
Collisions for the LPS expander graph hash
function

Jean-Pierre Tillich1 and Gilles Zémor2

1 INRIA, Équipe SECRET,
Rocquencourt, 78153 Le Chesnay, France.

jean-pierre.tillich@inria.fr
2 Institut de Mathématiques de Bordeaux,

Université Bordeaux 1,
351, cours de la Libération, 33405 Talence, France

Gilles.Zemor@math.u-bordeaux1.fr

Abstract. We analyse the hash function family based on walks in LPS
Ramanujan graphs recently introduced by Charles et al. We present an
algorithm for finding collisions that runs in quasi-linear time in the length
of the hashed value. A concrete instance of the hash function is consid-
ered, based on a 100-digit prime. A short collision is given, together with
implementation details.

1 Introduction

Given the recent profusion of efficient attacks against widely used practical hash
functions, among which the MD and SHA families, there is a growing need for
hash functions built upon different principles, and in particular with some degree
of proven collision resistance that would come under the form: finding a collision
is equivalent to solving a clearly identified mathematical problem. A promising
design strategy that has been experimented with in the past and is undergoing
recent developments [2, 3], consists of choosing a large fixed graph that has a
short and computationally efficient description, together with a natural corre-
spondence between strings over a given alphabet and paths in the graph. The
output of the hashed function is declared to be the endpoint of the path. Find-
ing collisions is then essentially equivalent to finding cycles in the graph. If the
hashed values have to be written with at least n bits, then the smallest cycle
size (the girth of the graph) can be made to be at least cn for constant c, so that
general purpose algorithms for finding cycles in graphs are useless because they
are exponential in the cycle size.

Hash functions based on this principle were introduced in the past in [18,
17, 19]. The graphs are Cayley graphs over the groups G of 2 × 2 matrices SL2

over finite fields of prime orders [18, 19] and order a power of 2 [17]. A Cayley
graph over the group G has the group elements as vertex set and there is an
edge between group elements x and y if y = xs where s belongs to a small, fixed,
carefully chosen set S of group elements.

Finding collisions in such schemes is tantamount to factoring group elements
into short non-trivial products of elements of S. The first attempt [18] was broken
in [16]. Attacks have then been mounted against [19, 17] in [4, 6, 14]. However,
a close look at these papers shows that they do not find genuine collisions.
Geiselman [6] does discuss a method, but it produces collisions between input
messages of astronomical size. Charnes and Pieprzyk [4] choose the field Fp

that defines the hash function after choosing a potential collision. Similarly,
Steinwandt et al. [14] choose the polynomial P (X) over F2 that defines the
hash function a posteriori. This means that if the defining parameters of the
hash function (the prime p or the polynomial P (X)) are for example chosen to
be the output of a trusted one-way function, no method is known to date for
breaking these schemes. This is encouraging for SL2 based hash functions and
more generally, for hashing schemes whose collision resistance is based on the
hardness of factoring in arithmetic groups.

Hashing schemes that build upon these ideas have also been proposed and
discussed in [1, 15]. An application to authenticating sequences and signing video
images is given in [12].

In recent work [2, 3], Charles et al. presented two hash function families
that are also based on walking the message through a graph with arithmetic
properties. The emphasis is on the expanding quality of the associated graph.
Expansion is relevant to the hashing scheme because it implies the rapidly-mixing
property, which means that when the input messages are sufficiently random,
the output is uniformly distributed over the set of hash codes. This property
stays true even when the input messages are limited to relatively small lengths.
A proof of this property is clearly desirable for hashing, especially so if the hash
functions are used in protocols whose security relies on the random oracle model.

In the present paper we consider the second hashing scheme of Charles et
al., which is the fastest and the most likely to be considered for actual use
[10]. Specifically, this scheme is based on the celebrated “Ramanujan” expander
graphs of Lubotzky, Philips and Sarnak. In [3] the scheme is claimed to be an
improvement over [19, 17] and the underlying theoretical problem believed to
be difficult. In what follows we solve the underlying problem, namely the fac-
torisation of unity into generators of the Ramanujan Cayley graph, and provide
collisions for arbitrary instances of the LPS Ramanujan hashing scheme of [3].
We exhibit an algorithm for finding collisions that runs in time quasi-linear in n,
where n is the hashcode size. An actual example is discussed and implementation
details are given.

The paper is organised as follows. In Section 2 we give a precise descrip-
tion of the hash function of [3]. In Section 3 we give an overview of the attack
together with the arithmetic properties that we need. In Section 4 we provide
missing details. In Section 5 we discuss a worked-out example for a Ramanujan
graph based on a 100-digit prime. Dealing with 1024-bit primes is not a problem
but putting the factorisation in print would be ungainly and uninformative. In
Section 6 we give some comments on the attack, on possible repairs, and more

generally on hashing schemes based on factoring in groups. A Maple program
implementing the attack is given in the appendix.

2 The hash function

The cryptographic function under study, that will be denoted by H, is a partic-
ular instance of the following construction.

2.1 The general construction

Defining parameter.
A finite group G, and a set of generators S such that S−1 = S. Let a

def= |S|−1.
Choose now a function:

π : {0, 1, . . . , a− 1} × S → S

such that for any g ∈ S the set π ({0, 1, . . . , a− 1} × {g}) is equal to S \ {g−1}.
Algorithm.

