
Precise Concurrent Zero Knowledge

Omkant Pandey1, Rafael Pass2?, Amit Sahai1??, Wei-Lung Dustin Tseng2? ? ?,
and Muthuramakrishnan Venkitasubramaniam2

1 {omkant, sahai}@cs.ucla.edu
University of California Los Angeles, California.
2 {rafael, wdtseng, vmuthu}@cs.cornell.edu

Cornell University, New York.

Abstract. Precise zero knowledge introduced by Micali and Pass (STOC’06)
guarantees that the view of any verifier V can be simulated in time closely
related to the actual (as opposed to worst-case) time spent by V in the
generated view. We provide the first constructions of precise concurrent
zero-knowledge protocols. Our constructions have essentially optimal
precision; consequently this improves also upon the previously tightest
non-precise concurrent zero-knowledge protocols by Kilian and Petrank
(STOC’01) and Prabhakaran, Rosen and Sahai (FOCS’02) whose simu-
lators have a quadratic worst-case overhead. Additionally, we achieve a
statistically-precise concurrent zero-knowledge property—which requires
simulation of unbounded verifiers participating in an unbounded number
of concurrent executions; as such we obtain the first (even non-precise)
concurrent zero-knowledge protocols which handle verifiers participating
in a super-polynomial number of concurrent executions.

1 Introduction

Zero-knowledge interactive proofs, introduced by Goldwasser, Micali and Rackoff
[GMR85] are constructs allowing one player (called the Prover) to convince an-
other player (called the Verifier) of the validity of a mathematical statement
x ∈ L, while providing no additional knowledge to the Verifier. The zero-
knowledge property is formalized by requiring that the view of any PPT verifier
V in an interaction with a prover can be “indistinguishably reconstructed” by
a PPT simulator S, interacting with no one, on input just x. Since whatever
V “sees” in the interaction can be reconstructed by the simulator, the interac-
tion does not yield anything to V that cannot already be computed with just
? This material is based upon work supported under a I3P Identity Management and

Privacy Grant.
?? This research was supported in part by NSF ITR and Cybertrust programs (includ-

ing grants 0627781, 0456717, 0716389, and 0205594), a subgrant from SRI as part of
the Army Cyber-TA program, an equipment grant from Intel, an Okawa Research
Award, and an Alfred P. Sloan Foundation Research Fellowship. First author was
supported in part from third author’s grants.

? ? ? This material is based upon work supported under a National Science Foundation
Graduate Research Fellowship, and a NSERC Canada Julie-Payette Fellowship.

2

the input x. Because the simulator is allowed to be an arbitrary PPT machine,
this traditional notion of ZK only guarantees that the class of PPT verifiers
learn nothing. To measure the knowledge gained by a particular verifier, Goldre-
ich, Micali and Wigderson [GMW87] (see also [Gol01]) put forward the notion
of knowledge tightness: intuitively, the “tightness” of a simulation is a func-
tion relating the (worst-case) running-time of the verifier and the (expected)
running-time of the simulator—thus, in a knowledge-tight ZK proof, the verifier
is guaranteed not to gain more knowledge than what it could have computed in
time closely related to its worst-case running-time.

Micali and Pass [MP06] recently introduced the notion of precise zero knowl-
edge (originally called local ZK in [MP06]). In contrast to traditional ZK (and
also knowledge-tight ZK), precise ZK considers the knowledge of an individual
verifier in an individual execution—it requires that the view of any verifier V ,
in which V takes t computational steps, can be reconstructed in time closely
related to t—say 2t steps. More generally, we say that a zero-knowledge proof
has precision p(·, ·) if the simulator uses at most p(n, t) steps to output a view
in which V takes t steps on common input an instance x ∈ {0, 1}n.

This notion thus guarantees that the verifier does not learn more than what
can be computed in time closely related to the actual time it spent in an in-
teraction with the prover. Such a guarantee is important, for instance, when
considering knowledge of “semi-easy” properties of the instance x, considering
proofs for “semi-easy” languages L, or when considering deniability of interactive
protocols (see [MP06,Pas06] for more discussion).

The notion of precise ZK, however, only considers verifiers in a stand-alone
execution. A more realistic model introduced by Dwork, Naor and Sahai [DNS98],
instead considers the execution of zero-knowledge proofs in an asynchronous and
concurrent setting. More precisely, we consider a single adversary mounting a co-
ordinated attack by acting as a verifier in many concurrent sessions of the same
protocol. Concurrent zero-knowledge proofs are significantly harder to construct
and analyze.

Richardson and Kilian [RK99] constructed the first concurrent zero-knowledge
argument in the standard model (without any extra set-up assumptions). Their
protocol requires O(nε) number of rounds. Kilian and Petrank [KP01] later im-
proved the round complexity to Õ(log2 n). Finally, Prabhakaran, Rosen and
Sahai [PRS02] provided a tighter analyis of the [KP01] simulator showing that
Õ(log n) rounds are sufficient. However, none of the simulators exhibited for
these protocols are precise, leaving open the following question:

Do there exist precise concurrent zero-knowledge proofs (or arguments)?

In fact, the simulators of [RK99,KP01,PRS02] are not only imprecise, but
even the overhead of the simulator with respect to the worst-case running-time of
the verifier—as in the definition of knowledge tightness—is high. The simulator
of [RK99] had worst-case precision p(n, t) = tO(logn t)—namely, the running-
time of their simulator for a verifier V with worst-case running-time t is p(n, t)
on input a statement x ∈ {0, 1}n. This was significantely improved by [KP01]

3

who obtained a quadratic worst-case precision, namely p(n, t) = O(t2); the later
result by [PRS02] did not improve upon this, leaving open the following question:

Do there exist concurrent zero-knowledge arguments (or proofs) with sub-
quadratic worst-case precision?

