Pi (also

known as creator) takes software implementing a particular functionality Mij

and seals this software into a tamper-resistant hardware token, (2) The creator
then gives this token to another party Pj (also known as the receiver) who can
use the hardware token as a black-box implementing Mij . Figure 1 shows the
formal description of Fwrap based on an algorithm Mij (modified from [Kat07]).
Note that Mij could make black box calls to other tokens implementing Mxy (to
model the tokens created by an adversarial party) in a way that the circularity
problems are avoided.

Fwrap is parameterized by a polynomial p and an implicit security parameter k.
There are 2 main procedures:

Creation. Upon receiving (create, sid, Pi, Pj , Mij) from Pi or from FAdv,
where Pj is another user in the system and Mij is an Oracle machine, do:

1. Send (create, sid, Pi, Pj) to Pj .
2. If there is no tuple of the form (Pi, Pj , ?) stored, then store (Pi, Pj , Mij).

Execution. Upon receiving (run, sid, Pi, msg) from Pj , find the unique stored
tuple (Pi, Pj , Mij) (if no such tuple exists, then do nothing). Run Mij with input
msg for at most p(k) steps and let out be the response (set out = ⊥ if Mij does
not respond in the allotted time). Send (sid, Pi, out) to Pj .

Fig. 1. The Fwrap functionality

We now formally describe the Ideal/Real world for multi-party computation
in the tamper-proof hardware model. Let there be n parties P = {P1, P2,, Pn}
(Pi holding input xi) who wish to compute a function f(x1, x2, · · · , xn). Let the
adversarial parties be denoted by M ⊂ P and the honest parties be denoted
by H = P −M. We consider only static adversaries. As noted before, to model
adversaries who give out tokens without actually “knowing” the code of the
functionality of the tokens, we consider an ideal functionality FAdv that models
the adversarial procedure used to create these tokens. F is the ideal functionality
that computes the function f that the parties P = {P1, P2,, Pn} wish to
compute, while Fwrap (as discussed earlier) models the tamper-resistant device.

Real World. Our real world is the (FAdv,Fwrap)-hybrid world. In the real
world, when a party Pi begins a protocol with another party Pj it exchanges a
hardware token with Pj . We note that this exchange of token need be done only
once in the protocol. This is modeled as follows. If Pi is malicious, then Pi sends
arbitrary messages to FAdv functionality (FAdv could use this information for
the code creation of the adversarial token to be sent to Pj). At the end of this
interaction, FAdv sends a program code (corresponding to the token that is to
be given to Pj) to Fwrap. This program code can make black box calls to tokens
of other (possibly honest) parties. If Pi is honest, then Pi sends a program code

directly to Fwrap that will serve as the code for the hardware token to be sent
to Pj . During protocol execution, all queries made to tamper-resistant hardware
tokens are made to the Fwrap functionality. The parties execute the protocol
and compute the function f(x1, x2, · · · , xn).

Ideal World. The ideal world is the (FAdv,Fwrap,F)-hybrid world. The sim-
ulator S simulates the view of the adversarial parties. As in the real world, when
a party Pi begins a protocol with party Pj it has to specify the code for the
hardware token to be sent to Pj . If Pi is adversarial, then Pi initially sends arbi-
trary messages to FAdv. FAdv sends a program code (corresponding to the token
that is to be given to Pj) to Fwrap. This program code can make black box calls
to tokens of other parties. If Pi is honest, then the simulator S generates the
program code for the token to be sent to Pj (S does this honestly according to
the protocol specifications for creating the program code). S sends this program
code to Fwrap. When an adversarial party queries a token created by another
adversarial party, the simulator S forwards the query to Fwrap and then upon
receiving the response from Fwrap, forwards it to the querying party. When an
adversarial party queries a token created by an honest party, the simulator S
replies with the response to the querying party on its own. Honest parties send
their inputs to the trusted functionality F . Simulator extracts inputs from ad-
versarial parties and sends them to F . The ideal functionality F returns the
output to all honest parties and to the simulator S who then uses it to complete
the simulation for the malicious parties.

