
Cryptanalysis of the Sidelnikov cryptosystem

Lorenz Minder?, Amin Shokrollahi

Laboratoire de mathématiques algorithmiques (LMA), EPFL

Abstract. We present a structural attack against the Sidelnikov cryptosystem [8].
The attack creates a private key from a given public key. Its running time is subex-
ponential and is effective if the parameters of the Reed-Muller code allow for efficient
sampling of minimum weight codewords. For example, the length 2048, 3rd-order
Reed-Muller code as proposed in [8] takes roughly an hour to break on a stock PC
using the presented method.

Keywords: Sidelnikov cryptosystem, McEliece cryptosystem, error-correcting codes,
structural attack.

1 Introduction

The McEliece cryptosystem [6] is one of the oldest known public-key cryptosystems.
The fact that it has not been broken in more than a quarter of a century and that
the best known attacks today are still exponential speaks for itself.

Despite its impressive security record, it plays a rather marginal role in practice,
being far less popular than other systems, such as RSA. The principal reason for this
is that the McEliece cryptosystem is not as efficient as the alternatives. The main
problems are its large public keys, the fact that the message is subject to expansion
(the cryptogram is longer than the plaintext message), and its potentially high
decryption complexity.

To understand the tradeoffs, we recall how the McEliece cryptosystem works.
Let C be a linear binary Goppa code of block length n, dimension k, and having a
decoding algorithm correcting up to t errors. Let G be a k× n generator matrix for
the code. Let P be a random n × n permutation matrix. Then there is an efficient
decoder for the code generated by G · P . Let A be a k × k invertible matrix. The
code generated by

Gpub := AGP

is the same as the code generated by GP . The public key is the pair (Gpub, t). To
encrypt a message vector x := (x1, . . . , xk) ∈ Fk

2, we first compute xGpub and then
add t errors at random positions. The resulting vector y is the cryptogram.

The decrypting problem is to recover the value of x given y. The receiver can
decrypt this message, since he knows a decoding algorithm for C. An attacker has to
? Supported by the Swiss National Fund, grant 200021-103683



either resort to general decoding techniques, and attempt to solve a problem which
appears to be intractable, or recover the structure of the code given by Gpub. For
further details, see [6].

The McEliece cryptosystem can be generalized to codes other than Goppa codes.
A priori, any family of linear codes having decoders which allow for efficient correc-
tion of a large number of errors with high probability could be used.

The efficiency and security of such a cryptosystem depend on several factors.
First, the number t of correctable errors has to be very large to render general linear
decoding algorithms inefficient, which is a security requirement. In addition, the
McEliece cryptosystem can be modified in a manner so that the expansion factor
to which a message is subjected depends on t, see the paper by Niederreiter [7] for
such modifications. At the limit, if capacity-achieving codes could be used, t could
be made so large that the expansion factor would converge to 1.

Secondly, the difficulty of recovering the structure of a code given by an arbi-
trary, permuted generator matrix is highly dependent on the code in question. An
interesting dichotomy can be observed here: While modern, graph-based codes (like
LDPC-, expander-, LT- or turbo-codes) are all unsafe because of the sparse parity
checks revealing their structure, classical algebraic codes have proved widely resis-
tant to structural attacks. The most notable exception is given by Sidelnikov and
Shestakov [9], showing that generalized Reed-Solomon codes are unsafe.

In 1994, the first author of [9] proposed a variant of the McEliece system, basi-
cally replacing the Goppa codes with Reed-Muller codes [8]. The advantage of using
Reed-Muller codes is that very efficient decoding algorithms are known for these
codes. Thus, using these codes allows simultaneously for faster decryption, smaller
key sizes and expansion factors close to 1, if the Niederreiter variant is used.

While all those properties sound very promising, we will show in this paper that
Reed-Muller codes are a bad choice, too. More specifically, we present a method to
find a private key for a given public key. The most costly step of this procedure is
that of finding minimum weight codewords in the code. In the low-rate setting of
Reed-Muller codes, this is feasible even for fairly long block lengths. This attack is,
to our knowledge, the first known effective attack against this cryptosystem, and it
breaks in particular Sidelnikov’s original proposed parameters (m = 11, r = 3) in
less than an hour on a stock PC.