Our Results. Our main result answers both of the above questions in the affir-
mative. In fact, we present concurrent zero-knowledge protocols with essentially
optimal precision. Our main lemma shows the following.

Lemma 1 (Main Lemma) Assuming the existence of one-way functions, for
every k, g ∈ N such that k/g ∈ ω(log n), there exists an O(k)-round concurrent
zero knowledge argument with precision p(t) ∈ O(t · 2logg t) for all languages in
NP.

By setting k and g appropriately, we obtain a simulation with near-optimal
precision.

Theorem 1 Assuming the existence of one-way functions, for every ε > 0, there
exists a ω(log n)-round concurrent zero knowledge argument for all languages in
NP with precision p(t) = O(t1+ε).

Theorem 2 Assuming the existence of one-way functions, for every ε > 0, there
exists an O(nε)-round concurrent zero knowledge argument for all languages in
NP with precision p(t) = O(t2

2
ε logn t). As a corollary, we obtain the following:

For every ε > 0, there exists an O(nε)-round protocol 〈P, V 〉 such that for every
c > 0, 〈P, V 〉 is a concurrent zero knowledge argument with precision p(n, t) =
O(t) with respect to verifiers with running time bounded by nc for all languages
in NP.

Finally, we also construct statistically-precise concurrent ZK arguments for
all of NP, which requires simulation of all verifiers, even those having a priori
unbounded running time.

Theorem 3 Assume the existence of claw-free permutations, then there exists a
poly(n)-round statistically precise concurrent zero-knowledge argument for all of
NP with precision p(t) = t1+

1
logn .

As far as we know, this is the first (even non-precise) concurrent ZK proto-
col which handles verifiers participating in an unbounded number of executions.
Previous work on statistical concurrent ZK also considers verifiers with an un-
bounded running-time; however, those simulations break down if the verifier can
participate in a super-polynomial number of executions.

Our Techniques. Micali and Pass show that only trivial languages have black-
box simulator with polynomial precision [MP06]. To obtain precise simulation,
they instead “time” the verifier and then try to “cut off” the verifier whenever it

4

attempts to run for too long. A first approach would be to adapt this technique
to the simulators of [RK99,KP01,PRS02]. However, a direct application of this
cut-off technique breaks down the correctness proof of these simulators.

To circumvent this problem, we instead introduce a new simulation technique,
which rewinds the verifier obliviously based on time. In a sense, our simulator
is not only oblivious of the content of the messages sent by the verifier (as
the simulator by [KP01]), but also oblivious to when messages are sent by the
verifier!

The way our simulator performs rewindings relies on the rewinding schedule
of [KP01], and our analysis relies on that of [PRS02]. However, obtaining our
results requires us to both modify and generalize this rewinding schedule and
therefore also change the analysis. In fact, we cannot use the same rewinding
schedule as KP/PRS as this yields at best a quadratic worst-case precision.

2 Definitions and Preliminaries

Notation. Let L denote an NP language and RL the corresponding NP-relation.
Let (P,V) denote an interactive proof (argument) system where P and V are
the prover and verifier algorithms respectively. By V∗(x, z, •) we denote a non-
uniform concurrent adversarial verifier with common input x and auxiliary input
(or advice) z whose random coins are fixed to a sufficiently long string chosen
uniformly at random; P(x,w, •) is defined analogously where w ∈ RL(x).

Note that V∗ is a concurrent adversarial verifier. Formally, it means the
following. Adversary V∗, given an input x ∈ L, interacts with an unbounded
number of independent copies of P (all on common input x)3. An execution of
a protocol between a copy of P and V∗ is called a session. Adversary V∗ can
interact with all the copies at the same time (i.e., concurrently), interleaving
messages from various sessions in any order it wants. That is, V∗ has control
over the scheduling of messages from various sessions. In order to implement a
scheduling, V∗ concatenates each message with the session number to which the
next scheduled message belongs. The prover copy corresponding to that session
then immediately replies to the verifier message as specified by the protocol.
The view of concurrent adversary V∗ in a concurrent execution consists of the
common input x, the sequence of prover and verifier messages exchanged during
the interaction, and the contents of the random tape of V∗.

Let viewV∗(x,z,•) be the random variable denoting the view of V∗(x, z, •) in
a concurrent interaction with the copies of P(x,w, •). Let viewSV∗ (x,z,•) denote
the view output by the simulator. When the simulator’s random tape is fixed to
r, its output is instead denoted by viewSV∗ (x,z,r). Finally, let TSV∗ (x,z,r) denote
the steps taken by the simulator and let TV∗(view) denote the steps taken by
3 We remark that instead of a single fixed theorem x, V∗ can be allowed to adaptively

choose provers with different theorems x′. For ease of notation, we choose a single
theorem x for all copies of P. This is not actually a restriction and our results hold
even when V∗ adaptively chooses different theorems.

5

V∗ in the view view. For ease of notation, we will use viewV∗ to abbreviate
viewV∗(x,z,•), and viewSV∗ to abbreviate viewSV∗ (x,z,•), whenever it is clear
from the context.

Definition 1 (Precise Concurrent Zero Knowledge) Let p : N ×N → N
be a monotonically increasing function. (P,V) is a concurrent zero knowledge
proof (argument) system with precision p if for every non-uniform probabilistic
polynomial time V∗, the following conditions hold:

1. For all x ∈ L, z ∈ {0, 1}∗, the following distributions are computationally
indistinguishable over L:{

viewV∗(x,z,•)
}

and
{
viewSV∗ (x,z,•)

}
2. For all x ∈ L, z ∈ {0, 1}∗, and every sufficiently long r ∈ {0, 1}∗, it holds

that:
TSV∗ (x,z,r) ≤ p(|x|, TV∗(viewSV∗ (x,z,r))).