Remark. To be able to model an adversary which takes honest party tokens
received in one protocols and uses them as subroutines for creating its tokens in
some other protocol, we consider the GUC framework introduced by Canetti et
al [CDPW07b]. The proofs in this paper can be modified so as to prove that our
protocol for a functionality F Fwrap−EUC-realizes F . This ensures that Fwrap

has tokens created by honest parties even as part of other protocols.

3 Preliminaries

As in [Kat07], we will show how to securely realize the multiple commitment
functionality Fmcom in the (FAdv,Fwrap)− hybrid model for static adversaries.
This will imply the feasibility of UC-secure multi-party computation for any
well formed functionality ([CF01,CLOS02]). The primitives we need for the con-
struction of the commitment functionality are non-interactive perfectly bind-
ing commitments, a secure signature scheme, pseudorandom function and con-
current zero knowledge proofs (that are all implied by one-way permutations
[GL89,NY89,HILL99,Gol01,Gol04,DNS98,PRS02]).

Non-interactive perfectly binding bit commitment. We denote the non-
interactive perfectly binding commitment to a string or bit a (from [GL89]) by
Com(a). Open(Com(a)) denotes the opening to the commitment Com(a) (which
includes a as well as the randomness used to create Com(a)).

Secure signature scheme. We use a secure signature scheme (security as
defined in [GMR88]) with public key secret key pair (PK,SK) that can be con-
structed from one-way permutations ([NY89]). By σPK(m) we denote a signature
on message m under the public key PK. We denote the verification algorithm by
Verify(PK, m, σ) that takes as input a public key PK, message m and purported
signature σ on message m. It returns 1 if and only if σ is a valid signature of m
under PK.

Concurrent Zero knowledge. Informally, concurrent zero knowledge proofs
(introduced by [DNS98]) are zero-knowledge proofs that remain zero knowledge
even when executed in the concurrent setting. In the concurrent setting, several
protocols may be executed at the same time, with many verifiers talking simulta-
neously with one or more provers. Adversarial verifiers may interleave executions
of different protocols and may base their messages on partial executions of other
protocols. We shall use the concurrent zero knowledge protocol of Prabhakaran,
Rosen and Sahai [PRS02]. For further details we refer the reader to [PRS02].

4 The Construction

We show how to securely realize the multiple commitment functionality Fmcom

in the (FAdv,Fwrap)− hybrid model for all PPT static adversaries and for all
PPT FAdv. We will first give a construction that realizes the single commitment
functionality in the (FAdv,Fwrap)− hybrid model for static adversaries and then
note that this can be extended to realize Fmcom. P1 wishes to commit to a string
a (of length n bits) to P2.

Token Exchange phase. P2 generates a public-key/secret-key pair (PK, SK)
for a secure signature scheme, a seed s for a pseudorandom function Fs(·) and
sends a token to P1 encapsulating the following functionality M21:

– Wait for message I = (Com(b),Open(Com(b))). Check that the opening is a
valid opening to the commitment. If so, generate signature σ = σPK(Com(b))
and output the signature. The randomness used to create these signatures
is obtained from Fs(I).

We note that the token exchange phase can take place any time before P2

begins a protocol with P1 and needs to take place only once.

Commitment phase. We denote the protocol in which P1 commits to a string
a (of length n bits) to P2 by UC-Com(P1, P2, a). The parties perform the follow-
ing steps:

1. For every commitment to a string a of length n, P1 generates n commitments
to 0 and n commitments to 1. P1 interacts with the token sent to it by P2

and obtains signatures on these 2n commitments. In order to commit to the

ith bit of a string a (denoted by ai), P1 selects a commitment to either 0 or
1 whose signature it had obtained from the device sent by P2 (depending on
what ai is).

- We note that P1 cannot give the hardware token commitments to the bits
of a alone and obtain the signatures on these commitments. Doing this
would allow P2’s hardware token to perform a selective failure attack. In
other words, P2’s hardware could be programmed to respond and output
signatures only if some condition is satisfied by the input string a (e.g.,
all its bits are 0). Thus if P1 still continues with the protocol, P2 gains
some non-trivial information about a. Hence, P1 obtains signatures on
n commitments to 0 and n commitments to 1 and then selects commit-
ments (and their signatures) according to the string a. This makes sure
that the interaction of P1 with the hardware token is independent of the
actual input a.