The key observation that makes the attack work, is the fact that minimum weight
words in the r-th Reed-Muller code of length 2m (this code is denoted R(r, m)) are
products of r minimum weight words in R(1,m). The attack uses this fact to reduce
the order: First, minimum weight codewords in the given, permuted R(r, m) are
found, and then a statistical test is applied to find factors of those words which lie
in the accordingly permuted R(r−1,m). By iterating this procedure, ultimately the



permuted version of R(1,m) is found, which allows easy identification of a suitable
permutation.

The fact that there is only a single Reed-Muller code for a given block length and
dimension has been noticed as a cryptographic weakness before. The best known
previous attack is using the support splitting algorithm[11], an algorithm to find a
permutation between two equivalent codes. While this algorithm is generally very
fast, it is ineffective against Reed-Muller codes: Its running time is exponential in
the dimension of the hull (i.e., the intersection of the code with its dual), and Reed-
Muller codes have a hull as big as the code itself.

This paper is organized as follows. First, we give a short summary of Reed-Muller
codes. Second, we present our results on the structure of these codes which form the
basis for the attack. Third, we present the attack with a running time analysis.

2 Reed-Muller codes

To recall the notation, we start by presenting the construction of these codes. For
further details the reader is referred to [5] or [3].

Reed-Muller codes can be constructed by using Boolean functions. A Boolean
function of m variables can be evaluated on 2m different positions. So to each Boolean
function we can associate a binary word of length 2m. The code R(r, m) is the set
of words obtained by evaluating all the Boolean functions of degree ≤ r in this way.
We will subsequently call the variables evaluated v1, . . . , vm.

We denote by B(r, {v1, . . . , vm}) the set of Boolean functions in the variables
v1, . . . , vm of degree at most r.

Note that since the base field is F2, the term v2
i can be simplified to vi, which

implies that the degree of any variable in any term of these Boolean functions is at
most 1.

The fact that all functions generating words in B(r− 1, {v1, . . . , vm}) are also in
B(r, {v1, . . . , vm}) implies the following observation.

Proposition 2.1. For any m, we have R(0,m) ⊂ R(1,m) ⊂ · · · ⊂ R(m,m).

In what follows, we frequently switch back and forth between B(r, {v1, . . . , vm})
and R(r, m). Doing so in the most explicit manner would make the reasonings a
lot harder to read, and for this reason we decided to treat codewords and Boolean
functions as interchangeable. Note, however, that a codeword has a fixed length,
while a function does not. If x ∈ R(r, m) is a codeword, its extension to R(r, m +
1) is the codeword (x, x), i.e., the codeword obtained by evaluating the function
f ∈ B(r, {v1, . . . , vm}) at all the possible values of (v1, . . . , vm, vm+1). Similarly, if
x ∈ R(r, m) is a codeword whose corresponding function does not depend on vm,



then we can reduce x to R(r, m− 1), by evaluating the function f corresponding to
x on all the possible values of (v1, . . . , vm−1). Note that in a Reed-Muller code, a
position (coordinate) within a codeword can be specified by the value of (v1, . . . , vm).

The block length n, dimension k and minimum distance d of R(r, m) are

n = 2m, k =
r∑

i=0

(
m

i

)
, d = 2m−r.

The support of a codeword x ∈ R(r, m), noted by supp(x), is the set of positions i,
for which xi 6= 0.

3 Minimum-weight codewords

We will now present the structural property of Reed-Muller codes which constitutes
the theoretical foundation of our cryptanalysis of the Sidelnikov cryptosystem.

The fact that products of r linearly independent first-order codewords are mini-
mum weight in R(r, m) is well-known. The following proposition states the converse,
namely, that minimum weight codewords in Reed-Muller codes can always be writ-
ten as a (pointwise) product of suitable words in the corresponding first order code.
In other words, the only functions giving rise to minimum weight codewords are
products of functions in B(1, {v1, . . . , vm}).

