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Abstract. Non-interactive zero-knowledge proofs and non-interactive witness-
indistinguishable proofs have played a significant role in the theory of cryptog-
raphy. However, lack of efficiency has prevented them from being used in prac-
tice. One of the roots of this inefficiency is that non-interactive zero-knowledge
proofs have been constructed for general NP-complete languages such as Circuit
Satisfiability, causing an expensive blowup in the size of the statement when re-
ducing it to a circuit. The contribution of this paper is a general methodology
for constructing very simple and efficient non-interactive zero-knowledge proofs
and non-interactive witness-indistinguishable proofs that work directly for groups
with a bilinear map, without needing a reduction to Circuit Satisfiability.
Groups with bilinear maps have enjoyed tremendous success in the field of cryp-
tography in recent years and have been used to construct a plethora of proto-
cols. This paper provides non-interactive witness-indistinguishable proofs and
non-interactive zero-knowledge proofs that can be used in connection with these
protocols. Our goal is to spread the use of non-interactive cryptographic proofs
from mainly theoretical purposes to the large class of practical cryptographic pro-
tocols based on bilinear groups.

Keywords: Non-interactive witness-indistinguishability, non-interactive zero-
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1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable
proofs have played a significant role in the theory of cryptography. However, lack of
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efficiency has prevented them from being used in practice. Our goal is to construct effi-
cient and practical non-interactive zero-knowledge (NIZK) proofs and non-interactive
witness-indistinguishable (NIWI) proofs.

Blum, Feldman and Micali [4] introduced NIZK proofs. Their paper and subse-
quent work, e.g. [19, 16, 29, 17], demonstrates that NIZK proofs exist for all of NP.
Unfortunately, these NIZK proofs are all very inefficient. While leading to interest-
ing theoretical results, such as the construction of public-key encryption secure against
chosen-ciphertext attack by Dolev, Dwork and Naor [18], they have therefore not had
any impact in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worth-
while to identify the roots of the inefficiency in the above mentioned NIZK proofs. One
drawback is that they were designed with a general NP-complete language in mind, e.g.
Circuit Satisfiability. In practice, we want to prove statements such as “the ciphertext
c encrypts a signature on the messagem” or “the three commitmentsca, cb, cc contain
messagesa, b, c soc = ab”. An NP-reduction of even very simple statements like these
gives us big circuits containing thousands of gates and the corresponding NIZK proofs
become very large.

While we want to avoid an expensive NP-reduction, it is still desirable to have a
general way to express statements that arise in practice instead of having to construct
non-interactive proofs on an ad hoc basis. A useful observation in this context is that
many public-key cryptography protocols are based on finite abelian groups. If we can
capture statements that express relations between group elements, then we can express
statements that come up in practice such as “the commitmentsca, cb, cc contain mes-
sages soc = ab” or “the plaintext ofc is a signature onm”, as long as those commit-
ment, encryption, and signature schemes work over the same finite group. In the paper,
we will therefore construct NIWI and NIZK proofs forgroup-dependentlanguages.

The next issue to address is where to find suitable group-dependent languages. We
will look at statements related to groups with a bilinear map, which have become widely
used in the design of cryptographic protocols. Not only have bilinear groups been used
to give new constructions of such cryptographic staples as public-key encryption, dig-
ital signatures, and key agreement (see [31] and the references therein), but bilinear
groups have enabled the first constructions achieving goals that had never been attained
before. The most notable of these is the Identity-Based Encryption scheme of Boneh
and Franklin [10] (see also [6, 7, 35]), and there are many others, such as Attribute-
Based Encryption [32, 22], Searchable Public-Key Encryption [9, 12, 13], and One-time
Double-Homomorphic Encryption [11]. For an incomplete list of papers (currently over
200) on the application of bilinear groups in cryptography, see [2].

1.1 Our Contribution

For completeness, let us recap the definition of a bilinear group.Please note that
for notational convenience we will follow the tradition of mathematics and use ad-
ditive notation3 for the binary operations inG1 and G2. We have a probabilistic

3 We remark that in the cryptographic literature it is more common to use multiplicative nota-
tion for these groups, since the “discrete log problem” is believed to be hard in these groups,



polynomial time algorithmG that takes a security parameter as input and outputs
(n, G1, G2, GT , e,P1,P2) where

– G1, G2, GT are descriptions of cyclic groups of ordern.
– The elementsP1,P2 generateG1 andG2 respectively.
– e : G1 × G2 is a non-degenerate bilinear map soe(P1,P2) generatesGT and for

all a, b ∈ Zn we havee(aP1, bP2) = e(P1,P2)ab.
– We can efficiently compute group operations, compute the bilinear map and decide

membership.

In this work, we develop a general set of highly efficient techniques for proving
statements involving bilinear groups. The generality of our work extends in two direc-
tions. First, we formulate our constructions in terms of modules over commutative rings
with an associated bilinear map. This framework captures all known bilinear groups
with cryptographic significance – for both supersingular and ordinary elliptic curves,
for groups of both prime and composite order. Second, we consider all mathematical
operations that can take place in the context of a bilinear group - addition inG1 and
G2, scalar point-multiplication, addition or multiplication of scalars, and use of the bi-
linear map. We also allow both group elements and exponents to be “unknowns” in the
statements to be proven.

With our level of generality, it would for example be easy to write down a short
statement, using the operations above, that encodes “c is an encryption of the value
committed to ind under the product of the two keys committed to ina andb” where the
encryptions and commitments being referred to are existing cryptographic constructions
based on bilinear groups. Logical operations like AND and OR are also easy to encode
into our framework using standard techniques in arithmetization.

The proof systems we build arenon-interactive. This allows them to be used in
contexts where interaction is undesirable or impossible. We first build highly efficient
witness-indistinguishable proof systems, which are of independent interest. We then
show how to transform these into zero-knowledge proof systems. We also provide a de-
tailed examination of the efficiency of our constructions in various settings (depending
on what type of bilinear group is used).