Let Bi = Com(ai) and let the signature obtained by P1 from the device on
this commitment be σi = σPK(Bi). P1 now computes a commitment to σi

for all 1 ≤ i ≤ n denoted by Ci = Com(σi).
Let Comi = (Bi, Ci). Now A = COM(a) = {Com1, Com2,, Comn} (in
other words, A is the collection of commitments to the bits of a and com-
mitments to the obtained signatures on these commitments). P1 sends A to
P2.

- Note here that P1 does not send the obtained signatures directly to P2,
but instead sends a commitment to these signatures. This is because the
signatures could have been maliciously generated by the hardware token
created by P2 to leak some information about a.

2. Let w be a witness to the NP statement that for all i, Ci is a commitment
to a valid signature of Bi under P2’s public key PK and that Bi is a valid
commitment to a bit. More formally, w is a witness to the following NP
statement: “L: For all i,
– There exists a valid opening of Bi to a bit ai under the commitment

scheme Com(·)
– There exists a valid opening of Ci to a string σi under the commitment

scheme Com(·) such that Verify(PK, Bi, σi) = 1.”
P1 picks l(k) random pairs {(w1

0, w
1
1), (w

2
0, w

2
1), · · · , (wl(k)

0 , w
l(k)
1)} (l(k) is a

super-logarithmic function in security parameter k) such that for all 1 ≤ t ≤
l(k), wt

0⊕wt
1 = w. P1 sends commitments to these l(k) pairs. In other words,

P1 sends Com(wt
0), Com(wt

1) for all t.
3. P2 picks l(k) random bits {q1, q2, · · · , ql(k)} and sends it to P1.
4. P1 opens the commitment Com(wt

qt
) for all t by sending Open(Com(wt

qt
)).

5. P1 now gives a concurrent zero-knowledge proof ([PRS02]) that w is a witness
to statement L being true and that wt

0 ⊕ wt
1 = w for all t.

- We use the specific concurrent zero knowledge protocol of [PRS02] as we
require indistinguishability of simulated proof from real proof when the
NP statement being proven is not fixed, but publicly predictable given
the history of the protocol (as noted in [BPS06]).

Decommitment phase. The parties perform the following steps:

1. P1 sends P2 the string that was initially committed to. In particular, P1

sends a to P2.
- Note that P1 does not send the actual opening to the commitment. P1

will later prove in zero knowledge that a was the string committed to in
the commitment phase. This is to allow equivocation of the commitment
by the simulator during protocol simulation.

2. We denote the following steps by the protocol HardwareZK(P1, P2, a):
(a) P2 picks a string R uniformly at random from {0, 1}p(k) and executes

the commitment protocol UC-Com(P2, P1, R).
- P1 will prove in zero knowledge that a was the string committed to

in the commitment phase. Since we require straight-line simulation,
the simulator would have to know in advance the challenge queries
made by P2 in this zero knowledge proof. Hence before this zero
knowledge proof is given, P2 commits to his randomness R using the
UC-secure commitment protocol.

- We note that the decommitment to R need not be equivocable by
the UC-simulator and hence we avoid having to use the UC-secure
decommitment protocol itself, which would have lead to circularity!

(b) P1 gives a standard zero knowledge proof that a is the string that was
committed to in the commitment phase of the protocol. The random-
ness used by P2 in this zero knowledge proof is R and along with every
message sent in the zero knowledge protocol, P2 proves using a standard
zero knowledge proof that the message uses randomness according to the
string R.
Denote by Ri and ai the ith bits of R and a respectively. More formally,
the statement P1 proves to P2 is “There exists randomness such that
for all i, Bi = Com(ai), where Bi is as sent in the commitment phase.”
Let the value COM(R) sent during UC-Com(P2, P1, R) be denoted by
Z. Note that Z is of the form {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)} where
Xi = Com(Ri) and Yi is a commitment to the signature of Xi under
P1’s public key. The statement P2 proves to P1 is “There exists string
R, such that
– For all i, there exists an opening of Xi to Ri under the commitment

scheme Com(·)
– R was the randomness used to compute this message.”

