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Abstract. Oblivious transfer (OT) is a primitive of paramount impor-
tance in cryptography or, more precisely, two- and multi-party compu-
tation due to its universality. Unfortunately, OT cannot be achieved in
an unconditionally secure way for both parties from scratch. Therefore,
it is a natural question what information-theoretic primitives or compu-
tational assumptions OT can be based on.
The results in our paper are threefold. First, we give an optimal proof for
the standard protocol to realize unconditionally secure OT from a weak
variant of OT called universal OT, for which a malicious receiver can
virtually obtain any possible information he wants, as long as he does
not get all the information. This result is based on a novel distributed
leftover hash lemma which is of independent interest.
Second, we give conditions for when OT can be obtained from a faulty
variant of OT called weak OT, for which it can occur that any of the
parties obtains too much information, or the result is incorrect. These
bounds and protocols, which correct on previous results by Damg̊ard et.
al., are of central interest since in most known realizations of OT from
weak primitives, such as noisy channels, a weak OT is constructed first.
Finally, we carry over our results to the computational setting and show
how a weak OT that is sometimes incorrect and is only mildly secure
against computationally bounded adversaries can be strengthened.
Keywords: oblivious-transfer amplification, universal oblivious transfer,
weak oblivious transfer, computational weak oblivious transfer, distrib-
uted leftover hash lemma, hard-core lemma.

1 Introduction

The goal of multi-party computation, introduced in [42], is to allow two parties
to carry out a computation in such a way that no party has to reveal unnec-
essary information about her input. A primitive of particular importance in
this context is oblivious transfer (OT) [39, 36, 18]. Chosen one-out-of-two string
oblivious transfer,

(
2
1

)
-OTn for short, is a primitive where the sender sends two

strings x0 and x1 of length n and the receiver’s input is a choice bit c; the latter
then learns xc but gets no information about the other string x1−c. One reason
for the importance of OT is its universality, i.e., it allows for carrying out any
two-party computation [32]. Unfortunately, OT is impossible to achieve in an
unconditionally secure way from scratch, i.e., between parties connected by a
noiseless channel. However, if some additional weak primitives are available such



as noisy channels or noisy correlations, then unconditional security can often be
achieved [12, 11, 17, 15, 13, 40, 16, 35]. Most of these protocols first implement a
weak version of OT, and then strengthen it to achieve OT. In [20, 23] it was
shown that such a strengthening is sometimes also needed in the computational
setting.

In this paper we study how weak versions of OT can be amplified to OT.

1.1 Previous Work

Various weak versions of OT have been proposed. In most of them, only the
receiver’s side is weak, such as α-1-2 slightly OT from [12], or only the sender’s
side is weak, such as XOT, GOT or UOT with repetitions from [6, 7]. All of
these primitives were shown to be strong enough to imply OT. In [8], a more
general primitive called Universal OT, (α)-

(
2
1

)
-UOTn for short, has been pro-

posed, where α specifies a lower bound on the amount of uncertainty a (possibly
malicious) receiver has over both inputs, measured in collision- or min-entropy.
Unfortunately, the security proof contained an error that was corrected in [16]. It
was shown that

(
2
1

)
-OT` can be implemented from one instance of (α)-

(
2
1

)
-UOTn

with an error of at most ε if ` ≤ 1
4α− 3

4 log(1/ε)− 1.
Weak OT, introduced in [17], is a weak version of

(
2
1

)
-OT1 where both play-

ers may obtain additional information about the other player’s input, and where
the output may have some errors. It is used as a tool to construct OT out of
unfair primitives, i.e., primitives where the adversary is more powerful than the
honest participant, such as the unfair noisy channel. Weak OT is denoted as
(p, q, ε)-WOT, where p is the maximal probability that the sender gets side in-
formation about the receiver’s input, q the maximal probability that the receiver
gets side information about the sender’s input, and ε is the maximal probability
that an error occurs. Using a simple simulation argument, it was shown in [17]
that there cannot exist a protocol that implements

(
2
1

)
-OT1 from (p, q, ε)-WOT

if p+q+2ε ≥ 1. For ε = 0, they give a protocol secure against active adversaries
that implements

(
2
1

)
-OT1 from (p, q, 0)-WOT for p + q < 1, which is optimal.

Furthermore, for the case where p, q, and ε are bigger than 0, a protocol is
presented that is secure against passive adversaries for p + q + 2ε < 0.45. Weak
OT was later generalized in [15] to (special) generalized weak OT, in order to
improve the reduction of

(
2
1

)
-OT1 to unfair noisy channels.

In [20], a reduction of
(
2
1

)
-OT1 to (p, q, ε)-WOT in the computational set-

ting was presented. These results were used to show that OT can be based on
collections of dense trapdoor permutations.

1.2 Problems with the Definition of Weak OT in [17]

While [17] does not give a formal definition of (p, q, ε)-WOT, [15] formally de-
fines (p, q, ε)-WOT by giving an ideal functionality. Their definition implicitly
makes two assumptions. It requires that, firstly, the players do not get infor-
mation about whether an error occurred, and secondly, that the event that an
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error occurs is independent from the events that the players get side informa-
tion. These assumptions are rather unnatural and in most of the cases where
(p, q, ε)-WOT is used, they cannot be satisfied. For example, neither the simula-
tion of (p, q, ε)-WOT for p + q + 2ε = 1, nor the application to the unfair noisy
channel satisfy these assumptions.

Unfortunately, if we remove these two assumptions from the definition of
(p, q, ε)-WOT, the E-Reduce protocol from [17] gets insecure, because it de-
pends on the fact that the two events are independent. The following example
illustrates the problem: Even though (0, 1/2, 1/4)-WOT can be simulated, by
applying R-Reduce(3000,E-Reduce(10, (0, 1/2, 1/4)-WOT)) (using the reductions
R-Reduce and E-Reduce as defined in [17]) we get a (0, 0.06, 0.06)-WOT, which
implies

(
2
1

)
-OT1. We would get an information-theoretic secure

(
2
1

)
-OT1 from

scratch, which is impossible.
Directly affected by this problem are Lemma 5 and Theorem 2 in [17] and

Lemma 6 in [15]. Indirectly affected are Lemma 11 and Theorem 3 in [17], and
Lemma 1, 4, 5 and 7 in [15], as they rely on Lemma 5 in [17].