When there is no restriction on the running time of V∗ and the first condition
requires the two distributions to be statistically close (resp., identical), we say
(P,V) is statistical (resp., perfect) zero knowledge.

Next, we briefly describe some of the cryptographic tools used in our con-
struction.

Special Honest Verifier Zero Knowledge (HVZK). A (three round) pro-
tocol is special-HVZK if, given the verifier’s challenge in advance, the simulator
can construct the first and the last message of the protocol such that the simu-
lated view is computationally indistinguishable from the real view of an honest
verifier. The Blum-Hamiltonicity protocol [Blu87] used in our construction is
special-HVZK. When the simulated view is identical to the real view, we say the
protocol is perfect-special-HVZK.

View Simulation. We assume familarity with the notion of “simulating the
verifier’s view”. In particular, one can fix the random tape of the adversarial
verifier V∗ during simulation, and treat V∗ as a deterministic machine.

Perfectly/Statistically Binding Commitments. We assume familiarity with
“perfectly/statistically binding and computationally hiding” commitment schemes.
Such commitment schemes are known based on the existence of one way func-
tion [Nao91,HILL99]. Naor’s scheme has a two round commit phase where the
first message is sent by the receiver. Thereafter, the sender can create the com-
mitment using a randomized algorithm, denoted c ← compb(v). The decom-
mitment phase is only one round, in which the sender simply sends v and the
randomness used, to the receiver. This will be denoted by (v, r) ← dcompb(c).
More on commitment schemes appears in the full version of this paper [PPS+07].

3 Our Protocol

We describe our Precise Concurrent Zero-Knowledge Argument, PCZK, in Fig-
ure 1. It is a slight variant of the PRS-protocol [PRS02]; in fact, the only differ-

6

ence is that we pad each verifier message with the string 0l if our zero knowl-
edge simulator (found in Figure 5) requires l steps of computation to produce
the next message (l grows with the size of x). For simplicity, we use perfectly
binding commitments in PCZK, although it suffices to use statistically binding
commitments, which in turn rely on the existence of one way functions. The
parameter k determines the round complexity of PCZK.

PCZK(k): A Protocol for Precise Concurrent Zero Knowledge Arguments.

All verifier messages are padded with the string 0l where l is the running time required
by our simulator (Figure 5) to compute the next prover message.

(Stage 1)

P0: Select the first message of the perfectly binding commitment scheme
(compb,dcompb) and send it to V.

V0: Select σ
R← {0, 1}n and set β ← compb(σ). Now select strings σ0

i,j
R← {0, 1}n and

σ1
i,j ← {0, 1}n such that σ0

i,j ⊕ σ1
i,j = σ, for i, j = 1, 2, . . . , k (total 2k2 strings).

Create commitments βb
i,j ← compb(σb

i,j) for all values of i, j and b = 0, 1. Send
β, {β0

i,j}ki,j=1, {β1
i,j}ki,j=1, to P.

For j = 1, 2, . . . , k proceed as follows.

Pj: Select rj ∈ {0, 1}k uniformly at random and send it to the verifier.
Vj: Let ri,j denote the ith bit of rj . Then, send σ0

i,j (resp., σ1
i,j) and the decommitment

information of β0
i,j (resp., β1

i,j), if ri,j = 0 (resp., if ri,j = 1) to the prover.

(Stage 2)

p: If V failed to properly decommit in Step Vj, for any j ∈ [k], abort the protocol.
Otherwise, run n parallel and independent copies of BH-prover (Figure 2) and
send the n prover messages p̂ to the verifier.

v: Reveal the challenge σ and send decommitment information for all commitments
which are unopened so far. Each bit of σ can be thought of as verifier’s challenge
in Step v̂ of BH-protocol.

p: Prover verifies that all the decommitments are proper and that σ = σ0
i,j ⊕ σ1

i,j . If
yes, execute the step p̂ for each of the n parallel copies of the BH-protocol.

v: Verify each of the n parallel proofs as described in v̂. If all n v̂ steps are accepting,
accept the proof, otherwise reject the proof.

Fig. 1. Our Precise Concurrent Zero Knowledge Protocol.

Since our PCZK-protocol is just an instantiation of the PRS-protocol (with
extra padding), it is both complete and sound.

7

The Blum-Hamiltonicity(BH) Protocol [Blu87].

p̂: Choose a random permutation π of vertices V . Commit to the adjacency matrix
of the permuted graph, denoted π(G), and the permutation π, using a perfectly
binding commitment scheme. Notice that the adjacency matrix of the permuted
graph contains a 1 in position (π(i), π(j)) if (i, j) ∈ E. Send both the commitments
to the verifier.

v̂: Select a bit σ ∈ {0, 1}, called the challenge, uniformly at random and send it to
the prover.

p̂: If σ = 0, send π along with the decommitment information of all commitments.
If σ = 1 (or anything else), decommit all entries (π(i), π(j)) with (i, j) ∈ C by
sending the decommitment information for the corresponding commitments.

v̂: If σ = 0, verify that the revealed graph is identical to the graph π(G) obtained
by applying the revealed permutation π to the common input G. If σ = 1, verify
that all the revealed values are 1 and that they form a cycle of length n. In both
cases, verify that all the revealed commitments are correct using the decommitment
information received. If the corresponding conditions are satisfied, accept the proof,
otherwise reject the proof.

Fig. 2. The Blum-Hamiltonicity protocol used in PCZK

4 Our Simulator and its Analysis

4.1 Overview

At a high level, our simulator receives several opportunities to rewind the verifier
and extract the “trapdoor” σ that will allow it to complete the simulation. More
precisely, our simulator will attempt to rewind the verifier in one of the k “slots”
(i.e. a message pair 〈(Pj), (Vj)〉) in the first stage. If at any point it obtains the
decommitment information for two different challenges (Pj), the simulator can
extract the secret σ (that the verifier sends in the Stage 2) and simulate the rest
of the protocol using the special-HVZK property of the BH-protocol.