(c) P2 accepts the decommitment if and only if the proof given by P1 was
accepted.

5 Security Proofs

5.1 Description of Simulator

In order to prove UC security of the commitment functionality, we will need
to construct a straight-line simulator that extracts the committed value in the

commitment phase of the protocol and that can equivocate a commitment to a
given value in the decommitment phase of the protocol. Below, we describe such
a simulator that runs straight-line both while extracting the committed string
when interacting with a committer P1, as well as when equivocating a commit-
ment to a receiver P2.

Token Exchange phase. In this phase, before a party Pi begins a proto-
col with Pj , if Pi is honest then the UC-simulator S creates the program code
for the token to be created by Pi and sent to Pj (according to the honest to-
ken creation protocol) and sends a copy of the program code to Fwrap. If Pi is
malicious, it creates the token by interacting with FAdv as described before. We
again note that the token creation can be done at any point before Pi begins a
protocol with Pj .

Handling token queries. Whenever an adversarial party queries a token
created by another adversarial party, the simulator S forwards the request to
Fwrap. When simulating the view during the adversary’s interaction with a token
created by an honest party, S generates the response according to the request
by the adversarial party and the program code of the token.

For every pair of parties (Pi, Pj) such that Pi ∈M and Pj ∈ H, S creates a
table Tij . When a malicious party Pi queries the token of an honest party Pj , S
stores the query in table Tij . In other words, the simulator S builds a list of all
the commitments (along with their openings) that the malicious party queries to
a token created by an honest party (for getting a signature). We shall show below
that no matter how the tokens of malicious parties are created, the malicious
parties cannot obtain any information about the inputs of honest parties.

When a malicious party Pi queries the token of a malicious party Pj , S sim-
ply forwards the query to Fwrap and forwards the response received from Fwrap

back to Pi. We note that these queries can only make black box calls to tokens
of honest parties (as malicious tokens can be created only with black box calls
to tokens of honest parties). Hence whatever information an adversary can ob-
tain from this query, the adversary could have obtained itself by making a black
box query to the token of an honest party. Hence querying this token gives no
additional information to an adversary.

Case 1: Committer is corrupted

Commitment Phase: In this case, the simulator S executes the protocol hon-
estly as a receiver in the commitment phase. In more detail:

1. Let A = COM(a) = {Com1, Com2,, Comn} according to the commitment
protocol described earlier. P1 sends A to S (Of course, P1 may not follow
the protocol).

2. Let w be a witness to the NP statement that for all i, Ci is a commitment
to a valid signature of Bi under P2’s public key PK and that Bi is a valid
commitment to a bit.

P1 picks l(k) random pairs {(w1
0, w

1
1), (w

2
0, w

2
1), · · · , (wl(k)

0 , w
l(k)
1)} (l(k) is a

super-logarithmic function in security parameter k) such that for all 1 ≤ t ≤
l(k), wt

0⊕wt
1 = w. P1 sends commitments to these l(k) pairs. In other words,

P1 sends Com(wt
0), Com(wt

1) for all t.
3. S picks l(k) random bits {q1, q2, · · · , ql(k)} and sends it to P1.
4. P1 opens the commitment Com(wt

qt
) for all t by sending Open(Com(wt

qt
)).

5. P1 now gives a concurrent zero-knowledge proof (from [PRS02]) that w is a
witness to statement L being true and that wt

0 ⊕ wt
1 = w for all t.

The simulator S accepts the commitment if it accepts the zero-knowledge
proof. If the zero knowledge proof was accepted, S looks up the commitments
to the bits of a (i.e., Bi) in the table T12. Note that T12 contains a list of all
commitments that were queried by P1 to the token created by honest party P2.
If any of the commitments are not found, then the simulator aborts the simu-
lation. We call this an Extraction Abort. By a reduction to the security of the
underlying signature scheme, we prove in Lemma 1 that Extraction Abort oc-
curs with negligible probability. If the simulator did not abort, this means that
the commitments to the bits of a were queried by P1 to the device. Hence, the
simulator S has already recorded the openings to these commitments and can ex-
tract a by looking up the opening of all these commitments Bi’s in the table T12.