1.3 Contribution

In the first part, we show how to implement
(
2
1

)
-OT` from one instance of

(α)-
(
2
1

)
-UOTn for ` ≤ α

2 − 3 log 1
ε with an error of at most 2ε. This improves

the bound of [16] by a factor of two, at the cost of a slightly bigger error term,
and is asymptotically optimal for the standard protocol using 2-universal hash-
ing. The proof makes use of a new distributed leftover hash lemma, which is a
generalization of the leftover hash lemma and of independent interest.

In the second part, we will look at reductions of
(
2
1

)
-OT1 to (p, q, ε)-WOT, for

new, weaker definitions of (p, q, ε)-WOT. Using a different E-Reduce protocol that
also works for our definitions, we show for the special case where p = 0 (q = 0),
that

(
2
1

)
-OT1 can efficiently be implemented from (p, q, ε)-WOT if

√
q + 2ε < 1

(
√

p + 2ε < 1), secure against passive adversaries. For the general case, we show
that if p + q + 2ε ≤ 0.24 or max(p + 22q + 44ε, 22p + q + 44ε, 7

√
p + q + 2ε) < 1,(

2
1

)
-OT1 can efficiently be implemented from (p, q, ε)-WOT secure against passive

adversaries. This fixes Lemma 5 and Theorem 2 in [17] and gives some new
bounds, but does not reach the bound of p + q + 2ε < 0.45 from [17].

Finally, we apply these results to the computational case, and show, using the
uniform hard-core lemma from [26], how an OT which may contain errors and
which is only mildly computationally secure against the two players can be ampli-
fied to a computationally-secure OT. In particular, we show that if (p, q, ε)-WOT
can be amplified to

(
2
1

)
-OT1 in the information-theoretic setting, then also the

computational version of (p, q, ε)-WOT which we call (p, q, ε)-compWOT can
be amplified to a computationally-secure

(
2
1

)
-OT1, using the same protocol. In

combination with our information-theoretic results, we get a way to amplify
(p, q, ε)-compWOT. Our results generalize the results presented in [20], as we
cover a much bigger region for the values p, q and ε, and in our case the security
for both players may only be computational.

A more detailed analysis of all these results can be found in [41].
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2 Preliminaries

Let X and X ′ be two random variables distributed over the same domain X . The
advantage of an algorithm A : X → {0, 1} to distinguish X from X ′ is defined
as AdvA(X, X ′) :=

∣∣Pr[A(X) = 1] − Pr[A(X ′) = 1]
∣∣. The statistical distance

between X and X ′ is defined as ∆(X, X ′) = 1
2

∑
x∈X

∣∣Pr[X = x]− Pr[X = x]
∣∣.

It is easy to see that ∆(X, X ′) = maxA AdvA(X, X ′). We say that a random
variable X over X is ε-close to uniform with respect to Y , if ∆(PXY , PUPY ) ≤ ε,
where PU is the uniform distribution over X .

Definition 1. Let PXY be a distribution over {0, 1} × Y. The maximal bit-
prediction advantage of X from Y is PredAdv(X | Y ) := 2 · maxf Pr[f(Y ) =
X]− 1.

In other words, if PredAdv(X | Y ) = δ, then we have for all functions f : Y →
{0, 1} that Pr[f(Y ) = X] ≤ (1+ δ)/2. It is easy to see that there exists an event
E with Pr[E ] = PredAdv(X | Y ), such that if E occurs, then X is a function of
Y and if E does not occur, then X is uniform conditioned on Y . Furthermore,
we have PredAdv(X | Y ) = 2 · ∆(PXY , PUPY ), where PU is the uniform dis-
tribution over {0, 1}. Let H∞(X | Y ) = minxy:PXY (x,y)>0− log PX|Y (x | y) be
the conditional min-entropy of X given Y . A function h : R × X → {0, 1}m

is called a 2-universal hash function [10], if for all x0 6= x1 ∈ X , we have
Pr[h(R, x0) = h(R, x1)] ≤ 2−m, if R is uniform over R.

We say that a function f : N → N is polynomial in k, denoted by poly(k), if
there exists a constant c > 0 such that f(k) ∈ O(kc). A function f : N → [0, 1]
is negligible in k, denoted by negl(k), if for all c > 0, f(k) ∈ o(k−c).

2.1 Definition of Security

A W-hybrid protocol is a sequence of interactions between two players. In each
step, the players may apply a randomized function on their data, and send the
result to the other player. They may also use the functionality W by sending
input to W which gives them an output back according to the specification of
W. In the last stage the players output a randomized function of their data.
A protocol is efficient if it can be executed using two polynomial time turing
machines.

In the semi-honest model, the adversary is passive, which means that she
follows the protocol, but outputs her entire view, i.e., all the information she has
obtained during the execution of the protocol. In the malicious model the adver-
sary is active, which means that he may change his behavior in an arbitrary way.
Our definitions for the security of a protocol are based on the standard real vs.
ideal paradigm of [34] and [1] (see also [9]). The idea behind the definition is that
anything an adversary can achieve in the real life protocol, he could also achieve
by another attack in an ideal world, i.e., where the players only have black-box
access to the functionality they try to achieve. If the executions in the real and
the ideal settings are statistically indistinguishable (the statistical distance is
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smaller than ε), we call the protocol secure with an error of at most ε, if they
are only computationally indistinguishable (any efficient algorithm has negligible
advantage in distinguishing them), we call the protocol computationally secure.

We will only look at a fully randomized version of
(
2
1

)
-OTn denoted by(

2
1

)
-ROTn.

(
2
1

)
-ROTn is equivalent to

(
2
1

)
-OTn, which was shown in [4] and for-

mally proved in [2]. Our definition of
(
2
1

)
-ROTn is similar to the definitions in

[16] and [14].

Definition 2 (Randomized oblivious transfer, malicious model). A pro-
tocol Π between a sender and a receiver where the sender outputs (X0, X1) ∈
{0, 1}n × {0, 1}n and the receiver outputs (C, Y ) ∈ {0, 1} × {0, 1}n securely im-
plements

(
2
1

)
-ROTn in the malicious model with an error of at most ε, if the

following conditions are satisfied:

– (Correctness) If both players are honest, then Pr[Y 6= XC ] ≤ ε.
– (Security for the sender) For an honest sender and any (malicious) receiver

with output V , there exists a random variable C ∈ {0, 1}, such that X1−C is
ε-close to uniform with respect to (C, XC , V ).