Convert the input message to a base-a number x0x1 . . . xk. Define the se-
quence (gi)0≤i≤k inductively as follows

gi = π(xi, gi−1)

where g−1 is some fixed element in S. The hashcode of the input message is just
the group element

H(x) = gg0g1 . . . gk

where g is a fixed element of G and x = (x0, x1, . . . , xk).
This construction is slightly more complex than the one presented in [17, 19].

The idea is roughly the same: replace the symbols of the text to be hashed with
group elements and multiply them together to obtain the hashed value. What
is different here is the fact that the way a group element is mapped to a letter
in the text depends both on the letter and on the previous associated group
element. This rather involved definition is a consequence of the fact that in the
generator set S there are pairs of generators which are inverse of each other. This
implies that in order to avoid trivial collisions one should avoid having products
gigi+1 where gi = g−1

i+1. The way π is defined on the set {0, 1, . . . , a − 1} × {g}
avoids this unwanted phenomenon.

It can be checked [3] that finding collisions for the hash function reduces to
the following problem

Problem 2.1 — Find g1, g2, . . . , gt all in S such that

g1g2 . . . gt = 1

gigi+1 6= 1 ∀i ∈ {1, 2, . . . , t− 1}

More precisely, finding a collision for H with two messages of size t′ and t′′

gives a solution to the previous problem for some t ≤ t′ + t′′. This can checked
as follows. The hashed value of the first message is the result of a product of
the form gg′1 . . . g′t′ whereas the second one corresponds to a product gg′′1 . . . g′′t′′
where the g′i’s and the g′′i ’s belong to S. Both values coincide and therefore
g′1 . . . g′t′ = g′′1 . . . g′′t′′ . This implies that g′1 . . . g′t′g

′′−1
t′′ . . . g′′−1

1 = 1. Conversely,
consider a factorisation of the form g1g2 . . . gt = 1 with g1, g2, . . . , gt all in S and
gigi+1 6= 1 for i in {1, 2, . . . , t − 1}. This implies that g1g2 . . . gt′ = g−1

t . . . g−1
t′+1

for any t′ in {1, . . . t − 1}. If g−1
1 and gt are both different from g−1 this yields

a collision for the hash function with messages of size t′ and t− t′ respectively.
Otherwise, if |S| ≥ 4 there exists g′ in S such that g′ ∈ S\{g−1

−1 , g−1
1 , gt}. Observe

now that gg′g1g2 . . . gt′ = gg′g−1
t . . . g−1

t′+1 and that the first term corresponds to
the hashed value of a message of size t′+1 whereas the second term corresponds
to the hashed value of a message of size t− t′ + 1.

As explained in the introduction, the Cayley graph associated to G and S has
vertex set G and there is an edge between x and y if and only if y is equal to x.g
for some g in S. Calculating the hashcode gg1g2 . . . gt of a t-symbol long input
message amounts to taking a non-backtracking walk in the graph by starting at
vertex g and performing the following steps

g
g1→ gg1

g2→ gg1g2 → · · · gt→ gg1g2 . . . gt.

This walk is non-backtracking since we do not allow products of the form gigi+1

that would be equal to the identity.
The particular Cayley graph chosen by the authors of [3] (whose defining

group G and generator set S are presented in Subsection 2.2 below) is the cele-
brated Ramanujan graph construction of Lubotzky, Phillips, Sarnak (LPS) [11].
It has two properties relevant to hashing.

First, the graph is a good expander (see [3], [13] for details and [9] for a
modern survey on expander graphs). This implies among other things that a
random walk in this graph is close to the uniform distribution when the length
of the walk is some constant times the logarithm of the number of vertices. From
this property it is readily seen that the distribution of the hashed values is close
to the uniform distribution as soon as the text size is some constant times the
hashcode size. In the Ramanujan graph case, the size of the constant is quite
small (slightly above 2 will do the job here).

Second, the LPS graph has no small cycles. This ensures that solutions to
Problem 2.1 are large enough to make exhaustive search hopeless.

2.2 The particular choice of [2, 3]

The authors of [2, 3] choose for G the group PSL2(Fp): recall that SL2(Fp) is
the group of 2 × 2 matrices of determinant 1 with entries in Fp and PSL2(Fp)
is obtained from SL2(Fp) by taking the quotient by its centre, that is {1,−1}.
This amounts to identifying matrix A with −A. The group PSL2(Fp) is of size
p(p2 − 1)/2. The prime p is chosen congruent to 1 modulo 4. The size of the

generator set S will be equal to ` + 1 where ` is a small prime congruent to 1
modulo 4 and which is also a quadratic residue (mod p). The generators are
obtained from the ` + 1 integer solutions (a, b, c, d) of the Diophantine equationa2 + b2 + c2 + d2 = `

a > 0, a ≡ 1 (mod 2)
b ≡ c ≡ d ≡ 0 (mod 2)

(1)

For a proof that the number of solutions to (1) is indeed ` + 1 see for example
[5, Ch. 2]. To each such (a, b, c, d) we associate the 2× 2 matrix with entries in
the ring Z[i] of Gaussian integers

M(a, b, c, d) =
(

a + ib c + id
−c + id a− ib

)
. (2)

We then map the entries of M(a, b, c, d) to elements of Fp by applying the ring
homomorphism

φ : Z[i] → Fp

a + ib 7→ a + ιb
(3)

where ι is a square root of −1 modulo p (which lies in Fp since p ≡ 1 (mod 4)).
After applying φ we denote the resulting matrices by M̃(a, b, c, d). Note that

Fact 2.2 — The determinant of M̃(a, b, c, d) is equal to ` (mod p).