The security of constructions arising from our framework can be based onanyof a
variety of computational assumptions about bilinear groups (3 of which we discuss in
detail here). Thus, our techniques do not rely on any one assumption in particular.

Informal statement of our results. We consider equations over variables fromG1, G2

and Zn as described in Figure 1. We construct efficient witness-indistinguishable
proofs for the simultaneous satisfiability of a set of such equations. The witness-
indistinguishable proofs have perfect completeness and there are two computationally
indistinguishable types of common reference strings giving respectively perfect sound-
ness and perfect witness indistinguishability. Due to lack of space we have to refer to
the full paper [28] for precise definitions.

We also consider the question of non-interactive zero-knowledge. We show that we
can give zero-knowledge proofs for multi-scalar multiplication inG1 or G2 and for

which is also important to us. In our setting, however, it will be much more convenient to use
multiplicative notation to refer to the action of the bilinear map.



quadratic equations inZn. We can also give zero-knowledge proofs for pairing product
equations withtT = 1. WhentT 6= 1 we can still give zero-knowledge proofs if we can
findP1,Q1, . . . ,Pn,Qn such thattT =

∏n
i=1 e(Pi, Qi).

Variables: X1, . . . ,Xm ∈ G1 , Y1, . . . ,Yn ∈ G2 , x1, . . . , xm′ , y1, . . . , yn′ ∈ Zn. a

Pairing product equation:

n∏
i=1

e(Ai,Yi) ·
m∏

i=1

e(Xi,Bi) ·
m∏

i=1

n∏
j=1

e(Xi,Yj)
γij = tT ,

for constantsAi ∈ G1,Bi ∈ G2, tT ∈ GT , γij ∈ Zn.
Multi-scalar multiplication equation in G1:

n′∑
i=1

yiAi +

m∑
i=1

biXi +

m∑
i=1

n′∑
j=1

γijyjXi = T1,

for constantsAi, T1 ∈ G1 andbi, γij ∈ Zn. b

Multi-scalar multiplication equation in G2:

n∑
i=1

aiYi +

m′∑
i=1

xiBi +

m′∑
i=1

n∑
j=1

γijxiYj = T2,

for constantsBi, T2 ∈ G2 andai, γij ∈ Zn.
Quadratic equation in Zn:

n′∑
i=1

aiyi +

m′∑
i=1

xibi +

m′∑
i=1

n′∑
j=1

γijxiyj = t,

for constantsai, γij , t ∈ Zn.

a We list variables inZn in two separate groups because we will treat them differently in
the NIWI proofs. If we wish to deal with only one group of variables inZn we can add
equations inZn of the formx1 = y1, x2 = y2, etc.

b With multiplicative notation, these equations would be multi-exponentiation equations. We
use additive notation forG1 andG2, since this will be notationally convenient in the paper,
but stress that the discrete logarithm problem will typically be hard in these groups.

Fig. 1.Equations over groups with bilinear map.

Instantiations. In the full paper we give three possible instantiations of the bilinear
groups; there are many more. The first instantiation is based on the composite order
groups introduced by Boneh, Goh and Nissim [11]. We work over a composite order
bilinear group(n, G,GT , e,P) wheren = pq. The security of this instantiation is
based on the subgroup decision assumption that says it is hard to distinguish random
elements of ordern from random elements of orderq.



The second instantiation is based on prime order groups(p, G1, G2, GT , e,P1,P2).
Security depends on the symmetric external Diffie-Hellman (SXDH) assumption [33,
8, 1, 20, 34] that says the DDH problem is hard in bothG1 andG2.

The third instantiation is based on prime order groups(p, G,GT , e,P) where
the decisional linear (DLIN) problem is hard. The DLIN problem introduced by
Boneh, Boyen and Shacham [8] states that given(αP, βP, rαP, sβP, tP) for random
α, β, r, s ∈ Zp it is hard to tell whethert = r + s or t is random.

The instantiations illustrate the variety of ways bilinear groups can be constructed.
We can choose prime order or composite order groups, we can useG1 = G2 and
G1 6= G2, and we can make various cryptographic assumptions. All three security as-
sumptions have been used in the cryptographic literature to build interesting protocols.

For all three instantiations, the techniques presented here give us short NIWI proofs.
In particular, the cost in proof size of each extra equation is constant and independent
of the number of variables in the equation. The size of the proofs, can be computed by
adding the cost, measured in group elements fromG1 or G2, of each variable and each
equation listed in Figure 2. We refer to the full paper [28] for more detailed tables.

Subgroup decision SXDH DLIN
Variable inG1 or G2 1 2 3
Variable inZn or Zp 1 2 3
Paring product equation 1 8 9
Multi-scalar multiplication inG1 or G2 1 6 9
Quadratic equation inZn or Zp 1 4 6

Fig. 2.Number of group elements each variable or equation adds to the size of a NIWI proof.

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-
languages have non-interactive proofs, however, did not yield efficient proofs. One
cause for these proofs being inefficient in practice was the need for an expensive NP-
reduction to e.g. Circuit Satisfiability. Another cause of inefficiency was the reliance on
the so-called hidden bits model, which even for small circuits is inefficient.

Groth, Ostrovsky, and Sahai [27, 26] investigated NIZK proofs for Circuit Satisfia-
bility using bilinear groups. This addressed the second cause of inefficiency since their
techniques give efficient proofs for Circuit Satisfiability, but to use their proofs one
must still make an NP-reduction to Circuit Satisfiability thus limiting the applications.
We stress that while [27, 26] used bilinear groups, their application was to build proof
systems for Circuit Satisfiability. Here, we devise entirely new techniques to deal with
general statements about equations in bilinear groups,without having to reduce to an
NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction we have works by
Boyen and Waters [13, 14] that suggest efficient NIWI proofs for statements related



to group signatures. These proofs are based on bilinear groups of composite order and
rely on the subgroup decision assumption.