Proposition 3.1. Let f ∈ R(r, m) be a word of minimum weight. Then there exist
f1, f2, . . . , fr ∈ R(1,m), such that

f = f1 · f2 · · · fr,

as functions. The fi are of minimum weight in R(1,m).

Proposition 3.1 is proved in [4]. The same paper also gives more precise formulas
for the weight distribution, which can be used, in particular, to estimate the number
of minimum-weight words:

Proposition 3.2. There are at least

2mr−r(r−1).

minimum weight codewords in R(r, m).

We will make use of this fact in the analysis of the running time of our algorithm.



4 Cryptanalysis of the Sidelnikov cryptosystem

The Sidelnikov variant of the McEliece cryptosystem [8] uses Reed-Muller codes in
combination with powerful decoding algorithms.

Reed-Muller codes are low-rate if any interesting error-correction capability is to
be obtained, which makes it easy to apply algorithms such as the Canteaut-Chabaud-
algorithm [1] to find low weight words, and also to decode if the number of errors is
less than d/2 (half the minimum distance). However, there are decoding-algorithms
for Reed-Muller codes which decode many more errors (with high probability) than
d/2, and thus the low weight word finding algorithms cannot be directly used for
decoding.

Such algorithms can still be used to find minimum weight words in codes with
suitable parameters, though. In this section, we show how to exploit this fact to
invert trapdoors from Reed-Muller codes.

4.1 Outline of the attack

We now present an algorithm which, given a permuted, scrambled Reed-Muller
code C, constructs a permutation σ such that if the positions of C are permuted
accordingly, the resulting code is a Reed-Muller code.

Let σ be any permutation on {1, . . . , n}. For any code C of length n, we denote by
Cσ the code obtained from C with the positions permuted according to σ, i.e., a word
(x0, x1, . . . , xn) will be a codeword in Cσ if and only if (xσ−1(1), . . . , xσ−1(n)) ∈ C.

The sketch of the attack is as follows. Let C = R(r, m)σ for some unknown σ,
given by an arbitrary generator matrix.

1. Find codewords in C which with very high probability also belong toR(r−1,m)σ.
Find enough such vectors to build a basis of R(r − 1,m)σ.

2. Iterate the previous step (with decreasing r) until obtaining R(1,m)σ.
3. Determine a permutation τ such that R(1,m)τ◦σ = R(1,m). Then R(r, m)τ◦σ =
R(r, m), and this fact can then be used to decode.

The meat of the attack lies in the first step, which is based on the properties of
Reed-Muller codes stated in the previous section.

4.2 Finding the subcode R(r − 1, m)σ ⊆ R(r, m)σ

The basic idea of this step is to find a codeword for which we know that it is a
product of other codewords, and then to split off a factor lying in the R(r − 1,m)σ

subcode.



By proposition 3.1, a minimum weight codeword is actually a product of several
codewords of R(1,m)σ. Hence, we do the following: We find a minimum weight
codeword x and split off a factor of this word.

To this end, we shorten the code on supp(x), and use the structure of the short-
ened code to find a factor of x which lies in R(r − 1,m)σ.

Finding enough words in R(r − 1,m)σ will result in a basis of R(r − 1,m)σ.

Finding factors of minimum weight words. We drop the permutation σ in this
section, since our ideas do not depend on σ.

Let x ∈ R(r, m) be a minimum weight codeword. Using proposition 3.1, and
changing the basis, we can assume that x = v1v2 · · · vr. Let Csupp(x) be the code
R(r, m) shortened on the support of x. (In other words, Csupp(x) is the subcode
of R(r, m) containing only the words which are zero on supp(x), and with these
positions punctured afterwards.)

Write v̄ = (vr+1, . . . , vm), and let f be a codeword in Csupp(x). Then we can write
f as

f(v1, . . . , vr, v̄) =
∑

I∈2{1,...,r}

fI(v̄) ·
∏
i∈I

vi,

where for each I ⊆ {1, . . . , r}, we have fI ∈ B(r−|I|, {vr+1, . . . , vm}). The condition
that f be 0 on {v1 = v2 = · · · = vr = 1} implies

(1) 0 =
∑

I∈2{1,...,r}

fI(v̄),

and shows in particular that f∅(v̄) ∈ B(r − 1, {vr+1, . . . , vm}). Therefore, if we take
any codeword in the shortened code, fix a value for (v1, . . . , vr), and look at the
positions determined by this value, we get a codeword in R(r − 1,m− r). In other
words, the shortened code is a concatenated code1 with the inner codewords being
on the disjoint sets of positions determined by the value of (v1, . . . , vr).