We now view the matrices M̃(a, b, c, d) as elements of PGL2(Fp). Recall that
this is the group of 2 × 2 invertible matrices with entries in Fp obtained after
identifying pairs of matrices M and N whenever there exists λ ∈ Fp such that
M = λN (mod p).

The set of generators S is now declared to be the set of matrices M̃(a, b, c, d)
in PGL2(Fp).

Note that S−1 = S. This comes from the fact that in PGL2(Fp) we have

M̃(a, b, c, d)M̃(a,−b,−c,−d) =
(

a + ιb c + ιd
−c + ιd a− ιb

)(
a− ιb −c− ιd
c− ιd a + ιb

)
=

(
a2 + b2 + c2 + d2 0

0 a2 + b2 + c2 + d2

)
≡

(
1 0
0 1

)
.

Finally, it should also be noted that S does not generate the whole group
PGL2(Fp). This comes from the fact that all the matrices in S have determi-
nant ` which is a square modulo p. Therefore only matrices with determinant
that are quadratic residues (mod p) are generated. It can be checked that the
generated subgroup G is isomorphic to PSL2(Fp) (see [11, 13]).

The Cayley graph associated to G and S is denoted by X`,p and is the LPS
Ramanujan graph mentioned above. Apart from its expansion properties, the

graph X`,p has a girth (smallest cycle length) at least 2 log` p (see [11, 13]).
Practical sizes of the parameters would be a prime p of several hundred bits (say
1024) and a small prime ` (say 5). This would mean that the smallest solution
to Problem 2.1 must involve at least 882 generators.

3 An outline of the attack

Factoring in PGL2(Fp) directly seems difficult. Our strategy will be to first lift
matrices of PGL2(Fp) into a set of matrices with entries in Z[i], and then factor
into a product of lifted generators of S, namely the matrices of (2). The relevant
set of matrices is

Ω =
{(

a + ib c + id
−c + id a− ib

)∣∣∣∣ (a, b, c, d) ∈ Ew for some integer w > 0
}

where Ew is the set of 4-tuples (a, b, c, d) ∈ Z4 such thata2 + b2 + c2 + d2 = `w

a > 0, a ≡ 1 (mod 2)
b ≡ c ≡ d ≡ 0 (mod 2).

(4)

Consider now the set Σ of `+1 matrices M(a, b, c, d) with Z[i] entries defined
in (2). In other words, Σ is the subset of Ω corresponding to 4-tuples (a, b, c, d)
in E1, and it is also the lifted version of the set of generators S. It turns out
that the set Ω coincides, up to multiplication by ±1 and by powers of `, with
products of elements of Σ. Precisely, we have the following lemma which is a
reformulation of Corollary 3.2 of [11]: for more details, see also [13, Lemma 2.5.4]
or [5, Corollary 2.6.14].

Lemma 3.1 — Any matrix M in Ω can be expressed in a unique way as a
product

M = ±`rM1M2 . . .Me

where log` (detM) = e + 2r and the Mi’s all belong to Σ and MiMi+1 6= ` 1 for
i ∈ {1, . . . , e− 1}.

The attack now proceeds along the following lines.

Step 1 (lifting the identity in Ω): The aim of this step is to find a matrix
M in Ω which is not of the form `r1 and such that if we replace the complex
entries by their “corresponding” values in Fp (i.e. apply the mapping φ (3)) then
we obtain a matrix M̃ of the form λ1. This amounts to finding a, b, c, d in Z such
that

a2 + b2 + c2 + d2 = `w

a > 0, a ≡ 1 (mod 2)
b ≡ c ≡ d ≡ 0 (mod 2p)

b2 + c2 + d2 6= 0

(5)

for some positive integer w.

Step 2 (factorisation step): Find the factorisation of M promised by Corol-
lary 3.1:

M = ±`rM1M2 . . .Me.

What really makes this task simple is the fact that the factorisation is unique.
Proceed as follows. We first find the greatest integer r such that `r divides the
4 entries of M . Let M ′ be such that M = `rM ′. We denote by G1, . . . , G`+1 the
` + 1 elements forming the lifted generator set Σ.

We start by finding the rightmost element in the factorisation of M ′ by
computing all products of the form ±M ′G−1

i . Necessarily one of these products
will be in Ω: it will correspond to the factorisation of M ′ where we have dropped
the last element of the factorisation. It is impossible that there is more than
one of these products which lies in Ω: by using the fact that every element of
Ω can be factored into elements of Σ we would obtain at least two different
factorisations for M ′. This would contradict the unique factorisation property.
Therefore, the unique Gi for which ±M ′G−1

i belongs to Ω is the last element
of the factorisation of M ′. Notice that checking whether a product ±M ′G−1

i is
in Ω or not is computationally easy given the definition of Ω. We continue this
process and it has to stop after log`(detM)− 2r steps because at each iteration
the determinant of the left part of the factorisation gets divided by ` and because
M ′ is of determinant `w−2r. The complexity of this step is obviously proportional
to the length of the factorisation, i.e. at most w. We will see below that we can
choose w to be approximately 2 log` p, so that the complexity is not more than
O(log p).