– (Security for the receiver) For an honest receiver and any (malicious) sender
with output U , C is ε-close to uniform with respect to U .

In the semi-honest model, we additionally require that C = C, because we also
require the adversary in the ideal world to be semi-honest.

3 Distributed Randomness Extraction

In order to get an optimal bound for the reduction from
(
2
1

)
-OT1 to (α)-

(
2
1

)
-UOTn,

we will need a generalization of Lemma 1, the leftover hash lemma. Since this is
of independent interest, we present it in a separate section.

Lemma 1 tells us how many almost-random bits can be extracted from an
imperfect source of randomness X, if some additional uniform randomness is
present. It is also known as privacy amplification. See also [3, 25].

Lemma 1 (Leftover hash lemma [5, 30]). Let X be a random variable over
X and let m > 0. Let h : S × X → {0, 1}m be a 2-universal hash function. If
m ≤ H∞(X)− 2 log(1/ε) + 2, then for S uniform over S, h(S, X) is ε-close to
uniform with respect to S.

We now generalize the setting and let two players independently extract random-
ness from two dependent random variables. Lemma 1 tells us that if the length
of the extracted strings are smaller than the min-entropy of these random vari-
ables, then each of the extracted strings is close to uniform. However, the two
strings might still be dependent on each other. Lemma 2 now says that if the
total length of the extracted strings is smaller than the overall min-entropy, then
the two strings are also almost independent. The obtained bound is optimal. The
proof is very similar to a standard proof of the leftover hash lemma.
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Lemma 2 (Distributed leftover hash lemma). Let X and Y be random
variables over X and Y, and let m,n > 0. Let g : S × X → {0, 1}m and h :
R×Y → {0, 1}n be 2-universal hash functions. If

min (H∞(X)−m,H∞(Y )− n, H∞(XY )−m− n) ≥ 2 log(1/ε) ,

then, for (S, R) uniform over S × R, (g(S, X), h(R, Y )) is ε-close to uniform
with respect to (S, R).

Proof. For any W having distribution PW over W, and W ′ being uniformly
distributed over W, we have

∆(W,W ′) =
1
2

∑
w

∣∣∣∣PW (w)− 1
|W|

∣∣∣∣ = 1
2

√√√√(∑
w

∣∣∣∣PW (w)− 1
|W|

∣∣∣∣
)2

≤1
2

√
|W|

√√√√∑
w

(
PW (w)− 1

|W|

)2

=
1
2

√
|W|

√∑
w

P 2
W (w)− 1

|W|
.

Here we used that (
∑n

i=1 ai)2 ≤ n
∑n

i=1 a2
i , which follows from Cauchy-Schwarz.

Let V = g(S, X), V ′ = h(R, Y ) and U,U ′ be two uniform random variables over
{0, 1}m and {0, 1}n. Choosing W := (V, V ′, S,R) and W ′ := (U,U ′, S,R) in the
above inequality, we get

∆((V, V ′, S,R), (U,U ′, S,R))

≤ 1
2

√
|S||R|2m+n

√∑
vv′sr

P 2
V V ′SR(v, v′, s, r)− 1

|S||R|2m+n
.

Since
∑

x P 2
X(x) is the collision probability1 of a random variable X, we have

for (X0, Y0) and (X1, Y1) independently distributed according to PXY and for
uniformly random S0, S1, R0, and R1 that∑
vv′sr

P 2
V V ′SR(v, v′, s, r)

= Pr[g(X0, S0) = g(X1, S1) ∧ h(Y0, R0) = h(Y1, R1) ∧ S0 = S1 ∧R0 = R1]
= Pr[S0 = S1 ∧R0 = R1] Pr[g(X0, S0) = g(X1, S0) ∧ h(Y0, R0) = h(Y1, R0)] .

Because g and h are 2-universal hash functions, we have

Pr[g(X0, S0) = g(X1, S0) ∧ h(Y0, R0) = h(Y1, R0)]

≤ Pr[X0 = X1 ∧ Y0 = Y1] + 2−m Pr[X0 6= X1 ∧ Y0 = Y1]

+ 2−n Pr[X0 = X1 ∧ Y0 6= Y1] + 2−m−n

= (1 + 3ε2)2−m−n ,

from which follows that ∆((V, V ′, S,R), (U,U ′, S,R)) ≤
√

3
2 ε. ut

1 Let X0 and X1 be distributed according to PX . The collision probability is Pr[X0 =
X1] =

P
PX(x)2.
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4 Universal Oblivious Transfer

In this section, we give an implementation of
(
2
1

)
-ROT` that uses one instance

of universal oblivious transfer (UOT), that allows ` to be roughly twice as large
as in [16], at the cost of a slightly larger error term.

UOT is a weak version of ROT that allows a malicious receiver to obtain
more information than what he would be allowed in ROT. For simplicity, we
only define a perfect version of UOT. The definition (and also the proof of
Theorem 1) can easily be adapted to the statistical case.

Definition 3 (Universal oblivious transfer, malicious model). A protocol
Π between a sender and a receiver where the sender outputs (X0, X1) ∈ {0, 1}n×
{0, 1}n and the receiver outputs (C, Y ) ∈ {0, 1} × {0, 1}n securely implements
(α)-

(
2
1

)
-UOTn in the malicious model, if the following conditions are satisfied:

– (Correctness) If both players are honest, then Y = XC .
– (Security for the sender) For an honest sender and any (malicious) receiver

with output V , we have H∞(X0, X1 | V ) ≥ α.
– (Security for the receiver) For an honest receiver and any (malicious) sender

with output U , C is uniform with respect to U .

We will use the same protocol as [6, 8, 7, 16]. Note that this protocol is only
secure in the the malicious, but not to the semi-honest model.

Protocol ROTfromUOT(α, n, `)
Let (U0, U1) ∈ {0, 1}`×{0, 1}` be the senders output and (C, Y ) ∈ {0, 1}×{0, 1}`

the receivers output. Let h : R×{0, 1}n → {0, 1}` be a 2-universal hash function.

1. Both players execute (α)-
(
2
1

)
-UOTn. The sender receives (X0, X1), and the

receiver receives (C,W ).
2. The sender chooses R0, R1 ∈ R at random and sends (R0, R1) to the receiver.
3. The sender outputs (U0, U1) := (h(R0, X0), h(R1, X1)), and the receiver out-

puts (C, Y ) := (C, h(RC ,W )).