To handle concurrency and precision, consider first the KP/PRS simulator.
This simulator relies on a static and oblivious rewinding schedule, where the
simulator rewinds the verifier after some fixed number of messages, independent
of the message content. Specifically, the total number of verifier messages over all
sessions are divided into two halves. The KP/PRS-rewinding schedule recursively
invokes itself on each of the halves twice (completing two runs of the first half
before proceeding to the two runs of the second half). The first run of each half
is called the primary thread, and the latter is called the secondary thread. As
shown in [KP01,PRS02], after the verifier commits to σ in any given session s,
the KP/PRS-simulator gets several opportunities to extract it before Stage 2
of session s begins. We also call the thread of execution in the final output by
the simulator the main thread. The KP/PRS-simulator keeps uses the secondary

8

threads (recursively) as the main thread; all other threads, used to gather useful
information for extracting σ, are called look-ahead threads. However, since the
verifier’s running time in look-ahead threads could be significantly longer than
its running time in the main thread, the KP/PRS-simulator is not precise.

On the other hand, consider the precise simulation by Micali and Pass [MP06].
When rewinding a verifier, the MP simulator cuts off the second run of the ver-
ifier if it takes more time than the first run, and outputs the view of the verifier
on the first run. Consequently, the running time of the simulator is proportional
to the running time of the verifier on the output view. In order to apply the MP
“cut” strategy on top of the KP/PRS-simulator, we need to use the primary
thread (recursively) as the main output thread, and “cut” the secondary thread
with respect to the primary thread. However, this cut-off will cause the simulator
to abort more often, which significantly complicates the analysis.

To circumvent the above problems, we introduce a new simulation technique.
For simplicity, we first present a simulator that knows an upper bound to the
running-time of the verifier. Later, using a standard “doubling” argument, we
remove this assumption. Like the KP/PRS-rewinding schedule, our simulator is
oblivious of the verifier. But instead of rewinding based on the number of mes-
sages sent, we instead rewind based on the number of steps taken by the verifier
(and thus this simulator is oblivious not only to the content of the messages sent
by the verifier, but also to the time when these messages are sent!). In more
detail, our simulator divides the total running time T of V∗ into two halves and
executes itself recursively on each half twice. In each half, we execute the pri-
mary and secondary threads in parallel. As we show later, this approach results
in a simulation with quadratic precision.

To improve the precision, we further generalize the KP/PRS rewinding sched-
ule. Instead of dividing T into two halves, we instead consider a simulator that
divides T into g parts, where g is called the splitting factor. By choosing g ap-
propriately, we are able to provide precision p(t) ∈ O(t1+ε) for every constant ε.
Furthermore, we show how to achieve essentially linear precision by adjusting
both k (the round complexity of our protocol) and g appropriately.

4.2 Worst Case Quadratic Simulation

We first describe a procedure that takes as input a parameter t and simulates
the view of the verifier for t steps. The simulate procedure described in Figure
3 employs the KP rewinding method with the changes discussed earlier. In Stage
1, simulate simply generates uniformly random messages. simulate attempts
to extract σ using rewindings, and uses the special honest-verifier ZK property
of the BH protocol to generate Stage 2 messages. If the extraction of σ fails, it
outputs ⊥. The parameter st is the state of V∗ from which the simulation should
start, and the parameter H is simply a global history of all “useful messages”
for extracting σ.4

4 For a careful treatment of H, see [Ros04].

9

Let st0 be the initial state of V∗ and d = dt be the maximum recursion depth
of simulate(t, st0, ∅). The actual precise simulator constructed in the next sec-
tion uses simulate as a sub-routine, for which we show some properties below.
In Proposition 2, we show that simulate(t, st0, ∅) has a worst case running time
of O(t2), and in Proposition 3 we show that simulate outputs ⊥ with negligible
probability.

The simulate(t, st,H) Procedure.

1. If t = 1,
(a) If the next scheduled message, pu, is a first stage prover message, choose pu

uniformly. Otherwise, if pu is a second stage prover message, compute pu using
the prove procedure (Figure 4). Feed pu to the verifier. If the next scheduled
message is verifier’s message, run the verifier from its current state st for exactly
1 step. If an output is received then set vu ← V∗(hist, pu). Further, if vu is a
first stage verifier message, store vu in H.

(b) Update st to the current state of V∗. Output (st,H).
2. Otherwise (i.e., t > 1),

(a) Execute the following two processes in parallel :
i. (st1,H1)← simulate(t/2, st,H). (primary process)

ii. (st2,H2)← simulate(t/2, st,H). (secondary process)
Merge H1 and H2. Set the resulting table equal to H.

(b) Next, execute the following two processes in parallel, starting from st1,
i. (st3,H3)← simulate(t/2, st1,H). (primary process)

ii. (st4,H4)← simulate(t/2, st1,H)5. (secondary process)
(c) Merge H3 and H4. Set the resulting table equal to H.

Output (st3,H) and the view of V∗ on the thread connecting st, st1, and st3.

Fig. 3. The time-based oblivious simulator

Proposition 2 (Running Time of simulate) simulate(t, ·, ·) has worst-case
running time O(t2).

Proof We partition the running time of simulate into the time spent emulating
V∗, and the time spent simulating the prover (i.e. generating prover messages).
By construction, simulate(t, ·, ·) spends time at most t emulating V∗ on main
thread. Furthermore, the number of parallel executions double per level of re-
cursion. Thus, the time spent in simulating V∗ by simulate(t, ·, ·) is t ·2d, where
the d is the maximum depth of recursion. Since d = dt = dlog2 te ≤ 1 + log2 t,
we conclude that simulate spends at most 2t2 steps emulating V∗. To compute

5 In the case where t does not divide evenly into two, we use bt/2c + 1 in step (2a),
and bt/2c in step (2b).

10

The prove Procedure.