Step 3 (final step) The point is that the matrix M̃ with entries in Fp reduces
to the identity in PGL2(Fp) and can be factored in this group by using the ` + 1
generators of S as follows:

1 ≡ M̃ ≡ M̃1M̃2 . . . M̃e

where M̃i is the application of the aforementioned homomorphism φ to each
entry of Mi (meaning M̃i belongs to S). This solves Problem 2.1.

4 Solving step 1

Solving Equation (5) seems to be easier when w is even. So let us arbitrarily set
w = 2k and let us write b = 2px, c = 2py, d = 2pz. We are looking for integer
solutions (a, x, y, z) to the equation

a2 + 4p2(x2 + y2 + z2) = `2k.

This implies that

(`k − a)(`k + a) = 4p2(x2 + y2 + z2)

Let us choose a = `k − 2mp2 for some integer m. In this case, (`k − a)(`k + a) =
2mp2(2`k − 2mp2). Thus x, y, z should satisfy the equation

x2 + y2 + z2 = m(`k −mp2) (6)

Let us now specify how m and k are chosen. a should be positive and k as small
as possible in order to minimise the length of the factorisation of the identity
obtained at the end. We choose k to be the smallest integer such that `k−4p2 > 0.
We may then either choose m = 1 or m = 2 in order to keep a positive. We claim
now that for either m = 1 or m = 2 the number m(`k −mp2) is a sum of three
squares. Let us recall Legendre’s theorem (see [7]) which asserts that all integers
are sums of 3 squares with the exception of the integers of the form 4s(8t + 7)
where s and t are integers. Assume that m = 1 does not work. In other words,
`k−p2 is not a sum of three squares. This means that there exists s and t which
are non-negative integers such that `k − p2 = 4s(8t + 7). Note that s has to be
positive in this case. Observe now that 2(`k − 2p2) = 4s(16t + 14) − 2p2. This
number is neither a multiple of 4 nor odd. Therefore it can not be of the form
4u(8v + 7). This shows that m = 2 is suitable for our purpose.

It remains now to find x, y, z which satisfy Equation (6). One way of achieving
this goal is to subtract from m(`k−mp2) a random x2 and to hope that the result
N is a sum of 2 squares. In this case there is a simple and efficient algorithm
relying on Euclid’s algorithm for finding y and z explicitly such that y2 + z2 =
N . Fermat’s theorem (see [7]) on sums of two squares says that a number is
expressible as a sum of two squares if and only if its prime factors congruent to
3 modulo 4 occur with an even exponent. Our approach is to try to find values
of x for which N is of the form 2sp′ where p′ is a prime congruent to 1 modulo
4. When m = 1 for instance, we choose even values of x and since `k − p2 ≡ 0
mod 4 we check whether (`k − p2 − x2)/4 is a prime congruent to 1 modulo 4.
This happens roughly with probability of order O(1/ ln(`k − p2)).

It remains to explain how we find y and z such that

y2 + z2 = N. (7)

This is classical and can be done by using continued fraction expansion. We give
the details for the sake of self-sufficiency and to explain implementation details.
Let us recall that the convergents pn

qn
of the continued fraction expansion of a

real number x are obtained inductively from the formulas

(p−1, q−1) = (0, 1)
(p0, q0) = (1, 0)

and for all nonnegative values of n for which qnx− pn 6= 0

an =
[
−qn−1x− pn−1

qnx− pn

]
pn+1 = anpn + pn−1

qn+1 = anqn + qn−1

where [] denotes the integer part.
The sequence (qn)n≥0 is strictly increasing and the pn

qn
are very good rational

approximations of x. They satisfy:

Proposition 4.1 — We have:∣∣∣∣x− pn

qn

∣∣∣∣ ≤ 1
qnqn+1

.

From Fermat’s theorem and the identity

(a2 + b2)(c2 + d2) = (ac− bd)2 + (bc + ad)2

we know that in order to find integer solutions of Equation (7) we just need to
solve this kind of equation when N is a prime congruent to 1 modulo 4. In this
case, −1 is a quadratic residue modulo N . This fact is used as follows

Proposition 4.2 — Let N be a prime congruent to 1 modulo 4, R be a
square root of −1 modulo N and ξ

def
= R

N . Let pi

qi
be the convergents associated

to the continued fraction expansion of ξ. Let n be the unique integer such that
qn <

√
N < qn+1. We have

q2
n + (qnR− pnN)2 = N.

Proof. First of all it should be noticed that such an n exists: the sequence of the
qi’s is increasing and is defined up to the term qj such that qj = N . It follows

from Proposition 4.1 that
∣∣∣ R
N − pn

qn

∣∣∣ < 1
qnqn+1

. Hence
∣∣qn

R
N − pn

∣∣ < 1
qn+1

< 1√
N

(because qn+1 >
√

N). This implies that |qnR − pnN | <
√

N. We also have
qn <

√
N . Putting both inequalities together we obtain q2

n+(qnR−pnN)2 < 2N .
Let us notice now that

q2
n + (qnR− pnN)2 ≡ q2

n + q2
nR2 (mod N)

≡ 0 (mod N)

Therefore, we necessarily have that q2
n + (qnR− pnN)2 = N .