Groth [23] was the first to suggest a general group-dependent language and NIZK
proofs for statements in this language. He investigated satisfiability of pairing product
equations and only allowed group elements to be variables. He also looked only at the
special case of prime order groupsG, GT with a bilinear mape : G × G → GT

and, based on the decisional linear assumption [8], constructed NIZK proofs for such
pairing product equations. However, even for very small statements, the very different
and much more complicated techniques of Groth yield proofs consisting of thousands
of group elements (whereas ours would be in the tens). Our techniques are much easier
to understand, significantly more general, and vastly more efficient.

We summarize our comparison with other works on NIZK proofs in Figure 3.

Inefficient Efficient
Circuit Satisfiability E.g. [29] [27, 26]
Group-dependent language[23] (restricted case)This work

Fig. 3.Classification of NIZK proofs according to usefulness.

We note that there have been many earlier works (starting with [21]) dealing with
efficient interactive zero-knowledge protocols for a number of algebraic relations.
Here, we focus onnon-interactiveproofs. We also note that even for interactive zero-
knowledge proofs, no set of techniques was known for dealing with general algebraic
assertions arising in bilinear groups, as we do here.

1.3 New Techniques

[27, 26, 23] start by constructing non-interactive proofs for simple statements and then
combine many of them to get more powerful proofs. The main building block in [27],
for instance, is a proof that a given commitment contains either 0 or 1, which has little
expressive power on its own. Our approach is the opposite: we directly construct proofs
for very expressive languages; as such, our techniques are very different from previous
work.

The way we achieve our generality is by viewing the groupsG1, G2, GT as mod-
ules over the ringZn. The ringZn itself can also be viewed as aZn-module. We there-
fore look at the more general question of satisfiability of quadratic equations overZn-
modulesA1, A2, AT with a bilinear map, see Section 2 for details. Since many bilinear
groups with various cryptographic assumptions and various mathematical properties
can be viewed as modules we are not bound to any particular bilinear group or any par-
ticular assumption. We remark that while bilinear groups can be interpreted as modules
with a bilinear map, it is possible that there exist other interesting modules with a bilin-
ear map that are not based on bilinear groups. We leave the existence of such modules
as an interesting open problem.



Given modulesA1, A2, AT with a bilinear map, we construct new modules
B1, B2, BT , also equipped with a bilinear map, and we map the elements inA1, A2, AT

into B1, B2, BT . More precisely, we devise commitment schemes that map variables
from A1, A2 to the modulesB1, B2. The commitment schemes are homomorphic with
respect to the module operations but also with respect to the bilinear map.

Our techniques for constructing witness-indistinguishable proofs are fairly involved
mathematically, but we will try to present some high level intuition here. (We give more
detailed intuition later in Section 5, where we present our main proof system). The main
idea is the following: because our commitment schemes are homomorphicandwe equip
them with a bilinear map, we can take the equation that we are trying to prove, and just
replace the variables in the equation with commitments to those variables. Of course,
because the commitment schemes are hiding, the equations will no longer be valid.
Intuitively, however, we can extract out the additional terms introduced by the random-
ness of the commitments: if we give away these terms in the proof, then this would be a
convincingproof of the equation’s validity (again, because of the homomorphic proper-
ties). But, giving away these terms might destroy witness indistinguishability. Suppose,
however, that there is only one “additional term” introduced by substituting the com-
mitments. Then, because it would be the unique value which makes the equation true,
giving it away would preserve witness indistinguishability! In general, we are not so
lucky. But if there are many terms, that means that these terms are not unique, and be-
cause of the nice algebraic environment that we work in, we can randomize these terms
so that the equation is still true, but so that we effectively reduce to the case of there
being a single term being given away with a unique value.

1.4 Applications

Independently of our work, Boyen and Waters [14] have constructed non-interactive
proofs that they use for group signatures (see also their earlier paper [13]). These proofs
can be seen as examples of the NIWI proofs in instantiation 1. Subsequent to the an-
nouncement of our work, several papers have built upon it: Chandran, Groth and Sahai
[15] have constructed ring-signatures of sub-linear size using the NIWI proofs in the
first instantiation, which is based on the subgroup decision problem. Groth and Lu [25]
have used the NIWI and NIZK proofs from instantiation 3 to construct a NIZK proof
for the correctness of a shuffle. Groth [24] has used the NIWI and NIZK proofs from in-
stantiation 3 to construct a fully anonymous group signature scheme. Belenkiy, Chase,
Kohlweiss and Lysyanskaya [3] have used instantiations 2 and 3 to construct non-
interactive anonymous credentials. Also, by attaching NIZK proofs to semantically se-
cure public-key encryption in any instantiation we get an efficient non-interactive verifi-
able cryptosystem. Boneh [5] has suggested using this for optimistic fair exchange [30],
where two parties use a trusted but lazy third party to guarantee fairness.

2 Modules with Bilinear Maps

Let (R,+, ·, 0, 1) be a finite commutative ring. Recall that anR-moduleA is an abelian
group(A,+, 0) where the ring acts on the group such that∀r, s ∈ R ∀x, y ∈ A :

(r + s)x = rx + sx ∧ r(x + y) = rx + ry ∧ r(sx) = (rs)x ∧ 1x = x.



A cyclic groupG of ordern can in a natural way be viewed as aZn-module. We will
observe that all the equations in Figure 1 can be viewed as equations overZn-modules
with a bilinear map. To generalize completely, letR be a finite commutative ring and let
A1, A2, AT be finiteR-modules with a bilinear mapf : A1 ×A2 → AT . We consider
quadratic equations over variablesx1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2 of the form

n∑
j=1

f(aj , yj) +
m∑

i=1

f(xi, bi) +
m∑

i=1

n∑
j=1

γijf(xi, yj) = t.