Decommitment Phase: S follows the decommitment protocol honestly as a re-
ceiver. In more detail:

1. P1 sends S the string a that was initially committed to. Dishonest P1 may
cheat and send a′ 6= a to S.

2. S picks a string R uniformly at random from {0, 1}p(k) and executes the
commitment protocol UC-Com(S, P1, R) honestly.

3. P1 gives a zero knowledge proof that a′ is the string that was committed
to in the commitment phase of the protocol. The randomness used by S in
this zero knowledge proof is R and along with every message sent in the
zero knowledge protocol, S proves in zero knowledge that the message uses
randomness according to the string R.

4. S accepts the decommitment if the proof given by P1 was accepted. Upon
accepting the decommitment, S checks if a′ was the string that was initially
committed to in the UC-commitment protocol. If this is not the case, then S
aborts. We call this a Decommit Abort. We show in Lemma 2 that Decommit
Abort occurs with negligible probability.

We note that when the committer is corrupted, the simulator (as the receiver)
follows the protocol honestly during protocol simulation and hence the simulated
protocol is identical to the real protocol.

Case 2: Receiver is corrupted

Commitment Phase: The UC-simulator does as follows:

1. S sets the string a to be a string whose all the bits are 0 and then sends
A = COM(a) = {Com1, Com2,, Comn} according to the commitment
protocol described earlier.

2. Let w be a witness to the NP statement that for all i, Ci is a commitment
to a valid signature of Bi under P2’s public key PK and that Bi is a valid
commitment to a bit.
S picks l(k) random pairs {(w1

0, w
1
1), (w

2
0, w

2
1), · · · , (wl(k)

0 , w
l(k)
1)} (l(k) is a

super-logarithmic function in security parameter k) such that for all 1 ≤ t ≤
l(k), wt

0⊕wt
1 = w. S sends commitments to these l(k) pairs. In other words,

S sends Com(wt
0), Com(wt

1) for all t.
3. P2 sends challenge bits {q1, q2, · · · , ql(k)} to S.
4. S opens the commitment Com(wt

qt
) for all t by sending Open(Com(wt

qt
)).

5. S now gives a concurrent zero-knowledge proof that w is a witness to state-
ment L being true and that wt

0 ⊕ wt
1 = w for all t.

Decommitment Phase: The UC-simulator has to equivocate the commitment to
some value a′ in the decommitment phase. The simulator proceeds as follows:

1. S sends a′ to P2.
2. P2 picks a string R of length p(k) and executes the commitment protocol

UC-Com(P2, S, R). Again, P2 may not execute the protocol honestly. If this
commitment is accepted, the simulator looks up the commitments to the
bits of R in the table T21. If any of the commitments are not found, then the
simulator does an extraction abort. Otherwise, the simulator has obtained
R.

3. The simulator S now has to give a zero knowledge proof that a′ is the
string that was committed to in the commitment phase of the protocol.
Now given R, all of P2’s messages in this zero knowledge proof protocol are
deterministic.
S internally runs the simulation of this zero knowledge protocol (using the
simulator Szk for the underlying zero knowledge protocol). It runs the sim-
ulation as the verifier in the protocol (using the messages according to ran-
domness R). Note that S can do this by interacting with prover Szk and
generating all messages of the verifier using randomness R. S obtains the
simulated transcript of this protocol. Let the messages sent by S in this
transcript be denoted by mV

1 ,mV
2 , · · · , mV

d and let the messages sent by Szk

(as the prover) in this simulated transcript be mP
1 , mP

2 , · · · , mP
d .

4. S will “force” this transcript upon P2. That is, S sends messages to the party
P2 according to the simulated zero knowledge protocol transcript. At step t
of the zero knowledge protocol, it sends the message mP

t to P2 and expects
to receive mV

t as response .
Party P2 is forced to use the randomness R because P2, along with every
message sent in the zero knowledge protocol, has to prove in zero knowl-
edge that the message uses randomness according to the string R. By the
soundness property of this zero knowledge proof (given by P2), if P2 sends
a message that is not according to randomness R, it will fail in the zero
knowledge proof.