The exact complexity of this step is unclear, this is due to the problem of
estimating the time complexity for finding an N whose prime factors congruent
to 3 modulo 4 all occur with an even exponent. We can upper bound this quantity
by the complexity for finding an N of the form 2sq, where q is a prime congruent
to 1 modulo 4 and heuristic arguments based on the density of primes congruent
to 1 modulo 4 indicate that the number of x’s which have to be tried in order
to find a proper N will be of order O(log p). The complexity for performing
the continued fraction expansion is also of order O(log p). Therefore the total
complexity of this step should be extremely low and will be of order O(log p).
This has been confirmed experimentally (see Section 5).

5 An example of an attack

In this example we take p = 10100 + 949 which is the first prime p > 10100 such
that p = 1 mod 4. Computations were done with a Maple program given in the
appendix.

Next, consider the hash function corresponding to the graph X5,p, i.e. we set
` = 5, the first possible case since we must have ` = 1 mod 4. It turns out that
5 is a quadratic residue for this choice of p. The 6 generators of X5,p are given
by the matrices with Z[i] entries,

G1 =
(

1 2
−2 1

)
G2 =

(
1 + 2i 0

0 1− 2i

)
G3 =

(
1 2i
2i 1

)
G4 =

(
1 −2i
−2i 1

)
G5 =

(
1− 2i 0

0 1 + 2i

)
G6 =

(
1 −2
2 1

)
or by their images G̃j in PGL2(Fp).

Step 1. We first look for a, b, c, d satisfying (5). We choose k to be the first
integer larger than log5(2p2) to make the right hand side of (6) positive. We
obtain k = 287. We then compute 5k−p2 which is of the form 4u with u odd. As
was quite likely, we have u 6= 7 mod 8, which means that u can be expressed as
a sum of three squares. Furthermore, it turns out that we have u = 1 mod 4, so
we try subtracting from u squares of the form 4v2 and test u−4v2 for primality.
When we meet a prime, it will necessarily be congruent to 1 modulo 4, so that
we will be able to express it as a sum of two squares. The first v such that
N = u− 4v2 is prime is v = 1431.

We then proceed to express N as a sum of two squares. We first find a square
root R of −1 modulo N . We arbitrarily choose the root whose representation in
{1, . . . , N − 1} is largest. We then expand R/N into a continued fraction and
compute the largest n such that pn/qn is the nth convergent of the continued
fraction expansion and qn <

√
N . In this particular case we find n = 192. We

then set

x = 2qn

y = 2(pnN − qnR)
z = 4× 1431 = 5724

and obtain 5k − p2 = 4u = x2 + y2 + z2. We then set

a =
√

52k − 16up2 which is an integer
b = 2px

c = 2py

d = 2pz

Step 2. We now factor in Ω the matrix

M =
(

a + ib c + id
−c + id a− ib

)
into a product of Gj ’s. We know that there is a unique way to do this, and that
the length of the factorisation is 2k = 574, i.e.

M = ±M1 . . .M2k

where Mj = Gσ(j) with σ(j) ∈ {1, 2, . . . , 6}. To compute σ, we first multiply
on the right M by all six matrices G1 . . . G6, and test whether all entries are
multiples of 5. When this happens we have found Gσ(574). We compute M ′ =
MG−1

σ(574) = 1
5MG7−σ(574) and proceed recursively, testing M ′Gj at most six

times to obtain σ(573), and so on. After 574 iterations were are left either with
the identity matrix 1 or with −1. The first 24 values σ(1), σ(2), . . . , σ(24) of σ
are

2, 4, 2, 3, 3, 3, 3, 1, 1, 4, 1, 5, 5, 5, 5, 1, 5, 1, 1, 1, 4, 1, 4, 6,

and the remaining 550 values are given by the array in figure 1, each row giving
the next 25 values. We have exhibited the factorisation of unity