We shorten on supp(x), i.e., the set {v1 = · · · = vr = 1}, so there are actually
2r − 1 such sets, and each is of length 2m−r. We apply the algorithm of the next
section (Algorithm 1) to find the sets and then construct a word y of length 2m

that has ones exactly on the points {v1 = · · · = vr = 1} ∪ S, where S is one of the
determined sets, say {v1 = v2 = · · · = v` = 0, v`+1 = v`+2 = · · · = vr = 1}. The set
supp(x) ∪ S can also be written as {v1 = v2 = · · · = v`, v`+1 = · · · = vr = 1}, and
hence we can write

y = (1 + v1 + v2)(1 + v2 + v3) · · · (1 + v`−1 + v`)v`+1 · · · vr,

1 A concatenated code is a subspace of the Cartesian product of several nontrivial codes.



which shows that y ∈ B(r−1, {v1, . . . , vr}). Note that one can write x = viy for any
1 ≤ i ≤ `, showing that y is indeed a factor of x.

Finding inner words in the shortened code. To solve the problem of distin-
guishing the sets with different values of (v1, . . . , vr), we use the fact that the code
is a concatenated code, with an inner codeword on each of these sets.

The problem of recovering concatenated codes has previously been studied by
Sendrier; the algorithm presented in [10] could possibly be applied in our case, if one
showed that the code in question verifies the assumptions of this algorithm, namely
that the most lightweight parity checks all have their support within one inner word.

Another possibility is to use a similar method which acts on the code itself,
rather than on its dual, and works well in our setting. The method is based on a
statistical analysis, and we start by describing the relevant random experiment. Let
C be a concatenated code, i.e.,

C ⊆ Ci × · · · × Ci︸ ︷︷ ︸
n times Ci

,

where Ci is a non-trivial code of length ni and relative minimum distance δ, called
the inner code.

For our analysis, we need the following assumption: If Y ∈ C is sampled randomly
in the low weight words of C, we assume that the events {Yi = 1} and {Yj = 1} are
independent if the positions i and j do not belong to the same inner block. (Note
that this is almost universally true for linear codes with Y sampled from all the
words, and not just the low weight ones.)

Now we randomly sample words of relative weight < δ from C. Call these samples
X0, X1, . . ., and denote by (X`)k the k-th position of X`. For two indexes 1 ≤ i <
j ≤ ni · n, we define the random variable

Iij,k :=

{
1 if (Xk)i = 1 and (Xk)j = 1,
0 otherwise.

The punch line will be that the behaviour of Iij,k depends on whether i and j lie
within the same inner code or not.

We first assume that i and j are not in the same inner block; then (Xk)i and
(Xk)j will be independent random variables, and we get

E[Iij,k] = Prob((Xk)i = 1 ∧ (Xk)j = 1)
= Prob((Xk)i = 1)Prob((Xk)j = 1)

≈ δ2,



assuming the relative weight of Xk is very likely close to δ.
The situation is different if i and j are in the same inner block. Let εk denote the

fraction of zero inner codewords of Xk, and let Tk,i be the indicator variable being
one whenever the inner block of Xk containing the position i (and also position j)
is nonzero. Then we get the following estimate for the case where i and j are in the
same inner block:

E[Iij,k | εk] = Prob((Xk)i = 1 ∧ (Xk)j = 1 | Tk,i = 1, εk) · Prob(Tk,i = 1 | εk)

≈
(

δ

1− εk

)2

εk

= δ2 · εk

(1− εk)2
.