Let s ∈ [m] be the session for which the prove procedure is invoked. The procedure
outputs either p or p, whichever is required by SV∗ . Let hist denote the set of messages
exchanged between SV∗ and V∗ in the current thread. The prove procedure works as
follows.

1. If the verifier has aborted in any of the k first stage messages of session s (i.e.,
hist contains Vj=ABORT for j ∈ [k] of session s), abort session s.

2. Otherwise, search the table H to find values σ0
i,j , σ

1
i,j belonging to session s, for

some i, j ∈ [k]. If no such pairs are found, output ⊥ (indicating failure of the
simulation). Otherwise, extract the challenge σ = σ1σ2 . . . σn as σ0

i,j ⊕ σ1
i,j , and

proceed as follows.
(a) If the next scheduled message is p, then for each h ∈ [n] act as follows. If

σh = 0, act according to Step p̂ of BH-protocol. Otherwise (i.e., if σh = 1),
commit to the entries of the adjacency matrix of the complete graph Kn and
to a random permutation π.

(b) Otherwise (i.e., the next scheduled message is p), check (in hist) that the
verifier has properly decommitted to all relevant values (and that the hth bit
of σ0

j ⊕ σ1
j equals σh for all j ∈ [k]) and abort otherwise.

For each h ∈ [n] act as follows. If σh = 0, decommit to all the commitments
(i.e., π and the adjacency matrix). Otherwise (i.e., if σh = 1), decommit only
to the entries (π(i), π(j)) with (i, j) ∈ C where C is an arbitrary Hamiltonian
cycle in Kn.

Fig. 4. The prove Procedure used by simulate for Stage 2 messages

the time spent simulating the prover, recall that the verifier pads each messages
with 0l if the simulate requires l steps of computation to generate the next
message. Therefore, simulate always spends less time simulating the prover
than V∗ giving us a bound of 2 · 2t2 = 4t2 on the total running time. �

Proposition 3 The probability that simulate outputs ⊥ is negligible in n.

Proof The high-level structure of our proof follows the proof of PRS. We observe
that simulate outputs ⊥ only when it tries to generate Stage 2 messages. We
show in Lemma 4 that for each session, the probability of outputting ⊥ for the
first time on any thread is negligible. Since simulate only runs for polynomial
time, there are at most polynomial sessions and threads.6 Therefore, we conclude
using the union bound that simulate outputs ⊥ with negligible probability.

Lemma 4 For any session s0 and any thread l0 (called the reference session
and the reference thread), the probability that session s0 and thread l0 is the first
time simulate outputs ⊥ is negligible.
6 We will reexamine this claim in section 5, where simulation time is (a priori) un-

bounded.

11

Proof Recall that for simulate to extract σ, V∗ needs to reply to two different
challenges (Pj) with corresponding (Vj) messages (j ≥ 1) (after V∗ has already
committed to σ). Since simulate generates only polynomially many uniformly
random (Pj) messages, the probability of any two challenge being identical is
exponentially small in n. Therefore, it is sufficient to bound the probability
conditioned on simulate never repeating the same challenge.7

We now proceed using a random-tape counting argument similar to PRS.
For a fixed session s0 and thread l0, we call a random tape ρ bad, if running
simulate with that random tape makes it output ⊥ first on session s0 in thread
l0. The random tape is called good otherwise. As in PRS, we show that every bad
random tape can be mapped to a set of super-polynomially many good random
tapes. Furthermore, this set of good random tapes is unique. Such a mapping
implies that the probability of a random tape being bad is negligible. Towards
this goal, we provide a mapping f that takes a bad random tape to a set of good
random tapes.

To construct f , we need some properties of good and bad random tapes. We
call a slot (i.e. a message pair 〈(Pj), (Vj)〉) good if the verifier does not ABORT on
this challenge. Then:

1. When simulate uses a bad random tape, all k slots of session s0 on thread
l0 are good. (Otherwise, simulate can legitimately abort session s0 without
outputting ⊥.)

2. A random tape is good if there is a good slot such that (1) it is on a non-
reference thread l 6= l0, (2) it occurs after V∗ has committed to σ with
message (V0) on thread l0, and (3) it occurs before the Stage 2 message
(p) takes place on thread l0. This good slot guarantees that simulate can
extract σ if needed.

Properties 1 and 2 together give the following insight: Given a bad tape,
“moving” a good slot from the reference thread l0 to a non-reference thread pro-
duces a good random tape. Moreover, the rewind-schedule of simulate enables
us to “swap” slots across threads by swapping segments of simulate’s random
tape. Specifically, whenever simulate splits into primary and secondary pro-
cesses, the two processes share the same start state, and are simulated for the
same number of steps in parallel; swapping their random tapes would swap the
simulation results on the corresponding threads8.

We define a rewinding interval to be a recursive execution of simulate on
the reference thread l0 that contains a slot, i.e. a 〈(Pj), (Vj)〉-pair, but does
not contain the initial message (V0) or the Stage 2 message (p). A minimal
rewinding interval is defined to be a rewinding interval where none of its children
intervals (i.e. smaller recursive executions of simulate on l0) contain the same
slot (i.e. both (Pj) and (Vj)). Following the intuition mentioned above, swapping

7 As in footnote 6, we will reexamine this claim in section 5, where simulation time is
unbounded.

8 V∗ is assumed to be deterministic.

12

the randomness of a rewinding interval with its corresponding intervals on non-
reference threads will generate a good tape (shown in Claim 3).