To prove that the protocol is secure for the sender, we will define an additional
random variable A ∈ {0, 1, 2} that distinguishes between three cases. (We assume
that the receiver gets to know A, which may only help him.) We will show that
the protocol is secure in all three cases. It is easy to see that for this protocol
the bound we obtain in Theorem 1 is asymptotically optimal.

Theorem 1. Let ε > 0. Protocol ROTfromUOT(α, n, `) securely implements(
2
1

)
-ROT` with an error of at most 2ε out of one instance of (α)-

(
2
1

)
-UOTn in

the malicious model, if ` ≤ α/2− 3 log(1/ε).

Proof. Obviously the protocol satisfies correctness. Let the sender be honest.
Let V

′
be the output of (α)-

(
2
1

)
-UOTn to the (malicious) receiver. We will im-

plicitly condition on V
′

= v′. After the execution of (α)-
(
2
1

)
-UOTn, we have

H∞(X0X1) ≥ α. Let Si :=
{
xi ∈ Xi : Pr[Xi = xi] ≤ 2−α/2

}
, for i ∈ {0, 1}. We
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define the random variable A as follows. Let A = 2 if (X0 ∈ S0)∧ (X1 ∈ S1), let
A = 0 if (X0 6∈ S0)∧ (X1 ∈ S1), let A = 1 if (X1 6∈ S1)∧ (X0 ∈ S0), and let A be
chosen uniformly at random in {0, 1} if (X0 6∈ S0)∧ (X1 6∈ S1). If Pr[A = 2] ≤ ε,
we will ignore the event A = 2. Therefore, we redefine A for this event to take
on the value 3. We end up with a random variable A that takes on the value 2
with probability 0 or at least ε, and which takes on the value 3 with probability
at most ε. Let C = min(A, 1).

– If the event A = i occurs for i ∈ {0, 1}, we have C = i. All xi ∈ Si have
Pr[Xi = xi ∧ A = i] = 0. For all xi 6∈ Si we have Pr[Xi = xi ∧ A = i] ≥
Pr[Xi = xi]/2 ≥ 2−α/2−1. It follows that

Pr[X1−i = x1−i | Xi = xi ∧A = i] =
Pr[X1−i = x1−i ∧Xi = xi ∧A = i]

Pr[Xi = xi ∧A = i]

≤ 2−α/2−α/2−1 = 2−α/2+1 ,

and hence, H∞(X1−C | XC , A = i) ≥ α/2 − 1. Since R1−C is chosen in-
dependently of the rest, it follows from Lemma 1 that, given A = i, the
distribution of U1−C is ε-close to uniform with respect to (R0, R1, UC).

– If the event A = 2 occurs, we have C = 1, Pr[A = 2] ≥ ε, Pr[X0 = x0∧X1 =
x1 | A = 2] ≤ 2−α/ε, and Pr[Xi = xi | A = 2] ≤ 2−α/2/ε, for i ∈ {0, 1}.
It follows that H∞(X0 | A = 2) ≥ α/2 − log(1/ε), H∞(X1 | A = 2) ≥
α/2− log(1/ε), and H∞(X0X1 | A = 2) ≥ α− log(1/ε). Since R0 and R1 are
chosen independently of the rest, it follows from Lemma 2 that given A = 2,
(U0, U1) is ε-close to uniform with respect to (R0, R1), from which follows
that U1−C is ε-close to uniform with respect to (R0, R1, UC).

Therefore, for all a ∈ {0, 1, 2}, given A = a, there exists a C such that the
distribution of U1−C is ε-close to uniform with respect to (R0, R1, C, UC). It fol-
lows that U1−C is also ε-close to uniform with respect to (R0, R1, C, UC) given
A < 3, and since Pr[A = 3] ≤ ε, U1−C is 2ε-close to uniform with respect to
(R0, R1, C, UC). Because this holds for all v′ ∈ V ′, and because V is a random-
ized function of (R0, R1, V

′
), U1−C is also 2ε-close to uniform with respect to

(C, UC , V ).
Let the receiver be honest, and let U

′
be the output of (α)-

(
2
1

)
-UOTn to a

(malicious) sender. From the security of (α)-
(
2
1

)
-UOTn follows that C is uniform

with respect to U
′
. Since the receiver does not send any messages to the sender,

C is also uniform with respect to U . ut

5 Weak Oblivious Transfer

In this section we show how ROT can be implemented using many instances
of weak oblivious transfer (WOT), which is a weak version of ROT where both
players may get additional information, and where the output may be incorrect.
We start by giving two new, weaker definitions of WOT for both models.
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Definition 4 (Weak oblivious transfer, semi-honest model). Let Π be a
protocol between a sender and a receiver that outputs (X0, X1) ∈ {0, 1} × {0, 1}
to the sender and (C, Y ) ∈ {0, 1} × {0, 1} to the receiver. Let U be the view of
the semi-honest sender, and let V be the view of the semi-honest receiver. Let
E := XC ⊕ Y . Π implements (p, q, ε)-WOT in the semi-honest model, if

– (Correctness) Pr[Y 6= XC ] ≤ ε.
– (Security for the sender) PredAdv(X1−C | V,E) ≤ q.
– (Security for the receiver) PredAdv(C | U,E) ≤ p.

Since C and Y are part of V , (C,XC , V ) is a function of (V,E). Note that for the
protocols we present here, it would be sufficient to require PredAdv(C | U) ≤ p
for the security for the receiver. We do not use this definition in order to get a
stronger Theorem 6 that is easier to proof.

Definition 5 (Weak oblivious transfer, malicious model). Let Π be a
protocol between a sender and a receiver that outputs (X0, X1) to the sender and
(C, Y ) to the receiver. Π implements (p, q, ε)-WOT in the malicious model, if

– (Correctness) Pr[Y 6= XC ] ≤ ε.
– (Security for the sender) For an honest sender and any (malicious) receiver

with output V , there exists a C, such that PredAdv(X1−C | C, XC , V ) ≤ q.
– (Security for the receiver) For an honest receiver and any (malicious) sender

with output U , we have PredAdv(C | U) ≤ p.