Since the relative weight of Xk is less than δ, this means that the average relative
weight of the inner blocks is less than δ. Knowing that the relative distance of the
inner code is δ, we get the combinatorial guarantee that at least one of the inner code
blocks contains the zero codeword. We therefore know that εk ≥ n−1. (In reality, we
expect a constant fraction of them to be zero.)

Now, if for each pair of indices (i, j), we compute

Sij :=
N∑

k=1

Iij,k,

then, if N is large enough, those random variables can be used to determine the
inner codewords: Just declare (i, j) as belonging to the same set whenever Sij is
large enough.

After the sampling, the values Sij can then be used to recover the sets, using a
greedy algorithm, for example. Algorithm 1 illustrates this approach.

Note that the behaviour of εk has an impact on the complexity of the algorithm.
The bound εk ≥ n−1 guarantees that only a polynomial number of low weight
codewords has to be sampled, but larger values cause much faster convergence. (In
practice, choosing the number of observations linear in the number of sets works
well over a wide parameter range, although this is significantly less than what we
can prove to be sufficient.)

We close this section by noting that according to our definition, Reed-Muller
codes themselves are concatenated codes, so one could think of applying this method
directly, rather than first finding minimum weight words and shortening. This does
not work, since the minimum distance is in this case just large enough to prevent
any codewords from lying in the space we want to sample from.



Algorithm 1 Decompose inner sets of C
C is a concatenated code of block length N = n · ni. The inner code Ci has distance di and length
ni. M is the number of samples deemed sufficient.

Let Sij ← 0, 1 ≤ i, j ≤ N .
for i = 1, . . . , M do

Sample a word (x1, . . . , xN ) ∈ C of weight < N(di/ni).
for each (i, j) with xi = xj = 1 and i 6= j do

Increment Sij .
end for

end for
for e = 1, . . . , n do

Let i be such that Sij is maximal for some j, i.e., i← arg max1≤i≤N max1≤j≤N Sij

Te ← {i}
while |Te| < ni do

Let 1 ≤ i ≤ N be a vertex such that
P

j∈Te
Sij is maximal.

Te ← Te ∪ {i}
Let Sji ← −∞ and Sij ← −∞ for all 1 ≤ j ≤ N .

end while
end for

4.3 The case r = 1

Consider the matrix A formed by the rows corresponding to the codewords vm,
vm−1, . . . , v1 of the (unpermuted) R(1,m). By construction, the i-th column of this
matrix is just the number i − 1, if we read the vector as a binary number. Any
possible binary vector of length m appears exactly once among the columns of this
matrix, and if we add the all-one row, we get a generator matrix for a first-order
Reed-Muller code.

Now, let f1, f2, . . . , fm, fm+1 be a random basis of R(1,m)σ. If the all-one code-
word is not linearly dependent on f1, . . . , fm, then in the matrix Aσ formed by
the rows f1, . . . , fm, each column-vector is distinct. Thus, we can just reorder the
columns by moving the zero-vector to the first position, etc., and thus obtain the
matrix A. The same permutation applied to the positions of R(1,m)σ will then yield
R(1,m).

This suggests a simple method to find a suitable permutation: Pick any basis
f1, . . . , fm+1 of R(1,m)σ, check if the columns of the corresponding matrix Aσ are
distinct, repeat if not, identify the corresponding permutation otherwise.

What is the success-probability of such an iteration? Since the fi are linearly
independent, the following estimate of this probability holds:

(2m+1 − 2)(2m+1 − 22) · · · (2m+1 − 2m)
(2m+1 − 1)(2m+1 − 2) · · · (2m+1 − 2m−1)

=
2m

2m+1 − 1
>

1
2
.

In other words, we need merely two trials on the average.



4.4 Running time analysis

In the analysis, we will take the quantity n = 2m (the block length) as the input
length, and we will assume r to be small with respect to m which leads to a low-rate
setting. This assumption is based on the fact that Reed-Muller codes behave very
poorly when r is large, and are therefore practically useless in these instances. For
this reason, we will assume r/m → 0 and r < m/2. In practice, r is usually a small
constant. See [2] for tradeoffs between r, m and decoding thresholds.