In order to simplify notation, let us forx1, . . . , xn ∈ A1, y1, . . . , yn ∈ A2 define

x · y =
n∑

i=1

f(xi, yi).

The equations can now be written as

a · y + x · b + x · Γy = t.

We note for future use that due to the bilinear properties off , we have for any matrix
Γ ∈ Matm×n(R) and for anyx1, . . . , xm, y1, . . . , yn thatx · Γy = Γ>x · y.

Let us now return to the equations in Figure 1 and see how they can be recast as
quadratic equations overZn-modules with a bilinear map.

Pairing product equations: Define R = Zn, A1 = G1, A2 = G2, AT =
GT , f(x, y) = e(x, y) and we can rewrite4 the pairing product equation as
(A ·Y)(X ·B)(X · ΓY) = tT .

Multi-scalar multiplication in G1: DefineR = Zn, A1 = G1, A2 = Zn, AT =
G1, f(X , y) = yX and we can rewrite the multi-scalar multiplication equation
asA · y + X · b + X · Γy = T1.

Multi-scalar multiplication in G2: DefineR = Zn, A1 = Zn, A2 = G2, AT =
G2, f(x,Y) = xY and we can rewrite the multi-scalar multiplication equation
asa ·Y + x ·B + x · ΓY = T2.

Quadratic equation in Zn: Define R = Zn, A1 = Zn, A2 = Zn, AT =
Zn, f(x, y) = xy mod n and we can rewrite the quadratic equation inZn as
a · y + x · b + x · Γy = t.

From now on, we will therefore focus on the more general problem of constructing non-
interactive composable witness-indistinguishable proofs for satisfiability of quadratic
equations overR-modulesA1, A2, AT (using additive notation for all modules) with a
bilinear mapf .

3 Commitment from Modules

In our NIWI proofs we will commit to the variablesx1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2.
We do this by mapping them into otherR-modulesB1, B2 and making the commit-
ments in those modules.

4 We use multiplicative notation here, because, usuallyGT is written multiplicatively in the
literature. When we work with the abstract modules, however, we will use additive notation.



Let us for now just consider how to commit to elements from oneR-moduleA. The
public key for the commitment scheme will describe anotherR-moduleB andR-linear
mapsι : A → B andp : B → A. It will also contain elementsu1, . . . , un ∈ B. To
commit tox ∈ A we pickr1, . . . , rn ← R at random and compute the commitment

c := ι(x) +
n∑

i=1

riui.

Our commitment scheme will have two types of commitment keys.

Hiding key: A hiding key contains (B, ι, p, u1, . . . , un) such that ι(G) ⊆
〈u1, . . . , un〉. The commitmentc := ι(x) +

∑n
i=1 riui is perfectly hiding when

r1, . . . , rn are chosen at random fromR.
Binding key: A binding key contains(B, ι, p, u1, . . . , un) such that∀i : p(ui) = 0

and ι ◦ p is the identity.5 The commitmentc := ι(x) +
∑n

i=1 riui is perfectly
binding, since it determinesx asp(c) = p(ι(x)) = x.6

Computational indistinguishability: The main assumption that we will be making
throughout this paper is that the distribution of hiding keys and the distribution of
binding keys are computationally indistinguishable. Witness-indistinguishability of
our NIWI proofs and later the zero-knowledge property of our NIZK proofs will
rely on this property.

Often we will commit to many elements at a time so let us define some convenient
notation. Given elementsx1, . . . , xm we writec := ι(x)+ Ru with R ∈ Matm×n(R)
for making commitmentsc1, . . . , cm computed asci := ι(xi) +

∑n
j=1 rijuj .

The treatment of commitments using the language of modules generalizes several
previous works dealing with commitments over bilinear groups, including [11, 27, 26,
23, 36]. We refer to the full paper [28] for a demonstration of how the commitment
scheme can be instantiated with respectively the subgroup decision, the SXDH and the
DLIN assumptions.

4 Setup

In our NIWI proofs the common reference string will contain commitment keys to
commit to elements in respectivelyA1 and A2. These commitment keys specify
B1, ι1, p1, u1, . . . , um̂ soι1 ◦ p1 is the identity map andB2, ι2, p2, v1, . . . , vn̂ soι2 ◦ p2

is the identity map. In addition, the common reference string will also specify a third
R-moduleBT together withR-linear mapsιT : AT → BT andpT : BT → AT so
ιT ◦ pT is the identity map. There will be a bilinear mapF : B1 × B2 → BT as well.
We require that the maps are commutative. We refer to Figure 4 for an overview of the
modules and the maps.

5 In the full paper [28], we also consider the case whereι ◦ p is not the identity. In particular, in
the instantiation based on the subgroup decision problem,ι ◦ p is the projection on the order
p subgroup ofG.

6 The mapp is not efficiently computable. However, one can imagine scenarios where a secret
key will makep efficiently computable making the commitment scheme a cryptosystem with
p being the decryption operation.



A1 × A2 → AT

f
ι1 ↓↑ p1 ι2 ↓↑ p2 ιT ↓↑ pT

B1 × B2 → BT

F

∀x ∈ A1 ∀y ∈ A2 : F (ι1(x), ι2(y)) = ιT (f(x, y))

∀x ∈ B1 ∀y ∈ B2 : f(p1(x), p2(x)) = pT (F (x, y))

Fig. 4.Modules and maps between them.

For notational convenience, let us define forx ∈ Bn
1 ,y ∈ Bn

2 that

x • y =
n∑

i=1

F (xi, yi).

The final part of the common reference string is a set of matricesH1, . . . ,Hη ∈
Matm̂×n̂(R) that all satisfyu •Hiv = 0.7

There will be two different types of settings of interest to us.