We show in the full version of the paper [CGS07] that the view of the adversary
in the simulation and in the real protocol are computationally indistinguishable
in the commitment as well as decommitment phase.

5.2 Abort Lemmas

Lemma 1. (Extraction Abort)
Let ε denote the probability with which the simulator S aborts the simulation in
the commitment phase (say for some session t and some committer Pi ∈M and
receiver Pj ∈ H). Then, ε is negligible in k.

Proof. Let s be the total number of commitment sessions in the protocol. Pick
at random the tth commitment session between parties Pi and Pj (with Pi ∈M
and Pj ∈ H). We note that with probability > ε

s , during the tth session between
malicious Pi and honest Pj , the simulator for the first time in the protocol
aborted the simulation. This is the commitment session in the protocol that first
terminates in an abort by the simulator. We now focus on this particular session
between Pi and Pj .

In this commitment protocol, consider the point upto when Pi (after sending
COM(a)) gives a commitment to l(k) random pairs of the form (wt

0, w
t
1) with

wt
0 ⊕ wt

1 = w. Let this point in the protocol be denoted by λ. We note that the
probability with which the simulator aborted the simulation for the first time at
session t between Pi and Pj given the prefix of the protocol upto λ is still > ε

s
(This probability includes the probability with which this prefix happens.). Now,
S goes forward in the simulation with malicious Pi in this session. The simulator
completes the simulation of this session between Pi and Pj (The simulator might
have to simulate sessions between other parties before finishing the simulation of
this particular session.). If the simulator runs into an Extraction Abort in some
other commitment session, then the simulator simply aborts the simulation as in
that case, the tth session between Pi and Pj was not the first time the simulator
had to do an Extraction Abort. Similarly, if the simulator runs into a Decommit
Abort in some parallel session, then the simulator aborts the simulation in that
case as well. If the dishonest party aborts or does not respond in some parallel
session, the simulator aborts in that case as well. We note that the probability
with which the simulator completes this commitment session between Pi and Pj

and then has to do an extraction abort is > ε
s .

Upon aborting the tth session between Pi and Pj , the simulator rewinds the
environment back to point λ in the protocol. Now, using fresh randomness the
simulator simulates this session between Pi and Pj (once again simulating other
parallel sessions if needed). The probability with which the simulator completes
the simulation of this commitment session and then does an Extraction Abort
(using the fresh randomness) is again > ε

s . Hence, the probability with which
the simulator will abort at the end of the tth session between Pi and Pj in
both executions is > ε2

s2 . The probability with which adversary Pi commits to
random shares that do not exclusive-or to the witness and then succeeds in giving
a false zero knowledge proof is negligible. This follows from the soundness of

the concurrent zero-knowledge proof. The probability with which the simulator
picked the same randomness in both simulations (and hence failed to extract the
witness) is 1

2l(k) . Hence with probability > [ε2

s2 (1 − 1
2l(k)) − g(k)] (where l(k) is

a super-logarithmic function in k and g(k) is any negligible function in k), the
simulator will extract a valid witness to the statement Pi was proving to Pj in
the tth session.

Since the simulator aborted at the end of this session, this means that there
exists a commitment Bf = Com(af) made by Pi whose signature σPKj (Bf) was
not queried by Pi to the device created by Pj . Note that the witness of the state-
ment (which Pi was proving to Pj) contains signatures of all commitments made
in that session and, in particular, it contains σPKj

(Bf). Hence with probability
> ε2

s2 −negl(k), we get a forgery of a signature in the existential forgery security
game with Pj ’s public verification key PKj . From the security of the signature
scheme, it follows that ε2

s2 is negligible in the security parameter and hence ε is
also negligible in k. ¤

Lemma 2. (Decommit Abort)
Let µ denote the probability with which the simulator S aborts the simulation in
the decommitment phase (say for some session t and some committer Pi ∈ M
and receiver Pj ∈ H). Then, µ is negligible.