The only computationally hard operation of the attack is the one of finding
low weight words in a code, everything else is polynomial time. Thus, in order
to determine the running time up to a polynomial factor, it is sufficient to verify
that only a polynomial number of low weight words is needed, and then to restrict
attention to the low weight word finding algorithm.

Checking that only a polynomial number of low weight words has to be found is
straightforward: In order to find a single vector in R(r− 1,m)σ, a minimum weight
word in the original code has to be found, and then the statistical test has to be
performed to recover the concatenated structure of the shortened code. Since the
bias in the statistical test is at least (2r − 1)−2 per observation, we have to collect
O(22r) = O(2m) = O(n) vectors to get good estimates.

Thus, finding a single vector of R(r−1,m)σ needs the sampling of a polynomial
number of low weight words. But then, since O(k) = O(n), so does clearly the
sampling for a complete basis of R(r− 1,m)σ. And given that r � n, the reduction
to R(1,m)σ requires still only a polynomial number of samples.

Because of this, we conclude that, in the exponent, only the complexity of the low
weight word finding algorithm matters asymptotically, and we restrict our attention
to this algorithm. In practice, those polynomial factors do of course matter to some
extent, but notice that the degree of the polynomial is not very large.

Finding very low weight codewords. The problem of finding very low weight
words is generally intractable for linear codes. For example, if the rate is kept fixed
and the relative weight of the sought word is fixed and small enough, then even the
best known algorithms are exponential in the block length.

However, finding low weight words is much easier if the rate is low, and if it is
not actually fixed but converges to 0 with the block length.

Good methods for finding low weight words are based on the following (infor-
mation set decoding) algorithm: Take a random k × n generator matrix G of the
code, pick a random set I of k columns of G, and diagonalize the matrix G on the
set I. Check the rows of G to see if any of them is low weight. If not, try again with
another random set I.



The condition for a specific word in G of weight w to pop up as a row in such a
diagonalized matrix is that exactly one of its bits is inside the information set and
the other ones are outside. To simplify, we instead compute the probability that
none of its bits are in the information set, a probability which is a bit smaller. We
can approximate this by noting that if k is small compared to n, the probability
that none of the positions of I match with the support of the word of weight w is
roughly

(2)
(
1− w

n

)k
.

This probability becomes large if k is very small with respect to n (i.e., the rate is
very low), or if w is very small.

Note that (2) estimates the probability of finding a single word of the given
weight given a random set I. If many words of the desired weight exist, the proba-
bility has to be multiplied with the number of such words. The above estimate de-
creases with w, but if such an algorithm is applied to find any word of weight ≤ w0,
then the larger w0 is, the easier the task becomes. The reason for this apparent
contradiction is simply that the number of acceptable words increases dramatically
with w0.

Finite-length analysis. The goal of this section is to specialize (2) to the case
of Reed-Muller codes, and to devise a crude bound which allows to estimate the
feasibility of the low weight word finding problems (and thus the attack) for different
values of r and m.

We first study the hardness of the minimum weight word finding procedure for
Reed-Muller codes. In this case, we have w = 2m−r and k =

∑r
i=0

(
m
i

)
≤ m−r+1

m−2r+1 ·
mr

r! .
If we plug this into (2), we get the hit probability of at least

(3) exp
{

m− r + 1
m− 2r + 1

· mr

r!
· ln

(
1− 2−r

)}
for a single codeword per information set. By Proposition 3.2, there are at least
2mr−r(r−1) such words, and so the cost for finding any one of them can be estimated
to be at most

(4) 2−
m−r+1
m−2r+1

·m
r

r!
·log2(1−2−r)−mr+r(r−1)

diagonalizations of the generator matrix. This rough estimate predicts, for example,
that finding a minimum weight word in R(3, 11) would cost roughly 237 diagonal-
izations, and thus finding such words is feasible in that case.



As expected and easily seen by comparing to real running times, the bound (4) is
somewhat pessimistic, i.e., it overestimates the running time. For example, finding a
minimum weight word in R(3, 11) needs only about 217 diagonalizations in practice.
More precise estimates are of course possible, but result in uglier formulas.