Soundness setting:In the soundness setting, we require that the commitment keys are
binding so we havep1(u) = 0 andp2(v) = 0.

Witness-indistinguishability setting: In the witness-indistinguishability setting we
have hiding commitment keys, soι1(G1) ⊆ 〈u1, . . . , um̂〉 and ι2(G2) ⊆
〈v1, . . . , vn̂〉. We also require thatH1, . . . ,Hη generate theR-module of all ma-
tricesH sou •Hv = 0. As we will see in the next section, these matrices play a
role as randomizers in the witness-indistinguishability proof.

Computational indistinguishability: The (only) computational assumption this paper
is based on is that the two settings can be set up in a computationally indistinguish-
able way. The instantiations show that there are many ways to get such computa-
tionally indistinguishable soundness and witness-indistinguishability setups.

All three instantiations based on the subgroup decision, the SXDH and the DLIN
assumptions enable us to make this kind of setup, see the full paper [28] for details.

5 Proving that Committed Values Satisfy a Quadratic Equation

Recall that in our setting, a quadratic equation looks like the following:

a · y + x · b + x · Γy = t, (1)

7 The number of matricesH1, . . . , Hη depends on the concrete setting. In many cases, we need
no matrices at all and we haveη = 0, but there are also cases where they are needed.



with constantsa ∈ An
1 , b ∈ Am

2 , Γ ∈ Matm×n(R), t ∈ AT . We will first consider the
case of a single quadratic equation of the above form. The first step in our NIWI proof
will be to commit to all the variablesx,y. The commitments are of the form

c = ι1(x) + Ru , d = ι2(y) + Sv, (2)

with R ∈ Matm×m̂(R), S ∈ Matn×n̂(R). The prover’s task is to convince the verifier
that the commitments containx ∈ Am

1 ,y ∈ An
2 that satisfy the quadratic equation.

(Note that for all equations we will use these same commitments.)

Intuition. Before giving the proof let us give some intuition. In the previous sections,
we have carefully set up our commitments so that the commitments themselves also
“behave” like the values being committed to: they also belong to modules (theB mod-
ules) equipped with a bilinear map (the mapF , also implicitly used in the• operation).
Given that we have done this, a natural idea is to take the quadratic equation (1), and
“plug in” the commitments (2) in place of the variables; let us evaluate:

ι1(a) • d + c • ι2(b) + c • Γd.

After some computations, where we expand the commitments (2), make use of the
bilinearity of •, and rearrange terms (the details can be found in the proof of Theorem
1 in the full paper [28]) we get(

ι1(a) • ι2(y) + ι1(x) • ι2(b) + ι1(x) • Γι2(y)
)

+ι1(a) • Sv + Ru • ι2(b) + ι1(x) • ΓSv + Ru • Γι2(y) + Ru • ΓSv.

By the commutative properties of the maps, the first group of three terms is equal to
ιT (t), if Equation 1 holds. Looking at the remaining terms, note that the verifier knows
u andv. Using the fact that bilinearity implies that for anyx,y we havex • Γy =
Γ>x •y, we can sort the remaining terms so that they match eitheru or v to get (again
see the proof of Theorem 1 in the full paper for details)

ιT (t)+u•
(
R>ι2(b)+R>Γι2(y)+R>ΓSv

)
+

(
S>ι1(a)+S>Γ>ι1(x)

)
•v. (3)

Now, for sake of intuition, let us make some simplifying assumptions: Let’s assume
that we’re working in a symmetric case whereA1 = A2, andB1 = B2, and therefore
u = v and, so, the above equation can be simplified further to get:

ιT (t) + u •
(
R>ι2(b) + R>Γι2(y) + R>ΓSu + S>ι1(a) + S>Γ>ι1(x)

)
.

Now, suppose the prover gives to the verifier as his proofπ =
(
R>ι2(b) +

R>Γι2(y) + S>ι1(a) + S>Γ>ι1(x)
)

. The verifier would then check that the fol-

lowing verification equationholds:

ι1(a) • d + c • ι2(b) + c • Γd = ιT (t) + u • π.



It is easy to see that this proof would be convincing in the soundness setting, because
we have thatp1(u) = 0. Then the verifier would know (but not be able to compute)
that by applying the mapsp1, p2, pT we get

a • p2(d) + p1(c) • b + p1(c) • Γp2(d) = t + p1(u) • p2(π) = t.

This gives us soundness, sincex := p1(c) andy := p2(d) satisfy the equations.
The remaining problem is to get witness-indistinguishability. Recall that in the

witness-indistinguishability setting, the commitments are perfectly hiding. Therefore,
in the verification equation, nothing except forπ has any information aboutx andy
except for the information that can be inferred from the quadratic equation itself. So,
let’s consider two cases:

1. Suppose thatπ is the unique value so that the verification equation is valid. In
this case, we trivially have witness indistinguishability, since this means that all
witnesses would lead to the same value forπ.

2. The simple case above might seem too good to be true, but let’s see what it means if
it isn’t true. If two valuesπ andπ′ both satisfy the verification equation, then just
subtracting the equations shows thatu • (π − π′) = 0. On the other hand, recall
that in the witness indistinguishability setting, theu vectors generate the entire
space whereπ or π′ live, and furthermore we know that the matricesH1, . . . ,Hη

generate allH such thatu•Hu = 0. Therefore, let’s chooser1, . . . , rη at random,
and consider the distributionπ′′ = π +

∑η
i=1 riHiu. We thus obtain the same

distribution onπ′′ regardless of whatπ we started from, and such thatπ′′ always
satisfies the verification equation.