It is easy to see that in both models (ε, ε, ε)-WOT implies
(
2
1

)
-ROT1 with an

error of at most ε.
Besides the fact that we only consider a randomized version of WOT, our

definitions of (p, q, ε)-WOT differ from the definitions used in [17] and [15] in the
fact that we do not specify exactly what a malicious player may receive, but we
only require that his output should not give too much information about X1−C

and C. This means that a malicious player may, for example, always receive
whether an error occurred in the transmission or not, if that information is
independent of the inputs. The most important difference is, however, that our
definitions do not require that the error must occur independently of the event
that a player gets side information, which is very important when we want to
apply it. Note that our definitions still are quite close to the definitions from
[17, 15], because there exist events with probability 1− p and 1− q, such that if
they occur, then the adversary does not get any side information.

In order to improve the achievable range of the reductions, Generalized WOT
(GWOT) was introduced in [15]. Our weaker definitions of WOT imply that, at
least for the moment, the usage of GWOT does not give any advantage over
WOT.

Notice that the impossibility result, Lemma 1 in [17], only works for our
weaker definitions of WOT.

9



5.1 Basic Protocols for WOT Amplification

To achieve
(
2
1

)
-OT1 from (p, q, ε)-WOT, we will use the reductions R-Reduce,

S-Reduce and E-Reduce. Protocol R-Reduce is used to reduce the parameter p,
and Protocol S-Reduce is used to reduce the parameter q. Both protocols where
already used in [12, 17, 15, 20], as well as in [22, 33] to build OT-combiners. It
is easy to verify that these protocols are also secure when our definitions of
(p, q, ε)-WOT is used. (Notice that R-Reduce and S-Reduce, as well as E-Reduce
below, use a non-randomized WOT as input. Therefore, we have to apply first
the protocol presented in [4, 2] that converts ROT into OT.)

Lemma 3 ([17]). Protocol R-Reduce(n,W) implements a (p′, q′, ε′)-WOT in the
semi-honest and the malicious model out of n instances of (p, q, ε)-WOT, where
p′ = 1− (1− p)n ≤ np, q′ = qn ≤ e−n(1−q), and ε′ = (1− (1− 2ε)n)/2 ≤ nε.

Protocol S-Reduce(n,W) implements a (p′, q′, ε′)-WOT in the semi-honest
and the malicious model out of n instances of (p, q, ε)-WOT, where p′ = pn ≤
e−n(1−p), q′ = 1− (1− q)n ≤ np, and ε′ = (1− (1− 2ε)n)/2 ≤ nε.

Protocol E-Reduce was also used in [20] and is an one-way variant of Protocol
E-Reduce presented in [17]. It is only secure in the semi-honest model.

Protocol E-Reduce(n,W)
The sender has input (x0, x1) ∈ {0, 1} × {0, 1}, and the receiver c ∈ {0, 1}.

1. They execute W n times, using x0, x1 and c as input in the ith execution.
The receiver receives yi.

2. The receiver outputs y := majority(y1, . . . , yn).

Lemma 4. Protocol E-Reduce(n,W) implements (p′, q′, ε′)-WOT in the semi-
honest model out of n instances of (p, q, ε)-WOT, where p′ = 1− (1− p)n ≤ np,
q′ = 1− (1− q)n ≤ nq and ε′ =

∑n
i=dn/2e

(
n
i

)
εi(1− ε)n−i ≤ e−2n(1/2−ε)2 .

The proof of Lemma 4 is straightforward. The last inequality follows from the
Chernoff-Hoeffding bound.

5.2 WOT Amplification for ε = 0

If p, q > 0, but ε = 0, we only need Protocols R-Reduce and S-Reduce. As they
are the same as in [17], their result for this case also holds for our definitions.
The bound is optimal. For a more detailed analysis, see [41].

Theorem 2 ([17]). If p + q ≤ 1 − 1/ poly(k), then (2−k, 2−k, 0)-WOT can be
efficiently implemented using (p, q, 0)-WOT secure in the semi-honest and the
malicious model.
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5.3 WOT Amplification for p = 0 or q = 0

The special case where ε > 0, but either p = 0 or q = 0 has not been considered in
[17]. There is a strong connection of this problem to the one-way key-agreement
problem studied in [28], as well as to the statistical distance polarization problem
studied in [37, 38]. We use the same protocol as Lemma 3.1.12 in [38].

Theorem 3. For constant p, q, and ε with p = 0 ∧ √
q + 2ε < 1 or q =

0 ∧ √
p + 2ε < 1, (2−k, 2−k, 2−k)-WOT can efficiently be implemented using

(p, q, ε)-WOT secure in the semi-honest model.

Proof. We will only show the theorem for q = 0. For p = 0 it is symmetric.
Let β = p, and α = 1 − 2ε. Let λ = min(α2/β, 2), ` = dlogλ 4ke and m =

λ`/(2α2`) ≤ (α2`/β`)/(2α2`) = 1/(2β`). From
√

p + 2ε < 1 follows that β < α2

and hence, 1 < λ ≤ 2. Notice that m is polynomial in k, since ` = O(log k).
We use the reductions W ′ = S-Reduce(`,W), W ′′ = E-Reduce(m,W ′), and
W ′′′ = S-Reduce(k,W ′′). Since W is a (β, 0, (1−α)/2)-WOT, W ′ is a (β′, 0, (1−
α′)/2)-WOT, where β′ = β` and α′ = α`. W ′′ is a (β′′, 0, (1−α′′)/2)-WOT with
β′′ ≤ mβ′ ≤ 1/2 and

α′′ ≥ 1− 2 exp
(
− λ`

2α2`
· (α`)2

2

)
= 1− 2 exp

(
−λ`

4

)
≥ 1− 2e−k .

Finally, W ′′′ is a (β′′′, 0, (1−α′′′)/2)-WOT with α′′′ ≥ (1−2e−k)k ≥ 1−2ke−k ≥
1− 2−k and β′′′ ≤ 2−k, as long as k is sufficiently large, which can be achieved
by artificially increasing k at the start. ut

5.4 WOT Amplification for p, q, ε > 0

To find a good protocol for the general case is much harder. We start with the
case where all values are smaller than 1/50.

Lemma 5. In the semi-honest model, (2−k, 2−k, 2−k)-WOT can efficiently and
securely be implemented using O(k2+log(3)) instances of (1/50, 1/50, 1/50)-WOT.