We next construct the mapping f to carry out the swapping of rewinding
intervals in a structured way. Intuitively, f finds disjoint subsets of minimal
rewinding intervals and performs the swapping operation on them. The f we use
here is exactly the same mapping constructed in PRS (see Figure 5.4 of [Ros04],
or the appendix for a more detailed description). Even though our simulator
differs from that of PRS, the mapping f works on any simulator satisfying the
following two properties: (1) Each rewinding is executed twice. (2) Any two
rewindings are either disjoint or one is completely contained in the other.

We proceed to give four properties of f . Claim 1 bounds the number of ran-
dom tapes produced by f based on the number of minimal rewinding intervals,
while Claim 2 shows that f maps different bad tapes to disjoint sets of tapes.
Both these properties of f syntactically follows by using the same proof of PRS
for any simulator that satisfy the two properties mentioned above and we inherit
them directly. In the following claims, ρ denotes a bad random tape.

Claim 1 (f produces many tapes) |f(ρ)| ≥ 2k
′−d, where k′ is the number

of minimal rewinding intervals and d is the maximum number of intervals that
can overlap with each other.

Remark: We reuse the symbol d since the maximum number of intervals that
can overlap each other is just the maximum depth of recursion.

Claim 2 (f produces disjoint sets of tapes) If ρ′ 6= ρ is another bad tape,
f(ρ) and f(ρ′) are disjoint.

Proof These two claims were the crux of [PRS02] [Ros04]. See Claim 5.4.12
and Claim 5.4.11 in [Ros04], for more details. We remark that Claim 1 is proved
with an elaborate counting argument. Claim 2, on the other hand, is proved
by constructing an “inverse” of f based on the following observation. On a bad
tape, good slots appear only on the reference thread l0. Therefore, given a tape
produced by f , one can locate the minimal intervals swapped by f by searching
for good slots on non-reference threads, and invert those swappings. �

In Claim 3 we show that, the tapes produced by f are good, while Claim
4 counts the number of minimal rewinding intervals. These two claims depend
on how simulate recursively calls itself and hence we cannot refer to PRS for
the proof of these two claims; nevertheless, they do hold with respect to our
simulator as we prove below.

Claim 3 (f produces good tapes) The set f(ρ)\{ρ} contains only good tapes
(for simulate).

Proof This claim depends on the order in which simulate executes its recursive
calls, since that in turn determines when σ extracted. The proof of this claim
by PRS (see Claim 5.4.10 in [Ros04]) requires the main thread of the simulator
to be executed after the look-ahead threads. simulate, however, runs the two

13

executions in parallel. Nevertheless, we provide an alternative proof that handles
such a parallel rewinding.

Consider ρ′ ∈ f(ρ), ρ′ 6= ρ. Let I be the first minimal rewinding interval
swapped by f , and let J be the corresponding interval where I is swapped to.
Since I is the first interval to be swapped, the contents of I and J are exchanged
on ρ′ (while later intervals may be entirely changed due to this swap). Observe
that after swapping, the 〈(Pj), (Vj)〉 message pair that originally occurred in I
will now appear on a non-reference thread inside J . Now, there are two cases
depending on J :

Case 1: J does not contain the first Stage 2 message (p) before the swap.
After swapping the random tapes, (p) would occur on the reference thread
after executing both I and J . By property 2, we arrive at a good tape.

Case 2: J contains the first Stage 2 message (p) before the swap. By
the definition of a bad random tape, simulate gets stuck for the first time
on the reference thread after I and J are executed; Consequently, after swap-
ping the random tape, simulate will not get stuck during I. simulate also
cannot get stuck later on thread l0, again due to property 2. In this case, we
also arrive at a good tape.

�

Claim 4 There are at least k′ = k− 2d minimal rewinding intervals for session
s0 on thread l0 (for simulate).

Proof This claim depends on the number of recursive calls made by simulate.
For now, simulate(t, ·, ·) splits t into two halves just like in PRS, thus this
result follows using the same proof as in PRS. Later, in Claim 7, we provide a
self-contained proof of this fact in a more general setting. �
Concluding proof of Lemma 4: It follows from Claims 1, 2, 3 and 4 that
every bad tape is mapped to a unique set of at least 2k−3d good random tapes.
Hence, the probability that a random tape is bad is at most

1
2k−3d

Recall that d = dlog2 T e ∈ O(log n), since T is a polynomial in n. Therefore, the
probability of a bad tape occurring is negligible if k ∈ ω(log n). �

This concludes the proof of Proposition 3. �

4.3 Precise Quadratic Simulation

Recall that simulate takes as input t, and simulates the verifier for t steps.
Since the actual simulator SV∗ (described in Figure 5) does not know a priori
the running time of the verifier, it calls simulate with increasing values of t̂,
doubling every time simulate returns an incomplete view. On the other hand,
should simulate ever output ⊥, SV∗ will immediately output ⊥ as will and
terminate. Also, SV∗ runs simulate with two random tapes, one of which is

14

used exclusively whenever simulate is on the main thread. Since, SV∗ uses the
same tape every time it calls simulate, the view of V∗ on the main thread
proceeds identically in all the calls to simulate.

SV∗(ρ1, ρ2), where ρ1 and ρ2 are random tapes.

1. Set t̂ = 1, st = initial state of V∗,H = ∅.
2. While simulate did not generate a full view of V∗:

(a) t̂← 2t̂
(b) run simulate(t̂, st, ∅, (ρ1, ρ2)), where random tape ρ1 is exclusively used to

simulate the verifier on the main thread, and random tape ρ2 is used for all
other threads.

(c) output ⊥ if simulate outputs ⊥
3. Output the full view V∗ (i.e., random coins and messages exchanged) generated

on the final run of simulate(t̂, st, ∅)

Fig. 5. The Quadratically Precise Simulator.