Thus, for the symmetric case we obtain a witness indistinguishable proof system. For
the general non-symmetric case, instead of having justπ for theu part of Equation 3,
we would also have a proofθ for thev part. In this case, we would also have to make
sure that this split does not reveal any information about the witness. What we will do
is to randomize the proofs such that they get a uniform distribution on allπ,θ that
satisfy the verification equation. If we pickT ← Matn̂×m̂(R) at random we have that
θ + Tu completely randomizesθ. The part we add inθ can be “subtracted” fromπ by
observing that

ιT (t) + u • π + θ • v = ιT (t) + u •
(
π − T>v

)
+

(
θ + Tu

)
• v.

This leads to a unique distribution of proofs for the general non-symmetric case as well.
Having explained the intuition behind the proof system, we proceed to a formal

description and proof of security properties.

Proof: PickT ← Matn̂×m̂(R), r1, . . . , rη ← R at random. Compute

π := R>ι2(b) + R>Γι2(y) + R>ΓSv − T>v +
η∑

i=1

riHiv

θ := S>ι1(a) + S>Γ>ι1(x) + Tu

and return the proof(θ,π).



Verification: Return 1 if and only if

ι1(a) • d + c • ι2(b) + c • Γd = ιT (t) + u • π + θ • v.

Perfect completeness of our NIWI proof will follow from the following theorem
no matter whether we are in the soundness setting or the witness-indistinguishability
setting. We refer to the full paper [28] for the proof.

Theorem 1. Givenx ∈ Am
1 ,y ∈ An

2 , R ∈ Matm×m̂(R), S ∈ Matn×n̂(R) satisfying

c = ι1(x) + Ru , d = ι2(y) + Sv , a · y + x · b + x · Γy = t,

we have for all choices ofT, r1, . . . , rη that the proofsπ,θ constructed as above will
be accepted.

Perfect soundness of our NIWI proof follows from the following theorem.

Theorem 2. In the soundness setting, where we havep1(u) = 0 and p2(v) = 0, a
valid proof impliesa · p2(d) + p1(c) · b + p1(c) · Γp2(d) = t.

Proof.An acceptable proofπ,θ satisfiesι(a) • d + c • ι2(b) + c • Γd = ιT (t) + u •
π + θ • v. The commutative property of the linear and bilinear maps gives us

p1(ι1(a)) · p2(d) + p1(c) · p2(ι2(b)) + p1(c) · Γp2(d)
= pT (ιT (t)) + p1(u) · p2(π) + p1(θ) · p2(v) = pT (ιT (t)).

�
Composable witness-indistinguishability follows from the following theorem,

which we prove in the full paper [28].

Theorem 3. In the witness-indistinguishable setting whereι1(G1) ⊆ 〈u1, . . . , um̂〉,
ι2(G2) ⊆ 〈v1, . . . , vn̂〉 andH1, . . . ,Hη generate all matricesH sou • Hv = 0, all
satisfying witnessesx,y, R, S yield proofsπ ∈ 〈v1, . . . , vn̂〉m̂ andθ ∈ 〈u1, . . . , um̂〉n̂
that are uniformly distributed conditioned on the verification equationι1(a) • d + c •
ι2(b) + c • Γd = ιT (t) + u • π + θ • v.

6 NIWI Proof for Satisfiability of a Set of Quadratic Equations

We will now give the full composable NIWI proof for satisfiability of a set of quadratic
equations in a module with a bilinear map. The cryptographic assumption we make is
that the common reference string is created by one of two algorithmsK or S and that
their outputs are computationally indistinguishable. The first algorithm outputs a com-
mon reference string that specifies a soundness setting, whereas the second algorithm
outputs a common reference string that specifies a witness-indistinguishability setting.

Setup: gk := (R, A1, A2, AT , f)← G(1k).
Soundness string:

σ := (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT ,u,v,H1, . . . ,Hη)← K(gk).



Witness-indistinguishability string:
σ := (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT ,u,v,H1, . . . ,Hη)← S(gk).

Proof: The input consists ofgk, σ, a list of quadratic equations{(ai, bi, Γi, ti)}Ni=1

and a satisfying witnessx ∈ Am
1 ,y ∈ An

2 .
Pick at randomR ← Matm×m̂(R) andS ← Matn×n̂(R) and commit to all the
variables asc := x + Ru andd := y + Sv.
For each equation(ai, bi, Γi, ti) make a proof as described in Section 5. In other
words, pickTi ← Matn̂×m̂(R) andri1, . . . , riη ← R compute

πi := R>ι2(bi) + R>Γι2(y) + R>ΓSv − T>
i v +

η∑
j=1

rijHjv

θi := S>ι1(ai) + S>Γ>ι1(x) + Tiu.

Output the proof(c,d, {(πi,θi)}Ni=1).
Verification: The input isgk, σ, {(ai, bi, Γi, ti)}Ni=1 and the proof(c,d, {(πi,θi)}).

For each equation check

ι1(ai) • d + c • ι2(bi) + c • Γid = ιT (ti) + u • πi + θi • v.

Output 1 if all the checks pass, else output 0.

The construction gives us a NIWI proof. We prove the following theorem in the full
paper [28].

Theorem 4. The protocol given above is a NIWI proof for satisfiability of a set of
quadratic equations with perfect completeness, perfect soundness and composable
witness-indistinguishability.

Proof of knowledge.We observe that ifK outputs an additional secret piece of infor-
mationξ that makes it possible to efficiently computep1 andp2, then it is straightfor-
ward to compute the witnessx = p1(c) andy = p2(d), so the proof is a perfect proof
of knowledge.

Proof size.The size of the common reference string ism̂ elements inB1 andn̂ elements
in B2 in addition to the description of the modules, the maps andH1, . . . ,Hη. The size
of the proof ism + Nn̂ elements inB1 andn + Nm̂ elements inB2.

Typically, m̂ and n̂ will be small, giving us a proof size that isO(m + n + N)
elements inB1 andB2. The proof size may thus be smaller than the description of the
statement, which can be of size up toNn elements inA1, Nm elements inA2, Nmn
elements inR andN elements inAT .