Proof. We iterate the reductionW ′ := S-Reduce(2,R-Reduce(2,E-Reduce(3,W)))
t times. In every iteration, we have p′ ≤ (2 ·(3p))2 = 36p2, q′ ≤ 2 ·((3q)2) = 18q2,
and ε′ ≤ 2 · 2 · (3ε2 − 2ε3) ≤ 12ε2, from which follows that after t itera-
tions, we have max(p′, q′, ε′) ≤ (36/50)2

t

. To achieve max(p′, q′, ε′) ≤ 2−k, we
choose t := dlog k/ log(50/36)e ≤ log(3 · k) + 1 = log(6 · k). We need at most
12t ≤ (6 · k)log(12) = O(k2+log(3)) instances of W. ut

The following Lemma 6 is a corrected version of Lemma 5 in [17]. Since our
Protocol E-Reduce is different, we are only able to achieve a smaller bound. As
in [17], we obtain our bound using a simulation.

Let li(p, q) be a function such that for all p, q and ε < li(p, q),
(
2
1

)
-ROT1

can be implemented using (p, q, ε)-WOT. Using li(p, q), we define li+1(p, q) :=
max(S−1

ε (li(Sp(p), Sq(q))), R−1
ε (li(Rp(p), Rq(q))), E−1

ε (li(Ep(p), Eq(q)))), where
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Sp(p) := p2, Sq(q) := 1−(1−q)2, S−1
ε (ε) := (1−

√
1− 2ε)/2, Rp(p) := 1−(1−p)2,

Rq(q) := q2, R−1
ε (ε) := (1 −

√
1− 2ε)/2, Ep(p) := 1 − (1 − p)3, Eq(q) :=

1− (1− q)3, and E−1
ε (ε) is the inverse of Eε(ε) := 3ε− 2ε3.

Now for all p, q and ε < li+1(p, q),
(
2
1

)
-ROT1 can be implemented using

(p, q, ε)-WOT, since one of the protocols S-Reduce(2,W), R-Reduce(2,W), or
E-Reduce(3,W) achieves ε′ < li(p′, q′), from which we can achieve

(
2
1

)
-ROT1.

From Lemma 5 follows that l0(p, q) := 0.02 − p − q satisfies our condition.
Iterating 8 times, we get that for all p, q, l8(p, q) ≥ (0.15 − p − q)/2. Using
l′0(p, q) := (0.15− p− q)/2 and iterating 11 times, we get l′11(p, q). Since for all
p, q we have l′11(p, q) ≥ (0.24− p− q)/2, we get

Lemma 6. If p + q + 2ε ≤ 0.24, then (2−k, 2−k, 2−k)-WOT can efficiently be
implemented using (p, q, ε)-WOT secure in the semi-honest model.

Often (p, q, ε)-WOT will be applied when one of the three values is big, while
the others are small. We will now give bounds for these three cases.

Lemma 7. If p + 22q + 44ε < 1 − 1/ poly(k), then (2−k, 2−k, 2−k)-WOT can
efficiently be implemented using (p, q, ε)-WOT secure in the semi-honest model.

Proof. We apply W ′ = S-Reduce(n,W) for n = dln(20)/(1− p)e. From Lem-
mas 3 follows directly that we obtain a (p′, q′, ε′)-WOT with p′ + q′ +2ε′ ≤ 0.24.
The lemma follows now from Lemma 6. ut

Lemma 8. If 22p + q + 44ε < 1 − 1/ poly(k), then (2−k, 2−k, 2−k)-WOT can
efficiently be implemented using (p, q, ε)-WOT secure in the semi-honest model.

Lemma 9. If 7
√

p + q + 2ε < 1 − 1/ poly(k), then (2−k, 2−k, 2−k)-WOT can
efficiently be implemented using (p, q, ε)-WOT secure in the semi-honest model.

Proof. We apply W ′ = E-Reduce(n,W) for n =
⌈
ln(50)/(2( 1

2 − ε)2)
⌉
. From

Lemma 4 follows directly that we obtain a (p′, q′, ε′)-WOT with p′ + q′ + 2ε′ ≤
0.24. The lemma follows now from Lemma 6. ut

Theorem 4. If p+q+2ε ≤ 0.24, or min(p+22q+44ε, 22p+q+44ε, 7
√

p + q+
2ε) ≤ 1 − 1/ poly(k), then (2−k, 2−k, 2−k)-WOT can efficiently be implemented
using (p, q, ε)-WOT secure in the semi-honest model.

6 Computationally Secure Weak Oblivious Transfer

Even though the protocols from the last section are purely information-theoretic,
we can also use them in the computational semi-honest model, as we will see in
this section. The main tool to show this will be a pseudo-randomness extraction
theorem (Theorem 5), that is a modified version of Theorem 7.3 from [27]. It is
based on the uniform hard-core lemma from [26], which is a uniform variant of
the hard-core lemma from [29].
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6.1 Pseudo-Randomness Extraction

The main difference of Theorem 5 compared to the (implicit) extraction lemma
in [24, 25] and the extraction lemma in [21] is that it allows the adversary to
gain some additional knowledge during the extraction (expressed by the function
Leak), which is needed for our application.

Besides a simplification, the main difference of our Theorem 5 to Theorem 7.3
from [27] is that we allow the functions Ext and Leak also to depend on the
values Zi. Intuitively, Theorem 5 says the following: if we have an information-
theoretic protocol (modeled by the two functions Ext and Leak), that converts
many instances of X over which an adversary having Z has only partial knowl-
edge, into an X ′ over which the adversary has almost no knowledge, and if we
have a computational protocol (modeled by the function f(W ) and the predicate
P (W )), where an adversary having f(W ) has only partial computational knowl-
edge about P (W ), then the modified information-theoretic protocol, where every
instance of X is replaced with P (W ) and every instance of Z with f(W ), will
produce a value over which the adversary has almost no computation knowledge.

Theorem 5 (Pseudo-Randomness Extraction Theorem, Modified The-
orem 7.3 in [27]). Let the functions f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1},
and β : N → [0, 1] computable in time poly(k) be given. Assume that every
polynomial time algorithm B satisfies

Pr[B(f(W )) = P (W )] ≤ (1 + β(k))/2

for all but finitely many k, for a uniform random W ∈ {0, 1}k. Further, let also
functions n(k), s(k),

Ext : {0, 1}`·n × {0, 1}n × {0, 1}s → {0, 1}t ,

Leak : {0, 1}`·n × {0, 1}n × {0, 1}s → {0, 1}t′ ,

be given which are computable in time poly(k), and satisfy the following: for any
distribution PXZ over {0, 1} × {0, 1}` where PredAdv(X | Z) ≤ β(k), the out-
put of Ext(Zn, Xn, R) is ε(k)-close to uniform with respect to Leak(Zn, Xn, R)
(where R ∈ {0, 1}s is chosen uniformly at random). Then, no polynomial time
algorithm A, which gets as input

Leak((f(w1), . . . , f(wn)), (P (w1), . . . , P (wn)), R) ,

(where (w1, . . . , wn) are chosen uniformly at random) distinguishes

Ext((f(w1), . . . , f(wn)), (P (w1), . . . , P (wn)), R)

from a uniform random string of length t with advantage ε(k) + γ(k), for any
non-negligible function γ(k).