Proof. We shall first show that the protocol HardwareZK(Pi, S, a) is compu-
tationally sound in the stand-alone setting. Consider the zero-knowledge proof
HardwareZK(Pi, S, a). The steps in this proof are as follows:

– S picks a string R uniformly at random from {0, 1}p(k) and executes the
commitment protocol UC-Com(S, Pi, R) honestly.

– Pi gives a standard zero knowledge proof that a′ is the string that was
committed to in the commitment phase of the protocol. The randomness
used by S in this zero knowledge proof is R and along with every message sent
in the zero knowledge protocol, S proves using a standard zero knowledge
proof that the message uses randomness according to the string R.

– S accepts the decommitment if the proof given by Pi was accepted.

Through a sequence of hybrid arguments, we will now show that this protocol
has computational soundness in the stand-alone setting.

Hybrid H0: This hybrid is exactly the same as the above protocol.

Hybrid H1: This hybrid is exactly the same as H0 except that the simula-
tor will give simulated zero knowledge proofs in the second step (even though
it has a witness). Since this proof is zero knowledge in the stand-alone setting,
we have that the simulated proof is computationally indistinguishable from the
real proof and hence H1 is computationally indistinguishable from H0.

Hybrid H2: Hybrid H2 to H4 deal with proving that the commitment scheme

UC-Com is computationally hiding in the stand alone setting. Hybrid H2 is ex-
actly the same as H1 except that the simulator replaces concurrent zero knowl-
edge proof given in UC-Com(S, Pi, R) by a simulated zero knowledge proof. Note
that we do not require the concurrency property of the zero knowledge proof
here (as we are considering only the stand-alone setting). Hence, it follows from
the zero knowledge property of this proof that H2 is indistinguishable from H1.

Hybrid H3: This hybrid is exactly the same as H2 except that the simula-
tor replaces the commitments to input R in the first step of UC-Com(S, Pi, R) to
commitments to a value R′ (chosen independently at random). It follows from
the computational hiding property of these commitments that H3 is indistin-
guishable from H2.

Hybrid H4: In UC-Com(S, Pi, R), the simulator gave a commitment to R in the
first step of the protocol. Let wold be a witness to the NP statement that for all
i, Ci is a commitment to a valid signature of Bi under P2’s public key PK and
that Bi is a valid commitment to a bit. In this case Bi is a commitment to the
ith bit of R. The simulator then followed the rest of the protocol according to
this commitment. In particular, in the next step of the commitment phase, the
simulator committed to random shares wt

0, w
t
1 such that wt

0 ⊕ wt
1 = wold. Note

that in H3, the commitments Bi were changed to commitments to R′. Hence,
we now have a new witness wnew that proves that Ci is a commitment to a valid
signature of Bi under P2’s public key PK and that Bi is a valid commitment to
a bit.

Hybrid H4 is exactly the same as H3 except that the simulator changes the
commitments to shares of wold (i.e., commitments to wt

0, w
t
1) to shares such that

they exclusive-OR to wnew. Note that these commitments are not used anywhere
else in the protocol as the simulator uses simulated concurrent zero knowledge
proofs in the commitment phase. From the computationally hiding property of
the commitments it follows from a standard hybrid argument that H4 is indis-
tinguishable from H3.

Hybrid H5: This hybrid is exactly the same as H4 except that the simulator
replaces the simulated zero knowledge proof in the UC-Com(S, Pi, R) protocol
to honest concurrent zero knowledge proof. Again since we are only considering
the stand-alone setting, it follows from the zero knowledge property of this proof
that H5 is indistinguishable from H4.

We note that the difference from H0 to H5 is that the commitment UC-Com(S, Pi, R)
has been replaced by UC-Com(S, Pi, R

′). The simulator still uses simulated zero
knowledge proof that messages sent as verifier in the zero knowledge proof are
according to randomness R. We shall now argue that if an adversary P ∗ can
violate the soundness of the proof system in Hybrid H5, then we can construct
an adversary p∗ that will violate the soundness of the underlying standard zero
knowledge proof. p∗ will act as verifier V in the above simulated protocol with