6.1 NIWI Proofs for Bilinear Groups

We will now outline the strategy for making NIWI proofs for satisfiability of a set of
quadratic equations over bilinear groups. As we described in Section 2, there are four
different types of equations, corresponding to the following four combinations ofZn-
modules:



Pairing product equations: A1 = G1, A2 = G2, AT = GT , f(X ,Y) = e(X ,Y).
Multi-scalar multiplication in G1: A1 = G1, A2 = Zn, AT = G1, f(X , y) = yX .
Multi-scalar multiplication in G2: A1 = Zn, A2 = G2, AT = GT , f(x,Y) = xY.
Quadratic equations inZn: A1 = Zn, A2 = Zn, AT = Zn, f(x, y) = xy mod n.

The common reference string will specify commitment schemes to respectively scalars
and group elements. We first commit to all the variables and then make the NIWI proofs
that correspond to the types of equations that we are looking at. It is important that
we use the same commitment schemes and commitments for all equations, i.e., for
instance we only commit to a scalarx once and we use the same commitment in the
proof whether the equationx is involved in is a multi-scalar multiplication inG2 or
a quadratic equations inZn. The use of the same commitment in all the equations is
necessary to ensure a consistent choice ofx throughout the proof. As a consequence
of this we use the same moduleB′

1 to commit tox in both multi-scalar multiplication
in G2 and quadratic equations inZn. We therefore end up with at most four different
modulesB1, B

′
1, B2, B

′
2 to commit to respectivelyX , x,Y, y variables. We give the

full construction of efficient NIWI proofs for the three instantiations based on subgroup
decision, SXDH and DLIN respectively in the full paper [28].

7 Zero-Knowledge

We will show that in many cases it is possible to make zero-knowledge proofs for
satisfiability of quadratic equations. An obvious strategy is to use our NIWI proofs
directly, however, such proofs may not be zero-knowledge because the zero-knowledge
simulator may not be able to compute any witness for satisfiability of the equations. It
turns out that the strategy is better than it seems at first sight, because we will often
be able to modify the set of quadratic equations into an equivalent set of quadratic
equations where a witness can be found.

We consider first the case whereA1 = R, A2 = AT , f(r, y) = ry and where
S outputs an extra piece of informationτ that makes it possible to trapdoor open the
commitments inB1. More precisely,τ permits the computation ofs ∈ Rm̂ soι1(1) =
ι1(0)+s>u. We remark that this is a common case; in bilinear groups both multi-scalar
multiplication equations inG1, G2 and quadratic equations inZn have this structure.

Definec = ι1(1) to be a commitment toφ = 1. Let us rewrite the equations in the
statement as

ai · y + f(−φ, ti) + x · bi + x · Γy = 0.

We have introduced a new variableφ and if we choose all of our variables in these
modified equations to be 0 then we have a satisfying witness. In the simulation, we give
the simulator trapdoor information that permits it to openc to 0 and we can now use the
NIWI proof from Section 6.

We will now describe the NIZK proof. The setup, common reference string gen-
eration, proof and verification work as a standard NIWI proof. Here we describe the
simulator.

Simulation string: Usingι1(1) = ι1(0) +
∑m̂

i=1 siui the simulation string is
(σ, τ) := ((B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT ,u,v), s,H1, . . . ,Hη)← S1(gk).



Simulated proof: The input consists ofgk, σ, a list of quadratic equations
{(ai, bi, Γi, ti)}Ni=1 and a satisfying witnessx,y.
Rewrite the equations asai · y + x · bi + f(φ,−ti) + x · Γiy = 0. Definex :=
0,y := 0 andφ = 0 to get a witness that satisfies all equations.
Pick at randomR ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all
the variables asc := 0 + Ru and d := 0 + Sv. We also usec := ι1(1) =
ι1(0) +

∑m̂
i=1 siui and append it toc.

For each modified equation(ai, bi,−ti, Γi, 0) make a proof as described in Section
5. Return the simulated proof{(c,d,πi,θi)}Ni=1.

We prove in the full paper [28] that this construction gives us a perfect NIZK proof.

Theorem 5. The NIWI proof from Section 6 with the simulator described above is a
composable NIZK proof for satisfiability of pairing product equations with perfect com-
pleteness, soundness and composable zero-knowledge, whenA1 = R and the commit-
ment inB1 can be trapdoor opened.

7.1 NIZK Proofs for Bilinear Groups

Let us return to the four types of quadratic equations given in Figure 1. If we set up the
common reference string such that we can trapdoor open respectivelyι′1(1) andι′2(1)
to 0 ∈ Zn then multi-scalar multiplication equations and quadratic equations inZn are
of the form for which we can give zero-knowledge proofs (at no additional cost).

In the case of pairing product equations we do not know how to get zero-knowledge,
since even with the trapdoors we may not be able to compute a satisfiability witness.
We do observe though that in the special case, where alltT = 1 the choice ofX =
O,Y = O is a satisfactory witness. Since we also useX = O,Y = O in the other
zero-knowledge proofs, the simulator can use this witness and give a NIWI proof. In
the special case where alltT = 1 we can therefore make NIZK proofs for satisfiability
of the set of pairing product equations.

Next, let us look at the case where we have a pairing product equation with
tT =

∏n
i=1 e(Pi,Qi) for some knownPi,Qi. In this case, we can add linear equa-

tionsZi = Pi to the set of multi-scalar multiplication equations inG1. We already
know that such equations have zero-knowledge proofs. We can now rewrite the pairing
product equation as(A · Y)(X · B)(Z · Q)(X · ΓY) = 1. We can therefore also
make zero-knowledge proofs if all the pairing product equations havetT of the form
tT =

∏n
i=1 e(Pi,Qi) for some knownPi,Qi.