6, 2, 1, 2, 3, 2, 2, 3, 1, 1, 1, 3, 1, 2, 2, 1, 2, 6, 6, 6, 3, 1, 5, 4, 1,
4, 5, 1, 1, 3, 2, 3, 6, 5, 5, 5, 3, 3, 5, 5, 6, 2, 4, 1, 1, 5, 3, 1, 5, 1,
2, 1, 2, 1, 5, 6, 4, 1, 4, 4, 4, 6, 5, 1, 5, 3, 1, 2, 2, 4, 1, 4, 5, 4, 1,
3, 6, 3, 3, 1, 4, 6, 3, 5, 5, 6, 4, 6, 3, 3, 1, 2, 3, 3, 2, 4, 5, 3, 5, 4,
5, 4, 2, 2, 2, 4, 6, 4, 1, 1, 4, 2, 3, 1, 4, 5, 4, 6, 5, 5, 3, 1, 4, 5, 6,
2, 1, 2, 6, 2, 1, 3, 3, 2, 6, 6, 5, 1, 5, 3, 1, 5, 1, 5, 1, 2, 6, 3, 3, 1,
1, 1, 4, 2, 1, 1, 3, 5, 6, 4, 6, 2, 6, 6, 3, 6, 2, 6, 6, 6, 2, 4, 1, 2, 6,
5, 3, 1, 4, 1, 2, 6, 4, 4, 2, 4, 4, 2, 1, 2, 4, 4, 1, 2, 2, 2, 2, 6, 3, 2,
1, 2, 4, 2, 6, 2, 2, 4, 4, 1, 1, 1, 1, 2, 6, 2, 4, 5, 3, 2, 4, 1, 1, 1, 4,
2, 2, 1, 1, 1, 3, 1, 5, 6, 2, 4, 5, 5, 1, 4, 1, 3, 2, 6, 6, 4, 6, 4, 6, 4,
6, 3, 1, 1, 2, 6, 3, 2, 6, 6, 6, 3, 1, 2, 4, 2, 3, 3, 3, 3, 1, 1, 4, 1, 5,
5, 5, 5, 1, 5, 1, 1, 1, 4, 1, 4, 6, 6, 2, 1, 2, 3, 2, 2, 3, 1, 1, 1, 3, 1,
2, 2, 1, 2, 6, 6, 6, 3, 1, 5, 4, 1, 4, 5, 1, 1, 3, 2, 3, 6, 5, 5, 5, 3, 3,
5, 5, 6, 2, 4, 1, 1, 5, 3, 1, 5, 1, 2, 1, 2, 1, 5, 6, 4, 1, 4, 4, 4, 6, 5,
1, 5, 3, 1, 2, 2, 4, 1, 4, 5, 4, 1, 3, 6, 3, 3, 1, 4, 6, 3, 5, 5, 6, 4, 6,
3, 3, 1, 2, 3, 3, 2, 4, 5, 3, 5, 4, 5, 4, 2, 2, 2, 4, 6, 4, 1, 1, 4, 2, 3,
1, 4, 5, 4, 6, 5, 5, 3, 1, 4, 5, 6, 2, 1, 2, 6, 2, 1, 3, 3, 2, 6, 6, 5, 1,
5, 3, 1, 5, 1, 5, 1, 2, 6, 3, 3, 1, 1, 1, 4, 2, 1, 1, 3, 5, 6, 4, 6, 2, 6,
6, 3, 6, 2, 6, 6, 6, 2, 4, 1, 2, 6, 5, 3, 1, 4, 1, 2, 6, 4, 4, 2, 4, 4, 2,
1, 2, 4, 4, 1, 2, 2, 2, 2, 6, 3, 2, 1, 2, 4, 2, 6, 2, 2, 4, 4, 1, 1, 1, 1,
2, 6, 2, 4, 5, 3, 2, 4, 1, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 5, 6, 2, 4, 5, 5,
1, 4, 1, 3, 2, 6, 6, 4, 6, 4, 6, 4, 6, 3, 1, 1, 2, 6, 3, 2, 6, 6, 6, 3, 1.

Fig. 1. the remaining 550 values σ(25), . . . , σ(574)

1 = G̃σ(1)G̃σ(2) . . . G̃σ(574)

in PGL2(Fp). This can easily be checked with the program given in the appendix.
Running time is counted in seconds rather than minutes, and stays that way if
p is replaced by a 1024-bit prime.

6 Comments

The attack presented here is somewhat reminiscent of the “density attack” (to
the terminology of [17]) that was used in [16] to break the hashing scheme first
proposed in [18]. In that attack the group unit element is first lifted into a “dense”
subset of SL2(Z) and then a factorisation algorithm is applied in SL2(Z).

Can the “Ramanujan” hash function family be fixed so as to make the present
attack unfeasible ? Well, there are several natural solutions to address this prob-
lem. One idea is to change the set of generators from S to S2 (we square the
elements of S) for example. That way the present attack will succeed only if one
manages to lift the identity element of G onto a matrix of Ω that has a very
special (and rare) factorisation into elements of S. A similar idea is to reduce
the set S by throwing away some generators. In this case though, one must be
careful to ensure that the modified set of generators generates the same subgroup
of PGL2(Fp) as the original generator set. It is also unclear what will happen
to the expansion properties when modifying the hash function in this way, and
more study is required to come up with suitable choices.

The very property that makes the graphs X`,p Ramanujan gave us a tool
for mounting an attack, so resorting to these highly structured Cayley graphs
may not be the best idea if one is to base a hash function on factoring in arith-
metic groups like SL2 (or PSL2 or PGL2). However, for hashing purposes, lesser
guaranteed expansion properties may be sufficient. A promising result in that
direction is the recent paper of Helfgott [8] which shows that, for any generating
set S of G = SL2(Fp), any element of G can be expressed as a product of ele-
ments of S of length not more than O(logc p). This falls somewhat short of the
rapidly-mixing property, but it does guarantee that if any such Cayley graph is
used as the basis of a hashing scheme, then over a set of relatively small-length
input messages, the corresponding set of hashed values ranges over the whole
group G.

References

1. K. S. Abdukhalikov and C. Kim. On the security of the hashing scheme based on
SL2. In S. Vaudenay, editor, Fast Software Encryption ’98, volume 1372 of LNCS,
pages 93–102. Springer, 1998.

2. D.X. Charles, E.Z. Goren, and K.E. Lauter. Cryptographic hash functions from
expander graphs. In Second NIST cryptographic hash workshop, Santa Barbara,
USA, August 2006.

3. D.X. Charles, E.Z. Goren, and K.E. Lauter. Cryptographic hash functions from
expander graphs. Journal of Cryptology, to appear in print, published online, Sept.
15, 2007. Available from Springer
http://www.springerlink.com/content/cv4r187833614475/

4. C. Charnes and J. Pieprzyk. Attacking the SL2 hashing scheme. In ASIACRYPT
’94, volume 917 of LNCS, pages 322–330. Springer-Verlag, 1995.