The proof of Theorem 5 is very similar to the proof of Theorem 7.3 in [27] and
can be found in the appendix. Note that our proof makes an additional step that
has been missing in the proof of Theorem 7.3 in [27].
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6.2 Computational-WOT Amplification

We will denote the computational version of (p, q, ε)-WOT by (p, q, ε)-compWOT.
The difference to the information-theoretic definition is that now we require the
algorithms that guess X1−C or C to be efficient, i.e., to run in polynomial time.

Definition 6 (Computationally secure weak oblivious transfer, semi-
honest model). Let functions ε : N → [0, 1/2], p : N → [0, 1], and q : N → [0, 1]
computable in time poly(k) be given. Let Π be a protocol between a sender and
a receiver. On input 1k, Π outputs (X0, X1) ∈ {0, 1} × {0, 1} to the sender and
(C, Y ) ∈ {0, 1}×{0, 1} to the receiver. Let U be the view of a semi-honest sender,
and let V be the view of a semi-honest receiver. Let E := XC⊕Y . Π implements
(p(k), q(k), ε(k))-compWOT in the semi-honest model, if

– (Efficiency) Π can be executed in time poly(k).
– (Correctness) Pr[Y 6= XC ] ≤ ε(k) for all k.
– (Security for the sender) All polynomial time algorithms A satisfy

Pr[A(V,E) = X1−C ] ≤ (1 + q(k))/2

for all but finitely many k.
– (Security for the receiver) All polynomial time algorithms A satisfy

Pr[A(U,E) = C] ≤ (1 + p(k))/2

for all but finitely many k.

We apply Theorem 5 twice to get Theorem 6, which says that if we have a pro-
tocol that implements (p, q, ε)-compWOT, and an efficient information-theoretic
protocol that implements

(
2
1

)
-ROT1 from (p, q, ε)-WOT secure in the semi-honest

model, then we can construct a protocol that implements
(
2
1

)
-ROT1 computa-

tionally secure in the semi-honest model.

Theorem 6. Let the functions ε(k), p(k), and q(k) computable in time poly(k)
be given. Let a protocol Π achieve (p, q, ε)-compWOT and let an efficient infor-
mation-theoretic protocol Π ′ be given which takes 1k as input and implements
(2−k, 2−k, 2−k)-WOT from (p, q, ε)-WOT secure in the semi-honest model. Then,
protocol Π ′, where every instance of (p, q, ε)-WOT is replaced by an independent
outcome of Π, implements

(
2
1

)
-ROT1 computationally secure in the semi-honest

model.

Proof. Let W = (WS,WR) be the randomness used in Π by the sender and the
receiver, and let Z be the communication. (X0, X1) and (C, Y ) are the output
to the honest sender and receiver, respectively. U = (X0, X1, Z,WS) and V =
(C, Y, Z, WR) are the views of the semi-honest sender and receiver, respectively.
Let E := Y ⊕XC . Note that all these values are functions of W .

In the protocol Π ′, the sender receives (X0, X1)n, which are her output from
the n independent instances of Π, and the receiver receives (C, Y )n. The sender
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outputs (X∗
0 , X∗

1 ) and the receiver (C∗, Y ∗). Let R = (RS, RR) be the randomness
used in Π ′ by both players, and let Z ′ be the communication produced by Π ′.
V ∗ = (E∗, C∗, Y ∗, V n, Z ′, RR) is the view of the semi-honest receiver after the
execution of Π ′, and U∗ = (E∗, X∗

0 , X∗
1 , Un, Z ′, RS) the view of the semi-honest

sender. Let E∗ := Y ∗ ⊕X∗
C∗ . Note that the values E∗, X∗

0 , X∗
1 , C∗, Y ∗, V ∗, U∗

and Z ′ are functions of ((X0, X1, C, Y )n, R).
First of all, the resulting protocol will be correct and efficient, as every out-

come of Π satisfies Pr[Y 6= XC ] ≤ ε.
For the security of the sender, we define the following functions: let f(W ) :=

(V,E) and P (W ) := X1−C . Since XC = E ⊕ Y , it is possible to simulate the
protocol Π ′ using the values (V,E)n, (X1−C)n, and R. Therefore, we can de-
fine Ext((V,E)n, (X1−C)n, R) := X∗

1−C∗ and Leak((V,E)n, (X1−C)n, R) := V ∗.
Since Π ′ implements (negl(k),negl(k),negl(k))-WOT, the functions Ext and
Leak satisfy the extraction requirements from Theorem 5 with ε(k) = negl(k).
Furthermore, Ext and Leak can be computed efficiently, since the protocol Π ′ is
efficient. From the security condition of compWOT follows that every polynomial-
time algorithm B satisfies Pr[B(f(W )) = P (W )] ≤ (1 + q(k))/2 for all but fi-
nitely many k, for W chosen uniformly at random. Theorem 5 tells us that no
polynomial time algorithm A, which gets as input Leak((V,E)n, (X1−C)n, R),
distinguishes Ext((V,E)n, (X1−C)n, R) from a uniform random bit with advan-
tage negl(k)+γ(k), for any non-negligible function γ(k), from which follows that
the protocol is computationally secure for the sender.