The case of pairing product equations points to a couple of differences between
witness-indistinguishable proofs and zero-knowledge proofs using our techniques.
NIWI proofs can handle any targettT , whereas zero-knowledge proofs can only handle
special types of targettT . Furthermore, iftT 6= 1 the size of the NIWI proof for this
equation is constant, whereas the NIZK proof for the same equation may be larger.

Acknowledgements

We gratefully acknowledge Brent Waters for a number of helpful ideas, comments, and
conversations related to this work. In particular, our module-based approach can be



seen as formalizing part of the intuition expressed by Waters that the Decisional Linear
Assumption, Subgroup Decision Assumption in composite-order groups, and SXDH
can typically be exchanged for one another. (We were inspired by previously such con-
nections made by [26, 36].) It would be interesting to see if this intuition can be made
formal in other settings, such as Traitor Tracing [12] or Searchable Encryption [13]. We
also thank Dan Boneh for his encouragement and for suggesting using our techniques
to get fair exchange.

References

1. Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-
resistant storage via keyword-searchable encryption. Cryptology ePrint Archive, Report
2005/417, 2005. Available athttp://eprint.iacr.org/2005/417 .

2. Paulo Barreto. The pairing-based crypto lounge, 2006. Available at
http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html .

3. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Non-interactive
anonymous credentials. InTCC, Lecture Notes in Computer Science, 2008. Full paper
available athttp://eprint.iacr.org/2007/384 .

4. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. InSTOC, pages 103–112, 1988.

5. Dan Boneh. Personal communication, 2006.
6. Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without

random oracles. InEUROCRYPT, volume 3027 ofLecture Notes in Computer Science, pages
223–238, 2004.

7. Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
CRYPTO, volume 3152 ofLecture Notes in Computer Science, pages 443–459, 2004.

8. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. InCRYPTO,
volume 3152 ofLecture Notes in Computer Science, pages 41–55, 2004.

9. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. InEUROCRYPT, volume 3027 ofLecture Notes in Com-
puter Science, pages 506–522, 2004.

10. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.SIAM
Journal of Computing, 32(3):586–615, 2003.

11. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
TCC, volume 3378 ofLecture Notes in Computer Science, pages 325–341, 2005.

12. Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. InEUROCRYPT, volume 4004 ofLecture Notes in Computer
Science, pages 573–592, 2006.

13. Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In
EUROCRYPT, volume 4004 ofLecture Notes in Computer Science, pages 427–444, 2006.

14. Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group sig-
natures. InPKC, volume 4450 ofLecture Notes in Computer Science, pages 1–15, 2007.
Available athttp://www.cs.stanford.edu/ ∼xb/pkc07/ .

15. Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size without
random oracles. InICALP, volume 4596 ofLecture Notes in Computer Science, pages 423–
434, 2007.

16. Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with proprocessing. InEUROCRYPT, volume 658 ofLecture Notes in Computer
Science, pages 341–355, 1992.



17. Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-optimal
characterization of two NP proof systems. InRANDOM, volume 2483 ofLecture Notes in
Computer Science, pages 179–193, 2002.

18. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography.SIAM Journal
of Computing, 30(2):391–437, 2000.

19. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
under general assumptions.SIAM Journal of Computing, 29(1):1–28, 1999.

20. Steven D. Galbraith and Victor Rotger. Easy decision Diffie-Hellman groups.London Math-
ematical Society Journal of Computation and Mathematics, 7:201–218, 2004.

21. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proofs.SIAM Journal of Computing, 18(1):186–208, 1989.

22. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. InACM CCS, pages 89–98, 2006.

23. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. InASIACRYPT, volume 4248 of Lecture
Notes in Computer Science, pages 444–459, 2006. Full paper available at
http://www.brics.dk/ ∼jg/NIZKGroupSignFull.pdf .

24. Jens Groth. Fully anonymous group signatures without random oracles. InASIACRYPT, vol-
ume 4833 ofLecture Notes in Computer Science, pages 164–180, 2007. Full paper available
athttp://www.brics.dk/ ∼jg/CertiSignFull.pdf .

25. Jens Groth and Steve Lu. A non-interactive shuffle with pairing based verifiability. InASI-
ACRYPT, volume 4833 ofLecture Notes in Computer Science, pages 51–67, 2007.

26. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
NIZK. In CRYPTO, volume 4117 ofLecture Notes in Computer Science, pages 97–111,
2006.

27. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-knowledge for
NP. InEUROCRYPT, volume 4004 ofLecture Notes in Computer Science, pages 339–358,
2006.

28. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilin-
ear groups. Cryptology ePrint Archive, Report 2007/155, 2007. Available at
http://eprint.iacr.org/2007/155 .

29. Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for
NP with general assumptions.Journal of Cryptology, 11(1):1–27, 1998.

30. Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. InPODC,
pages 12–19, 2003.

31. Kenneth G. Paterson. Cryptography from pairings. In I.F. Blake, G. Seroussi, and N.P. Smart,
editors,Advances in Elliptic Curve Cryptography, volume 317 ofLondon Mathematical So-
ciety Lecture Note Series, pages 215–251. Cambridge University Press, 2005.

32. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. InEUROCRYPT, volume
3494 ofLecture Notes in Computer Science, pages 457–473, 2005.

33. Mike Scott. Authenticated ID-based key exchange and remote log-in with simple to-
ken and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002. Available at
http://eprint.iacr.org/2002/164 .

34. Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryp-
tosystems.Journal of Cryptology, 17(4):277–296, 2004.

35. Brent Waters. Efficient identity-based encryption without random oracles. InEUROCRYPT,
volume 3494 ofLecture Notes in Computer Science, pages 114–127, 2005.

36. Brent Waters. New techniques for slightly 2-homomorphic encryption, 2006. Manuscript.