Lemma 5 (Concurrent Zero Knowledge) The ensembles {viewSV∗ (x, z)}x∈L,z∈{0,1}∗
and
{viewV∗(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over L.

Proof We consider the following “intermediate” simulator S ′ that on input x
(and auxiliary input z), proceeds just like S (which in turn behaves like an honest
prover) in order to generate messages in Stage 1 of the view. Upon entering Stage
2, S ′ outputs ⊥ if S does; otherwise, S ′ proceeds as an honest prover in order to
generate messages in Stage 2 of the view. Indistinguishability of the simulation
by S then follows from the following two claims:

Claim 5 The ensembles {viewS′V∗ (x, z)}x∈L,z∈{0,1}∗ and {viewV∗(x, z)}x∈L,z∈{0,1}∗
are statistically close over L.

Proof We consider another intermediate simulator S ′′ that proceeds identically
like S ′ except that whenever S ′ outputs ⊥ in a Stage 2 message, S ′ instead
continues simulating like an honest prover. Essentially, S ′′ never fails. Since S ′′
calls simulate for several values of t, this can skew the distribution. However,
recall that the random tape fed by S ′′ into simulate to simulate the view on the
main thread is identical for every call. Therefore, the view on the main thread of
simulate proceeds identically in every call to simulate. Thus, it follows from
the fact that the Stage 1 messages are generated uniform at random and that
S ′′ proceeds as the honest prover in Stage 2, the view output by S ′′ and the
view of V∗ are identically distributed.

15

It remains to show that view output by S ′ and S ′′ are statistically close over
L. The only difference between S ′ and S ′′ is that S ′ outputs ⊥ sometimes. It
suffices to show that S ′ outputs ⊥ with negligible probability. From Proposi-
tion 3, we know that simulate outputs ⊥ only with negligible probability. Since
simulate is called at most logarithmically many times due to the doubling of t,
using the union bound we conclude that S ′ outputs ⊥ with negligible probability.
�

Claim 6 The ensembles {viewSV∗ (x, z)}x∈L,z∈{0,1}∗ and {viewS′V∗ (x, z)}x∈L,z∈{0,1}∗
are computationally indistinguishable over L.

Proof The only difference between S and S ′ is in the manner in which the Stage
2 messages are generated. Indistinguishability follows from the special honest-
verifier ZK property using a standard hybrid argument, as given below.

Assume for contradiction that there exists a verifier V ∗, a distinguisher D
and a polynomial p(·) such that D distinguishes the ensembles {viewSV∗ (x, z)}
and {viewS′V∗ (x, z)} with probability 1

p(n) . Furthermore, let the running time
of V ∗ be bounded by some polynomial q(n). We consider a sequence of hybrid
simulators, Si for i = 0 to q(n). Si proceeds exactly like S, with the exception
that in the first i proofs that reach the second stage, it proceeds using the honest
prover strategy in the second stage for those proofs. By construction S0 = S and
Sq(n) = S ′ (since there are at most q(n) sessions, bounded by the running time
of the simulators). By assumption the output of S0 and Sq(n) are distinguishable
with probability 1

p(n) , so there must exist some j such that the output of Sj
and Sj+1 are distinguishable with probability 1

p(n)q(n) . Furthermore, since Sj
proceeds exactly as Sj+1 in the first j sessions that reach the second stage, and
by construction they proceed identically in the first stage in all sessions, there
exists a partial view v of Sj and Sj+1—which defines an instance for the protocol
in the second stage of the j + 1 session—such that the output of Sj and Sj+1

are distinguishable, conditioned on the event that Sj and Sj+1 feed V ∗ the view
v. Since the only difference between the view of V ∗ in Sj and Sj+1 is that the
former is a simulated view, while the later is a view generated using an honest
prover strategy, this contradicts the special honest-verifier ZK property of the
BH-protocol in the second stage of the protocol. � �

Lemma 6 (Quadratic Precision) Let viewSV∗ be the output of the simulator
SV∗ , and t be the running time of V∗ on the view viewSV∗ . Then, SV∗ runs in
time O(t2).

Proof Recall that, SV∗ runs simulate with increasing values of t̂, doubling each
time, until a view is output. We again use the fact that the view on the main
thread of simulate proceeds identically (in this case, proceeds as viewSV∗)
since the random tape used to simulate the main thread is identical in every call
to simulate. Therefore, the final value of t̂ when v is output satisfies,

t ≤ t̂ < 2t

16

The running time of SV∗ is simply the sum of the running times of simulate(t, st, ∅)
with t = 1, 2, 4, . . . , t̂. By Lemma 2, this running time is bounded by

c12 + c22 + c42 + · · ·+ ct̂2 ≤ 2ct̂2 ≤ 8ct2

For some constant c. �

4.4 Improved Precision

We now consider a generalized version of simulate. Let g ≥ 2 be an integer;
simulateg(t, ·, ·) will now divide t in g smaller intervals. If t does not divide
into g evenly, that is if t = qg + r with r > 0, let the first r sub-intervals have
length bt/gc + 1, and the rest of the g − r sub-intervals have length bt/gc. We
call g the splitting factor, and assume k/g ∈ ω(log n) as stated in Theorem 1.
Due to the lack of space most of the details of this section are given in the full
version [PPS+07]. We only state our main claims here.

In the full version, we demonstrate that the running time of our new simulator
is given by the following lemma.

Lemma 7 (Improved Precision) Let viewSV∗ be the output of the simulator
SV∗ using simulateg, and t be the running time of V∗ on the view viewSV∗ .
Then, SV∗ runs in time O(t · 2logg t) = O(t1+logg 2).

Thereafter, we show there the indistinguishability of the simulator’s output.