For the security of the receiver, we define the following functions: let f(W ) :=
(U,E) and P (W ) := C. Since XC = E ⊕ Y , it is possible to simulate the
protocol Π ′ using the values (U,E)n, Cn, and R. Therefore, we can define
Ext((U,E)n, Cn, R) := C∗, and Leak((U,E)n, Cn, R) := U∗. Since Π ′ imple-
ments (negl(k),negl(k),negl(k))-WOT, the functions Ext and Leak satisfy the
extraction requirements from Theorem 5 with ε(k) = negl(k). Furthermore,
Ext and Leak can be computed efficiently, since the protocol Π ′ is efficient.
From the security condition of compWOT follows that every polynomial time
algorithm A satisfies Pr[A(f(W )) = P (W )] ≤ (1 + p(k))/2 for all but finitely
many k, for W chosen uniformly at random. Theorem 5 tells us that no polyno-
mial time algorithm B, which gets as input Leak((U,E)n, Cn, R), distinguishes
Ext((U,E)n, Cn, R) from a uniform random bit with advantage negl(k) + γ(k),
for any non-negligible function γ(k), from which follows that the protocol is
computationally secure for the receiver. ut

Together with the information-theoretic protocols presented in Section 5, (Theo-
rems 2, 3 and 4) we get a way to implement ROT based on compWOT, computa-
tionally secure in the semi-honest model. From [31] follows that such a protocol
implies one-way functions. Using the compiler from [19], we get an implementa-
tion of OT computationally secure in the malicious model. The following corol-
lary follows.

Corollary 1. Let the functions ε(k), p(k), and q(k) computable in time poly(k)
be given, such that either for all k ε = 0 ∧ p+q < 1−1/ poly(k) or p+q +2ε ≤
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0.24 or min(p + 22q + 44ε, 22p + q + 44ε, 7
√

p + q + 2ε) < 1 − 1/ poly(k), or,
for constant functions p(k), q(k) and ε(k), (p = 0) ∧ (

√
q + 2ε < 1) or (q =

0) ∧ (
√

p + 2ε < 1). If there exists a protocol Π that achieve (p, q, ε)-compWOT
computationally secure in the semi-honest model, then there exists a protocol that
implements

(
2
1

)
-OT1 computationally secure in the malicious model.

Corollary 1 generalizes results from [20], because it covers a much wider range
of values for p, q, and ε, and it allows the security for both players to be only
computational.
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A Appendix

Proof (Theorem 5). Let us assume there exists an algorithm A that contradicts
our assumption. To be able to apply the uniform hard-core lemma, Theorem 6.8
in [27], we will use A to construct an oracle algorithm A

χS 2 for which the fol-

2 A(·) has oracle access to the characteristic function χS of the set S, which is defined
as χS(w) := 1 if w ∈ S and χS(w) := 0 otherwise.
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lowing holds. For any set S ⊆ {0, 1}k with |S| ≥ (1− β(k))2k, we have

Pr[A
χS (f(W )) = P (W )] ≥ (1 + γ′)/2

for a non-negligible function γ′, where the expectation is over the randomness
of A

χS , W is chosen uniformly at random from {0, 1}k, and A
χS calls χS only

with queries which are computed independently of the input. For any fixed j ∈
{0, . . . , n} and any fixed set S ⊆ {0, 1}k with |S| ≥ (1 − β)2k, we define the
following values. For all i ∈ {0, . . . , n−1}, we choose wi ∈ {0, 1}k and ui ∈ {0, 1}
uniformly at random. Then we compute

yi :=
{

P (wi) if i ≥ j or wi 6∈ S ,
ui otherwise , (A.1)

ej := Ext((f(w1), . . . , f(wn)), yn, r) , and (A.2)
`j := Leak((f(w1), . . . , f(wn)), yn, r) , (A.3)

where r ∈ {0, 1}s is chosen uniformly at random.
Let PEjLj

be the distribution of (ej , `j). From our assumption follows that

AdvA((E0, L0), (U,L0)) ≥ ε + γ ,

where U ∈ {0, 1}t is chosen uniformly at random. On the other hand, for j = n,
with probability 1 − β (over the choice of wi) we have yi = ui, and therefore,
by Lemma 2.2 in [27], PredAdv(Yi | f(Wi)) ≤ β. The information-theoretic
requirement on the functions Ext and Leak imply that En is ε-close to uniform
with respect to Ln and therefore

AdvA((En, Ln), (U,Ln)) ≤ ε .

The triangle inequality implies

AdvA((E0, L0), (En, Ln)) + AdvA((U,L0), (U,Ln)) ≥ γ .

It follows that at least one of the four inequalities Pr[A(E0, L0) = 1] −
Pr[A(En, Ln) = 1] ≥ γ/2, Pr[A(En, Ln) = 1] − Pr[A(E0, L0) = 1] ≥ γ/2,
Pr[A(U,L0) = 1]−Pr[A(U,Ln) = 1] ≥ γ/2, or Pr[A(U,Ln) = 1]−Pr[A(U,L0) =
1] ≥ γ/2 holds for infinitely many k, from which follows that there exists an
algorithm A′ such that

Pr[A′(E0, L0) = 1]− Pr[A′(En, Ln) = 1] ≥ γ/2

for infinitely many k. For J ∈ {0, . . . , n − 1} chosen uniformly at random, we
have

Pr[A′(EJ , LJ) = 1]− Pr[A′(EJ+1, LJ+1) = 1] ≥ γ/(2n)

for infinitely many k. We can now give an implementation of a distinguisher
which distinguishes (f(W ), P (W )) from (f(W ), U) with advantage γ/(2n) for
infinitely many k, if W is chosen uniformly from S and U is a uniform random
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bit, as long as oracle access to χS is given. Let (f(w), b) be the input to the
distinguisher. It chooses j ∈ {0, . . . , n − 1}, and for all i ∈ {0, . . . , n − 1} the
values wi ∈ {0, 1}k and ui ∈ {0, 1} uniformly at random. Then, for all i ∈
{0, . . . , n−1}, it computes the values f(wi), P (wi) and yi as in (A.1). If wj ∈ S,
it replaces f(wj) with f(w) and yi with b. Then, it computes ej and `j as in
(A.2) and (A.3). If b is a uniform bit, then this process gives random variables
(Ej , Lj) distributed according to PEj+1Lj+1 , otherwise it gives random variables
distributed according to PEjLj . Therefore, A′ distinguishes (f(W ), P (W )) from
(f(W ), U) with advantage γ/(2n) for infinitely many k, if W is chosen uniformly
at random from S. From Lemma 7.2 in [27] follows that there exists a polynomial
time algorithm that predicts P (W ) from f(W ), where W is chosen uniformly at
random from {0, 1}k, with probability at least 1/2+γ/(2n) for infinitely many k.
We can now apply the uniform hard-core lemma, Theorem 6.8 in [27], to obtain
the statement. ut
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