5. G. Davidoff, P. Sarnak and A. Valette. Elementary Number Theory, Group Theory,
and Ramanujan Graphs. Cambridge University Press, 2003.

6. W. Geiselmann. A note on the hash function of Tillich and Zémor. In Fast Software
Encryption ’96, volume 1039 of LNCS, pages 51–52. Springer-Verlag, 1996.

7. E. Grosswald. Representation of integers as sum of squares. Springer Verlag, 1985.
8. H. A. Helfgott. Growth and generation in SL2(Z/pZ), 2005. to appear in Annals of

Math., http://arxiv.org/abs/math/0509024.
9. S. Hoory, N. Linial and A. Wigderson. Expander graphs and their applications.

Bull. AMS, 43: 439–561, 2006.
10. K. E. Lauter, D. X. Charles, and E. Z. Goren. Hash function constructions from

expander graphs, May 2007. United States Patent 20070098150,
http://www.freepatentsonline.com/20070098150.html.

11. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

12. J. Quisquater and M. Joye. Authentication of sequences with the SL2 hash func-
tion: Application to video sequences. Journal of Computer Security, 5(3):213–223,
1997.

13. P. Sarnak. Some applications of modular forms. Cambridge U. Press, Cambridge,
1990.

14. R. Steinwandt, M. Grassl, W. Geiselmann, and T. Beth. Weaknesses in the SL2
hashing scheme. In CRYPTO ’00, volume 1880 of LNCS, pages 287–299. Springer-
Verlag, 2000.

15. V. Shpilrain. Hashing with polynomials. In ICISC, volume 4296 of LNCS, pages
22–28. Springer-Verlag, 2006.

16. J-P. Tillich and G. Zémor. Group-theoretic hash functions. In Algebraic Coding,
volume 781 of LNCS, pages 90–110, 1993.

17. J-P. Tillich and G. Zémor. Hashing with SL2. In CRYPTO ’94, volume 839 of
LNCS, pages 40–49. Springer, 1994.

18. G. Zémor. Hash functions and graphs with large girth. In EUROCRYPT ’91,
volume 547 of LNCS. Springer Verlag, 1991.

19. G. Zémor. Hash functions and Cayley graphs. Designs, Codes and Cryptography,
4:381–394, 1994.

7 Appendix

Setting up the parameters of the hash function.

> p:= nextprime(10^100):

> p mod 4;

3

> p := nextprime(p):

> p mod 4;

1

> with(numtheory):

> legendre(5,p);

1

Step 1.

> evalf(log(2*p^2)/log(5));

286.5659883

> k:=287;

k := 287

> Z:=5^287-p^2:

> Z mod 4;

0

> Z mod 8;

4

> u:=Z/4:

> u mod 4;

1

Finding a square that substracted to u yields a prime N = 1 mod 4.

> for v to 10000 do if isprime(u-4*v^2)=true then print(v): fi: od:

1431

1794

4434

5610

6555

6666

8484

9405

> N:= u-4*1431^2:

> N mod 4;

1

Expressing the prime N as a sum of two squares.

> R:= Roots(X^2+1) mod N:

> T:=R[1][1]:

> cf := cfrac(T/N):

> n:=0:

> while nthdenom(cf,n+1)<evalf(sqrt(N)) do n:=n+1: od: print(n);

192

> Q:=nthdenom(cf,192): P := nthnumer(cf,192):

> x:=2*Q:

> y:=2*(Q*T-P*N):

> z:=4*1431;

z := 5724

Checking that we have found three squares that sum to 4u.

> x^2+y^2+z^2 -4*u;

0

Defining the matrix M .

> 5^(2*k)-4*p^2*(x^2+y^2+z^2):

> a:= sqrt(%):

> b:=2*p*x:

> c:=2*p*y:

> d:=2*p*z:

> with(LinearAlgebra):

> M := Matrix(2,2):

> M[1,1]:=a+I*b:

> M[2,2]:=a-I*b:

> M[1,2]:=c+I*d:

> M[2,1]:=-c+I*d:

Checking the length of the factorisation of M that should be 2k.

> Determinant(M):

> eval(log(%)/log(5));

574

Step 2.
Define the set of generators G1, . . . , G6.

> G[1] := Matrix(2,2):

> G[1][1,1]:=1: G[1][1,2]:=2: G[1][2,1]:=-2: G[1][2,2]:=1:

> G[1];

[1 2]

[]

[-2 1]

> G[6] := Matrix(2,2):

> G[6][1,1]:=1: G[6][2,2]:=1: G[6][1,2]:=-2: G[6][2,1]:=2:

> G[2] := Matrix(2,2):

> G[2][1,1]:=1+2*I: G[2][2,2]:=1-2*I: G[2][1,2]:=0: G[2][2,1]:=0:

> G[5]:=Matrix(2,2):

> G[5][1,1]:=1-2*I: G[5][2,2]:=1+2*I: G[5][1,2]:=0: G[5][2,1]:=0:

> G[3]:=Matrix(2,2):

> G[3][1,1]:=1: G[3][2,2]:=1: G[3][1,2]:=2*I: G[3][2,1]:=2*I:

> G[4]:=Matrix(2,2):

> G[4][1,1]:=1: G[4][2,2]:=1: G[4][1,2]:=-2*I: G[4][2,1]:=-2*I:

The procedure that factors M into a product of Gi’s.