Lemma 8 (Concurrent Zero Knowledge) {viewSV∗ (x, z)}x∈L,z∈{0,1}∗ and
{viewV∗(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over L.

Finally, in order to deduce our main lemma, we demonstrate the following
important claim regarding the number of minimum intervals with respect to our
new simulator. This claim is analogous to claim 4. It, however, depends on the
splitting factor g and is modified as follows:

Claim 7 (Number of Minimal Rewinding Intervals) There are at least k′ =
k
g−1−2d minimal rewinding intervals for session s0 on thread l0 (for simulateg),
where d is the recursion depth.

The main use of this lemma is in deducing that our new simulator outputs
⊥ with only negligible probability.

4.5 Proof of Main Lemma and Consequences

Lemma 1 (Main Lemma) Assuming the existence of one-way functions, then
for every k, g ∈ N such that k/g ∈ ω(log n), there exists an O(k)-round concur-
rent zero knowledge argument with precision p(t) ∈ O(t ·2logg t) for all languages
in NP.

17

Proof Using Lemmata 7 and 8, we conclude that the simulator SV∗ (using
simulateg) outputs a verifier view of the right distribution with precision O(t ·
2logg t). �

By setting g = 21/ε and k ∈ ω(log n) in our main lemma, we get our first
theorem.

Theorem 1 Assuming the existence of one-way functions, for every ε > 0, there
exists a ω(log n)-round concurrent zero knowledge argument for all languages in
NP with precision p(t) = O(t1+ε).

Finally, by setting g = nε/2 and k = nε in our main lemma, we get our next
theorem.

Theorem 2 Assuming the existence of one-way functions, for every ε > 0, there
exists an O(nε)-round concurrent zero knowledge argument for all languages in
NP with precision p(t) = O(t2

2
ε logn t). As a corollary, we obtain the following:

For every ε > 0, there exists an O(nε)-round protocol 〈P, V 〉 such that for every
c > 0, 〈P, V 〉 is a concurrent zero knowledge argument with precision p(n, t) =
O(t) with respect to verifiers with running time bounded by nc for all languages
in NP.

5 Statistically Precise Concurrent Zero-Knowledge

In this section, we construct a statistically precise concurrent ZK argument for
all of NP. Recall that statistically precise ZK requires the simulation of all
malicious verifiers (even those having a priori unbounded running time) and
the distribution of the simulated view must be statistically close to that of the
real view. A first approach is to use the previous protocol and simulator with
the splitting factor fixed appropriately. However this approach does not work
directly; briefly the reason being that we will need k to superpolynomial in n.
We thus present a slightly modified simulator, which appears shortly.

Theorem 3 Assume the existence of claw-free permutations, then there exists a
poly(n)-round statistically precise concurrent zero-knowledge argument for all of
NP with precision p(n, t) = O(t1+

1
logn).

Description of protocol: We essentially use the same protocol described in Sec-
tion 3 setting the number of rounds k = 5n2 log n (n is the security parameter),
with the following exception: In Stage 2 of the protocol, the prover uses perfectly
hiding commitments in the BH-protocol instead of computational hiding. This
makes the BH-protocol perfect-special-HVZK.

Description of simulator S: The simulator S executes SV∗ with g = n and
outputs whatever SV∗ outputs, with the following exception: while executing
simulaten (inside SV∗), if the verifier in the main thread runs for more than
2n log2 n steps, it terminates the execution of simulaten and retrieves the partial

18

history hist simulated in the main thread so far. Then, it continues to simulate
the verifier from hist in a “straight-line” fashion—it generates uniformly random
messages for the Stage 1 of the protocol, and when it reaches Stage 2 of the
protocol for some session, it runs the brute-force-prove procedure, given in the
full version. An analysis of this simulator appears in [PPS+07].

Acknowledgements. We would like to thank Alon Rosen for several helpful
discussions.

References

[Blu87] Manuel Blum. How to prove a theorem so no one else can claim it. In
Proceedings of the International Congress of Mathematicians, pages 1444–
1451, 1987.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero knowledge.
In Proc. 30th STOC, pages 409–418, 1998.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof-systems. In Proc. 17th STOC, pages 291–304, 1985.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game.
In ACM, editor, Proc. 19th STOC, pages 218–229, 1987. See [Gol04, Chap. 7]
for more details.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume Basic Tools. Cam-
bridge University Press, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cam-
bridge University Press, 2004.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999. Preliminary versions appeared in STOC’
89 and STOC’ 90.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in
poly-logarithm rounds. In Proc. 33th STOC, pages 560–569, 2001. Prelimi-
nary full version published as cryptology ePrint report 2000/013.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In Jon M. Kleinberg,
editor, STOC, pages 306–315. ACM, 2006.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptol-
ogy, 4(2):151–158, 1991. Preliminary version in CRYPTO’ 89.

[Pas06] Rafael Pass. A Precise Computational Approach to Knowledge. PhD thesis,
MIT, July 2006.

[PPS+07] Omkant Pandey, Rafael Pass, Amit Sahai, Wei-Lung Dustin Tseng, and
Muthuramakrishnan Venkitasubramaniam. Precise concurrent zero knowl-
edge. Cryptology ePrint Archive, Report 2007/451, 2007. http://eprint.

iacr.org/2007/451.pdf.
[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowl-

edge with logarithmic round-complexity. In Proc. 43rd FOCS, 2002.
[RK99] R. Richardson and J. Kilian. On the concurrent composition of zero-

knowledge proofs. In Eurocrypt ’99, pages 415–432, 1999.
[Ros04] Alon Rosen. The Round-Complexity of Black-Box Concurrent Zero-

Knowledge. PhD thesis, Department of Computer Science and Applied
Mathematics, Weizmann Institute of Science, Rehovot, Israel, 2004.