The other low weight finding instance operates on the shortened code. In practice
the sampling turns out to be much easier, because of the lower rate and the weakened
condition on the weight. A conservative estimate is easy to find. For example, one
can show that there are at least 2mr−r(r−1)−(m+r2−4r+2) minimum weight words in
the shortened code, and then apply (3) to get a bound similar to (4). The obtained
bound is even weaker than (4), though: It does not take into account the lower rate
of the code, nor the fact that words do not have to be strictly minimum weight in
this case.

Asymptotic analysis. Asymptotically, the running time for the algorithm is

(5) O(poly(n)) · eO(poly(log(n)))

for any fixed value of r.
To see this, we start again with (3). Using the assumption that r/m → 0, and

writing the expression in terms of the block length n = 2m instead of m, we get that
this probability behaves like

exp {− log2(n)rCr(1 + o(1))} ,

where Cr is a constant depending only on r. This time, we assume there is just a
single minimum weight codeword, and thus a conservative estimate for the number
of trials to find a minimum weight word is

(6) Clw := exp {log2(n)rCr(1 + o(1))} .

We take Clw as the cost for both of the low weight sampling instances, deferring
justification of this to A.1. Using the fact that only a polynomial (in n) number of
samplings is needed, we conclude that (5) is is indeed a bound for the running time
of the algorithm.

For large r, the numbers get very large. That is not an artifact: If the code is not
sufficiently low-rate, then finding minimum weight becomes a very hard problem,
rendering the attack infeasible.

4.5 Experimental running time

To check the real-life behaviour, we ran our algorithm for different parameters on
a 2.4GHz PC. Our implementation uses rather simple low weight word finding al-



gorithms, and not elaborate ones like, e.g., the ones described in [1]. The average
running-times for ten runs were:2

r = 2 r = 3 r = 4
m = 5 (n = 32) < 0.01s
m = 6 (n = 64) < 0.01s
m = 7 (n = 128) 0.02s 5.261s
m = 8 (n = 256) 0.081s 2.059s
m = 9 (n = 512) 0.448s 3.462s 176.914s
m = 10 (n = 1024) 2.46s 26.6s 82197.4s
m = 11 (n = 2048) 18.34s 1192.71s no try

As predicted by the analysis, the performance degrades quickly with larger r.
This does indeed exhibit a limit of our attack, but note that since the performance
of Reed-Muller codes degrades with large r, choosing such values would very likely
open the doors to other attacks.

The (r = 3,m = 7)-case is an anomaly of our implementation; we have decided
to leave the high numbers for consistency reasons.

Acknowledgement.

We would like to thank Gérard Maze, Arjen Lenstra and Martijn Stam for helpful
discussions and reviewing early draft versions of this paper; their help and support
has been invaluable in the process of writing up this paper.

References

1. A. Canteaut, F. Chabaut, A new algorithm for finding minimum-weight words in a linear code:
application to primitive narrow-sense BCH-codes of length 511, 1998, IEEE Transactions on
Information Theory, 44(1):367-378

2. I. Dumer, K. Shabunov, Soft-decision decoding of Reed-Muller codes: a simplified algorithm,
2006, IEEE Transactions on Information Theory 52(3): 954-963

3. W. Cary Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003, Cambridge Univer-
sity Press

4. T. Kasami, N. Tokura, On the Weight Structure of Reed-Muller Codes, 1970, IEEE Transactions
on Information Theory, 16(6): 752-759

5. F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, 1978, North-Holland
6. R. J. McEliece, A public key cryptosystem based on algebraic coding theory, DSN progress report,

42-44:114-116, 1978
7. H. Niederreiter, Knapsack-Type Cryptosystems and Algebraic Coding Theory, Problems of Con-

trol and Information Theory, 15(2):159–166, 1986.