> fact := proc(m,MM)

> local L,H,i,j,X:

> L:=[]: H[1]:=MM:

> for i to m do

> for j to 6 do

> X := Multiply(H[i],G[j]):

> if (X[1,1] mod 5)=0 and (X[1,2] mod 5)=0 and (X[2,1] mod 5)=0

> and (X[2,2] mod 5)=0 then

> H[i+1]:=X/5: L := [7-j,op(L)]: fi: od:

> od:

> print(H[m+1]); return(L);

> end proc:

The actual factorisation for this particular example.

> F:=fact(574,M);

[-1 0]

[]

[0 -1]

F := [2, 4, 2, 3, 3, 3, 3, 1, 1, 4, 1, 5, 5, 5, 5, 1, 5, 1, 1, 1, 4, 1, 4, 6,
6, 2, 1, 2, 3, 2, 2, 3, 1, 1, 1, 3, 1, 2, 2, 1, 2, 6, 6, 6, 3, 1, 5, 4, 1,
4, 5, 1, 1, 3, 2, 3, 6, 5, 5, 5, 3, 3, 5, 5, 6, 2, 4, 1, 1, 5, 3, 1, 5, 1,
2, 1, 2, 1, 5, 6, 4, 1, 4, 4, 4, 6, 5, 1, 5, 3, 1, 2, 2, 4, 1, 4, 5, 4, 1,
3, 6, 3, 3, 1, 4, 6, 3, 5, 5, 6, 4, 6, 3, 3, 1, 2, 3, 3, 2, 4, 5, 3, 5, 4,
5, 4, 2, 2, 2, 4, 6, 4, 1, 1, 4, 2, 3, 1, 4, 5, 4, 6, 5, 5, 3, 1, 4, 5, 6,
2, 1, 2, 6, 2, 1, 3, 3, 2, 6, 6, 5, 1, 5, 3, 1, 5, 1, 5, 1, 2, 6, 3, 3, 1,
1, 1, 4, 2, 1, 1, 3, 5, 6, 4, 6, 2, 6, 6, 3, 6, 2, 6, 6, 6, 2, 4, 1, 2, 6,
5, 3, 1, 4, 1, 2, 6, 4, 4, 2, 4, 4, 2, 1, 2, 4, 4, 1, 2, 2, 2, 2, 6, 3, 2,
1, 2, 4, 2, 6, 2, 2, 4, 4, 1, 1, 1, 1, 2, 6, 2, 4, 5, 3, 2, 4, 1, 1, 1, 4,
2, 2, 1, 1, 1, 3, 1, 5, 6, 2, 4, 5, 5, 1, 4, 1, 3, 2, 6, 6, 4, 6, 4, 6, 4,
6, 3, 1, 1, 2, 6, 3, 2, 6, 6, 6, 3, 1, 2, 4, 2, 3, 3, 3, 3, 1, 1, 4, 1, 5,
5, 5, 5, 1, 5, 1, 1, 1, 4, 1, 4, 6, 6, 2, 1, 2, 3, 2, 2, 3, 1, 1, 1, 3, 1,
2, 2, 1, 2, 6, 6, 6, 3, 1, 5, 4, 1, 4, 5, 1, 1, 3, 2, 3, 6, 5, 5, 5, 3, 3,
5, 5, 6, 2, 4, 1, 1, 5, 3, 1, 5, 1, 2, 1, 2, 1, 5, 6, 4, 1, 4, 4, 4, 6, 5,
1, 5, 3, 1, 2, 2, 4, 1, 4, 5, 4, 1, 3, 6, 3, 3, 1, 4, 6, 3, 5, 5, 6, 4, 6,
3, 3, 1, 2, 3, 3, 2, 4, 5, 3, 5, 4, 5, 4, 2, 2, 2, 4, 6, 4, 1, 1, 4, 2, 3,
1, 4, 5, 4, 6, 5, 5, 3, 1, 4, 5, 6, 2, 1, 2, 6, 2, 1, 3, 3, 2, 6, 6, 5, 1,
5, 3, 1, 5, 1, 5, 1, 2, 6, 3, 3, 1, 1, 1, 4, 2, 1, 1, 3, 5, 6, 4, 6, 2, 6,
6, 3, 6, 2, 6, 6, 6, 2, 4, 1, 2, 6, 5, 3, 1, 4, 1, 2, 6, 4, 4, 2, 4, 4, 2,
1, 2, 4, 4, 1, 2, 2, 2, 2, 6, 3, 2, 1, 2, 4, 2, 6, 2, 2, 4, 4, 1, 1, 1, 1,
2, 6, 2, 4, 5, 3, 2, 4, 1, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 5, 6, 2, 4, 5, 5,
1, 4, 1, 3, 2, 6, 6, 4, 6, 4, 6, 4, 6, 3, 1, 1, 2, 6, 3, 2, 6, 6, 6, 3, 1]

Verification: checking that M is indeed expressed in this way.

> Id:=Matrix(2,2):

> Id[1,1]:=1: Id[2,2]:=1:

>

> t:=Id:

> for i to 574 do t:=Multiply(t,G[F[i]]): od:

> M+t;

[0 0]

[]

[0 0]