P ∗ and as prover p∗ in the underlying standard zero knowledge proof with ver-
ifier v. p∗ as verifier V will initially commit to a random value R to P ∗ using
UC-Com(S, Pi, R). V will then forward messages that it receives from P ∗ to v
as messages of the prover p∗. Upon receiving a message from verifier v, p∗ will
send this message (as verifier V) to P ∗ along with a simulated zero knowledge
proof that the randomness used to construct this message is R′ (chosen inde-
pendently at random). Now, if P ∗ can violate the soundness of the proof in the
simulated protocol, then p∗ can violate the soundness of the underlying zero
knowledge proof. Thus, the proof in the simulated protocol is sound. By the
indistinguishability of Hybrid H5 from H0, it follows that the zero knowledge
protocol HardwareZK(Pi, S, a) has computational soundness in the stand-alone
setting.

Now, let s be the total number of decommitment sessions in the protocol.
Pick at random the tth session between parties Pi and Pj (with Pi ∈ M and
Pj ∈ H). We note that with probability > µ

s , during the tth session between
malicious Pi and honest Pj , the simulator for the first time in the protocol does
a decommit abort. We now focus on this particular session between Pi and Pj .
In this decommitment protocol, the decommitter Pi sends value a′ as the first
message and then executes protocol HardwareZK(Pi, S, a) with the simulator.
We showed stand-alone soundness of HardwareZK(Pi, S, a). Since soundness is
composable, this implies that HardwareZK(Pi, S, a) is computationally sound in
the concurrent setting. Hence, a dishonest decommitter can only decommit to
the value initially committed to. We note that while simulating the tth session
between Pi and Pj , the simulator might have to simulate other sessions (com-
mitment and decommitment). If the simulator runs into a Decommit Abort in
some other session, then the simulator aborts the simulation since then the tth

session between Pi and Pj will not be the first time that the simulator does a
Decommit Abort. We note that simulator (except with negligible probability)
will not run into an Extraction Abort in a parallel session (as argued in Lemma
1). Hence, µ is negligible. ¤

References

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Univer-
sally composable protocols with relaxed set-up assumptions. In FOCS,
pages 186–195, 2004.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-
malleable zero knowledge. In FOCS, pages 345–354, 2006.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS, pages 136–145, 2001.

[CDPW07a] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Univer-
sally composable security with global setup. In TCC, pages 61–85, 2007.

[CDPW07b] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Univer-
sally composable security with global setup. In Salil P. Vadhan, editor,
TCC, volume 4392 of Lecture Notes in Computer Science, pages 61–85.
Springer, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments.
In CRYPTO, Lecture Notes in Computer Science, pages 19–40. Springer,
2001.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Re-
settable zero-knowledge (extended abstract). In STOC, pages 235–244,
2000.

[CGS07] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for
uc secure computation using tamper-proof hardware. Cryptology ePrint
Archive, 2007. http://eprint.iacr.org/2007/334.

[CKL06] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations
of universally composable two-party computation without set-up assump-
tions. J. Cryptology, 19(2):135–167, 2006.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
STOC, pages 494–503, 2002.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge.
In STOC, pages 409–418, 1998.

[DNW07] Ivan Damgaard, Jesper Buus Nielsen, and Daniel Wichs. Universally com-
posable multiparty computation with partially isolated parties. Cryptol-
ogy ePrint Archive, 2007. http://eprint.iacr.org/2007/332.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-
way functions. In STOC, pages 25–32, 1989.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signa-
ture scheme secure against adaptive chosen-message attacks. SIAM J.
Comput., 17(2):281–308, 1988.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, Cambridge, UK, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cam-
bridge University Press, Cambridge, UK, 2004.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

[HMQU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Universally
composable zero-knowledge arguments and commitments from signature
cards. In 5th Central European Conference on Cryptology, page A version
is available at http://homepages.cwi.nl/ hofheinz/card.pdf., 2005.

[Kat07] Jonathan Katz. Universally composable multi-party computation using
tamper-proof hardware. In EUROCRYPT, Lecture Notes in Computer
Science, pages 115–128. Springer, 2007.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In STOC, pages 33–43, 1989.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowl-
edge with logarithmic round-complexity. In FOCS, pages 366–375, 2002.