2 We only look at m > 2r; since in the other case, the attack can be carried out more efficiently
on the dual code.



8. V. M. Sidelnikov, A public-key cryptosystem based on binary Reed-Muller codes, Discrete Math-
ematics and Applications, 4 No. 3, 1994

9. V. M. Sidelnikov, S. O. Shestakov, On insecurity of cryptosystems based on generalized Reed-
Solomon codes, Discrete Mathematics and Applications, 2, No. 4:439–444, 1992

10. N. Sendrier, On the Structure of a randomly permuted concatenated code, EUROCODE 94,
October 1994.

11. N. Sendrier, Finding the permutation between equivalent codes: the support splitting algorithm,
IEEE Transactions on Information Theory, 46(4):1193-1203, 2000



A APPENDIX

This appendix contains detailed proofs that have been omitted in the paper, as well
as some other comments we do not consider vital for the understanding of the paper.

A.1 The low weight word problem in the shortened code

In the running-time analysis, we based our running-time estimates on estimates on
the difficulty of the low weight word finding problem.

It should be noted that two different low weight word finding problems have to
be solved; the minimum weight word finding problem in the Reed-Muller code, and
the low weight word finding problem in the shortened Reed-Muller code.

We assumed that the low weight word finding problem in the shortened code
is easier than the minimum weight word finding algorithm in the original code.
The reason for this is that first the weight restriction is relieved, and second, the
shortened code has lower rate, as we will now show.

The shortened code has lower rate. The correctness of our running time anal-
ysis depends on the fact that the shortened code has lower rate. This is not an
obvious fact, since, even though the dimension clearly has to decrease, the length
does so too. We prove the assertion in this section.

We write Pr,m the number of linearly independent parity checks that R(r, m)
has, i.e., Pr,m = dim(R(r, m)⊥).

We can use (1) to deduce the number its number of linearly independent parity
checks in the shortened code, and get that there are

r∑
i=1

(
r

i

)
Pr−i,m−r

of them. We can deduce a similar formula for Pr,m itself using an induction on the
equality Pr,m = Pr,m−1 + Pr−1,m−1. We then get that for any ` ≤ r, we have

Pr,m =
∑̀
i=0

(
`

i

)
Pr−i,m−`.

Proposition A.1. The shortened code (constructed in the section on the attack)
has lower rate than the original code.

Proof. We have to show that∑r
i=1

(
r
i

)
Pr−i,m−r

2m − 2m−r
>

∑r
i=0

(
r
i

)
Pr−i,m−r

2m
.



Rearranging the terms, we get that this is equivalent to showing that

1
1− 2−r

>

∑r
i=0

(
r
i

)
Pr−i,m−r∑r

i=1

(
r
i

)
Pr−i,m−r

,

or yet,

2−r >
Pr,m−r∑r

i=0

(
r
i

)
Pr−i,m−r

.

Let µ be the weighted average of the Pr−i,m−r, i.e.,

µ = 2−r
r∑

i=0

(
r

i

)
Pr−i,m−r.

Then we see that we have to show

µ > Pr,m−r.

Now this last equation is true because

Pr,m−r < Pr−1,m−r < · · · < P0,m−r,

as implied by proposition 2.1. ut

A.2 A brief note on the generalized Sidelnikov system

The paper [8] also proposes to use more than a single generator. The proposition
is to juxtapose several differently scrambled generators, and then intermingle the
separate blocks with a right-hand permutation matrix. If u is some small integer,
R is a generator matrix of some R(r, m)-matrix of dimension k × n, E1, . . . , Eu are
random invertible matrices, and Γ is a un × un random permutation matrix, then
the public key is of the form

|E1R,E2R, . . . , EuR|Γ,

which is the generator matrix of some [un, k]-code.
In fact, there is no added security using this when compared to the case u = 1.

To see this, note that on the positions corresponding to EiR, all the parity checks
for R(r, m) are valid parity checks. So to recover the independent code blocks, it is
enough to sample low weight parity checks and to mark the bits in their support as
belonging to the same inner block. Doing this for not to many codewords should be
enough to recover the block decomposition.

In general, it is hard to find low weight words, but not if the sought words are
very low weight. Since R(r, m)⊥ = R(m − r − 1,m), the lowest-weight in the dual
code is 2r+1, which is indeed very low weight for the values of r of interest in practice.

So, in summary, breaking the general Sidelnikov system is roughly equivalent to
recovering a single Reed-Muller code.


